
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide

for the Lisa

Vel5/tnt 3

r ""
EX LIBRIS

David T. Craig
.)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Revisions to
Workshop User"s Guide

for the lisa

This package contains the following revised sections of the Workshop Users
Guide:

• Chapter 2~ The File Manager

Chapter 4, The Editor

Index

The material in the revised chapters has been reorganized and rewritten,
with added illustrations and new examples. The information contained in
the 3.0 Release Notes has been incorporated into the revised chapters. The
Index for the manual has been updated to correspond to the chapter
revisions.

Please discard the old sections from your Workshop User's GlIIoeand
replace them with the sections in this package. You should also throw
away the 3.0 Release Notes for Chapter 2 and Chapter 4.

Apple Part # 030-1125

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Preface

The Workshop Llsl!r's GuidI! for thl! Usa describes the Workshop environment
for developing, testing, and running programs written in assembly language,
Pascal" and other high-level languages.

This manual is written for programmers who are familiar with the Lisai
system.

Related IJocoolerts
F or all programmers:

• LisB 2 Owner's Guide

For Pascal and assembly-language programmers:

• Pascal Refl!rl!nce Manus} far the Liss

• 1-168000 .16/.v2-Bit f.."icroprocsssOl": Programmer's Reference f..lsnus}

• Operating System Reference Manum far the List!l

For BASIC programmers:

• B~SlC-P}us User's Guide for the Liss

F or Macintosh programmers:

• Inside MBcintosh

\\'hat This M8nua1 Contains
The contents of the Workshop User's Guide are summarized below.

• Chapter 1, IntrOl:b::tioo, describes the Workshop environment for program
development and discusses the conventions used by the Workshop tools.
It tells you how to install the Workshop and how to use the main
Workshop command line.

• Chapter 2, The File Manager, describes file-naming conventions; tells
you how to list directories; how to copy, rename, and delete files; and
how to mount, unmount, initialize, and repair volumes.

• Chapter' 3, The system Manager, tells you how to set system defaults
and specify device connections.

• Ch.Elr' 4, The Editor, tells you how to create, modify, search, save, and
print text files.

• Chapter 5, The Pai:cal Compiler, tells you how to use the Compiler and
the Code Generator to turn a Pascal source program into an object file.

i

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshop Manual F'refsctJ

• Chapter 6, The Assembler-.. tells you how to assemble a 68O(X)
assembly-language source program into an object filei it also describes
how your assembly-language program can communicate with a Pascal
program.

• Chapter 7, The Linker, tells you how t.o combine compiled or assembled
object files into a single executable object fUe. It discusses regular
and intrinsic units, external names, and segmentation.

• Chapter 8, The 1JebuggeI", describes how to set breakpoints in your
program; how to display memory and registersi how to trace the
program flOWi and other run-time debugging functiol"'B.

• Chapter 9, Exec Files, tells you how to create a file of commands to
run programs under the Workshop automaticallYi the commands consist
of Workshop and program commands plus a special high-level exec
language.

• Chapter 10, The Transfer Program, describes a data communications
package for transferring keyboard input. or text files between the Lisa
and a remote computer.

• Chapter 11, The utilities, documents a set of utility programs that
perform file comparing, file searching, cross-referencing, Lisa-Macintosh
communication, and various other functions.

• Appendix A, EITm Messages, provides the text of error messages from
the Assembler, the Linker .. ObjlOLib, SULib, PasLib, the Exec Processor,
and the Lisa Operating System.

• Appendix B, Lisa Extended Character Set, is a table of ASCII character
codes and special characters.

• AppendiX C, saeen CorVol Character's, contains information on screen
control in Pascal and BASIC.

• Appendix 0, Common Problems, contains troubleshooting suggestions.

Type and Syntax Conventions
Boldface type is used in this manual to distinguish program text from English
text.

Italics are used \!r'hen technical terms are introduced.

Syntax diagrams show how to enter filenames and other syntactic
constructions. For example, the following syntox diogram from Chapt.er 2
describes a wild-card-spec:

II

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

14orkshop Manuel Preface

Start at the left and follow the arrows through the diagram. Alternate paths
are possible. Every path that begins at the leftmost arrow and ends at the
rightmost arrow is valid.

Circles and ovals contain reserved words, operators, or punctuation symbols
that must be written as shown, except that capitalization is not required.

Boxes contain the name of a syntactic construction that is described by
another syntax diagram. Replace the name with an instance of the
construction.

The wild-card-spec diagram embodies the following rules:

• A wild-card-spec can begin with an optional string (String-l).

• A wild-card-spec must contain =" ?, $, -, or l.

• The ==, ?, $, ., or i. can be followed by an optional string (String-2).

Here are some examples that conform to the wild-card-spec syntax:

-vol-So text
?obj
=

III

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~terl
Int.n:x:U:!tloo

Contents

The Workshop provides tools for program l.IevelUpfllBnt. It provideS facUltles
for editing.. language processing.. and debugging.. as well as commands for
managing fUes and configuring the system. The system also includes many
other ut1lltles.

~ter2
The FUe fvB1ager

The FHe Manager enables you to manage and manipulate fIles and vOlumes.

ctq)ter 3
The System IVDlager

The System Manager enables you to set default and configuration parameters
for the Usa, and manage processes.

~ter4
The Editor

The Editor enables you to create and mOdify text files. These text files are
used as Input to the Compiler and the Assembler.

~ter5
The Pascal COI'll>Uer

The CompHer translates Pascal source code into object cOde. Translation
requIres two steps: first the compHer translates Pascal into I-code; then the
code Generator translates the I -code into Object code.

~ter6
The Assermler

The Assembler translates assembly language programs Into object code.

Olapter 7
The Llr1<er

The Linker combInes object code flIes Into executable programs.

Olapter 8
The Debugger

The Debugger enables you to examine memory, set breakpoints, and perform
other run-time debugging functions.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~ter9
Exec FUes

Exec flIes enable you to execute a series of commands and programs
automatlcall y.

~ter 10
TIle TrCllSfer Prognrn

The Transfer Program enables you to transfer files between the Usa and a
remote computer. It can also let you use the Usa as a termlnal for a
remote computer.

Chapter 11
The Utillties

Utility programs are provlded for debugging, conflguring the system" and
manipulating files.

AppeOO1xes

A Error l'1eSlaQ8s
This section contains a list of error messages for the system, the Linker,
and the Assembler.

B The Usa OlaraCter Set
This section defines the complete Usa character set.

C SCreen Control Olarc.::ten
This section lists character sequences that can be used for controlling Ule
screen display.

o CoI'I'UI Problems
ThiS section contains some common problems and suggestions for handling
them.

Index

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Chapter 1
IntrodJction

1.1 Introduction to the 'NtIkshop _ .• _ •• _ . _ • • • . • • . . •• • 1-1

1.2 ststing the ~ •...•.••......••..•••..•..•.•.•••.•••••••.•••.•.•• 1-1
1.2.1 The Environments Window ____ 1-2
1.2.2 Installation Overview ... 1-3
1.2.3 Installing the Workshop Pascal Software 1-3

1.3 HardwfIe Conrigwation _ 1-10
1.3.1 Specifying Hardware Connections 1-11
1.3.2 Printer Configuration _ 1-11

1.3.2.1 Setting Up a Printer 1-11
1.3.2.2 Configuring the Workshop for a Printer 1-11
1.3.2.3 Specifying a Default Printer

1.4 The IItohx kshop Shell u u ••• u • • • • •• 1-12
1.4.1 Exec Files ... 1-12
104.2 The Main Command Line 1-12
104.3 Automatic Actions Taken by the Shell 1-15

104.3.1 User Startup and Shutdown Procedures 1-15
1.4.3.2 Automatic Mounting of Disks 1-15
1.4.3.3 Automatic Setting of Prefixes 1-16

1AA The Main Screen and the Alternate Screen 1-16

1.5 Wm1cshop Convent.ion!!t Mld Standards __________ . ____ __ .. __ 1-16
1.5.1 File System Conventions

1.5.1.1 File Names .. 1-16
1.5.1.2 Defaults in File Name Prompts. '" 1-17

1.5.2 Getting Help .. 1-18
1.5.3 Getting out ... 1-18

1.5.3.1 Canceling a Program 1-18
1.5.3.2 Canceling a Prompt.. .. 0 •••••• 00 ••••••••••••• 00.0. 1-18
1.5.3.3 Helting a Screen Display 1-19

1.SA Standard Error Messages ... '" 000. 1-19

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

IntrodJction

1.1 lrVoduction to the Workshop
The Workshop contains a collection of tools for preparing and running
programs. These tools allow you to

• Configure the Lisa and set system defaults.

• Write,.. compile or assemble,.. link, and run programs.
• Debug progr81TlS thAt run under t.he liSA Operating System.

• Create and run files of Workshop and program commands using a
high-level exec language.

• Initialize, list, copy, rename, delete, compare, search, cross-reference,
and otherwise view and modify files, catalogs, and volumes.

• Transfer data between the Lisa and a remote computer.
The Workshop lets you develop Macintosh programs on the Lisa. You can
also transfer files between Lisa and Macintosh by running the MacCom
utility program. With MacWorks, you can even run Macintosh programs on
the Lisa. Several programming languages are available, including 66000
assembly language,. Pascal, BASIC, C, and others.

The Workshop tools run under the Lisa Operating System (OS). The OS
enables programs to do file handling, process management, and memory
managementi it provides some facilities for which there are no parallels in
the Workshop. If you are writing programs to run under the Lisa OS, you
should be familier with the Operating System Reference M8I7tJ6/ for the List!.
If you are writing programs to run under the Macintosh OS; you should be
familiar with Inside Macintosh..

You use the main Workshop features by typing a single character response to
a cornrn.t!Jnd line that lists available programs. The main command line is
described 1n this chapter. The File Manager and the System Manager have
their own commMd lines:, described in chapters 2 and 3.

1.2 stating the Wex'kshop
If yuu have already installed the Workshop from micro diskettes, boot from
the Workshop stertup disk. Either the Workshop commend line or the
Environments window appears on the screen. For a description of the
Workshop command line, see Section 1.5.1. The Environments window allows
you to start the Workshop or another environment such as the Office System.
For a description of the Environments window, see Section 1.2.1.

If you have not yet installed the Workshop software onto a startup disk,
follow the instructions in Section 1.2.2.

1-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

'nlorkshop Lisers Guide Introduction

1.2.1 The ErMronments Window
If your startup disk contains only the Workshop environment, booting
automatically sterts the Workshop and its command line appears. If the
startup disk contains more than one environment, the Environments window,
below, lets you select which environment you want. The window displays a
checkbox for each environment plus the following five buttons:

Power ot'f Turn off the Lisa.
Restst Reboot or reset the Lisa.
sttrt Start the selected environment.
Set Oef'ault Set the default to the selected environment.
No Default Always display the Environments window on startup.

Environments

[Restart [Power Off

11ft WorkshOP [Set Default

o Office S\:!s"tem
NO Default

Start

To start the Workshop or another environment from the Environments window,
move the painter to the check box of the environment you want to stmt and
click the mouse button. Then move the pointer to the Start button and click.

To return to the Environments window from the Workshop, use the Quit
command in the Workshop command Une. Reply Y when asked if you really
want to leave the Workshop. Then type A for Another_shell.

To go to the Workshop or another environment automatically at startup time,
select the environment's check box and click Set Default. To go to Vie
Environments window automatically at startup time, click No Default.

To go to the Environments window when booting the system, press any key
while the Lisa is starting up.

1-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide Introduction

You can create your own environments. Any object file named
SHELL.filename will appear in the Environments window as an alternate
environment.

1.2.2 Installation OVerview
The Workshop Pascal software comes on nine micro diskettes, "Workshop
Pascal 1-9." Installing the Workshop involves transferring copies of files
from these micro diskettes to a hard disk that you designate. This hard disk
will then be celled a stsrtup disk or baat disk

Here is an overview of the steps you must follow to properly install the
Workshop Pascal software. The actual instructions are in the next section.

• Physically hook up the Lisa and any peripheral devices, such as printers
and external hard disks. If you have not yet physically set up the Lisa
hardware, turn to Appendix A, Setting Up Your System, in the Usa 2
Owner's Guide.

• Insert the "Workshop Pascal 1" micro diskette and use it to install the
startup software from the first six micro diskettes ('Workshop Pascal
1-6") onto a hard disk that you designate. These diskettes produce a
startup disk containing the minimum Pascal Workshop, which is capable
of editing, assembling, compiling, linking, running programs, managing
files, and configuring various hardware and software options.

It will take about 15 minutes to install the minimum Pascal Workshop, a
little over 2 minutes per micro diskette.

• Start the Workshop and use the System Manager's Preferences tool to
describe your Lisa's particular configuration of disks, printers, and other
devices.

• Use the Workshop's File Manager to copy to the hard disk any additional
files that you need from the remaining micro diskettes ("Workshop
Pascal 7-9").

1.23 Installing the Wtrkshop P8sc81 Sortware
F allow these step-by-step instructions to install the Workshop Pascal
software.

It's a good idea to read through this entire procedure before starting.

1. If the Lisa is on, turn it off by pressing the on-off button.

Z. Have the nine micro diskettes handy ("Workshop Pascal 1-9"). If your
system has an external hard disk, be sure it is on and the realtY light
is steady.

Do not write-protttet the micro disk.ettes. If you try to install the
software from a write-protected diskette, the Lisa will fail, try to
boot, and continue to fail.

1-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

t\lorkshop I..,lser's Guide Introduction

3. Insert the "Workshop Pascali" micro diskette into the drive. Make
sure the arrow embossed on the diskette points toward the drive.

4. Turn the Lisa on by pressing the on-off button once. About fOUT
seconds later, after you hear a click from the cabinet, hold down the * key and type a 2 on the main keyboard. 00 not use tne 2 on tne
numeric kEj..psd

If you type .-2 correctly, the Lisa will go through a self-test that
checks to make sure the Central Processing Unit (CPU), Memory
(Mem), Input-Output (110), and expansion slots are working properly.
Proceed to step 5.

TESTING ...

o

If you type a 2 without pressing the. key, the startup menu will
appear. Hold down the • key and type 2 again.

If you type .-2 late--after you hear a second click from the
cabinet--this screen will appear. Hold down the. key and type 3.
The startup menu described in the preceding paragraph appears. Type
*-2.

1-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop Us'er's Guide Introduction

8 RESTART

• 8 START\JP FROH •••

,. When the Main Menu appears" use the mouse to move the pointer to
the Install box. Click the mouse button once. The box will darken,
indicating that you have selected it.

e:~ Workshop Pascal Systelll 3.0
191983, 1984 .apple computer inc.

Thil miuu dhkette is used to repair the Lisa
Workshop Pascal System startup tlisk and to
install the startup soFtware. The startup disk is
attached to the internal (ollt1l'ctor.

Click Finished if you are Finished,

Click Repair to fix a damaged disk.

(lick Install to put new startup software 011 the
disk.

(lick Restore to restore the disk from backup
di~tl!s or archive tapes.

(finished)

[Restore)

Clicking the Repair box performs the same function as the Scavenge
command in the File Manager (see Chapter 2)i select it only if your
hard disk is damaged and you want to try to preserve its files. The
Restore box is of interest only to Office System users.

6. A message will tell you that the Lisa is looking for any attached hard
disks. It will only find disks that are attached and powered on.

Then you will be asked to select the st8l'tiJP diSk.: that is, the disk on
which you want to install the Workshop Pascal software.

1-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(,J.'orkshop Lis'er's Guide

Do you want to use the disk attached to the
parallel connector?

[lick [ancel if you do not want to specify any
disk to use at this time.

[lick OK if you want to select this disk.

Click More if you want to select a diFferent disk.

Introduction

OK

To select the hard disk identified by the first paragraph of the screen
message, click OK.

To select a different hard diSk, click More. The Lisa will continue
looking for other attached disks.

You can keep clicking More each time a disk is presented for
approvaL If the screen notifies you that no more disks are available,
click Retry to start over or click Main Menu to return to the screen
shown in Step 5.

7. After you select your st8Ttup disk, one of two screens will appear.

8.. If the disk you have chosen is a new disk that h~ never before
been used, or if it is a disk containing software unusable by the
Lisa, you will see the message shown below.

Click Continue.

&

The disk is either damag!'d or has not yet been
initialized. flefore installing the lisa Work.lhop
Pascal System software, the Lisa will !'rase and
initialize the disk.

IF you choose to Contim.e. all Files on the disk
will be erased bef!l"e the Lisa Work.lhop Pascal
System software is installed. (lick [ancel if
you do not want the disk to be erased.

[ancel

r Continue 1
. ~

b. If the h8Td disk you select as your stertup disk already has Lisa
files on it, you will be asked if you want to erase it. You can't
share the disk with MacWorks unless you initialize or er~e it.
CHck Erase to erase everything on the disk.

1-6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Worksl';op User's Guide

00 you want the disk erased?

Click Erase only iF you are starting new
work and want to destroy all inFormation
now on the disk.

Introduction

Don't Erase

Erase

If the hard disk contains files that you want to keep, click Don't
Erase; go to step 9,

B. You will be asked if you want to use part of the disk with MacWorks
(the Macintosh environment for the Lisa system).

If you don't want to store Macintosh files on this disk, click Don't
Share.

00 you wish to use part of the specifie-d disk
with MacWorks?

Click Don't Share if you do not wish to split
the disk between the Lisa Wcx'kshop Pascal
System and MacWorks.

Click Share if you want to be able to use
part of the disk with MacWorlls.

Don't Share

If you plan to use part of the hard disk for Macintosh files, click
Share. You will be asked how much space you want to reserve. The
only choice possible for a 5-MegaByte ProFile is 2000 blocks (1
MegaByte), Click one of the buttons.

The specified disk has a total size of 19446
blocks. How many blocks do you wish to use
with MacWarks?

Click Don't Share- iF YOli do not wish to share
the disk with MacWorks.

Nntp th~t c1i~k hlocks used by MacWorks
cannot be used by the Lisa Workshop Pascal
System.

1-7

Don't Share

10000

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Introduction

9. A wait message will appear while the startup disk is erased and
initialized. It takes a few minutes for the disk to be formatted and
initialized.

When the startup disk has been initialized, the Lisa will automatically
begin installing the Workshop software from the "Workshop Pascali"
micro diskette. You will see a message telling you that the startup
software 1s being installed. The first micro diskette will soon be
ejected from the drive.

10. When the message on the screen tells you to insert the next micro
diskette, remove the "Workshop Pascali" micro diskette from the
drive and insert the "Workshop Pascal 2" micro diskette. The
installation process will automatically continue. You do not need to
click either of the boxes shown.

Please insert the Lisa Workshop Pascal System 2
micro diskette into the micro disk dr-ive.

[lick [ancel to cancel installation. (Continue

If you insert a micro diskette out of sequence, the diskette will be
ejected, and this message will appear.

You inserted a Workshop Pascal System diskette out
of sequence.

The correct diskette to insert at this time is the
Lisa Workshop Pascal System 2.

Ihe Install will continue.

Replace the diskette with the correct one. Click OK; the installation
procedure will continue automatically.

11. Insert the remaining diskettes when you are prompted for them.

If you cancel the automatic installation process before installing
software from the first six diskettes, you will have to repeat this
procedure beginning with the "Workshop Pascal 1" diskette. You will
not be able to use the Workshop until software from the first six
diskettes have been installed.

1-8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Introduction

12.. After the Lisa has installed the softwere from the sixth ("Workshop
Pascel 6") micro diskette, you will be asked to reinsert the "Workshop
Pascal 1" diskette.

Insert the diskette.

Please reimelt the Lisa Workshop Pascal System
1 micro diskette at this time. The lisa will not
be able to finish install inQ the Lisa Workshop
Pascal System software until the Lisa Workshop
Pascal System 1 micro diskette has been
reimerted.

Continue

13. When the message informs you that the Workshop Pascal softwere has
been installed, click OK.

II The Lisa Workshop Pascal System software has been
installed.

OK

14. The Main Menu will reappeer. Click Finished.

The minimum Pascel Workshop is now installed.

e:-~ Workshop Pascal System 3.0 '.""
191983, 1984 «apple computer inc.

I hiS micro diskette is used to repair the lisa
Workshop Pascal System startup disk and to -
install the startup software. The startup disk is (Repair)
attached to the internal connector.

(lick Finished if you are finished.

CI ick Repair to fix a damaged disk. (Install

Click Install to put new startup software on the
disk.

Click Restore to restore the disk from backUp
dislq,ttes 01- lIrchive tapes.

1-9

(Restore)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Worksl70p User's Guide

15. When this message appears, click start Up.

Should the lisa turn oFF or start up From the
disk?

Introduction

The "Workshop Pescal 1" diskette will be ejected. Put it in a safe
place.
Your Lisa will go through a series of self-tests similer to those that
occurred when you first turned it on.

TESTING .•.

o
16. The Workshop will be sterted from the startup herd disk. If the Lisa's

clock/calendar has not been set the Workshop asks you to set the
correct time and date. You should do this now, because some
functions in the Lisa applications require a correct date and time.

17. Use the Workshop System Manager's Preferences tool to tell the Lisa
what peripheral devices are physically connected and what default
settings to use each time you turn on the Lisa. Starting the Workshop
is described in Section 1.3. The System Manager subsystem and the
Preferences tool ere described in Chapter 3.

18. Decide what rUes you need rrom the remaining diskettes ("Workshop
Pascal 7-9"). Use the Workshop's File Manager to copy these files to
the startup disk (or any' hard diSk, if you have more than one). See
Chapter 2, The File Manager, for instructions. Unless you plan to use
a file frequently, you may prefer to access it directly from the micro
diskette rather than take up space on the herd disk.

Your Workshop Pascal softwere is now fully installed.

13 tim'dware Configwation
In order to use a device with the Workshop, you must do two things: first;
tell the Workshop it exists; and second, connect it to the Lisa. TelUng the
software about the hardware is known as configuring the system The
configuration information you provide is saved on the boot disk and in the

1-10

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Introduction

Lisa's parameter memory, so you only have to reconfigure if you change to a
different boot disk or if you connect or disconnect devices.

If you have just installed new software on your boot disk, you should check
its configuration now.

13.1 Specifying Har'dwal-e Connections
The File Manager's Online command tells you what hardware the Workshop
software thinks is connected to your Lisa. If a device that is connected to
the Lisa is not listed by Online, use the Preferences command in the System
Manager command line to tell the Workshop about the device. If Online
pauses unexpectedly while listing devices, or if it reports an error, it is
probably looking for a device that the software thinks is connected. If the
device is not present, use Preferences to detach it.

Preferences also lets you specify various defaults such as which device to
boot from, which printer to associate with the logical printer device
(-printert normal and dimmed brightness levels for the screen, and so on.

1.3..2 Printer" Cort'iguretion
Before using a printer with the Workshop, you must set up the printer and
tell the Workshop where it is connected.

Refer to the instruction manual that came with your printer for directions on
how to set it up. If you have more than one printer you will want to
configure one of them as the default printer, as described in Section 1.3.2.3.

1.3.2.1 Setting up a Prirter
The procedure for setting up a printer varies with the type of printer.
Follow the manufacturer's instructiOns.

During startup, or when you attach a printer using the Preferences tool, the
Workshop sends a control sequence to set the printer to 9600 baud, auto line
feed, DTR handshake, and no parity. If your printer is an Apple Imagewriter,
the default standards which have been factory preset should be satisfactory.
However, if you want to modify the performance of the Imagewriter, see the
technical specifications in the f1pple Im6gewriter l.lser's M6nu6~. P6rt I:
Reference.

1.3.2.2 Cortiguring the Wockshop fm a Printer
Follow these steps to configure your Lisa for a printer:

1. Frorn the Workshop command line, press S to enter the System
Manager subsystem.

2. Press Pfor Preferences. The Preferences tool is used to set up the
configuration of the Lisa system and the Workshop; refer to Section
3.3 for more information on Preferences.

3. Click on the Connect Device Software box to see what devices are
connected to the lisa.

1-11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~vOTkshop Lfrer's Guide

4. Select the connector to which your printer is connected. All devices
that can be connected to that connector are displayed.

,. Select Printer; additional configuration options are displayed.

6. When you are finished configuring your printer, select Quit from the
File menu.

7. Exit from the System Manager back to the Workshop command line by
pressing Q for Quit.

1.3.2.3 SpecifYing a Default Printer
If you have more than one printer connected to your Lisa, you can specify a
default printer--the one you can refer to as -printer. First use the
Preferences tool to configure the printers and other devices connected to the
Lisa. Then choose Select Defaults in Preferences. See Section 3.3, The
Preferences Tool, for more information.

Another w6¥ to specify the default printer is to type D for DefaultPrinter in
the System Manager command line and enter the device name of the default
printer (for example, '10'1 or its alies RS232A). Or, if you want to keep the
current default, press [RETURN). See Section 3.2, The System Manager
Command Line, for more information on the DefauitPrinter command.

The default printer you specify using the Preferences tool is also the default
for the Office System if you have it installed; the default printer you specify
USing the DefaultPrinter command affects only the Workshop environment.

1-4 The Wc:.-bhop Shell
The Workshop shell is the highest-level program in the Workshop
environment. Programs you run from command lines or using the Run
command return control to the Workshop shell when they're finished. The
shell provides an exec file mechanism and performs a number of automatic
actions; its Command Interpreter communicates with you at the level of the
main command line. The Workshop uses the command line to provide you
with access to system functions at a Single keystroke.

1.4.1 Exec Files
Exec files let you automate Workshop utilities and user programs, make
programmed decisions (for example, whether to recompile a source program),
modify the Workshop environment, automate test procedures, and more. Exec
source files can contain a high-level command language, Workshop
commands, and input to user programs. Common uses of exec files include
standard compile procedures and standard application runs. See Chapter 9,
Exec Files, for more information.

1.4.2 The Main Command Line
When you enter the Workshop environment, the Workshop's main command
Une appears at the top of the screen. It shows:

1-12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~votkshop i)s8t's Guide Inttoduction

• Two subsystems, the File Manager and the System Manager, that have
their own command lines.

• The Run command, which lets you run Workshop utilities and any
program that you or someone else wrote to run under the Workshop.

• The main tools provided by the Workshop.
The main command line actually comes in two parts because the screen isn't
wide enough to show all the commands on a single line. The first part of
the main command line looks like this:

WORKSHOP: FILE-MGR, SYSTEM-MGR, Edit, Run, Debug, Pascal, Basic, Quit, 1

You can see the rest of the commands by pressing 1, the last symbol on the
line. To return to the first part of the command line, press [RETURN]. The
second part looks like this:

Assemble, Generate, M8keBackground, Unk, TransferPrQ9"artl

Type the first letter of a command to use a tool. For example, type E or e
to run the Editor. You can use all of the commands no matter which part of
the main command line is showing when you type the command letter. The
Workshop looks for the tool on the boot volume; if it doesn't find it there, it
looks on the Prefix volumes.

Some commands will ask for additional information. Default values are
displayed in square brackets ([default]). To accept a default value, press
[RETURN]. If you don't want the default value, type in the value you want
and then press [RETURN]. If you make a mistake, press [CLEAR] to escape.
See Section 1.5.1.2, Defaults in File Name Prompts, for more information.

The main command line commands are described below. The letter you type
to access the command is shown in parentheses.
FILE-rvtGR (F)
The FILE-MGR command give you access to the File Manager subsystem,
described in Chapter 2. This subsystem is used to manipulate files, catalogs,
and volumes.

SYSTEM-MOO (S)
The SYSTEM-MGR command gives you acceli:S to the System Manager
subS'y'Stem, described 1n Chapter 3. This subsystem provides various
configuration, process management, and utility functions.
Edit (E)
T/"Ie Edit command gives you access to the Editor in order to create" modify,
and print text files. You can use the Editor to write exec files, data files
and programming language source files, as well as memos or other I

documents. The Editor is described in Chapter 4.
Run (R)
The Run command has two functions. You can use it to execute an object
program (a Workshop utility program, a user-written program, or any other

1-13

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide Introduction

software designed to run under the Workshop), and you can use it to cause an
exec file to be processed and executed.

The Run command asks you what file you want to run. The default is the
last program or exec file you ran. To run the same file again, just press
[RETURN]. To run a different file, type the program or exec file name
followed by [RETURN). The name of an exec file must. be preceded by < or
exee/.
If the Run command doesn't find the file under the name you supplied, it
adds the standard extension if you didn't give one (.OBJ for program files,
.TEXT for exec files) and looks for the file again. If you don't specify a
volume name, the Run command searches through the first Prefix volume for
an exec file or through up to three Prefix volumes for a program file; then,
if necessary, it looks on t.he boot volume. Prefixes can be set through the
File Manager's Prefix command.

Debug (D)
The Debug command inserts a breakpoint at the first instruction in your
program, so you can use the Debugger. Then it executes the program just as
the Run command does. More information on the Debugger can be found in
Chapter 8.

Pascal (P)
The Pascal command st8l'ts the Pascal Compiler, described in Chapter 5.
More information on the Pascal language can be found in the Pascal
Reference A1BnuBl for the Usa.

Basic (B)
The Basic command starts the BASIC Interpreter. More information on
BASIC programming can be found in the B~SlC-PIU$ User's Guide for the
LiSB.

Quit (Q)
The Quit command lets you leave the Workshop. If you opened files in the
Editor and didn't save them, you'll receive a reminder. The following prompt
line appears after you confirm that you want to leClVe the shell:

WorkShop_sheil, Another_shell, Reboot, Power_orr
Type W to return to the Workshop environment.

Type ~ to go to the Environments window. If you have the Lisa Office
System installed, you can go from the Workshop to the Office System by
meaM of the Environmenl$ window_

Type R to reboot the Lisa

Type P to turn off the Lisa

Assemble (A)

1-14

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

/'+'otkshop {)ser's Guide Introduction

The Assemble command starts the Assembler, described in Chapter 6.
Additional information on assembly language can be found in the M68.:t'\.')
16/.J"?-Bit Microprocessor manual.

Generate (G)
The Generate command, described in Chapter 5, converts intermediate code
files produced by the Pescal Compiler into object code. (The Compiler
performs this step automatically unless you specify otherwise.)

MakeB8ckgrOlfti (M)
The MakeBackground comm6rtd lets you run a program es a background
process while you continue using the Workshop for other functjons. The
background process should not display on the console or request keyboerd
input.

link (l)
The Link command executes the linker, described in Chapter 7. The linker
is used to prepare compiled or assembled programs for execution, or to link
together separately compiled pIeces of a program.

TransferPrograrn (1)
The TrsnsferProgram command starts the Transfer program, described in
Chapter 10. This program allows your Lisa to communicate with a remote
computer.

1.4..3 AutOl1l8tic Actions Taken by the Shell
Certain actions are automatically performed by the Workshop shell. These
include running a user exec file during startup and shutdown, mounting disks,
and establishing the logical console and default printer devices.

1.4.3.1 lMer startup and Shutdown Procedures
During startup, the Workshop shell looks for a user exec file named
CISTART.TEXT and runs it if it exists. You can create your own CISTART
(Command Interpreter startup) file to modify the Workshop environment or
set up a user application. Any commands that ere valid in a normal exec
file are valid in CISTART. See Chapter 9 for more information on exec
files.

The following CIST ART file sets the Validate command so that file transfers
are not verified and file selections are not confirmed with messages like
"Are you SURE you want to copy ... ?" (see Section 3.2, The System Manager
Command Line, for more information):

$EXEC
S{ys-Mc;J"}V{alidale)N(o}N(oJQ(uit}

SEN:>EXEC
You can also create an exec file named CIFINIst·tTEXT that will be run
automatically when you leave the Workshop shell.

L4.3.2 Attomatic Motriing of DisI<s

1-15

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

'Iiorkshop User's GUJde Introduction

Devices must be mounted before you can read from them or write to them.
At startup time, the Workshop mounts any physically attached disk that has
been logically connected using the Preferences tool. (See Section 3.3.3,
Device Connections, for more information.)

1-4.3.3 PUomatic Setting of Prefixes
Prefixes tell the Workshop where to look for a file when you don't specify a
full pathname. The File Manager's Prefix command lets you specify three
levels of prefixes that remain in effect until you change them or until you
power off.

You can also set the prefixes so that they are automatically reestablished
during startup, by answering Y to the Prefix command's question

Initialize this Prefix set 8l boot time? (Y or N)

1-4.4 The Main SUeen and the Alternate Saeen
The Lisa can show you two different displaysi they are Known as the main
screen (-MAINCONSOLE) and the alternate screen (-ALTCONSOLE). By
convention, the Workshop (except for the Debugger) displa'ls output on the
main screen; that is, the logical console, -console, is normally set to the
main screen. The Debugger uses the alternate screen so that its messages
are not intermingled with program output. The Console command in the
System Manager lets you choose which screen is the logical console.

To switch to whichever screen is not currently viewed, hold down the Option
key on the right side of the Lisa keyboard while you press the Enter key on
the numeric keypad.

Your progrem can direct output to the alternate screen by opening and
writing to a file named "-AL TCONSOLE-x", where x is any file name.

1..5 Workshop CorJ.Ientions and st&nd8rds
This section describes file name conventions and other standards used in the
Workshop. In general, these features are not available in user programs
unless you specifically provide for them. (Refer to The stdUnit Unit in the
third binder of this set for more information on how to program these
features.)

1..5.1 File system CorMmtions
This section introduces file naming conventions end tells you how to respond
to prompts that ask for a file name. Most of the Workshop tools follow
these conventions.

A more complete description of the File System can be found in Chapter 2
and in the Operating S)/stem Reference MBnu81 for the Lis8.

1.5.1.1 File Names
When the Workshop prompts you for a file, you must supply a valid
pathname; the following rules apply:

1-16

,".
)

I
I'
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I

~vorl:.shop l..iser's Guide Introduction

• A pathname has three parts:

Device, volume, or
catalog name

File name

Extension

Starts with "_"; defaults to Workshop
Prefix 1 if not supplied.

Composed of alphabetic and/or numeric
characters; spaces are permitted.

Composed of alphabetic and/or numeric
characters; spaces are permitted. If present, it
is the final "." and any characters that follow.
The standard extensions are .TEXT, .OBJ, .I, and
.LIB.

• The length of the full pathname must not exceed 255 characters. The
length between dashes (-) or between a dash and the end of the
pathname must not exceed 32 characters.

• Leading and trailing blanks or tab characters will be discarded by the
Workshop.

• Uppercase and lowercese are usually preserved as you specify them and
are ignored in distinguishing between file names.

When entering a list of files, indicate that you are finished by pressing
[RETURN).

1..5.1.2 Defaults in File Name PrfllT1Jts
Prompts may display default values, shown in square brackets ([]). If a
file name prompt contains no default value, enter [RETURN] or a backslesh
(\) if you don't want to specify a file.

To accept a default extension, type the file name without an extension. For
example, when a prompt displays

[.text]

and you do not enter an extension, ".text" will be added to the file name you
enter.

To prevent an extension from being added, enter the file name with a period
at the end. The Workshop won't add an extension to a device, VOlume, or
catalog name, so you don't have to follow these with a period.

To accept a default file name, respond with (RETURN]. If you do not want
the default file or any other file, enter a backslesh (\).

Alternate defaults are indicated by a sl~h (I). For example,

[-consolej,{.text]

1-17

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop I,)ser's Guide IntrodUction

lets you default to either the console device or a text file. This option is
made available in cases where you may want to display output on the screen
or save it in a file. Press [RETURN] if you want the Workshop to use the
console. Enter a file name if you want the Workshop to use a file. (If you
don't supply an extension~ ".text" is added.)

A separate default may be shown for each pert of a pathname. For example,

[-parapmt] [-irtrinsic] [.lib]
shows a default value for the device,. file name, and extension. If you leave
out any part of the pathname, the Workshop supplies the default value for
that part. Sometimes parts of a pathname are shown within the same set of
brackets if the parts cannot be accepted independently of one another; for
instance

[-parapon-irtrinsic] [.lib]

1..5.2 Getting Help
If you need help or want to see a list of program options, respond to a file
name prompt by typing ? followed by [RETURN]. Help information appears
on your screen if it is available. (Not all programs provide help screens.)

1.5.3 Getting out
You may want to stop what you're doing--cancel a program that's running,
cancel a command prompt, or temporarily stop a screen display. This
section tells you how.

1.5.3.1 C8nceling a Pr(9"ern
You can terminate the operation of most Workshop tools and utilities by
pressing the Ii-period keJ·· combination Most Workshop tools check for
.-period even when running under exec files.

Unless a user program was written to recognize the _-period key
combination, pressing those keys will not terminate the program. (The
function PAbortFlag tells a program whether or not j-period has been
pressed. For more information, see PASLlBCALL, Section 5.4.) If .-period
doesn't work, you can do one of the following:

• Wait for the program to terminate.

• Press the NMI (nonrnaskable interrupt) key, which forces the system into
the Debugger. The minus (-) key on the numeric keyboard is normally
set to be the NMI key. See Section 8.2.1.2, Terminatino an Infinite
Loop, for further instructions.

1.5.3.2 Canceling a Prompt

1-18

...

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1,4orkshop l.,tser's Guide Introduction

The Clear key on the numeric keypad is an escape key. You can use it in
response to a file name prompt. For example, if you're in the File Manager
and you type D for Delete by mistake, press the Clear key to return to the
File Manager command line. You don't have to press [RETURN] after
pressing [CLEAR].

1..5.3.3 Halting 8 Screen Display
To stop the screen display while a program is running, press the .-S key
combination. The program temporarily halts. To restart the screen display,
just press .-S again. This feature works for all progral'11S that do screen
output through the Pescal run-time system.

1..5-4 Standard Errm- Messages
Every error reported by the OperAting System or the Workshop has a number
associated with it. If the file containing the text of the error message is
e:vailable at the time of the error, the full message is displayed; if the error
file is not available, only the error number is displayed.

The error files are:

OSEns.ERR Errors reported by the Operating System

PeIsEr'B..ERR Compile errors reported by the Pascal Compiler

Wex"kshopErrs.ERR Errors reported by the Exec Processor

F or a list of all error numbers and their associated message text, see
Appendix A.

1-19

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Chapter 2

The File Manager

2.1 Introduction to the File Manager 2-1
2.1.1 The File System ... 2-'

2.1.1.1 Directories and Catalogs 2-1
2.1.1.2 Physical Devices ... 2-3
2.1.1.3 Logical Devices .. 2-3

2.1.2 File Specifiers ... 2-4
2.1.2.1 How to Create a File Specifier 2-4
2.1.2.2 The Working Directory 2-6
2.1.2.3 Standard File Extensions 2-6
2.1.2.4 Wild Card Characters 2-7

2.l.3 The File Manager Command Line 2-' 0

2.2 Managing Volumes and Devices 2-12
2.2.1 The Online Command ... 2-12
2.2.2 The Initialize Command .. 2- 14
2.2.3 The Mount and Unmount Commands 2-15
2.2.4 The Scavenge Command ... 2-16

2.3 Copying and Deleting Fi les ... 2-17
2.3.1 The Copy Command ... 2-18
2.3.2 The Backup Command ... 2-18
2.3.3 The Transfer Command ... 2-20
2.3.4 The Delete Command ... 2-20

2.4 Changing File Attributes ... 2-20
2.4.1 The Rename Command .. 2-21
2.4.2 The FileAttributes Command Line 2-21

2.4.2.1 ClearAttributes .. 2-22
2.4.2.2 Safety .. 2-22
2.4.2.3 Protect .. 2-22
2.4.2.4 AddPassword .. 2-23
2.4.2.5 RemovePassword ... 2-23
2.4.2.6 Quit .. 2-23

2.5 Getting Information about Files 2-23
2.5.1 The List and Names Commands 2-24
2.5.2 The Equal Command ... 2-26

2.6 Additional File Manager Commands 2-27
2.6.1 The Quit Command .. 2-27
2.6.2 The Prefix Command .. 2-27
2.6.3 The AddCatalog Command ... 2-29

I
I
I
I
I
I
I
I
I
I
I .
I
I
I
I
I
I
I
I

The File Manager

2.1 Introduction to the File Manager
The File Manager is a subsystem of the Workshop that gives you access to
physical devices supported by the Lisa Operating System. In addition, the
File Manager lets you communicate with logical devices: -console,
-printer, -keyboard, and -#boot.

The File Manager has its own command line. The commands let you

• Find out what volumes are online.
• List volume catalogs.

• Initialize new hard disks or micro diskettes.

• Print files.
• Make copies of fi les.

• Rename or delete fi les.
• Perform other file manipulation functions.

2.1.1 The File System
The OS File System supports a var iety of input and output devices,
including hlock-structured devices-Chard disk and micro diskette drives) and
sequentii11 devices (RS232 ports .. consoles .. printers, and so on).
Block-structured devices contain vvlum~ which in turn contain catalogs
and liles. Some block-structured devices, such as micro diskette drives,
support removable disks; others. such as the Lisa 2/10's internal drive or
an external ProFile drive, contain a nonremovable disk. See the (}peri/ting
System Reference /VI.;muaJ for the Lisa for more information on File
System devices.

Files, catalogs, volumes, and devices are identified to the Workshop File
Manager by means of file specifiers. When the File Manager prompts you
for a file, respond with a file specifier as described in Section 2.1.2.1.

2.1.1.1 Directories and Catalogs
A vvlume ilirretory, or vvlume ci1ti1lO!}r is present on every volume. It
contains the name and attributes of each file on the volume. The Initialize
command places an empty volume directory on a new disk volume. The
List command shows you the contents of the volume directory_ Filenames
on a given volume must be unique.

A ci1ti1logis a special type of file that points to one or more files and/or
other catalogs. Figure 2-' shows a typical catalog structure.

2-'

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide

o Catalog

Ofile

Figure 2-1
Structure of ARTS Catalog

NOTE

The File Manager

If you plan to work with disks that were initialized for use with a
previous version of the Workshop, reaO this note.

As of Release 3.0, catalog entries are hierarchical and are kept in
alphabetical order; commands that operate on a list of files run
faster with the new catalog structure than with the old tlflat"
catalog, although the 3.0 Workshop can read volumes initialized
under earlier releases. (On the other hand, new volumes cannot be
read by earlier Workshop releases.) To take advantage of the new
catalog structure, initialize a new volume and oopy the old volume
to it.

2-2

I
I
I
I
I
I
I
I
I
I
I

~hhop User's Guide

2.1.1.2 Physical Devices
Any physical device can be referred to either by device name or by an atlas,
as shown in Table 2-1. A block-structured device can also be referred to
by the name of the volume mounted on it. You can refer to your mioro
diskette by device (-# 13) or alias (-lower) or volume (say, -minidisk).
Sequential devices do not have volume names. To refer to a sequential
device as a file, specify its physical devioe name followed by a dummy
filename; for example, -RS232A-X.

Table 2-1
Physical Device Names and AI lases

PhySical Device Alias Description
#10#1 RS232A Serial Port A

#10#2 RS232B Sertal Port B
#11 PARAPORT Parallel conneotor (ltsa 1)

#12 UPPER or PAR APORT Built- in hard disk (Lisa 2)

#13 LOWER ~Ioro diskette drive
#15#1 ALTCONSOLE Alternate console
#15#2 MAINCONSOLE ~ain console
#x SlOTx Peripheral at expansion

slot x
#x#y SLOTxCHANy Peripheral at expansion

slot x, connector y

#x#y#z SLOTxCHANyOEVz Peripheral at expansion
slot x, connector YI
devloe z

2.1.1.3 Logical Devices
There are four logical devices that can be used to specify input and output.
The first three, -console, -printer, and -keyboard, are supported by the
Pascal runtime system; the physical devices to which they refer oan be
changed by Workshop System Manager commands. The fourth, -#boot,
is supported by the Operating System. The logioal devioes are desorlbed in
Table 2-2 below.

2-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop U$er~ Guide

Table 2-2
Logioal Devioes

The rile Manager

Logical Device Description

-oonsole

-printer

Default is soreen output and keyboard input. Can be
changed by the Console command in the Workshop
System Manager.

Default printer. The port to which the printer is
oonneoted is set by the Preferenoes tool. If you have
more than one printer, set the default by using one of
these Workshop System Manager commands:

• The DefaultPrinter command in the
System Manager command line; or

• The Select Defaults menu In Preferenoes.

-keyboard The keyboard ourrently assooiated with -console;
what you type is not eohoed on the oonsole screen.

-#boot The boot device. Set by the as.

2.1.2 File Speoifiers
Files, oatalogs, volumes, and devices are identified to the Workshop File
Manager by means of file specifiers. A file speoifier is a form of
pathname that identifies a devioe, volume, oatalog, fi Ie, or collection of
files to the File Manager.

When the File Manager prompts you for a file, respond with a file
specifier as described below.

2.1.2.1 How to Create a File Speoifier
The format of a file specifier is shown in the diagrams below.

filename

volume/catalog-spec wi Id-card-spec

I.
1
1
1
1
I
1
1
1
1
1
1
I
1
1
1
1
1
I

Workshop User's Guide The File Manager

volume/catalog-spec

physical-device
physical-device-name

physical-device-a! las

physlcal-devioe-name physlcal-devlce-aliM

PARAPORT

UPPER

LOWER

SLOTx

(TIN! device I18I1II.'S on tile left correspond to tile tieYice a/illSl.'S on tile right.)

logical-device

wild-card-spec

2-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide The rile Manager

A leading dash in a fi Ie speoifier indioates that the first part is a volume
or devioe. If the file speoifier starts with a catalog name or filename,
don'fuse a leading dash. If a prompt asks specifically for a volume or
devioe, the leading dash is optional; for instanoe, you oan speoify the mioro
diskette drive either as -#13 or as #13. File Manager commands that
ask speoifioally for volumes or devices are Initialize, Mount, Unmount, and
Scavenge.

For a blook-structured device, you can specify either its physical devioe
name or the name of the volume that is ourrently mounted on it.

File specifiers can contain wild card characters, enabling them to specify a
oolleotlon of files. The wild oard appears In the filename part of the file
specifier-to the right of the rightmost dash, if dashes are present.

2.1.2.2 The Working Directory
The working directory is the oatalog where the Workshop looks for a file
if the file specifier does not Inolude a volume or devloe name. The
working direotory oan inolude one or more suboatalog levels. It is initially
on the boot volume, but you oan establ ish another catalog as the working
directory by using the Prefix command.

To find the current setting of the working directory, type P or L'the
working directory is shown in square brackets in the prompts for the
Pref ix command and the List command.

If you don't specify the volume in a file speoifier, the File Manager adds
the working direotory to the file speoifier to form a oomplete pathname.
For example, If the working directory is -# ll-arts-musio, the file
specifier concerts-solo is combined with the working direotory to
produce the pathname -#11-arts-music-concerts-solo.

2.1.2.3 Standard File Extensions
Files created by many Workshop tools have standard file extensions that
identify the type of file. The extension is the last part of a filename,
preoeded by a period. The standard fi Ie extensions used in the Workshop
are shown In Table 2-3 below.

2-6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop l!ser:f Guide

Table 2-3
Standard Fi Ie Extensions

Extension Description

The rile Manager

.TEXT Text file in the format created by the Editor .

. OBJ Object code file created by the Assembler, the
Generator, or the Linker. Object files created by
the Linker, except for library files, are
executable .

• 1 Intermediate (I-code) file produced by the Pascal
Compi ler for input to the Generator.

.LlB Library directory file produced by the
IUManager.

You can also create your own standard by adopting a convention, giving
certain fi les the same extension. For example, you can add the extension
.trans to every file reoeived from a remote oomputer through the
Transfer program.

2.1.2.4 Wild Card Characters
Wild card characters are like jokers in a deck of oards. The joker oan be
used in place of another oard; the wild oard oharacter oan be used in place
of part of a filename in a file speoifier. For example, the file speoifier
below uses the wild card character '* to searoh for all files with the file
extension .text:

·.text
The wi Id card character stands for a sequence of zero or more characters
that can be ignored in the search for a matching filename. The surrounding
text in the fi Ie specifier (. text in the example shown above) must be
matohed exaotly, ignoring oase.

Figure Z-Z summarizes the wild card characters. The syntax for a wild
card character is shown I n Sect I on Z. 1 . Z .1 .

2-7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide The rile Manager

Figure 2-2
Wi Id Card Characters

If you want the File Manager to let you select files before it performs
the requested operation, use the 1 or L wild card characters. If you don't
want file selection, use the == or .. characters.

When you request file selection, the File Manager presents you with a list
of flies that match the source file specifier. Type Y to select a file, N
to Ignore it. You can move backward and forward through the list by using
the up and down arrows on the numeric keypad. When you have selected
all the files you want, press Return. The operation wi II then be performed
on the files you selected.

Catalogs are searched differently for a source file specifier depending on
the wild card character you choose. If you want all levels of a catalog to
be searched .. choose the" or L character. If you want only the top level
of a oatalog to be searched, choose the .. or 1 character.

2-8

I"

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's G(Jide The rile Manager

Here are the general rules for using wild card characters:

• A wild oard oharaoter oan be used in a file speoifler in response to
any File Manager prompt for a pathname.

• Only one wild oard oharaoter oan appear in a file speoifier, and it
must be in the filename part, not the volume or oatalog part.

• In a sO(Jrce file specifier (generally the first file asked for), the
wild card characters permitted are =, ., 7, and (,. The wild card
character in the source file specifier governs which filenames the
File Manager will select

= matches any string in the top level of the catalog .

• matches any string throughout all levels of the
catalog.

1 matches any string in the top level of the oatalog,
letting you select fi lenames before performing the
operation.

(, matches any string throughout all levels of the oatalog,
letting you select filenames before performing the
operation.

• In a destination file specifier (generally the second file asked for),
== and $ are permitted. The wild oard oharaoter in the destination
file specifier governs how the File Manager will generate the
destination filenames.

.. inserts the part of the souroe filename that matches
the wild card, replacing the = in the destination
filename.

$ inserts the entire filename part of the souroe
filename, replacing the $ In the destination filename.

• To enter the + charaoter, hold down the Option key while pressing
the = key. To enter the (, charaoter, hold down the Option key
while pressing the Shift and 1 keys.

In the following example, slngle.= is the source file specifier and
married.= is the destination file speoifier:

Rename what file(s)? single.=
To what new name(s)? married.=

2-9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide The File Manager

This example tells the F lie Manager to look in the working dlreotory for
all files whose names begin with "single."-for example;

single. data. test
single.obj

single. text

Rename each file by replacing "single." with "married."; replace the wild
card = in the destination filename with whatever matched the wild card =
in the source filename. The selected file's are renamed

married. data. test

lIIarried.obj

.. arried.text

Here are some examples of the = wild card character in a source file
identifier:

=

=.obj

tr=.text

All files on the working direotory volume ...
... ending with .obj

... beginning with tr and ending with .text (such as
traffic. text, training. text, transfer. text)

2.1.3 The File Manager Command line
The File Manager command line gives you easy access to all the File
Manager tools. To enter the File Manager subsystem from the Workshop
command line. type F. An overview of File Manager commands is shown
in Figure 2-3.

2-10

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide

Managing Volumes and Devices

I Copying and Deleting Files I

I Changing File Attributes I

Safety

Getting Information about Files Protect

_. -
I Miscellaneous I
MPREFIX I

Figure 2-3

The File Manager

(: Y:~;(.re-Ievel Commands

Elevel Commands

[:8~f~!og-leVel Commands

Overview of the File Manager

2-11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User~(' Guide The File Manager

The File Manager oommand line has two parts. The first part looks like
this:
fIlf-HGR: aackUP. COPY. Delete. list. online. Prefix. RenlRe. Transfer. Quit. 1

Type 7 to display the second part of the oommand line:
AddC.t.loa. EQU.I. fileAttributes. Initialize. ftount. MIRes. Scavenae. unRount
To redisplay the first part of the command line, press Return.

To execute any rile Manager command" type the first character of the
command name. Most oommands ask for filenames or other input.

If there is a default value for part of a filename, It is displayed In square
brackets ([default]). To enter the default, press Return; otherwise type
the value you want.

Prompts for a file speoifier expect you to press Return after entering the
value. Certain other File Manager prompts, suoh as those asking for a Y
or N response, take effect immediately.

2.2 Managing Volumes and Devloes
The File Manager tools for managing volumes and devioes let you

• Find out what devloes and volumes are ourrently online.
• Initialize a new volume.

• Mount or unmount a volume.

• Scavengea disk to repair it.

2.2.1 The ani ine Command (0)
The Online command lists the volumes that are ourrently mounted. Online
looks at eaoh devloe oonneoted by Preferenoes to see if a volume is
mounted. It then displays a I ist of currently mounted volumes, as shown in
Figure 2-4. Use Online to find out

• The names of mounted volumes.

• How many files are on a volume, and how many of these
are open.

• How muoh spaoe is left on a volume.

a Which volume the Lisa was booted from.

a Whioh volume oontains the working direotory.

• Whioh devioe a partioular volume is mounted on.

2-12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User~ Gt/ide Thl!! Fill!! MllnlJflI!!r

Vol urnes on line
DevName DevAl ias VolumeName VolSia FI'IH.Blk" Fi Ips Open Attr
------- -------- ---------- ------- --------
1113 LOWER SCREENS 764 685 12 3 t1
1115111 ALTCONSOLE 0 0 0 0 M
IU5t12 MAINCONSOLE 0 0 0 1 M
till PARAPORT Amy's WorKshop 9690 1708 206 21 MBP
1110112 RS232B <prinhr) 0 0 0 0 H
112112 SLOT2CHAN2 <printer 0 0 0 0 H

figure 2-4
The Onl ine Display

The oolumns in the Onl ine display are desor ibed below:

DevName

DevAllas

Name of the devioe on whioh the volume Is mounted.

Alternate name of the devloe.

VolumeName Name of the volume that is mounted.
VolSize

freeBlks

Flies

Open

Number of blocks on the volume.

Number of blocks still available.

Number of files on the volume.

Number of files open on the volume.

Attf Attributes of the volume:

B This is the Boot volume.

P This volume catalog is Prefix # 1.
P Prefix # 1 is a catalog on this volume.

M This volume is ourrently mounted.
If a device has a printer attached, <printer} is shown in the VolumeName
column.

NOTE
If the Workshop pauses unexpectedly whi Ie displaying the Online list,
a devioe oonfigured by Preferenoes is not present. Use the Conneot
Devioes menu in Preferenoes to disoonneot the devioe.

2-13

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide The File Manager

2.2.2 The Initialize Command (I)
The Initialize oommand prepares a hard disk or mioro diskette for use in
the Lisa Operating System environments. Initialize formats the disk,
reoords Its volume name, oreates an empty volume oatalog, and mounts the
disk. Initialize will erase an existing volume, but only after it has given
you a ohanoe to ohange your mind. Sample dialog for a new volume and a
previously Initialized volume Is shown in Figure 2w 5.

Initial izing a new volume:

Initialize what device? -1113
How many pages to initialize? [whole device]
Name of new volume? InitDemo
Hax number of files allowed on volume? [56]
Beginning initialization operation ...
Hounted volume InitDemo

Initializing (erasing) a previously initialized volume:

Initial ize what device? -H13
Destroy current OS Volume on H13? y
How many pages to initialize? [whole device]
etc . ..•..•

figure 2-5
The Initialize Command

The dialog for the Initialize oommand is desoribed below.
Initialize what device?

The disk to be initial ized must be on the devioe. Speoify the devioe name
or alias. If the disk has been initialized before, you oan speoify its volume
name.

How Many pages to initialize? [whole device]

A page is a 512-byte blook. The total number of blooks for a devioe is
shown in the Online oommand list. Press Return to aooept the default of
Initializing the whole device. If you want to reserve part of the disk for a
volume of another format, suoh as a Maolntosh volume, enter the number
of blooks to be formatted for Workshop use.

Name of new volume?

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User ~ Guide The File Manager

Specify a name for the new volume. The name can be up to 32 characters.
Don't initialize a volume with a physical device name or logical device
name (-lower or -printer, for example)-if you do, the results are
unpredictable.

"ax number of files allowed on volume? [56]

The default value shown is for micro diskettes. To accept the default
press Return. The default for other disks is computed by the formula

max files = min (4000, (7· blocks on device I 100»

If you plan to keep a large number of small files or a small number of
large files on the volume, change the catalog size from the default.

Initializing includes formatting of micro diskettes. Hard disks are
formatted at the factory. When the operation is completed, the volume is
mounted.

2.2.3 The Mount (M) and Unmount (U) Commands
Mounting makes an OS volume accessible to the Workshop. At boot time,
any volume on a device configured In the Device Connections table of
Preferences is mounted automatioally. For instanoe, if a micro diskette is
present in the mioro diskette drive at boot time, it is mounted. In
addition, the Pascal run- time system wi II automatically mount a micro
diskette at the time the run-time system receives or is waiting for
keyboard input.

The Mount command lets you expl icitly mount a volume. Mount should be
used whenever you conneot a new hard disk. Mount prompts you as
follows:

What device to mount (A device name) ?

Speoify the name of the device on which the volume resides. The Workshop
gives you an error message if you try to mount a volume that is not
initialized or if you try to mount a volume on a device that already
contains a mounted volume.

The Unmount command takes a devioe offl ine. Alw9j'$ IInmollnt IJ device
before disconnecting it from 9 booted sj'$tem. You can specify either the
device name or the volume name. Unmount prompts you as follows:

'hat device/volume to unmount ?
To ejeot a mioro diskette, use the Unmount oommand or press the
Apple-Shift-l key oomblnatlon.

2-15

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide The File Manager

If you unmount the Prefix volume, the boot volume automatically becomes
the Prefix volume. Note that when you use the Scavenge command to
repair a disk, Scavenge unmounts the disk.

2.2.4 The Scavenge Command (S)
A volume can be damaged if the Operating System terminates
abnormally-for example, in a power surge or blackout-or if you
disconnect an external hard disk from the Lisa without first unmountlng it.
If the disk Is used afterwards, the same blocks may be allocated to more
than one file. The Scavenge command repairs a damaged volume by running
the as Scavenger, which restores a volume's catalogs, files, and allocation
tables to a consistent state. Scavenge prompts you as follows:

So avenge .hat devioe/volume ?

If a file is changed by the Scavenger, it is given the S attribute. This
attribute is displayed by the List command. The changes mayor may not
affect the contents of the fi Ie. After running the Scavenger, list the
volume catalog. Check any file that has the S attribute before relying on
its contents. After checking the file, you can use the ClearAttributes
command in the FileAttributes command line to remove the S attribute.

The Scavenger unmounts the volume to be repaired. After the scavenge is
complete, the Scavenger remounts the volume. If the working directory
volume is soavenged, the working direotory reverts to the boot volume.

/! you need to scavenge your boot volume, which cannot be unmounted, boot
from the Workshop Pascal 1 micro diskette. Follow steps 1 through 4 in
Section 1.2.3, Installing the Workshop Pascal Software. When the Main
Menu appears, cl ick on the Repair button and follow the instructions on
the screen. The Scavenger wi II show you, one at a time, the disks
connected to the Lisa. Select the boot volume when the Scavenger shows
it to you. The repair operation may take several minutes. When the
Scavenger has finished repairing the boot volume, the Main Menu will
reappear. CI ick Finished; then you can either turn the Lisa off or start up
from the repaired boot disk.

2-16

I
I.
I
.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User~ Guide The File Manager

2.3 Copying and Deleting Files
There are four File Manager commands for copying and deleting files:

• Copy duplicates files onto the same volume or another volume .
You can also copy files to the logical devices -printer and
-console.

• Backup selectively duplicates files.

• Transfer moves files by making duplicates and deleting the
originals. (If you Transfer a file to -console or -printer, the
original is not deleted.)

• Oelete deletes files by removing their catalog entries.

You can copy or delete more than one file at a time by using a wild card
character in the file specifier, as described in Section 2.1.2.4.

The Copy .. Backup .. and Transfer commands allow you to copy files to
multiple volumes. If you run out of room on a micro diskette during a
copy operation, you are asked whether you want to continue on another
diskette. If you answer Yes, you are led through a diskette change and the
copy operation continues. The volume names of the subsequent diskettes
need not match the first.

The File Manager doesn't normally compare the source file to the
destination file to make sure the the copy operation was successful. The
Validate command In the System Manager lets you change this default so
that oopy operations are verified.

If files are being copied to a catalog structure, catalogs explicitly named
in the destination file specifier must exist on the destination volume. To
create a catalog, use the AddCatalog command.

If files are being copied from a catalog struoture, oatalogs not explioitly
named in the source file specifier will automatically be created on the
destination volume.

The name Workshop. temp is used by the File Manager for
temporary files created during copy operations. Do not use this
name for permanent files.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's GlIide The File MlJlllJger

2.3.1 The Copy Command (C)
The Copy command lets you make a duplicate of one or more files on the
same volume or a different volume. You can give the duplicate the same
name as the original or a different name. Remember, however, that
filenames on a given volume must be unique.

Here is an example of a simple oopy operation that oopies a fi Ie from the
-master volume to the -backup volume without renaming it, using the $
wild card character:

Copy from what existing fi1e(s)1 -master-Ju1y.23
Copy to what new file? -backup-'

To enter the same command on a single line, type the source file specifier
and destination file specifier separated by a comma:

Copy from what existing f11e(s)1 -master-July.23#-backup-$

To copy a file onto the same volume with a new name. enter:
Copy from what existing file(s)? -master-Ju1y.23,-master-Aug.23

To copy all the files on a micro diskette onto a hard disk, adding the prefix
"micro/" to each destination fi Jename, enter:

Copy from what existing file(s)7 -'13-*#-'11-micro/'

To copy all the files in one catalog on the working directory volume into
another catalog on the same volume, enter:

Copy from what existing file(s)? arts-*,crafts-=

The orafts catalog must previously have been created using the AddCatalog
command. Subcatalogs of the arts catalog (music, concerts, prose, and
novel} wi II automatically be created on the destination volume; refer to
the example in Figure 2-1.

2.3.2 The Backup Command (6)
The Backup command allows you to copy files selectively. Its prompts are
similar to those of the Copy command:

Backup from what existing f11e(s)1
Backup to what new file?

For each file on the source volume with a matching name on the
destination volume, the file contents are compared. If the contents are
different, the source file Is copied to replace the old destination file. If a
source file has no matching name on the destination volume, it is copied.
The files on the source volume remain unchanged.

2-18

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User ~ Guide The File MlIIJager

Figure 2-6 shows the results of a baokup operation on a set of files. In
this figure, eaoh shape represents a filename; its shade represents the
contents of the file.

CURRENT FILES -4-

~ , ~
:.-:.-: .. '.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.':-:.: """"'A TEXT '.".'.'.'.'
!j::::!;!:;::):;:;:;::;::::;;;:;::::;::::::

differs from backup

~
......... .

10 "" A 1'0 A,"""1',
"" A II. A I'. ... JI. t. ,f, 1\

• ,. ,. ,. A A

}~~ T ~~ 1~~T .
,. A "" " ,. 4 ,. " ""

A " " ... ,', A" ,.. "

" A A " " ,.

same as backup

...

I J

new file

none

BACKUP FI LES

[1 : ·
:':':'A.TEXT -:-:

· . - . - -............ ·

"" A"''' "" A,." 1\ A
AAI'oAAAA"'AA

'" '" .1'. A A I. "" A " '"
• " ". A " A ,. ... ,. '" I. ,.. ,. ,. ,.. A A ;.. ,', A

DATA.TEXT
.,A/.","",,,,,,,}>,#.

• '" " ,. ,. A ,. ,.
• \ " " ,. A A ." ,. '" A

" A ... A A ,. A ,.

none

Figure 2-6
The Backup Command

2-19

• NEW BACKUP FI LES

~~;I~~I~
new backup

, A " A ,. ,. "

"'''''''''A''''''II.'''''''''''' AAA."A.\II.AAA

"" ... " ""AAAA""
IIAAAAAA"AA

'DATA.TEXT
"'''''''.A,/'./\",A'''

" " ... ;.. I't " " ,. A "
AA.·.AA.·.A ... "

backup remains

new backup

backup remains

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide The File Manager

2.3.3 The Transfer Command (T)
The Transfer command allows you to move files. The source file is copied
to the destination file; if the copy is successful, the source file is deleted
If you have set the System Manager Validate oommand to oonfirm
seleotions for file operations you are first asked,
00 you really want source file(s) removed after a successful Transfer?

If you type N Transfer tells the Copy command to take over. If you type
Y, Transfer proceeds. The Transfer prompts are similar to those of the

Copy oommand:
Transfer from .hat existing file(s)?
Transfer to what new fl1e7

If you transfer flies to -console or printer, the source files are not
deleted.

2.3.4 The Delete Command (D)

2.4

The Delete command lets you remove one or more files or catalogs from a
volume.
To delete a single file:

Delete what fl1e(s)7 -anoestors-patriarchs-abraham.text

To delete several files, use the wild card"'" in the file specifier to search
all levels of the catalog:

Delete what file(s)? -anoestors-patriarohs--

If you have set the System Manager Validate command to oonfirm
seleotions for file operations, the files to be deleted are listed:

ABRAHAM. TEXT
ISAAC. TEXT
JACOB. TEXT

is Seleoted
is Selected
is Seleoted

Are you sure you want to Delete these files ? (V or N)

Changing File Attributes
File attributes are characteristics of files and catalogs. Attributes Include
safety features that prevent accidental deletion or unauthorized access as
well as information about the file's reliability. The Attr column in the
List command display shows the current attributes of a file. Table 2-4
shows how attributes are set and cleared. See Section 2.5.1 .. The List and
Names Commands .. for more information.

The filename Is considered a file attribute.

2-2lJ

, '''
1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User!s' Guide The File Manager

2.4.1 The Aename Command (A)
The Rename command lets you change the name of a file, volume, or
oatalog. You can rename a group of fj les or catalogs by using wild card
oharaoters. Dontt rename a volume to a physioal devioe name or logioal
devioe name (such as -lower or -printer); if you do, the results are
unprediotable.
The Rename command changes only the filename attribute, not the
oontents of a oatalog or file. See Section 2.6.3, The AddCatalog
Command, for instructions on how to reoatalog a file.
To ohange the filename part of a file in a oatalog structure, enter:

Rename .hat f11e(8)1 LEDGER-FV8S-APRIL.TEXT
To what new name(s)? LEDGER-fY85-HAY.TEXT

You can place the file speoifier for the new name on the same line as the
old name; separate the names with a comma. To rename all the text files
on a volume, enter:

Rename .hat fi1e(5)1 -'13-•. TEXT,-'13-=.IOROS

To change the oase of the letters In a filename, rename the file to a
temporary name and then rename that to the name you want:

Rename .hat f11e(5) 1 DEHOGRAPHICS.OBJ.temp.casechanga
Rena.e .hat f11e(s) 1 te~.casechang~Da.oGraphics.Obj

2.4.2 The fileAttributes Command Une (F)
This oommand is used to set and/or olear some of the file attributes shown
In the Attr column of the List command display. Refer to Table 2-4 in
Section 2.5.1 for more information.

The FileAttrlbutes command has its own oommand line:
fileAttJibutes: ClelrAttributes. Protect. S.fety, AddPlssvord. ReROvePlssvord. Quit
Commands in the FileAttributes command line are described below. To
use a FileAttributes command from the Workshop Command line:

1. Type F for File Manager.

2. Type F for FileAttributes.
3. Type the first letter of the FlleAttrlbutes oommand.: for

example, A for AddPassword.

2-21

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Gtlide The File Manager

2.4.2.1 ClearAttributes (C)
The ClearAttributes command removes the following attributes from one
or more files:

C File was closed by the Operating System.

o File was left open when the system crashed.

S File was ohanged by the Soavenger.

If any of these attributes appear when you list files with the List
command, there is a possibility that the files are missing information or
are damaged in some way. C is least serious~ S is most serious. Please
check the contents of these files before relying on them.

To clear file attributes, respond with a single filename or a wild card file
specifier to the prompt

Clear 'C', '0' and'S' attributes on .hat file(s)?

2.4.2.2 Safety (S)
The Safety command allows you to set the safety attribute (L) on a file to
the locked position. A locked file cannot be deleted. You cannot lock a
catalog or a volume.

To lock or unlook a file, respond with a single filename or a wild card file
specifier to the prompt

Change safety condition for .hat file(s)?

and then reply to the prompt
Set safety s.ltch so you cannot delete filen~? (V or N)

Y locks the file; N unlocks it.

2.4.2.3 Proteot (p)
The Protect oommand is used to make an exeoutable program into a
protected m8Ster. A protected master can be run on any Lisa and copied
on any Lisa. However, the copies will run only on the Lisa that makes the
first copy of the file. Thk: protection cannot be removed although a
protected file can be deleted.

To make an executable object file into a protected master, respond with a
single filename or a wild card file specifier to the prompt

Proteot .hat file(s) ? (Turns file into 8 copyable master.)

2-22

I
I
I
I
I
I
I
I
I·
I
I
I
I
I
I
I
I
I
I

Workshop User's Gt/ide The File Manager

2.4.2.4 AddPassword (A)
The AddPassword command provides password protection, a privacy feature
that prevents unauthorized access to a file. The Workshop tools oannot
open a file that is password protected. You must remove the password in
order to use the file, and you can't remove a password unless you know it.

To provide password protection, respond with a single filename or a wild
card file specifier to the first prompt; respond with your choice of
password to the second prompt:

Add password protection to what files ?

'hat password ?

To use a password-protected file, remove the password, use the file, and
then add the password again to restore the protection.

2.4.2.5 AemovePassword (A)
The RemovePassword oommand lets you remove proteotion from a file
that has been proteoted with AddPassword.

To remove password proteotion, respond with a single filename or a wild
oard file speoifier to the first prompt; respond with the previously assigned
password to the second prompt:

Remove password protection from what files ?
'hat password ?

If you use a wild oard, all of the files must have the same password,

2.4.2.6 Quit (Q)
The Quit command exits from the FileAttributes command line to the File
Manager oommand line.

2.5 Getting Information about Files
The List command provides information about files and catalogs on a
volume. It lets you know how much spaoe has been used for files and how
muoh free spaoe remains available on the volume. The Names oommand
tells you the names of files and catalogs on a volume. The Equal oommand
compares two files and tells you whether their oontents are the same.

2-23

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop l/er' Guide The File Manager

2.5.1 The List (L) and Names (N) Commands
The List command I ists the contents of a catalog. You can display a single
file, seleoted files, or all the files on a volume by using wild oard
charaoters. List displays a variety of information about the files and
oatalogs on a volume, alphabetioally by filename. The Names command,
which is faster, displays filenames only. The syntax for these commands is
identical.

Respond to the List or Names prompt with a file specifier or press Return
to use the default, which lists all files at the top level of the prefix
oatalog. The prompt looks I ike this:

VolUMe na.e7 (-(volume)-(wildcard» [-'11-=1
A wild card may be used alone or after the rightmost dash in the file
specifier; for Instance# = or -# 11-pr=. text. When a * or l, wild card
is the last character in the file specifier, the List command indents
filenames to show the catalog structure; for instance, arts •.

An example of the List display is shown in Figure 2-7.

Contents of -ltl1-arts¥
F i 1 ename Size Psize Last-t1od-Date
-------- ---- _ --------------
arts 0 0 08/16/84-10:41

dance 2048 4 08/16/84-11:39
mlJc;ic 0 0 08/16/84-10:41

albums 2048 4 08/16/84-11 :39
concerts 0 0 08/16/84-10:41

chamber 2048 4 08/16/84-11 :38
arch 2048 4 08/16/84-11 :39
solo 2048 4 08/16/84-11:38

pros!? 0 0 08/16/84-10:41
journal 2048 4 08/16/84-11: 40
nOlle1 0 0 08/\6/84-10:42

chars 2048 4 08/16/84-11 :41
plot 2048 4 08/16/84-11 :40

story 2048 4 08/16/84-11:41
thl.'atl.'r 20018 01 08/16/801-10:0101

40 total blocks for files 1 isted
127 blocKs of OS overhead for catalog and files 1 isted
1117 blocks free out of 9690

Figure 2-7

erea t i on-Oa te

08/16/84-10:41
08/16/84-11 :39
08/16/84-10:41
08/16/84-11:39
08/16/84-10:41
08/16/84-11:38
08/16/84-11139
08/16/84-11 :38
08/16/84-10:41
08/16/84-11 :40
08/16/84-10:42
08/16/84-11:41
08/16/84-11:40
08/16/84-11 :41
08/16/84-10:0101

The List Display: Listing of ARTS Catalog

2-24

Attr

0

D

0

0

D

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User~ Guide The File Manager

The List oommand displays the following information:
filename Name of the file.
Size
Psize
Last- Mod- Date
Creation-Date
Attr

Logioal file length in bytes.
Physical file length in pages (512-byte blocks).
Date and time the fi Ie was last changed.
Date and time the file was created.
File attributes, one or more of the following:
C File was olosed by the Operating System.
D Fi Ie is a oatalog (directory).
L File is looked and oannot be deleted.
o File was left open when the system

crashed.
P

S

File Is a proteoted master.
File was changed by the Scavenger.
File is password- protected.

Table 2-4 shows how file attributes are set and cleared. ClearAttributes,
Safety, Proteot AddPassword, and RemovePassword are oommands in the
FileAttributes oommand line of the File Manager. So avenge, AddCatalog ..
and Delete are File Manager oommands.

Table 2-4
How File Attributes Are Set and Cleared

Attr Meaning Set By Cleared By
C Closed by OS Operating System CiearAttributes
0 Direotory AddCatalog (permanent)
L Looked Safety Safety
0 Open at orash Operating System ClearAttributes
P Proteoted Proteot (permanent)
S Soavenged Soavenger ClearAttributes
• Password AddPassword RemovePassword

2-25

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Gt/ide The File Managt?r

To list the contents of a volume, specify its volume name, device name, or
alias followed by a wild card character. Follow one of these examples:

-#,,-=
-'13-*
-DevelopmentVol-L
-lower-?

device nlJllll?

dl!vicl! n8llll1

1'01I.111III nlllltl

1J1iIJs

To list the files and oatalogs at all levels of the working directory. enter:

To place the listing in a text file instead of on the console, enter the List
file specifier followed by a comma and the name of the destination file:

-'11-arts-.,-'13-artslist

When a filename has to be truncated to fit into a limited field of the
display, the missing characters are indicated by ellipsis points (...). If the
full pathname of a file in a catalog is too long to list, you may see the
following message:

--) Error, Filename too long due to subcata10g names: rill!n~

To list the file, ohoose one of the following aotions:

• Include more levels of the catalog explicitly in the file specifier;
or,

• Give the subcatalogs and files shorter names by renaming them.

2.5.2 The Equal Command (E)
The Equal command compares the contents of two files or two sets of
files and tells you whether they are exaotly the same. The oommand
prompts you as follows:

Compare what file(s)?
Against what other file(s)?

You oan respond to the first prompt with both file speoifiers, separated by
a oomma.

Sometimes files are found to be unequal for reasons that you might prefer
to ignore. For example, if logioally identioal text files have different
markers set, or if one uses blanks oompression and the other doesn't, they
will not be found equal by the Equal command. These files will be found
equal by the Compare utility for oomparing text files, described in
Chapter 11.

2-26

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User:r Guide The File M8f1ager

2.6 Additional File Manager Commands
The following sections describe the Quit command, the Prefix oommand,
and the AddCatalog oommand.

2.6.1 The Quit Command <Q)
The Quit command exits from the file Manager subsystem to the
Workshop oommand line.

2.6.2 The Prefix Command (p)
When you don't inolude a volume part in a file speoifier, the Workshop
looks for the file in the working directory. The working direotory, also
called the prefi)l; may be either a volume catalog or a lower- level catalog.
The working direotory is set by the Prefix oommand; the default is the
boot volume oatalog.

You oan speoify up to three prefixes, as shown in Figure 2-8. The working
dlreotory Is the first level; It lets the Workshop find programs or other
files when a volume or oatalog is not inoluded in the file speoifier. The
second and third levels are for programs only. The Workshop looks in these
prefix oatalogs (Prefix #2 first, then Prefix #3) if you don't supply a
volume in the Run oommand and the program you want to run isn't in the
working directory.

~refiX ttl) = tttll,) ('/'=NovalUe)([-llll~ new value?

!
Prefix level:

#1 is the
working directory

Current prefix
at this level

,

Figure 2·8

Default prefix
at this level

The Pref ix Command

2·27

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide The File Manager

A prefix can be a volume catalog or a subcatalog. Specify the complete
pathname. The Prefix command prompts you as follows:

Prefix.l = -'11, ("'=NoValue) [-'11] new value?

To specify the default prefix., press Return. To remove the current prefix
without specifying a new value, type a slash character (I). To speoify a
new value, type the pathname. The new prefix volume must be mounted.
Here are some examples;

new value? -'13
nQ. valuQ? -lo.Qr
new value? -TestVol
new value? -'ll-arts-muslc-concerts
new value? ,

You oan set preiixes permanently, or just until you reboot. After you have
specified three levels of prefix, you see the following prompt:

Initialize this Prefix Set at boot time? (V or N) [No]

To specify that the prefixes are temporary, type Nor press Return. To
cause these prefixes to be the default prefixes the next time you boot,
type Y.

If you unmount or eject the working directory volume, the boot volume
becomes the prefix volume. (The Scavenger unmounts a volume before It
repairs It.)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's (Juide The rile MlJIIlJger

NOTE

If you have made changes to INTRINSIC.lIB so that not all library
names begin with -#boot- or its equivalent, you may have a
problem running programs that use intrinsic units. The OS Loader
looks for fi les without a volume part in the working directory, not
on the boot volume.

To ensure that your intrinsic libraries are found when the working
directory Is not the boot volume catalog, do one of the following:

• Change the names of your libraries in INTRINSIC.lIB to
pathnames of the form -#boot-libname, using the
IUManager utility described In Chapter 11; the standard
Workshop intrinsic libraries use pathnames of this form.
Then reboot so the OS will store the new names. This is the
preferred method. Or,

• Copy your intrinsic libraries to the working directory volume.
This allows you to support several different library
environments, though you could end up with a proliferation of
library flies.

2.6.3 The AddCatalog Command (A)
The AddCatalog command tells you how to create a subcafalog. a catalog
below the level of the volume catalog. Before you can oatalog files at
lower levels, you must create the catalog structure using the AddCatalog
command.

There is no special command to put a file in a catalog. Once the catalog
struoture has been created, filenames are cataloged automatioally when you
oreate the file if one of the following oonditions is true:

• The new file's name includes full volume and oatalog parts; or

• The new file's name doesn't oontain a volume part and the
working direotory is a catalog.

To refer to a file in a catalog structure, provide either a full pathname or
a pathname with a oatalog part that oan be found in the working direotory.

2-29

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide

The dash (-) Is the oatalog delimiter. The full pathname of a oataloged
file takes the form

-vol-cat-file

or, more generally,

-vol-catl-cat2 ... -catN-file

A filename of the form oat2-file is interpreted relative to the working
direotory. It may refer to -vol-cat2-file or -vol-catl-cat2-flle,
and so on, depending on whether Prefix # 1 Is set to a volume or to a
oatalog.

A file or oatalog without a volume part Is oreated using the current
working directory as a prefix. For example,

• Set Prefix # 1 to -# l1-arts-music.

• Copy a file to the destination concerts-flute. text.

• The new fl Ie is cataloged as
-#11-arts-musio-concerts-flute. text.

To oatalog the file arts-prose-novel-plot shown in Figure 2-1, first
create the oatalog struoture In the working directory; then ore ate the file
using the Editor, the Copy oommand, or another Workshop tool:

Add what new catalog ? arts
Add what naw oatalog ? arts-prosa
Add what new oatalog ? arts-prose-novel
Copy fra. what existing file8(1) firstdraft.text
Copy to what new file? arts-prose-novel-plot

The volume oontaining the oatalog must have been initialized using
Workshop Release 3.D or later. If you try to add a oatalog to an older
volume, you will see this message:

----) Error n""ar 1285, Creating new catalog • -"3-nI1I1C8r

Operation is not allowed on a volume with a flat catalog

If this ooours, oOPY the contents of the volume to another disk, reinitialize
the volume, and then add the oatalog.

2-30

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide The File Manager

The Rename command changes only the filename attribute, not the
oontents of a oatalog or file. To recata/og a file,

1. Use the List oommand to see if all levels of the new oatalog
name exist.

2. If necessary, add the new catalog names using the AddCatalog
oommand. For example,

Add what new catalog ? matriarchs

3. Use the Transfer oommand to move the file from the old catalog
to the new one. For example,

Transfer from what existing file(s) ?
patriarohs-abraham.tQxt

Transfer to what new file? matriarchs-sarah. text

2-31

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Chapter 2
The File Manager

2.1 The File Manager ,. 2-1

2.2 Using the File Manager .. 2-1

2.3 The File COf11JTl8I'lds _ •••• _ ..•••• _ ••••••.•••..•• , ••••••• , •••••••.... - _ _ _ _ 2-1
2.3.1 Backup .. 2-2
2.3.2 Copy .. 2-2
2.3.3 Delete ... 2-2
2.3.4 List .. 2-2
2.3.5 Prefix ... 2-3
2.3.6 Rename ... 2-4
2.3.7 Transfer .. 2-4
2.3.8 Quit ... 2-4
2.3.9 Equal .. 2-4
2.3.10 FileAttributes .. 2-4
2.3.11 Initialize .. 2-5
2.3.12 Mount. .. 2-6
2.3.13 Names ... 2-6
2.3.14 Online ... 2-6
2.3.15 Scavenge .. 2-7
2.3.16 Unmount .. 2-8

2.4 The Workshop View (1' the Files _ ... , .. , __ 2-8
2.4.1 OS Volumes on Disk .. 2-8
2.4.2 File Specifiers " , , 2-8
2.4.3 The Working Directory and the Prefix 2-10

2.5 Using Wild Card Characters _ ___ ., _ .. _ _ __ 2-11

2.6 How Do I List Existing Files? _ _ 2-13

2.7 How Do I Copy a File? _ ____ 2-14

2.6 How Do I Delete a. File? ., _ 2-14

2.9 How Do I Q-eate and Use a Volume? _ 2-15

2.10 How Do I Change the Name of a File or Volume? ... _ ____ .. 2-15

See 81so the Re1el!JSe }.O Notes fOl" this ch8.pteJ'.

Y.Jork.shop 3.0 Notes TIle File fvIID!Jger

I Chapter 2

I ~File~~r

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

overvtew Of 0laIg3S to tne FDe Mcnlger
The slg11f1Ca'lt changes to the Flle Manager involve:

• The OperaUng System's new tllerarct'l1cal catalog structure.
I TrMSfer operaUons onto more than one micro dIskette.
• Password protection.
• The new os device 1lCfTleS.

The operating System uses new physical device names, bUt still supports tne
old names as (levlce aUases. YOU can specify a oevlce using eltner tne name
or tile alIas; the OS refers to oevlces DY name. Ttle tallie snows new names.

DevIce Names aro Phases

Name AUas

#10#1 RS232A
#10#2 RS232B
#11 PARAPORT

DevIce

serIal Port A
serlal Port B

#12 LWER or PARJl.PORT
Parallel Connector (LIsa 1)
Bullt-In hard dIsk (LIsa 2)
Micro dIskette drive
Alternate console

#13 LOWER
#15#1 Al TCONSa...E
#15#2 MAINCO\ISO...E
#x SLOTx
#x#y SLOTxa-tANy
#x#y#z SLOT~~VZ

M£atalog 0011118 lCl

Maln console
PerIpheral at expcrlSlon slot x
Peripheral at expansion slot x, OOYIeCtor y
Per1pheral at expcJlSlon slot X, comector
y, devIce z

Files on a voltme can now De arranged lJ'lder catalogs and subcatalogs. The
AdtCatalog command lets you create new catalogs. The patnname you specify
for a catalog Should refer to a volume that has been initialized USing the
Release 3.0 software.
The l7yp11en Is the catalog delImiter, so a file name referring to a fUe in a
catalog might 1001<. Ilke -vol-cat-fUe or -vol-caU -cat2-flle, and so on. A flle
name of the form cat-fUe Is interpreted relative to the current prefix and ttlus
mlgnt refer to -vol-cat-tlle or -VOI-catl-cat-tlle, depending on whether tne
prefix Is set to a voltrne or to a catalog. A catalog specified by a pathname
without a voltrne part wlll be created USing tne current maln prefix.
There Is no special command to put a flIe tn a catalog. once a catalog has
been created, new files get put tnto It In two ways:

NJtes 2-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

WOrksl1qJ User's GtJIt:1e The File /VIa1ager

• If the new file's name is specified by a full patmame with volt.rne and
catalog parts, the file is put In the specified catalog. (A catalog roost exist
before a file CCIl be put Into It.)

• If the new file's name is a partial pat.tr\ame withOUt a volt.rne part, and the
current prefix Is a catalog, the file Is put In the prefix catalog (or a
subcatalog, If the file's patmame InclUdes a catalog part~

When the os tries to fIrKj a file given a partial patmame, the flle wlll be
fOllld only if (1) the pathname has ro catalog part and Is located in the prefix
volt.rne or catalog, or (2) the patmame has a catalog part corresponding to 8
path starting with a catalog at the top level of the prefix volt.rne or catalog.

~1TnI.fer to M.IlUple Micro Dlskettes
(see sectlms 2.3.1., 23.2, and 2..3.n
TIle BacKl4l, Copy and Transfer corrrnands now allow backl4ls, copies, and
trCllsfers to rrultlple VOltrnes. If a list Of fUes Is being copleo (or baCked 1.4»,
or trBlsferred) to a micro diSkette and you n.1l out of space, you will be told
wnlCtl Mle O1m't fit and hOw many more bloct<S were neeaed, 81C1 you will be
aSked Wtlettler you want to conUrue on a"lOther O1Skette. If you answer Yes,
you will De led ttl~ a O1S1<ette Change and the operaUm wlll conUnJe..
NOte that the vollJTle names of the Stilsequent O1S1<ettes need not matCtl the
first, even If the original destlnatloo was speclfled with a partiCUlar volt.rne
name (instead of a device narne~

Ust and NEmes COII1I8OS (see sectlms 2.3A 811 2.3.13)
TIlere are two new attribUtes for items In the List display. TIle 0 attribute
Indicates a directory (a catalog object) S1d the • attribute Indicates a
paSSWOrd-protected Mle (see Password Protectlon, below~
TIle LIst and Names COI"JlIT8lds now Indent names to ShOw the catalog structure
Whenever you list a contlglK)US set of flies. If you speclfy a wUdCard cnaracter
followed by a string to match, the files shOwn wlll not necessarlly be
contlguous, and w111 not be IndentecJ.

When a flle name haS to be tIU'lCated to flt into a limited field of the display
(as In the List comrnaIld), the misSing characters are now indicated by Ell
empsls (... ~

Pret1x COl ••• s Id (see secUm 2.3.5)
preflxes may now be set to catalogs in aaaltlon to VOll.lTleS. A prefix to a
catalog or subcatalog rrust be speclfled with a complete patmame.
The effect of the current prefix on the interpretation of fUe names Is discussed
under AddCatalog COmmand, aoove.

/'IkJtes 2-2

"----,,\,

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

WorkSI7qJ User's Guide me FIle Manager

Setting the main prefix (or wOI1dng directory) may cause pIoblems When
running programs Ulat use Intrinsic units (Ulls InclUdeS all the WOrJ(Snop
tools~ The as loader trtes to find a program's intrinsic llbraries using the
patnnames It flnas In INTRINSIC.LIB; If these names are partial
pathnames, it looKs on the prefix volume or catalog, not tile lXJot voltme.
To assure that your program's Intrinsic Ubrarles are found, you can 00 one
of two things:

• Copy the intrinsic llbralles to the prefix catalog. This way, you can
support several different library envlrorments on the same volume,
though you could end up with a proliferation of library files.

• Change the names Of tne lltJrarles In INTRINSIC.L1B to pattJlames Of
the form -tBCXlT -J.ltn:me (using the IUManager, described In Ctlapter
11, Utllltles), then rebOOt so me os wl11 store the new ncmes. TIlls
methOd is better, bUt be careful about changing things In
INTRINSIC.L1B.

If you UI'lfT'IOlIlt the main prefix volume by ejecting the diSkette, SCavenging the
VOlume, or using the lXlmOUnt command, the boot vOll.rne becOmes the prefix
VOlume.

Rename COl,.,. Itt (see SecUon 23.6)
To rename a flle to a name that only differs from the original in the case of
the letters (e.g., DEMCX3RAPHICS.OBJ to DemoGraphics.ODD, you must first
Rename the flle to a temporary name, then Rename that to the name you want

Password Protection (see secUm 23.10, FlleAtt.r1Wtes)
TWO new corrmancts for password protectlon are fOll'lO Uf10er the FlleAttrtbUtes
cOl'llTl8Jld. AOcPassword allows you to password-protect a fUe (or fUes, using
wl1OCaros~ RemovePassword allOWS you to remove a me's password, bUt you
rrust know the password to remove lL
The wOrJ(shop tools can't open a me once It Is password-protected; you must
remove the password before you can use the fUe.

InluaUze Conwnand (See SecUon 23.11 and 2.4.1)
Volumes initlallZed lJ10er the new wOrJ(ShOp ~ as have a hierarchical catalog
structure. Since this structure cannot be applied retroactively, an existing
VOltme ITlISt be relnl tiallzeo In order to take aov~tage of tnese features.
CorrmancJs that operate on a l1st of flIes (e.g, List) lU1 rTlJCh faster on a
relnltiallzed dlst<, because In the new structure names are alreaoy sorted.

I\btes 2-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The FIle I'1ITJager

0lJJne carmm (see sectlon 2.3.14)
1l'le online oommand now displays both the new OS deVice names and the old
names, whICh are now device aUases. The new device names are llsted In the
OvervIew at the oegImlng of thIs section, cn:J ShOwn In the syntax dlagnms
under FUe spec1f1ers, below.

The prefix attribute P is now sometimes displayed as a lowercase p. Uppercase
P Indlcates that the maln prefix Is the IndlcatecJ volume, whlle lowercase p
Indicates that the prefix Is a catalog on that volume.

f'.D1E

The onUne command uses the conflguratlon Informatlon set by
Preferences. If onUne output says that It could not find :Ill (PAR,APORT)
on a Usa 2/10, use Prefereooes to detach the nonexistent device. If the
Workshop pauses unexpectedly In the middle Of onUne output, It means a
device Is configured but not present. MaKe sure that preferences' Idea of
how the system Is configured Is correct.

File Speclfters (see sectJ.m 2.1L2)
File specifiers have changed to allow for SuDcatalogS, new device names, and the new
WUd card characters. The diagrams that follow ShOw the new format of file
speclf1ers, replacing thoSe on pages 2-9 and 2-10 of the marual. (The logical device
names nave not changed, bUt tile d1agram Is repeated here for convenience.) A full
pathname rrust not exceed 255 Characters; the pieces between dashes (-) must not
exceed 32 characters.

file-specifier
file-neme-or-pattern ~-+

logical-device

flle-neme-or-pattern
-~------------:~-+I file-name 1----_,....-...

volume/catalog-spec wild-card-spec

volume/catalog-spec

volume-name subcatalog

p~lc8.1-device

Ables 2-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

WoIks/7q:J User's GuIde

physical-device

physicel-device-name

physicel-device-name

physicel-device-alies

physical-device-alias

PARAPORT

UPPER

LOWER

SLOTx

SLOTxCHANy

SLOTxCHANyDEVz

RS232A

RS232B

ALTCONSOLE

MAINCONSOLE

TIle FIle f\1a?8ger

(The dtlvictt nlJ.fntJ$ on tht: lttft correspond to tht: dtJt."ictt lIlitlS"tfS on thtt right.}

I\kJtes 2-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

WOd<s/'1q1 User's GuIde TIle FIle I'18n8ger

logical-device
CONSOLE

PRINTER

KEYBOARD

New .,. n l. Wllooant O'laI'ooters (see sect100 25)
Because of the new hierarchical catalog structure, the meanings of the - and 1
wildCard Characters have Changed, and the new analogous wlldcards .,.
(a:>TION -) and l. (a:>TION 1) have been ac1c1ec1. The plain - and ? wll00arcJs
mean search for a match only across the top level of the catalog, WhUe the
option wUc1Carc1S mean search through all levels. The way In Which the matcheS
are mac1e Is the same:

- matches any string In the top level of the catalog.
.,. matches any string throt.g'loUt all levels of the catalog.
1 matcheS any string In the top level of the catalog, aSking for confirmation

of each file name before performing the operation.
i. matches any string thrO\.1i1KJUl 811 levels of Ue catalog, asking for

confirmation of each flle name before performing the operatlon.

NJtes 2-6

(~
\, ':-;.~:!

I
I
I
I
I
I
I
I
I
I
I

The File Manager

2.1 The File MEI1ager
The File Manager is a subsystem of the Workshop. It provides file and device
manipulation faciUtiBS, and handles most of the tasks of transferring
Information from one place to another. Using the File Manager, you can do
such things as make copies of files, list directorIes, rename Of delete files,
find out what volumes are on line, initialize new disks or diskettes, print files,
and so on. See the lpemting System RereJeflCB M8nUBl {'or tile LIsa for more
information on the File System and supported devices.

2.2 ~ tl1e File MEll8QE!T
To use the File Manager, press F in response to the WOrkShop command
prompt. The File Manager begins executing, and displays the File Manager
prompt line:

FILE-fVGR: Baukl4l, Copy, Delete, List, Prefix, Rerune, Transfer, Quit, ?

Pressing "1" displays the additional command line:

E(JJ8l, FlleAttrirutes, InitiaUze, /VIoult,.. NaTIes, ()"JUne, Scavenge, UYnolIlt

To redisplay the original command line, press [RETURN1

To execute any command, press the first character of that command name
'w'hlle the Flle Manager command line Is displayed. I'1ost commands ask for
file names, or other input parameters. If there is a default value for a
parametef, It Is dIsplayed In square brackets ([default] ~ To accept the
default, just press [RETURN~ If you do not want the default, type in the
value you wanl

To manipulate files with the FUe Manager you need to address the file with a
rile specifier. A file specifier can be an OS pathname (representing a file on
a dlsk or diskette), an OS volume name (for example, -MYDISK), the name of a
physical device (for example -RS232A), or the name of a logical device (for
example -printer~ File specifiers can contain wildcards enabllng them to
specify a collection of files. See Section 2.5 for more information on
wildcards. See Section 2.4 for more information on file specifiers.

2.3 The File Manager CtJI110ns

The File Manager commands are llsted In the File Manager prompt line. They
are: Backup, Copy, Delete, List, Prefix, Rename, Transfer, Q.Jlt, Equal,
FlleAttrlbutes, Inltiallze, MJunt, Names, O1line, Scavenge, and U1mOUnt

Each of these operations is described below. Information on wild card
characters can be found in Section 2.5.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

WO.IksIxp User's Guide The File I'-18n8gef

2.3.1 B8ckt4) (a)
The BacKup command executes a simple bacKup utility, sImUar to Copy. It
asks for source erld destination file speclfiers, WhIch wlll most likely contain
wlld cards (see section 2.5~ It then compares the source flIes to the
destination files. Whenever the contents of the two flles are not equal, the
source flle is copied. If a source file is missing from the destination, it Is
copied. Thus It copies only different files from the source to the destination.

I'IJTE

The destination file Is temporarUy named Work shop. temp, and the
source file is automatically copied. If the copy is successful, the
destination file is renamed with its original name, and the files are
cOf'T'Vclred. If the files are different, the first file is deleted. Ordering
the process this way prevents deletion of the destination file before
verification tnat the source file is good.

Because the file name Wot1<Shop.temp is internally involved in the
Backl4l command, do not assign that name to your fUes.

2.3.2 COpy (e)
The Copy command copies files. It asks for a source file specifier and a
destination file specIfier. You can use wlld cards if you want to copy more
than one file. The source file(s) are not changed by this command.

The default Is not to verify copy operations. You can change this default
with the Validate conmand in tne system Manager. If you change the
default, the source file is compared to the destination file after the copy
operation to ensure that they are the same. The Validate command is
described in Chapter 3.

Text files are handled specially When copIed to the -printer or -console
loglcal devices. Leading bIns in a line of text might have been replaced by
a (DlE,count) paIr to save dIsk space. fJ.S such patterns are detected, they are
replaced by (count) blanks In the copy of the file sent to the printer or
console. All other flles are sent byte by byte unchanged.

2.33 Delete (0)
The Delete command Is used to delete a file or a number of files specified by
a wild card expression. It asks you to specify the files to be deleted.

2.3.4 Un (L)
The List command lists information about the files matchIng the given fUe
speCification. If all you need is the names of the files, use the Names
command deSCribed In Section 2.3.13.

"-,,

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

WOrksl7op User's Guide Tl7e File M8n8ger

• If the fUe specifier is a fUe name (for example -MYDISK-example.text)
Information from only that flle is listed.

• If the file specifier is a volume name (for example -MYDISK), information
about all files on the volume Is liSted.

• If the me specifier includes a wBdcard character (for example,
-MYDISK--.text) information about all matching files is listed.

llle list command displays the following information:
Fllenc:me The name of the fIle.
Size
Pslze
Last-MxHJate
creaUm-oate
Attr

The logical file length in bytes.
The physIcal file length in blocks (512 bytes~
Date and time the flle was last changed.
Date and time the flle was created.
FHe attributes, a combination of the following:

C FHe was closed by the QJeratlng System.
L File is locked. It cannot be deleted until the flle

safety switch Is Wmed Off. (See FlleAttrlbutes
command later in this sectlon.)

o FIle was left open when the system crashed.
P File is protected.
S File has been scavenged.

M example of the llst display Is shown In Figure 2-1.

Contents of volume -paraport-=
F i ltoaJ'llp Size Psizt Last-Hod-Date Creat ion-Date AUf'
-------- ---- ------ ------ _----- -------------
SYSl EM. OEBUG2 14848 29 03103/83-15:46 06/10/82-21 :57
SYS1EM .lUDIREC10RY 7168 14 07/1B/83-09:31 02123183-10:33
SYS1EM.LLD 9216 18 06/02182-00:24 02123183-10 :24
SYSlB1.l0G 2992 6 07118/83-16:56 06/08/83-17:49 0
SYSlEM.OS 188928 369 05104183-10 :08 05/04/83-10:08 CO
SYSTEM. SHELL 8704 17 06/02182-00:26 03/29/83-15:14 CO
XEJEC1EM.OBJ 512 1 06/0V82-00: 27 0312]'/83-15:22

FlgJTe 2-1
The List Display

2.3.5 Preflx (P)
The Prefix command enables you to set up default volume names to search
when you specIfy a fHe name wltnout a volume name. You can set up to three
volt.me ncvnes that wlll be searched in order~ when you try to run a program,
untll the fUe is found. The first prefix is the name of the working directory.

2-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

WoJ1<sI'Iq:J User's Guide me File Ml!nBger

These commands are accessed by pressIng the fIrst character of the COfTJTl<Ild.
They perform the follQ\Nlng flllCtioos:
ClearAtt.rlWtes (C)
The ClearAttriOUtes command clears the C, 0, anc:l S attributes on the
speclfled volume .. file, or set of files with wlldcards. These attributes are set
by the system, and have the following meanings:

C File was closed by the qleratlng System.
o FHe was left open when the system crashed.
S FHe has been scavenged.

See the SCavenge conmand in Section 2.3.15 for more InformaUm
safety (S)
The Safety command allows you to set or remove the safety attribute (L) on
any file. When the safety attribute Is set, the flle Is called "LOCked" and
cannot be deleted. To delete a file with safety on, use the Safety cOfTll"Tl(l'ld
to remove the attrlOUte, then delete the file.
Protect (P)
The Protect command is used to make an executable object file into a
protected master. This is a form of copy protection for programs. O"ce a
file is made into a protected master, this protection cannot be removed. A
protected master has the following characteristics:

• It can be run on any Usa machine
• It can be copied on any Usa machine.
• COpIes made wlll run only on the Usa that made the flrst copy of the

flle.

O'lce a flle Is made Into a protected master, there Is no way to
unprotect it Be sure you I.Jf"'Idersta'ld the Characteristics of a protected
master before you create one.
This protection scheme is for executable object flies. Note that
protecting a file does not prevent you from deleting it.

QUit (Q)
The QuIt conmand exIts from the FlleAttrioutes SUbSystem to the FHe
Manager.

2.3.11 Inltlallze (I)
The Initialize command Is used to format and initialize the FUe System on a
diskette or Profile. It asks you for the device name to initialize, the number
of blocKs to initiallze, and the volume name. If you want the entire device to
be InltiaUzed, press [RETURN] for the number of blocks (accepting the

2-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

WOrksl7op User's Guide TtIe File Manager

default). If the device Is a diskette, it Is formatted (ProFlles are factory
formatted). Boot tracks are automatically written to any device that is
initialized. M InlUallzed device Is automatically mounted.
The initialIze command warns you if you attempt to Initiallze a disk that
already contaIns a volume, because the content-~ w111 be erased. A volume is
initialized to allow a certain maximum number of flIes. You can make this
number larger or smaller (I f you know you w111 have a large number of small
flIes, for axample) when initializing it.

2.3.12 MolI'lt (M)
The rvIount command Is used to make an OS device accessible. It requests a
deVice name. It should be used Whenever you connect a new device, such as a
ProFUe. The Unrnount command, described in Section 2.3.16, is used to
remove a devIce. All configured devices are mounted at boot time. The
configuration Cal be Changed wi th the Preferences tool.. Which Is described In
section 3.3.

2.3.13 Nemes (N)
The Names command is a faster version of the List command. It gives you a
list of file names only. It asks for a file specifier, and displays the names of
all fUes matching the given file specifier.

2.3.14 O1llne (0)
The OlUne command produces a l1st of all the devices that are currenUy
mounted cnj avallable, wi th the following information:

DevlceNcme The name of the device.
VoltrneNarne The name of the volLrne.
VOlSize The I'ltJllber of blocks on the voll.me.
FreeB1ks The number of blocks still avallable.
Files The rurtJer of files stored on the volume.
q:,en The runber of fUes open on the vOll .• me.
Attr The attributes of the volLrne:

B The Boot vollJne.
P The Prefix volLrne (prefix 1~
M Volume is currenuy mounted.

The OlUne display Is ShOWn In FIgure 2-2.

2-6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

me File Hsnager

FILE-MGR: BlCku~, CO~y, Delete, List, Prefix, Rename, Transfer, Quit, 71

Volu'/ftes on 1 in.
Devic:eNue VoluuNUle VclSize FreeBlks Files Ope'!n Attr _ __ _---- ---------- ------- --------
PARAPORT Fred's Workshop 96913 754 179 16 MSP
SLOT2CHAN2 e e e e M
RS232A e e e e M
RS232B e e e e H
MAINCONSOLE 13 13 13 1 M
ALTCONSOLE e e e e M

Ft~ 2-2
1he Dlline Display

2.3.15 scavenge (8)
The Scavenge coomancJ lUlS the OS scavenger, wtliCh restores da'nage(2 flIes.
FUes can be ocmaged any time the qJeratIng System tennlnates abnormally.
The scavenger searChes througtl a dIsK and restores Its dIrectorIes, flIes, crld
allocation tables to a consistent state.
To scavenge a disk, use the Scavenge conmand and specify the device ncrne.
After the scavenge Is c()I'Y1Jlete, use the Molnt cornmCl'ld to mount It again,
a1d continue using It The boot volume CarrlOt De lJ1IllOUrIted; therefore It
ca1nOt De scavenged. If the ProFlle Is normally yoor boot volt.rne and you
need to scavenge it, it is necessary to boot from a diskette or another Proflle
and run the Scavenger from lL
If a file is changed In any way by the SCavenger, the file attributes are set to
8, for scavenged. ThIs attribUte Is displayed by the List corrrnand. The
cnanges maae to tne flle mlgnt or might not affect tne cata In the fUe,
depending on What state the flle was In When It was scavenged. Examine any
file that has the scavenged attribUte before relying on its contents. After the
file has been checked, you can remove the scavenged attribUte with the
FileAttribute command.

2-7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

WorkJtJt:p User's Guide TI7e File /'1an8ger

A disk's File System can get into CI1 Inconsistent state if the ~raung
System terminates abnormally, because the directories and allocation
tables are kept In memory and only written out to disk periOdically. If
there is an abnormal termination, SUCh as a flO'Ner fallure, the char'lges
to the state of the File System since these tables were written to disk
might be losl Information can also be lost If you disconnect a Profile
from the Lisa without first t.nTlOUI1Ung it. If the disk is used after
such an event, more data can be lost if the system allocates the same
blOCks to more than one file.
The scavenger always returns the disk to a consIstent state, bUt It Is
posSible to lose data When the system crashes. ThIs dcrnage can
become even worse If the disk Is used whlle In an Inconsistent state.
All scavenged fUas should be checked before you ciepend on their
contents.

2.3.16 U"fOOlIlt (U)
This conmand makes a device inaccessible (takes It off llne~ It asks for a
device name. For diskettes, use a volume name to unmount, or a device name
to UI1f'TlO\.I"'It and eject, the diskette. Always unmount a deVice before
disconnecting It from a running machine.

2.4 llle WOI1<stqJ VIew of FUes
Workshop users are provided with a view of files and devices that Is actually
a composite of what Is provided by the Usa ~ratlng System, the Pascal
run-time system, and the File Manager Itself. Each contributes a specific set
of faci11t1es:
• The Usa q>eraUng System provideS support for a variety of Input and output

devices, InclUding bOth IJI/JOl(-st..rwtu.rer1 rev/res(dlsks and diskettes) CV1d
setpJnt181 tk!Vlces (RS232 ports~ consOles~

• The Pascal run-time system provides support for several log/cal-devices
(console, printer, keyboard) Which are not provided by the OS.

• The FHa Manager provlues wllO-van! faclll tles wnlcn enable many File
Manager cOt'Tll'TI(l'l(js to be applied to a whOle set of files, rather than just
ooe at a Ume.

2Jl.l OS VOlt.rneS on DiSk
Every blOCk-structured device is organized as a single volllTl8 with a flat
directory structure. Volumes can be initially created on a disk by using tne
Flle Manager's InlUallze comTland. The Initialize COfTlI'Tla1d:

1. Formats the dIsk (If necessary~

2. Records its assigned volume name of up to 32 characters.

2-8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workstlop User's GIl/de 77Je F/le Manager

3. Creates Its InlUal, empty dIrectory (also called a catalog~
4. t-1ounts the ini Uallzed disk.

When an object Is created on a dIsk" its flle rI8fl"II\3 of up to 32 characters Is
entered In the diSk's dIrectory. File names must be unIque withIn a volume SO
Ulat every object can be clearly Identified.

2.4.2 Flle Specifiers
Wlthin the WOrkShOp, file speclflers are used to identify the volume, device,
fHe, or set Of flIes an operatlon applles to. The aiagrarns that follow show
the makeup of a me specifier and its components.

me-specifier

J1lyslcal-device

loglcal-deVlce

~yslcal-deV1ce .. r
u>PER "\

loglcal-deVlce

-\. ..I

..J LOWER
,

~ .I

.I PARAPCRT '.
""1111'"\. ..I

-t{ SlOTrnCHAN1
'\
.I

.... I RS232A '\
~ ...I

.-.f RS232B '\
~ ...I

.. 1 \

.. \,-_a:NSa...E_~=_../.1

1'---1110(1 PRINTER '.----'1
..... \.'--------'-=-----...1

.. I
~

2-9

flle-ncrne

wlld-caId-spec

.... .-

..

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

WorkstqJ User's Guide The File Manager

wllo-caro-spec

A physical deVice name refers to a specific hardWare device or port, whether
or not there Is actually anything connected or mounted there. When a device
is block-structured and mounted, Its physical device name can be used In a
flle specifier instead of the disk or diskette's volume name. Since sequential
devices are not mass storage devices, they never have volume names. The
only way to specify them Is to use their pnyslcal cJevlce names followed by
dummy flle names; for example, "-RS232A-X". Logical devices are also not
mass storage devices and do not have volume names. They can be referred to
by their logical device names only.

2.4.3 1lle WOI1<irJJ Olrectory <nJ the PrefIx
sometimes, specifying the same volume name or physical device name again
and again is inconvenient. With the File Manager's Prefix: command you can
establish a particular volume as the OS's WOrking directory. otherwise, the
default working directory is the volume the system was booted from. If a file
specifier omits the volume or physical device name ... the file or set of files is
assumed to be in the working directory. For example, if the WOrking directory
is -MYDISK, the file specifier PROORAfv11.CBJ refers to the same file as
-MYDISK -PROORM-11.00J.

-LPPER The upper dISkette; drive 1.
-LOWER The lower diskette; drive 2.
-PARAP(JH ProFHe attached to the parallel connector.
-SLOT~ Proflle attached to the parallel Interface card In slot m,

channel n (where m Is a slot between 1-3, and n Is
channel 1 or 2~

2-10

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

me File MEnBgef

NJTE

To avoid confusion within the system, do not asslgl a device name to a
voll.lTle.

There are also two serial devices, -RS232A and -RS232B. These provide
access to external RS232 devices.
There are three logical devices that can be used for input and output. These
devices are:

-PRINTER

Used for output to the screen and input from the keybOard.
The actual device that Is used as the console can be
Changed by the console command in the system Manager.
see Section 3.2 for information on the console command.
USed to output to the printer. The physical connector that
the printer is connected to is set by the Preferences tool,
described in Section 3.3.3. If you have more than one
printer, the one that will be used is specified by the
OefaultPrinter command deScribed In Section 3.2.

-KE'Yf:3()PfID Used as a nonecholng Input device from the keyboard. This
is the keyboard on the console device.

certain types of fUes in the system have standa.rd file extensions. These
extensions make it easier to keep track of the different types of meso These
file extensions are:

.TEXT This indicates a text file In the format created by the Editor.

.OOJ This indicates an object Code file. OOject mes are created by
the code Generater, the Assembler, and the LInker. (l)ject files
created by the LInker are executable.

.I This Indicates an intermediate O-code) fHe produced by the
Pascal Compiler. The Generate command converts an
Intermediate flle into an object code flle,

.LIB This indicates a library 01 reDtory.

25 USlrg Wild card Olarooters
Wlld card characters allow you to spec1 fy a set Of flIes to operate on. The
command Is performed on all fUes whose pathname matches the set specified.
Wlld card Characters are ".", ",., and "$", 011y one wlId card character can
appear In a file specifier. These characters are used as follows:

str1ngl-string2

The "." character stands for any sequence of zero or more characters that
can be ignored in the search. The surrounding. strings (strlngl and string2)
must be matched exactly, ignorIng case. Either or both strings can be null.

2-11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

WOrksl7op User's Guide T/7e FIle Manager

t-lere are some examples of using the "." wIld card Character as a source flle
name:

ds-.text
... OOj

All files beginnIng with ds and endIng in .text
All files ending with .obj .
All files.

When "." Is used In a destination flle name, It Is replaced with the characters
that 'Were matched by a 'Wlld card In the source me. This enables you to do
operations liKe change the name of a lIst of flles as they are copIed. Here
Bre examples of using "." as a destination me name:

dS·.text to tJu/ds-.text Change all files starting 'WIth as and endIng
wIth .text so they tlegin wIth 00/.

qd.- to quicKdraw.- Chcr'lge all files starting 'WIth qd to begin 'Wlth
qulcKdraw.

string1 ?strlng2

The "?" character Is the same as the ".", except that the system asKs you to
confirm each me name before performIng the operation. The "?" wlld card
can be used only in a source string.
When you use a "?" In a source specifier, you are presented with a list of fUes
that match it You can move backwards and forwards through the list by
using the up and down arrows on UI8 numeric Keypad. press Y oeslcJe every
file that you want to be processed. When you have selected all the fUes you
want, press [RETURN]. The operation wlll then be performed on the files you
selected after coofirmatiOl'1.
When using the List command, you cannot use the ,,? .. wildcard in response to
the prompt for a voltme name.
strlngl~trlng2

The "~. character can stand for part of a destination file name ooly. It Is
replaced by the enUre source flle name. For example, If you have the source
fUes matching as-.text:

dsfmgr.text
dssrngr.text

If the destination expression Is bK$, the output files will be:

bKdsfmgr.text
bkdssmgr.text

Contrast this with the output expression bk.-.text, 'Which results In:
bk. fmgr. text
bksmgr.text

2-12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Works/?op User's Guide TI7e File Manager

Hint: You can adopt conventions for namlng files that pretend there is a
hierarchical flle system: for example,

SOurcelF l.text
SourcelF2. text
sourcelXYZ.text

2..6 ...uw 00 I Ust Exlrtlng FlIes?
You can use either the List command or the Names command to list existing
files. The Names command executes much faster than the List command, but
it gives you only the flle names.

1. If you are not in the File Manager SUbsystem, enter it by typing F in
respon~e to the Workshop command prompl

2. Execute the List command by pressing L, or the Names command by
pressing N.

3. If you want to list an enUre VOlume, enter the pathname of the volume or
device. If you want to list only a certain set of files, enter a wild card
expression or pathname describing the files to be listed. (The "?" wildcard
cannot be used in response to the List command prompt for a volume
name.) If you want a listing of the default VOlume, press [RETURN~

The listing produced by the List command is explained in Sectioo 2.3.4.

You can send a copy of the directory to a file by following the specification
with a comma and then the name of the file to send the directory to. For
example,

-paraport -bk/-,foo. text

sendS the directory to foo. texl

For more information on wild card characters, see Section 25 in this chapter.

2..7 I-bw 00 I ~y a File?
You can Copy a file and leave the original file intact, or you can Transfer a
file, which copies the fIle, then deletes tile original file. To copy a file:

1. If you are not in the FHe Manager subsystem, enter it by typing F in
response to the Workshop command prompl

2. Press C to start the Copy command. (Press T, for Transfer, if you want
the original file to be deleted after the copy operation.)

3. Enter the pathname of the file you want copied. Press (RETURN~

4. Enter the pathname you want the file to be copied to. Press [RETURN).

The me is copied or transferred as you specified.

2-13

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Worksl7op User's Guide The File Manager

If you want to copy a number of files with similar names, or all the files on a
volume, you can use wHd card characters. See Sectlon 2.5 for more
information on using wUd cards. Wild cards can also be used to rename all
the copies of the selected flies.
The following are examples of copy and transfer operations:

Copy from what existing fi1e(s)? myprog
Copy to What new file? -backup-$

(This copies the fUe myprog on the working directory to the voll.lTlB
-backup with the same name, myprog.)

Copy from what existing file(s)? ds=
COpy to what new file? -backup-$

(This copies all fUes beginning with "ds" on the working directory to
the volume backup with the same fUe name.)

Transfer from What existing fi1e(s)? -osback-osg=
Transfer to what new file? -oswork-$

(This copies all fUes beginning with "osg" on the volume -omack to the
volume -oswork using the same file name. When the files haVe been
copied successfully, the original files are deleted.)

You can use a shorthand method of entering the file names by entering both
the source and destination file names, separated by a comma (,) in response to
the request for the source flle.

Transfer from what existing file(s)? -oSback-osg=,-oswork-$

(This Is the shorthand versIon of the SOove transfer operation.)

Copy from what existing file(s)? ds-,-backup-backds=

(ThIs copIes all fUes lJeginning wIth "ds" In the WOrking directory to the
volume -backup wI th back Inserted as the begInnIng of each fIle name.)

The Backup command Is another way to copy fUes. It Is selective, In that
only dIfferent fUes wUl lJe copIed. You use the same procedure to backup a
file as to copy a file. See Section 2.3.1 for more information on the Backup
cOrnrna1d.

2.8 PllW Ol I Delete a File?
To delete a file:

1. If you are not in the File Manager subsystem .. enter it by typing F in
response to the Workshop command prompt

2. Invoke the Delete command by pressing O.

2-14

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Worksl1qJ user's Guide TI1e FIle /VIan8ger

3. Enter the pat.hrlcme of the flle you want to delete.
4. The system asks you to confIrm that you want to delete the flle. Reply Y

to delete the file or N to keep It
If you Wa'lt to delete more than one fIle, you can use wUd canis. see section
2.S for more Information on usIng wlldcards.

2..9 t-tJw Do I Create cnJ use 8 VOltme?
A volLrne can be created on either a diskette or a Profile disk. Each disk
can contain one volume. Creating a volume on a dIsk gives the disk a name
and sets l4l a directory for files.
1. If you are not in the File Manager subsystem, enter It by typing F In

response to the Workshop command prompt.
2. Press I to Invoke the Initialize corrmanct. This cornnand asks for.

a The devIce name (upper or lower for a diskette, slot2chan2 or paraport
for a proFlle, and so forth)

b. The number of pages to Inltlallze; the default is to Inltlallze the whOle
device.

c. The volume name.
d. The maximum runber of files on the ctevlce; the default Is a good

value unless you are using a large number of very small fUes or a few
very large files.

The volume Is InItialized, wIth an empty directory. (If the device is a
diskette, It Is flrst formatted.) The system warns you If you are Inltlallzlng a
ctevlce that has an existlng volume on It, and gives you a Chance to change
your mind before destroying the existing volume.
After Inltlallzatlon, the device Is automatically mounted so It can be used..

2..10 How Do I ctBw:Je the Name of a FUe or VOIllTle?
Tile Rename command allows you to change the name of any file or volume.
1. If you are not In the File Manager Subsystem, enter It by typing F In

response to the WOrkShOp commancJ prtJlll)l

2. Execute the Rename command by preSSing R

3. Enter the polhname of the flle or volume you want to rename.
4. Enter the new name. (The same device name is assumed for a file.)

The name of the flle or volume Is Changed.
You can use the Rename commcnj to Change the ncme of a group of files by
using wlId card expressions.

2-15

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Chapter 3
The System Manager

3.1 The system Manager _____ . __ ... __ .. 3-1
3..2 The system Manager Convnand line .. __ .. ______ . __ . ____________ .. _ 3-1

3.3 The Preferences Tool __ . ____________________ . _____________ -----------_ 3-3
3.3.1 Set Conveniences .. 3-4

3.3.1.1 Screen Brightness and Contrast. 3-4
3.3.1.2 Screen Dim ... 3-4
3.3.1.3 Speaker Volume 3-4
3.3.1.4 Repeating Key'S _ ... 3-5
3.3.1.5 t-10US8 DOLlble-Clicl~ Delay 3-5

3.3.2 Select Defaults _., 3-5
3.3.3 Peripheral Device Connections 3-6

3.3.3.1 Linking to Expansion Cards 3-9
3.3.3.2 Linking to Printers...... 3-9
3333 LinkinCi to External Hard Disks 3-11
3.3.3.4 Linking to Other Devices 3-12

3.4 Process Management __ . _ . _______ . ___ . ___ . ___ . _ . _________________ . ___ . 3-12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The System Manager

3.1 The System Manager
The System Manager allows you t.o set system defaults and specify the
system configuration. Using it, you can:

• Set the Lisa system characteristics such as screen contrast, speaker
volume, and time lags for repeat.ing keys.

• Inquire or set the hardware clock's time and date.

• Set the configurat.ion of external devices such as disks and printers.

• Set the default. startup device.

• Set which device is t.o be t.he console.

• Redirect output from the console to a file or external device.

• Monitor all currently existing processes, and remove processes.

3.2 The System Manager Cornrnand Line
By pressing S in the main comand line, you can enter the System Manager
subsystem.

The System Manager command line is:

SYSTEM-MGR: ManageProcess, OutputRedirect, Pref'BI"ences, Time, Quit, ?

The System Manager command line works the same as the main Workshop
command line. Pressing? shows you the additional line of commands:

Console, FilesPr~e., Validate., DefaultPrinter

Each System Manager command is described below.

tv1tii kligeProcess (M)
This command puts you into a process management subsystem, .which allows
you to display the status of all currently existing processes, and to remove
processes. The process management subsystem is described in Section 3.4.

OutputRedirect (0)
This command allows you to send a copy of all output that. is displayed on
the console to another device, such as the -JW"irt.er, or to a file on a disk.
The command asks you for the pathname to send the copy to. In order to
return to displaying only on the console, use the command again and redirect
the output to the -console device (which is the default).

3-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshop L/ser's Guide The System f.1817flger

NOTE
Console output frequently contains control characters and escape
sequences for such things as positioning the cursor and clearing the
screeni these special characters will be part of the redirected output as
welL If the output has been redirected to a printer, the control
characters may cause "special effects" such as overprinting. If the
output has been redirected to a text file, the characters will be
embedded within the text file (the Editor will show such characters as
inverted question marks).

Prefer-ences (P)
This command starts the Preferences tool which allows you to set up the
configuration of the Lisa system and the Workshop. The Preferences tool is
described in Section 3.3.

Time (n
This command allows you to set the hardware clock/calendar's date and time.
See the Lisa Owners Guide for more information on the ~stem clock and
calendar. The date and time values ere used for the creation and
modification dates on your files, so they should be kept correct.

Quit (Q)
This command exits from the System Manager and returns to the main
Workshop command line.

Console (e)
This command allows you to change where the Workshop console is displayed.
It may be displayed on the main screen, which is the default, on the
alternate screen, where the Debugger displays, or on an external terminal
connected to the RS232A or RS232B connector. When the main or alternate
screen is used for the console, output can be stopped and restarted by
pressing .-S. If an external terminal is used with XOn/XOff processing
enabled, then .-S stops output and .-Q restarts it.

The console can be moved to the alternate screen when you run a graphics
program, to prevent output from writelns from appearing on the graphjcs
screen (the main screen). To display the screen not currently displsyed~ hold
down the right-hand OPTION key, and press ENTER on the numeric keypad.
When the console is. moved to the alternate screen~ both the console output
(writelns) and the Debugger output will be mixed together on the same
screen.

FilesPrivBte (f)
This command enables or disa.bles the wild-card selection of private system
files. The Lisa Office System uses file names beginning with the (character
for its tools and documents, and the Workshop user should rarely be
concerned with such fUes. These files are called "private". When selection

3-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

f,l,lorkshop User's Guide The System ,.lsnager

of private files is disabled (the defaultt the Workshop File Manager's wild
card mechanism will exclude t.hem from its selections unless the file
specifier explicitly includes the leading (.

There are just a few private files which are used by the Workshop (for
example, {Tll}BUTTONS). You must enable t.he selection of private files if
you want a single file specifier to refer to the entire set of Workshop system
files.

Validate M
This command is used to set up how much verifying you want the Workshop
to do for you. There are two values you can set with this command. The
first is whether or not to verify file copies. The system verifies a copy by
comparing the original file with the copy to be sure they are the same. The
default is to never verify. You should have no reason to verify unless you
suspect something is wrong with your disk. The second value you can set is
whether or not your selections for File Manager commands are verified.
Selections are verified by listing the file names and asking you to confirm
the operation before it is performed.

OefaultPrinter (D)
This command is used when you have more than one printer connected to
your Lisa. It tells the system which one will be t.he -p-inter logical device.
It first gives you a list of all the physical devices that have been configured
by t.he Preferences tool as printers, then asks you for the device name of the
printer you wish to refer to as -p-inte:r.

3.3 The Preferences Tool
The Preferences tool lets you specify what disks, printers, and other devices
are connected to your Lisa, which should be the defaults, and how you want
the special cOrYv'enience settings adjusted. When you start Preferences (by
pressing P in response to the System Manager command line), it displays a
window with five checkbox es:

Set Conveniences is used to customize the Lisa's screen brightness, key
delays, etc. See Section 3.3.1, Set Conveniences.

Select Defaults is used to specify your default printer and startup disk, and
the length of the automatic memory test. See Section 3.3.2, Select
Defaults.

comect Device Softw8I"e is used to connect your Lisa to peripheral
devices. See Section 3.3.3, Peripheral Device Connections.

Install Device Sottware is used to install a device software driver. This is
used in CBSes where your Lisa does not already have the software it. needs
for a particular peripheral device you wish to use. See Section 3.3.3",
Peripheral Device Connections.

3-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Ir.1orkshop User's Guide The System A"8f1ager

Remove Device Software is used to erase a software driver from your startup
disk when you no longer want to use the peripheral device. See Section
3.3.3, Peripheral Device Connections.

After you have finished with Preferences, you can get back to the System
Manager by choosing Quit from the File menu.

3.3.1 Set Conveniences
When you first check the Set Conveniences box of Preferences, each
convenience setting already has one option marked. These prechosen options
ere known as default settings. Whenever you click the first item in the list,
Set All Convenience Settings to Lisa Defaults, the default settings are
chosen.

3.3.1.1 Screen Brightness and Contrast
Always adjust the screen brightness before setting the contrast. The
brightness is adjusted through t.he brightness control knob while contrast is
set through Preferences.

To set the screen brightness 8f1d contr8St:

L Find the brightness control knob (the higher of the two white knobs
extending from the back of the cabinet).

2. Turn the brightness control down until your screen is entirely blacl<.

3. Turn the knob back up just until the black rectangle turns to gray.

4. Slowly turn the knob back down, just until the rectangle is distinctly
black, with no video scan lines viSible, and there is a clean line on all
borders.

5. Set the Normal Level (Contrast) by clicking different boxes under
Normal Level until the screen is at a comfortable contrast level for
you.

3.3.1.2 Screen Dim
In order to protect the screen from prolonged high-intensity illumination, the
screen dims when not in use. If e. period of time passes without the mouse
being moved or any keys struck on the keyboard, the screen automatically
dims to a lower level of illumination. As soon as the mouse is moved or a
key struck it returns to the normal bnghtness. You can set the amount of
time that passes before dimming with Minutes Until Screen Dims, and you
can adjust the level it dims down to with Dim Level.

3.3.1.3 Speaker Volune
From time to time, the Lisa communicates by sounding various beeps and
tones. The meanings of these signals are explained in the LisB Owner's
Guide. The Speaker Volume setting controls t.he loudness of these beeps and
tones.

3-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

14orkshop l)ser'$ Guide The S}·'S'tem ,.fanager

Each time you click one of the boxes under Speaker Volume, the Lisa sounds
two tones, at the low and high extremes of the level you have chosen.
Experiment with different settings until you find one you like. .

3..3.1.4 Repeaing Keys
Most of the Lisa keys repeat automatically when held down. The line of
stars that appear when you click one of the Delay box es demonstrates how
long you have to hold a key down before it starts repeating. The line of
stars that appear when you click one of the Rate boxes demonstrates how
fast the characters will be repeated.

The correct settings depend on your typing speed and the way you use the
Usa If you find that the Lisa often generates multiple letters when you
intended to type only one, change the repeat delay to a setting nearer the
long end of the scale. If you use the repeating keys often, you probably
want to specify a short delay and a fast repeat speed.

3..3.1..5 Mouse Double-Click Delay
Some of the desktop functions are accomplished by double-clicking the
mouse button (rapidly clicking the button twice). The Mouse Double Click
Delay setting determines the time lag between releasej of the first Click and
the start of the second click that the Lisa interprets as one double- click.

Like the keyboard repeat delays, this setting should reflect your habits and
work style. If the Lisa often treats your double clicks as two single clicks,
try adjusting the delay to a longer setting. If the Lisa often interprets two
single clicks as one double-clicl<, try adjusting the delay to a shorter setting.

3..3..2 Select Defaults
y.,lhen you check Select Defaults, Preferences lists all the printers and disks
currently connected to the Lisa, and the length of the memory test it
performs at startup time, indicating the current defaults.

To select your defaults:

1. Default Printer, If you ha.ve connected any printers to your Lisa with
Connect Device Software (see Section 3.3.3, Peripheral Device
Connections), the printer(s) you specified will be listed under Use This
Printer as Default. Check the printer YOll normally wish to lise. If
you have connected more tha.n one printer, the default printer will be
the one identified as the logical device -Jrtnter, and used by the
Editor. If yOll wish t.o use some other printer for a particular
document, you can specify the physical device name of the printer
(such as -RS232A-p or -I10#1-p). (You can also change your default
printer -.. .. ith Preferences at any time.) Note that if you have the
Office System on the same disk as the Workshop, the printer you
specify will be the default print.er in the Office System, too.

3-5

I

t4orkshop User's Guide The System f."8nsger

L Default ststup Disk: When the Lisa is turned on, it looks to the
startup disk for its initial instructions. Under Start Up From, check
the disk you wish to use as a startup disk. For the Workshop this will
be a herd disk. The startup disk should be the disk containing all of
your Workshop software.

Note: If you wish a new disk to be the startup disk,. you will need to
install the Workshop on the new disk. Once you have finished setting
your defaults and device connections, you will also have to turn off
the lisa before the new disk becomes t.he start.up disk.

3. Default Met1'oy Test: Under Test Memory, check either Briefly or
Thoroughly. The memory test setting determines how thoroughly the
Lisa's memory is tested during the automatic startup test. If you
check Briefly, the test takes about 20 seconds. If you check
Thoroughly, the test takes about 40 seconds.

3..3..3 Peripheral Device Comections
A peripheral device can be an external hard disk, a printer, a graphics
plotter, or any other mechanism connected to your lisa. In order to use a
perIpheral device, your Workshop software must know where the devIce is
connected, how to communicate with it, and how to operate it. In software
terminology, the set of codes and instructions that tell your computer how to
operate a device is called a driver. Your Workshop already includes software
drivers for some of the most common devices, and if you wish to connect
some other mechanism, you can install the proper software driver from the
micro diskette supplied with that particular device.

To establish the necessary software connection bet 'een your lisa and a
peripheral device, the proper software driver must be linked to the hardware
connection that the device is attached to. This is accomplished through use
of the Preferences tool.

To connect device sortwsre:

1. Enter Preferences and click the Connect Device Software box. You
will see a screen that lists all the possible connectors (or ports) at the
back of your Lisa., and what, if anything, is attached to them.

If you are using a Lisa 215, your screen will display an addit.ional bo~
labelled ParalleL

L To link a peripheral device to your Workshop, click the box of the
connector to which the device is physically attached. The screen w11l
then display a listing of what devices your Lisa currently has software
to link to from that connector.

3. If the peripheral device you w1sh to use 1s now l1sted, simply CliCK the
box next to its name. The device name will then appear opposite the
appropriate connector and you are finished with the linking process.
The device can be used immediately.

3-6

Workshop i..1s6r's Guide The System "'iansger

If the device you wish to use is not listed after you click the
connector box in step 2, it means that the connector you have clicked
cannot be used with that peripheral or your Lisa lacks the software
driver needed to link up with the device. If lack of software is the
problem, first install the necessary driver as described below under
Install/Remove Device Software, and t.hen repeat these steps 1
through 3.

Expansion Cards
""'hen you attach an expansion card to one of your three expansion slots (see
your LisB Owners Guide, Attaching an Expansion Cardt the card itself will
contain one or more connectors which you can use to attach peripheral
devices. Because more than one connector may be part of an expanion card,
an addItional level of Preferences becomes necessary to link a device to the
Workshop through an expansion card.

To connect an expansion card:

1. Enter Preferences and click COl'VleCt DevIce Software.

2. When you click one of the Expansion Slot boxes, the screen will
display a listing of the cards that your Lisa can currently link to. (If
the card you wish to use is not listed, it means that your Lisa lacks
the driver needed to link up with that card, and you will need to first
install the necessary software as described below under Install/Remove
Device Software and then return to step 1.)

3. Click the box of the card you wish to use, and a list of the
connectors on that card will be displayed (Connector 1, Connector 2,
etc.). Connect.ors on cards are numbered from the bottom up, t.hus,
the bottom connector is always number 1.

4. Click the box of the connector that you are going to use, and a list of
the devices that the Lisa can link to for that type of connector will
be displayed. (If the device you wish to use is not listed, it means
that your Lisa lacks the software needed to link up with that device,
and you will need to first install the necessary driver as described
below under Install/Remove Device Software and then return to step
1.)

Note: In some cases there are different types of connectors on a
single expansion card, or a certain connector can only accept a
specific device. If a particular connector cannot accept. a certain
device, the device will not be listed when you click that connector's
box even if you have installed the appropriate software driver on your
Lisa.

5_ Click the box of the device you wish to use, and it will be named
opposite the connector number. This indicates that you are finished
with the linking process. The device can be used immediately_

3-7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

f,l,lorkshop Llser's Guide The System Mansget'

Disconnecting or Changing Device Sot'tware
If you wish t.o attach a different. device to a connector, simply repeat the
procedure described above and click the name of the new device. If you
wish to disconnect a device simply click Nothing in the list of devices.

Deferred Oetact'mert: If you click Nothing or some new device driver
for e. connector that is linked to e. disk storage device (such as a
ProFilet or a connector linked to a peripheral that is currently in
operation (a printer that is in the midst of printing a document, for
examplet you will get a message telling you that the device cannot be
disconnected and asking if you wish to Defer Detachment. If you
answer Yes, the new driver (or Nothing) will not go into effect until the
Workshop is restarted (either by turning the Lisa off and then back on
or by going to the Environments window and clicking Restart) and you
1,11111 be unable to use that connector for anything else until then.

lnBtalllRemove Device Software
If Preferences does not list the device you wish to use, you have to install
the device software driver. This is done with the Install Device Software
choice in Preferences and the micro diskette you received with the device.

To install device softw8l'e:

L Click the Preferences choice Install Device Software.

2. Insert the micro diskette in the disk drive. A list of the drivers
contained on the disk will be displayed.

3. Click the box beside the name(s) of the device(s) you wish to install.
The software driver will be copied from the micro diskette and
installed on your Lisa.

Note: If you install from a micro diskette a driver that is already on
your Lisa (that is, a driver that already shows up under Connect
Device Software), the version on the micro diskette will replace the
version that had been on the Lisa.

4. When you have installed the device driver(s) you wish .. click Connect
Device Software to leave the Install Device Software menu. When you
are finished with Preferences, the micro diskette can be ejected in the
normal manner (.-E).

To remot./e device softwlJTe:

1. Click ~emove Device Software. A list of all the software drivers
currently installed on your Lisa will be displayed.

Z. Click the dev.ice drivers that you want to erase.

3-6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Itlorkshop L~r's Guide The System Manager

Note:: You cannot erase a driver for a device that is in use. You
must ceose using the device, and in some cose;s disconnect it, before
you can erase its driver.

3.3.3.1 Unking to Expansion cards
As with any other device, your software must be told about an expansion
card connected to one of your Lisa's expansion slots. For a discussion of
using Preferences to link peripheral devices to your Workshop •. see Section
3.3.3, Peripheral Device Connections.

To hook. up an expansion eNd:

1. With the power to your Lisa turned orc insert the expansion card in
the appropriate slot at the rear of your Lisa as explained in Appendix
1 or your Lisa Owner's Guide and the documentation included with
the card.

2.. When the cerd has been properly attached, turn on your Lisa.

3. Enter Preferences.

4. Click the Connect Device Software box.

5. Click the box for the appropriate expansion slot number (Expansion
Slot I, for example).

6. If the type of expansion card you are installing is listed, click the
appropriate box and go to step 8.

7. If the expansion card you wish to install is not. listed, take the micro
diskette that came with the expansion card and insert it in the micro
drive. Click in the Preferences box to reactivate the Preferences
window. Now click Install Device Software. The software driver(s) on
the disk will be displayed.

Click the box beside the name of the expansion cerd you wish to
install.

6. If you are installing other expansion cards, repeat steps 1 through 6 or
7. If you are ready to connect a peripheral device to the expansion
card, follow the appropriate instructions in the sections below.

3.3.3.2 Linking to Prirters
For a discussion of using Preferences to link peripheral devices to your
Workshop,. see Section 3.3.3, Peripheral Device Connections.

3-9

J,,1, lorkshop User's Guide The S).-stem M8I18ger

To connect a printer:

1. Connect the printer to the appropriate connector at the back of your
Lisa, as explained in t.he documentat.ion that comes with the printer
and Usa Owners's Guide. If you intend to attach the printer to an
expansion card, you will first have to att.ach the card and link it. to
the Workshop as explained in the instructions that came with the card
and section 3.3.3.1 above.

2.. Enter Preferences.

3. Click the Connect Device Software box.

4. Click the box for t.he connect.or you ere using for your print.er.

a. If you are connecting the printer t.o one of the built-in serial ports,
click either Serial A or Serial B. (Serial A is the port next to the
mouse port..)

b. If '!r/OU wish to connect your printer to an expansion card, click the
appropriate box. (If the expansion card is not named in t·he options
list, you will have to install the card's software driver.)

When you select an expansion card, the Lisa asks which of the two
or three connectors on the card you wish to use. Connect.ors on
cards ere numbered from the bottom up, thus, the bottom connector
is always number 1.

5. Once you have selected the connector you I,,,ish to use, the Lisa
displays a list of devices that can be attached to that. connector.
Click the appropriate printer (Apple lmagewriter or Apple Daisy",,'heel,
for example).

If the printer you wish to install is not listed, take the micro diskette
that came with the printer and insert it in the micro drive. Now click
the Install Device Software box. A series of printer choices appears;
click the name of the print.er YOLI wish to use. The printer software
driver on t.he diskette will be aut.omatically installed, and the name of
the printer listed under Connect Device Software for you t.o select.

Note: Expansion cards usually have two or t.hree connectors. In some
cases these connectors are different, and each one can only accept
specific devices. If, after inst.alling the software driver as explained
above, you do not see the peripheral you want listed in the menu, try
one of the other connectors on the expansion card.

6. If yOll are installing addit.ional devices or expansion cards, you can set
Preferences for them before proceeding to the next step.

7. Load the paper into the printer as explained in the documentation that
came with the printer.

3-10

/.-,.".
'I ~,

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide The System f.1sn8gffr

8. Turn on the printer and run the printer's self-test to make sure the
printer, independent of the Lisa, will run correctly. See the manual
that came with the printer for instructions on running the self-test.

33.33 Linking to External Hard Disks
In addition to the 5-megabyte ProFile or 10-megabyte internal hard disk you
are already using, you can attach other hard disks to your Lisa for additional
storage.

For a general discussion of using Preferences to llnk peripheral devices to
your Workshop,_ see Section 3.3.3 .. Peripheral Device Connections.

To connect an external hard disk:

L After installing an expansion card at the back of your Lisa, connect
the disk to the card's connector, as explained in the documentation
that comes with the disk and your USB O,-,mers's Guide.

2. Enter Preferences.

3. Click the Connect Device Software box.

4. Click the box for the expansion card you are using. If the expansion
card is not listed, you will have to install the card software driver as
explained above.

"'.,then you select an expansion card, you will be asked to click which
of the two or three connectors on the card you wish to use.
Connectors on cards are numbered from the bottom up, thus the
bottom connector is always number 1.

50. Once you have selected t.he connector you wish to use, you will see a
list of devices that can be attached to that connector. Click the
appropriate hard disk.

If the hard disk you wish to install is not listed, take the micro
diskette that came with the disk and insert it in the micro drive.
Now click the Install Device Softw8Je box and then click the name of
the hard disk you wish to use when it is displayed. The disk soft.ware
driver 011 the diskette will be automatically installed, and the name of
the hard disk listed under Connect Device Softwere for you to select.

Note: If the herd disk comes with an expansion card, you may also
have to install the driver for the card. Check the inst.ructions that
accompany the hurd disk for the names of the drivers needed to
operate the hard disk.

6. If you are installing additional devices or expansion cards, you can set
Preferences for them before proceeding to the next step.

If you wish the Ilew disk to be the startup disk, you will need to install the
y.,'orkshop on the new disk.

3-11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Ir"orkshop User's Guide The System Manager

333.4 Linking to Other Devices

Other devices may be connected to your Lisa, and selected with Preferences.
For a general discussion of lIsing Preferences to link peripheral devices to
your Workshop,. see Section 3.3.3, Peripheral Device Connections.

It is recommended that only devices approved for use with the Lisa, and
supplied with Lisa software drivers, be purchased for connection to the Lisa.
However, if you wish to use a peripheral t.hat. does not have a Lisa software
driver, but is connected to the Lisa by means of a parallel or serial cable,
you may be able to operate it by selecting the software driver for Parallel
Cable or Serial Cable.

For example, by connecting a device's serial cable to Connector BJ clicking
Serial 8 under Connect Device Software, and then Serial Cable, you may be
able to use the device. Depending on the particular peripheral device, this
may or may not be adequate.

In technical terms, to use the Serial Cable driver the device must use an
RS232C serial cable, no more than 9600 baud, and either asynchronous a-bit.
or 7-bit with parity-checking communications. In case of doubt, consult your
dealer.

In technical terms the Parallel Cable driver is for devices using the standard
Centronics" Parallel Interface ProtocoL

3.4 Process Management.
The process management subsystem is used to monitor and kill suspended
and background processes. It is started by pressing M (for ManageProcess) in
response to the System Manager command line. (See the Operating System
Reference M8I1Usi for information on processes.)

The process manager displays the following command line:

ManageProcess: KillProcess, ProcessStatus, Quit

KillProcess (K)
The KillProcess command t.erminates a currently existing process, including a
background process.

ProcessStatus (P)
The ProcessStatus command gives you information about all currently
existing processes. It provides the following information:

Pattvlame . The name of the process's object file.
ProcessLID The unique identifier assigned to the process.
stete The current state of the process: Active, Suspended, or

Waiting.
Quit (Q)
The Quit command exits from the process management subsystem back to
the System Manager command line.

3-12

!!!! --
I
I
I
I
I
I
I
II
I
I

Chapter ..

The Editor

4.1 Introduction to the Editor .. 4-1
4.1.1 The Editor Screen ... 4-'
4.1.2 Using the Muuse .. 4-2
4.1.3 Viewing Text ... 4-3
4.1.4 Entering Text .. 4-4

4.1.4.1 The Arrow Keys ... 4-4
4.1.4.2 Auto-Indent and the Enter Key 4- 5

4.1.5 Selecting and Changing Text .. 4- 6
4.1.6 Using Menus ... 4- 6
4.1.7 Starting and Quitting the Editor 4-7

4.2 Menus ... 4-8
4.2.' The Edit Menu .. 4- '0

4.2.1.1 Undo Last Change .. 4-' 0
4.2.1.2 Cut, Copy, and Paste 4-11
4.2.1.3 Shift Left and Shift Right4-11
4.2.1.4 Set Tabs ... 4-12
4.2.1.5 Select All of Document 4-12

4.2.2 The File Menu .. 4-13
4.2.2.1 Opening a Document 4-13
4.2.2.2 Saving a Document ... 4-14
4.2.2.3 Revert to Previous Version 4-15
4.2.2.4 Throw Away Window 4-15
4.2.2.5 Eject Diskette .. 4-16
4.2.2.6 Exit Editor4-16

4.2.3 The Print Menu .. 4-17
4.2.3.1 Choosing Page Footers 4-17
4.2.3.2 Identifying the Printer Type 4-18
4.2.3.3 Printing a Document4-18

4.2.4 The Search Menu ... 4- 19
4.2.4.1 Finding Text " .. 4-20
4.2.4.2 Replacing Text .. 4-20
4.2.4.3 Customizing the Search 4-20
4.2.4.4 Scrolling the Window 4-21

4.2.5 The Type Style Menu .. 4-22
4.2.6 The Markers Menu ... 4-23
4.2.7 The Windows Menu .. 4-24

4.3 Technical Information ... 4-24
4.3.1 Initialization Errors ... 4-24
4.3.2 Text Files ... 4-24

4.3.2.1 Pages and Headers ... 4-24
4.3.2.2 Blanks Compression 4-25
4.3.2.3 Maximum Line Length 4-25
4.3.2.4 File Size Limited by Available Memory 4-25

4.3.3 Response Time ... 4-25

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Editor

4.1 Introduction to the Editor
The Editor lets you write and change source programs, exec files .. letters,
and other documents in standard text files. Text files created by other
programs-the listing file produced by the Linker, for example-can be read
and modified by the Editor.
Like LisaWrite and MacWrite, the Editor uses windows, pulldown menus ..
and the mouse to provide an easy-to-use text-editing environment. For
example. you can cut and fMSte-delete text and insert it elsewhere in the
document-faster than you could with paper. scissors, and tape. You can
also

• Open more than one document at a time for editing.
• Cut and paste text from one document to another.

• Find and replace text based on a search pattern.
• Save an open document In another file.
• Select a font from among five type sizes and two type

styles.
• Set a marker to let you move automatically to the place

you marked in the document.

• Request automatic page numbering.
• Print an entire document or a selected portion of it.

4.1.1 The Editor Screen
A typical Editor screen Is shown In Figure 4-1. The document at the top
of the screen is the ilCtive document (the one currently in use). In the
active document, the title bar is highlighted and the rest of the window
frame is gray. In an inactive document, the entire window frame Is white.
Figure 4-1 shows three windows: the active document, an inactive
document, and the CI ipboard. Pressing and releasing the mouse button
when the pointer is outside the windows causes the active document to
become inactive. When no document is active,. only the Windows menu and
the File menu are visible In the menu bar.
S@v@ral docum@nh can b@ open at on@ time. Wh@n you choos@ Op@n from
the Fi Ie menu, the document you open becomes the active document and Is
displayed on top of any other open documents. To make another document
activ@, click with th@ mous@ anywh@r@ in its window. If it is compl@t@ly

4-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop lIser:r Guide The Editor

hidden, ohoose its name in the Windows menu to make it aotive and bring
it to the top of the pi Ie.

Any text that you cut or copy is automatically placed on the Clipboard; you
can then paste it into the same document or another document. You can
also use the oontents of the CI ipboard in a searoh.

Title bar
(highl ighted

for active
document)

Windows

Edit Search Type style Print MarkerS ____ -. __ -.

-SCI eens -exalllple/edlUExT : ,[

Ed! t;

I Edil A 'MIll SImple application wIi thn in P .. ca!)
by Maclnto,h T.chni(al Suppod }

USES UU-)

l
tu ObjlMll!lt1~"
IU ObJ,/OU1CkDlIW
IU ObJ/OSlnti
$U ObJl'ToolIrlt f

} Mlmt1~'"
} OulckDuw,
} OSInti,
} ToolIntf;

4-1
The Editor Soreen

4.1.2 USing the ~ouse

Scroll
arrows

Size
control
box

Title bar
(inactive
document)

The Workshop Editor is designed for use with a mouse. Moving the mouse
on a flat surface moves the pointer on the soreen in the same direction.
You use the mouse to get and put away documents, open menus, choose
menu items, seleot text, out and paste, ohange the view in a window-all
the basic Editor prooedures. The painter on the soreen tells you the
current location of the mouse.

The painter associated with the mouse changes shape as you move it around
the screen, depending on what it is pointing to. It's a text pointer (see
below) when it's pointing to the text in a document and an arrow when
it's pointing to a place outside the text area such as the menu bar, a title
bar, or the view oontrols. When the Editor is busy for more than a few

4-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Gvide The Editor

seoonds with the operation you just requested, the pOinter beoomes an
hovrglass. Here are the three pOinter shapes:

X Text pointer-points to text in a document.

!.. Arrow-polnts to menus, window frames, and other nontext
"\ areas.

~ Hourglass-tells you to wait until the ourrent operation Is
done.

4.1.3 Viewing Text
When you open a text file in the Editor, the dooument is displayed in a
window, a box that shows you one portion of the dooument at a time just
as a movie projector shows you one frame of film at a time. You can
change the view in the window by scrolllng-advanoing the view-or by
setting markers. Scrolling uses the view controls located in the right side
of the window frame:

• Soroll arrows move the view a line at a time. Choose the
arrow that pOints to the part of the document (up or down)
you want to see. Click on the scroll arrow to see the next
line of the document. To scroll continuously a line at a
time, move the pointer to the scroll arrow; then press and
hold the mouse button. When the text you're looking for
appears on the soreen, release the mouse button.

• View boxes move the view a windowful at a time. They
work the same way the scroll arrows do.

• The elevator moves the view direotly to a different part of
the dooument. Move the pointer to the elevator; then press
the mouse button and drag the elevator to the desired
looation.

The elevator's looation in the window frame is proportional
to the ourrent view's looation in the dooument. When the
elevator is at the top of the window frame, you are viewing
the beginning of the dooument. When the elevator is in the
oenter of the window frame, you are viewing the middle of
the document. To move quiokly to the end of a dooument,
move the elevator to the bottom of the window frame.

Another way to change the view in the document window is by using
markers, which allow you to give a name to a location in a document. See
Section 4.2.6, The Markers Menu, for more information.

4-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I.
I
I
I
I
I

Workshop User:S- Guide The Edifor

When you open a file, the Editor creates the window and displays the
beginning of the document. Depending on the layout of the document and
the number of windows you plan to have open at one time, you may want
to move the window or ohange its shape.

To change fhe size and shape of the window, move the pointer to the size
control box, looated at the bottom right corner of the window frame,
press the mouse button and drag unti I the "ghost" window frame is the size
you want; then release the button. To make the window shorter or taller,
drag up or down. To make the window narrower or wider, drag left or
right. To make the window smaller or larger, keeping its proportions the
same, drag diagonally toward its upper~ left or lower~rlght oorner.

To move the window to another location on the screen, move the pOinter
to anywhere in the title bar (at the top of the window frame); press the
mouse button and drag to the new location; then release. The window is
displayed at the new looation.

4.1.4 Entering Text
You type information into an Editor dooument just the way you would type
on a typewriter, using the Shift, Backspaoe, Tab, and Return keys. The
information is entered beginning at the ill$ertion point a blinking vertioal
line. You can enter text anywhere in the document by moving the pOinter
to the place you want to begin typing and c/kkli7g-pressing and releasing
the mouse button. This sets the insertion point and is called a sing/fJ-c/ick.

The aotive dooument always oontains either an insertion pOint or selected
text. When one or more characters are selected, you see them highlighted;
when zero charaoters are selected, you see an insertion point. If thfJre is
an insertion point what you type is added,. if text has been seleotea what
you type rep/aces the selected text. When you open a file for editing, the
Editor puts the insertion point at the beginning of the dooument.
Whenever the ourrent insertion point is not visible on the soreen, you oan
display it by choosing Show Current Insertion Point from the Search menu.

You oan also use the arrow keys on the numerio keypad to move the
insertion point; see The Arrow Keys, below, for detai Is.

4.1.4.1 The Arrow Keys
You can move the insertion point by using the mouse or by pressing the
arrow keys. The four arrow keys border the upper-right corner of the
numerlo keypad, to the right of the main keyboard. These keys are useful
for stepping through a table.

Eaoh time you press an arrow key, the insertion point is moved in the
direotion of the arrow: one oharaoter left or right, one line up or down, as
shown in Table 4-1. If the insertion point is at the beginning of a line, the

4-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Gvide . The Editor

left arrow moves it to the end of the previous line. Similarly, the right
arrow moves the insertion point from the end of a I ine to the beginning of
the next line.

You can also use the Apple key in combination with the arrow keys to
move the insertion point. For example, to move the insertion pOint to the
beginning of the line~ hold down the Apple key and press the left arrow key.

Table 4-1
How the Arrow Keys Work

Key

Left Arrow

Right Arrow

Up Arrow

Down Arrow

Key Combination
Apple- Left Arrow

Apple-Right Arrow
Apple-Up Arrow

Apple-Down Arrow

4.1.4.2 Auto-Indent and the Enter Key

Moves the Insertion Point ...

One space left

One space right

One line up

One I ine down

Moves the Insertion Point •••
To beginning of line

To end of line
To beginning of dooument

To end of document

The Editor has built- in automatic indentation to make it easier for you to
write structured programs. The auto- indent feature remembers how many
leading spaces you put on a line and begins subsequent lines with the same
number of leading spaoes; the Return key aotivates the auto- indent feature.
For example

If you start the follo.ing line .ith five spaces
and then press Return
the next line is indented five spaces
and so on.

4-5

, "

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's GUIde The Editor

To return to the original left margin, use one of the two Enter keys
instead of the Return key. The Enter key on the main keyboard is to the
right of the spaoe bar. The Enter key on the numeric keypad is below the
down arrow key. These keys work identically in the Editor. They funotion
I ike the Return key exoept for auto· indent. The Return key indents the
next line; the Enter keys don't.

4.1.5 Selecting and Changing Text
Text you want to ohange must first be seleoted. Onoe you have seleoted
text, you can

• Type something to replace It.

• Paste something over it.

• Cut or baokspaoe to delete it.

To select IJ word" move the pointer to any point within the word and
double-click (press and release the mouse button rapidly twioe in
sucoession). To expand the seleotion a word at a time, continue holding
down the mouse button after the double-oliok while you move the pOinter
to the right. Moving the pointer left oontraots the selection.

To select IJ line, move the pOinter to the line and triple-click. Selected
text is highlighted (white characters on a black background). To expand
the seleotion a I ine at a time, continue holding down the mouse button
after the trlple- ollok while you move the pOinter downward. Moving the
pOinter up oontraots the seleotion.

To select one or more characters, move the pOinter to the beginning of the
text you want to select; cllok and hold the mouse button down; then drag
the pointer to the end of the text and release the button. You can drag
right, left, up, or down, including as many lines as you like. If you move
the pOinter past the top or bottom of the window, the window will soroll
so that the last text seleoted remains in view.

An alternate way to seleot text is to plaoe the insertion point at the
beginning of the text you want to seleot (move the pOinter and ollok).
Move the pOinter to the end of the text, then hold down the Shift key and
click (Shift-c/ick) All the text between the insertion point and the
pointer is highl ighted. You oan select more than a windowful of text
using this teohnique by soroll Ing after setting the insertion point.

4.1.6 USing ~enus
The menu bar at the top of the Editor soreen gives you aooess to many
Editor functions Including getting and saving doouments, outting and pasting
text, searohlng, and printing.

4-6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User ~~ Gvide The-Editor

To see the contents of a menu, move the pointer to the menu name and
then press and hold the mouse button; release the button when you're
finished looking.

To choose a menv item, hold the mouse button down while you move the
pOinter unti' the item you want is highl ighted; then release the button.
The item is selected.

When menu items are mutually exolusive, the ourrent setting has a oheok
mark in front of it. In the Type Style menu, for instance, the current font
style and size are checked. In the Windows menu, the active document is
ohecked.

When menu items are toggle items, the current setting is displayed. A
toggle fl ips back and forth from one setting to another. Every time you
choose a toggle menu item, its setting changes to the oppOSite. Choose
the menu item to toggle the setting. In the Search menu, for example,
choose Search is Literal to toggle it to Search is Tokenized, and vice versa.

Menu items that appear in gray type and remain unhighl ighted when you
move the pointer to them can't be chosen right now. For example, you
can't choose Copy from the Edit menu unless you've selected some text.

4.1.7 Starting and Quitting the Editor
Start the Editor by typing E from the Workshop command line. The
Editor prompts you for a filename. To edit an existing document, enter
the filename of a text file. A .text filename extension is assumed; if the
file doesn't have a .text extension, end the filename with a period.

To start a new docvment choose Tear Off Stationery from the File menu
and then press Return. Stationery is the blank paper the Editor gives you
to create a new document. You can also create your own custom
stationery; for more information, see Section 4.2.2.1. The Editor names
the new document Untitled-Ol; when you open a second new document, it
is named Untitled-02; and so on. You give the new document a permanent
name when you save it.

To leave the Editor and retvrn to the Workshop command line, choose Exit
from the File menu or press the Apple-Q key combination. You can quit
with open documents; when you use the Editor again the documents wi \I
still be open. If you have changed the documents, however, be sure to save
them before you leave the Workshop--otherwise the changes wi II be lost.

4-7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User~" Guide The Editor

4.2 Menus
Many of the actions you can perform in the Editor are I isted in menus. To
ohoose a menu item, move the pointer to the menu name, press to open
the menu, drag down the list until the item you want is highlighted, and
release. A menu item that appears in light gray cannot be chosen at this
time.

The menu titles are shown on the menu bar, which appears at the top of
the Editor screen. Table 4-2 is a list of the menus and their functions;

Table 4-2
The Editor Menus

Menu Desoription

Windows Lets you make a dooument active; 'ists
all open documents.

File Lets you open and put away files, ejeot
diskettes, and exit from the Editor.

Edit Lets you cut, copy, and paste text, set
tabs, shift text left or right, undo the
last change, and select all of the text
in the dooument.

Searoh Lets you find and replace text, scroll
to a line, and scroll to the insertion
point.

Type Style Lets you choose a font.

Print Lets you print all or part of a
document.

Markers Lets you mark text with a name for
automatio scrolling and seleotion.

4-8

,

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User!s' Guide The Ed/tor

Some menu items are shown with the Apple symbol followed by a letter.
Typing the Apple-letter key combination gives you the convenient option of
choosing the menu item from the keyboard without using the mouse. Table
4-3 shows you the key combinations you can type to choose menu items.

Table 4-3
Choosing Menu Items from the Keyboard

T~ge This To Choose This Item from This Menu

Apple-A Select All of Document Edit
Apple-C Copy Edit
Apple-D Duplicate ... File
Apple-E Eject Diskette File

Apple-F find ... Searoh
Apple-G Go to Line # Searoh
Apple-L Shift left Edit

Apple-M Set Marker ••• Markers
Apple-a Open ... File

Apple-Q Exit Editor File

Apple-R Shift Right Edit
Apple-S Find Same Search

Apple-V Paste Edit
Apple-X Cut Edit

4-9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User:r Guide The Editor

4.2.1 The Edit Menu
The Edit menu operations are summarized in Table 4-4 and desoribed in
detail in the seotions that follow.

Menu Item

Undo Last Change

Cut

Copy

Paste

Shift Left

Shift Right

Table 4-4
The Edit Menu

Desoription

Puts the document back to the way It was
before the previous operation.

Places selected text on the Clipboard and
removes the text from the active dooument.

Copies seleoted text to the CI ipboard but does
not remove It from the aotive dooument.
Copies text from the Clipboard to the
insertion point in the aotive dooument, or
replaces seleoted text.

Deletes the leftmost oharaoter in seleoted text
if the oharaoter is a spaoe. The rest of the
I ine moves left.

Inserts a space oharacter to the left of
seleoted text. The rest of the line moves
right.

Set Tabs... Lets you set the interval between tab stops.

Seleot All of Dooument Selects all text in the dooument.

4.2.1.1 Undo Last Change
Many edit operations oan be reversed by choosing Undo Last Change. With
this menu Item you oan remove text you Just typedl paste baok text you
just out, and out text you just pasted in.

Undo Last Chanoe Is designed to help you recover from mistakes-for
example, you press a key by aooident and replaoe a large blook of text that
was seleoted. Choose Undo Last Change from the Edit menu before you do
anything else; the dooument reverts to its state before the key was
pressed.

4-10

I
I

I
I
I
I

Workshop User~ Guide The Editor

Not all operations oan be reversed. For example, you oannot undo Find and
Paste All from the Search menu. When the last operation cannot be
undone, Undo Last Change appears in gray type in the Edit menu.

4.2.1.2 Cut, Copy, and Paste
The basio editing operations-Cut, Copy, and Paste-make use of the
Clipboard window. The Clipboard holds one seotion of text at a time, as
little as a single oharaoter or as much as an entire dooument. Text is
automatically placed on the Clipboard when you either cut or copy text
from the active document; the previous contents of the Clipboard are
erased. Pasting copies the contents of the CI ipboard to the place you
specify without changing the Clipboard, so you can paste the same
information to several places without recopying it.

To alit or aopy text select the text to be cut or oopied, then ohoose Cut
or Copy from the Edit Menu. Cut and Copy place the selected text on the
Clipboard. Cut also deletes the selected text from the active document.

To psste the contents of the Clipboard into the active document move the
insertion point to the place of insertion, then choose Paste from the Edit
menu. To replace text in the active dooument with the contents of the
Clipboard, seleot the text you want to replaoe; then ohoose Paste.

To move text in 8 document seleot the text to be moved, choose Cut
from the Edit menu, move the insertion point, and ohoose Paste from the
Edit menu. The text is removed from its original position .. placed on the
Clipboard, and copied into the new position.

To copy text from one document to another, select the text to be oopied
and ohoose Cut from the Edit menu. This places the selected text on the
CI ipboard. Then move the pOinter to the plaoe in the other dooument
where you want to paste and click to set the insertion point. This
dooument is now the aotive dooument. Choose Paste from the Edit menu
to paste the oontents of the Clipboard into the active document.

4.2.1.3 Shift Left and Shift Right
Shift Left and Shift Right let you move text left or right by deleting or
inserting spaoes. These options are useful for changing the Indentation
pattern of a struotured program. Each time you choose the menu item ..
the selected text moves one space. If text follows the selected text on the
same line, it also moves. If more than one line is selected .. the Editor
shifts one line at a time until all the selected lines have been shifted.

iiiii

iii

• I'
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide The Editor

To shift text left select text that contains at least one leading space and
ohoose Shift Left from the Edit menu. The text Is shifted left one space.
If the selected text does not contain a leading space, the line remains
unchanged.

To shift text right select text and choose Shift Right from the Edit menu.
A spaoe is inserted to the left of the selected text, shifting it to the right.

4.2.1.4 Set Tabs
The Editor's standard paper, whioh you use by choosing Tear Off Stationery
from the File menu1 is set with typewrlterllke tab stops every five
characters. In other words, when you press the Tab key the insertion point
moves five spaoes to the right. No special tab character is used-five
spaces are actually inserted into the dooument. Therefore, if you
baokspaoe after tabbing, the insertion point moves left one oharaoter at a
time, not five.

To change the stlH1dard tab interval, choose Set Tabs from the Edit menu.
The Editor prompts you with

Sat Tabe avary ?

Type the number of spaoes you want inserted in the dooument when the Tab
key is pressed, and press Return.

4.2.1.5 Seleot All of Dooument
You may need to seleot all the text in a dooument to oopy it into another
dooument, shift it to ohange the margins. or for some other purpose. You
oan follow the rules for selecting text given in Seotion 4.1.5, or you can
simply ohoose Seleot All of Document from the Edit menu.

4-12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
•
~

Workshop User~ GlIide The Editor

4.2.2 The File Menu
The File menu is summarized in Table 4-5 and described in detail in the
sections that follow.

Menu Item

Save & Put Away

Save a Copy In ...

Save & Continue

Revert to Previous
Version

Throw Away Window

Ejeot Diskette

Open ..•

Duplicate ...

Tear Off Stationery ...

Exit Editor

4.2.2.1 Opening a Document

Table 4-5
The File Menu

Desorlption

Puts a copy of the active document in the file It
came from and closes the window.

Puts a oopy of the active document in the file
you specify; the window remains open.

Puts an updated copy of the active document in
the file it came from; the window remains open.

Returns the active document to the way it was
when you last saved it; disoards subsequent
changes.

Disoards the active window.

Ejects the micro diskette.

Opens a fi Ie and and displays its contents in a
window.

Makes a copy of a file on disk.

From a standard stationery file, opens a blank
document and makes it the active document.

Returns from the Editor to the Workshop
command line. Open documents remain open.

To open an existing tit.1(]lIment ohoose Open from the File menu. The
Editor prompts you with

Open Document named ?

TyPe the name of a text file and press Return. The contents of the file are
displayed in an open window. which becomes the active window. The
window shows the beginning of the 11 Ie; the insertion point is set to the
first character.

4-13

11

I
j

I
I
1
I
I
I
I
I
1
1
I
I

Workshop User's Guide The Editor

The default filename extension is .text. Ii your iile doesn't end with
.text, put a period at the end of the filename so the Editor won't add the
default extension. You don't have to specify the volume if your file is on
the Prefix volume.

If the text file you specify is already open, the Editor prompts
·rilgn~-is already open. Make another copy of it? [V or N]

Type Y to open another document for the file. The new document
contains a copy of the last version you saved, not a copy of the open
document. When you have more than one document open for a file,
whichever document you save updates the disk. To save the new document
in Its file, make the new document active and choose Save and Put Away;
then make the old document active and choose Throw Away Window. To
create a new file for the new document, choose Save a Copy in ... and enter
a new filename; then choose Throw Away Window.

To start a new document choose Tear Off Stationery from the File menu.
The Editor prompts you with

Tear Off Stationery named ? [bootvo~[PAPER]

Press Return to use the Editor's standard stationery, the PAPER.TEXT file
on the boot volume. A blank document named Untltled-Ol Is placed In an
open window, which becomes the active window. You will be asked to give
the document a f i I ename when you save it.

To create your own stationery, choose Tear Off Stationery to create a
standard blank document. Insert any text you I ike, such as the heading for
a memo. Make changes to the tab interval and type style as necessary;
then save the stationery file, giving it any name you choose. To use this
stationery, choose Tear Off Stationery from the Edit menu, enter the
filename of the stationery, and press Return.

To stilrt a new tiocument from an existing file choose Dupl iuate from the
File menu. The Editor treats the file like stationery and opens a document
named Untitled-01 that contains a copy of the file. You will be asked to
give the document a filename when you save it.

4.2.2.2 Saving a Dooument
Any documents you work on in the Editor are updated only in memory until
you ask the Editor to save them.

4-14

Workshop User's Guide The Editor

To put away the active document ohoose Save 6. Put Away from the File
menu. The latest version of the document is put away in the file it came
from and the window disappears. If you're putting away a new document,
the Editor asks

Save a8 Document named ?

Enter the pathname of the file you want to save the document In and press
Return.

To copy the active document into another file choose Save A Copy in ...
from the File menu, enter the filename when the Editor prompts you, and
press Return. A oopy of the document is saved and the window remains
open. The file the document came from is not updated. If the file you
specify already exists, the Editor asks

Replace existing -rilen""'? [V or N]

Type Y to save the copy in filename, N to abort the request.

To back up the active document choose Save 6. Continue from the File
menu. The latest version of the document is saved in the file it came
from and the window remains open. It's a good idea to save the document
every fifteen minutes so that you don't lose hours of work in case of a
power failure.

4.2.2.3 Revert to Previous Version
To throwaway recent changes to the active document choose Revert to
Previous Version from the F ite menu. The contents of the window are
replaced by the version of the file you last saved. The window remains
open. This is equivalent to throwing away the window and reopening the
file. This menu item is useful when you make an error in an operation like
Find & Paste All that you can't recover from with Undo Last Change.

4.2.2.4 Throw Away Window
To d/:f'cartl the active doc()ffIent choose Throw Away Window from the File
menu. The window disappears. If you have made changes to the document,
the Editor asks

CAUTION: Throwaway changes to filen.e? [V or N]

Type Y to disoard the changes, N to abort the request.

The file on disk is not changed by this command-it contains the last
version you saved. If the dooument is new and was never saved, no oopy
wi II exist on disk.

4-15

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide The Editor

4.2.2.5 Ejeot Diskette
To p.ject thp. micro diskettlJ, ohoose Ejeot Diskette from the File menu.

The diskette is ejeoted.

Open documents remain open-they are not automatioally put away.
Howeverl Save & Put Away and Save & Continue will warn you

STOP: [while opening] Pathname invalid or no such devioe

To save the a(Hive document when its micro diskette has been ejected
reinsert the micro diskette before choosing Save & Put Away or Save &
Continue. Alternatively, ohoose Save a Copy in ... and speoify a filename on
another avai lable disk.

4.2.2.6 Exit Editor
To quit the Editor, choose Exit Editor from the File menu. Open
doouments remain open. This allows you, for instanoe, to read a volume
direotory using the File Manager and return to the Editor without having
to save and reopen your Editor files.

When you quit the Editor, changed files are not saved automatically.
Changes you made are lost if you leave the Workshop without saving. The
Quit command in the Workshop command line warns you if you have
ohanged a file without saving it and asks

Do you wDnt to leDve the WorkShop Dnd kill the editor? (Y or N)

Type Y to leave the Workshop and discard the ohanges. Type N to remain
in the Workshop-you can then go back to the Editor and save the file.

4-16

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide The Editor

4.2.3 The Print Menu
The Print menu is summarized in Table 4- 6 and described in detail in the
sections that follow.

Menu Item

Table 4-6
The Print Menu

Desoription
Print All of Dooument Prints the active document.
Print Seleotion

Full Footers

Page Numbers Only

Dot Matrix Printer

Daisy Wheel Printer

Prints the highl ighted portion of the active
document.

Prints date, filename, and page number at the
bottom of each page.
Prints page number at the bottom of each page.
Lets you speolfy that a dot matrix printer is
attached to the Lisa.
Lets you speoify that a daisy wheel printer is
attached to the Lisa.

4.2.3.1 Choosing Page Footers
When a dooument is longer than one page, a footer is printed at the
bottom of each page.

To number pages" choose Page Numbers Only from the Print menu. The
page number Is centered on the last line of each page as follows:

Paga 1

To number pages and print the date 8I1d filename, choose Full Footers from
the Print menu. The date and filename are enolosed In brackets and
centered on the last line of each page; the page number is right justified on
the same I ine as follows:

[Date 6/0ct/84; File -'13-david.text] Page 1

4-17

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide The Editor

4.2.3.2 Identifying the Printer Type
The Editor uses the default printer; you oan set the default in the System
Manager. You must use the Print menu to tell the Editor what type of
printer it Is.

To speoify the printer type, ohoose either Dot Matrix Printer or Daisy
Wheel Printer from the Print menu.

4.2.3.3 Printing a Document
To print the active document ohoose Print AI' of Dooument from the

Print menu. The dooument is printed on the default printer with the page
footers you speolfled.

To print II part 01 the active dooument seleot the text you want to print
and choose Print Selection from the Print menu. The highlighted text Is
printed on the default printer with the page footers you speoified.

4-18

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Gvide The Editor

4.2.4 The Search Menu
The Search menu, which lets you find and replace text, is summarized in
Table 4·1 and desorlbed In detail In the seotlons that follow. All searohes
begin at the Insertion point. The text you're searching for is called the
target

Menu Item

Find

Find Same

Find Contents of
Clipboard

Find & Paste All

Table 4-1
The Search Menu

Description

Searches for a target you speoify.

Searches for a previously specified target.

Searohes using the first line on the Clipboard as
the target.

Replaces all ooourrenoes of the taroet, from the
insertion point to the end of the file, with the
contents of the CI ipboard.

Search Is Tokenlzed/Search Is Literal
Tokenized search looks for the target separated by
delimiters. Literal searoh Ignores word
boundaries.

Search Is Case Sensitive/Search Is Not Case Sensitive
Case-sensitive search looks for an exaot matoh. A
searoh that is not oase sensitive ignores upperoase
and loweroase differenoes.

Search is Wraparound/Search is Not Wraparound
Searoh that is not wraparound goes from the
insertion point to the end of the dooument.
Wraparound searoh goes from the Insertion point
to the end, then wraps around from the beginning
baok to the insertion point.

Go To Line # Moves the insertion point to the requested line
and scrolls the line into the window.

Show Current Insertion Point
Scrol Is the insertion point into the window.

4-19

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User:S- Guide The Editor

4.2.4.1 Finding Text
To search for text in the active document move the Insertion point to the

plaoe you want the searoh to begin and ohoose Find from the Searoh menu.
The Editor prompts you with

Target '1

Type the target text you want the searoh to matoh on and press Return.
The Editor finds and highlights the matching text. If end of search is
reached and no match Is found, the Editor responds,

Target -target text - not Found

Press the spaoe bar to oontinue.

To search for the same target again choose Find Same from the Searoh
menu. The Editor finds and highlights the next ooourrenoe of the text.
Find Same works whether or not the text was found last time you
searohed.

To search for text without typing it find an ooourrenoe of the text in this
dooument or another dooument. Choose Copy from the Edit menu to plaoe
the text on the Clipboard. Move the insertion point to the place you want
the search to begin and choose find Contents of CI ipboard from the Edit
menu. The Editor uses the first line on the Clipboard as the target.

4.2.4.2 Replaolng Text
To replace every occurrence of specified text move the insertion point to
where you want the replaoement to start. Choose Find from the Searoh
menu and enter the target; the Editor highlights the first oocurrenoe.
Change this oocurrenoe, seleot the revised text, and choose Copy from the
Edit menu to place It on the Clipboard. Then ohoose Find & Paste All
from the Search menu to change the rest of the document. Every match
of the target is replaoed with the oontents of the CI ipboard.

4.2.4.3 Customizing the Search
The three menu Items described In this seotlon are toggle Items; that Is,
ohoosing a toggle item ohanges It to its opposite. Choosing it again
changes it baok. Toggle these items to the settings you prefer before you
ohoose Find, Find Same, Find Contents of Clipboard, or Find & Paste All.
The item stays set until you toggle it again.

To find a target that crosses word boundaries, toggle to Search Is Literal
in the Searoh menu.

4-20

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

"--" .~--. ~ ~ .. -

Workshop U$er~f GlIitie The Editor

To find a torget thot I:f bounded by dlJlimiters, toggle to Searoh Is
Tokenized in the Search menu. The delimiters include the space character
and punctuation marks such as period, semicolon, comma, exclamation
point, question mark, EOF (end of file), and EOL (end of line). In the
sentence

Among Stanford students a ton.. said Stan, is standard.

a token search for "tan" wi II find only the second ocourrence. A literal
search wi II find all four ocourrenoes.

To find 0 torget regordllJSs of case, toggle to Search is not Case Sensitive
in the Search menu.

To finti an exact motch on case, toggle to Search is Case Sensitive in the
Search menu. In the sentence

D02ens of Zen Meditators prefer FROZEN YOGURT.

a case sensitive search for "zen" wi II find only the first oocurrence. A
search that is not case sensitive will find all three occurrences.
To seorch from insertion point to end of document toggle to Searoh is Not
Wraparound in the Search menu. If the target is not found, you can toggle
to Search is Wraparound and then choose Find Same.
To "~I?oroh from Insertion point to insertion point toggle to Search is

Wraparound in the Search menu. If the Editor searches to the end of the
document before finding the target, it continues at the beginning of the
document and searches to the insertion point.

4.2.4.4 Scroll ing the Window
To soroll to the insertion pOint when it is not visible, choose Show Current
Insertion Point from the Search menu. The insertion point appears in the
window.

To move the i/J$ertion point and scroll to a line, choose Go To Line #
from the Search menu. The Editor asks

Go to which line? [current line n~er]

4-21

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User:S- GlJIde The Editor

The prompt shows the line number where the insertion point is currently
set. Type another number and press Return. The Editor moves the
insertion point to the beginning of the requested line andl if the I ine is not
visible in the window, scrolls to the line. If the I ine is outside the bounds
of the file, the Editor reports

Line number out of range

Press the space bar to continue. Then try again with a lower number.

4.2.5 1 he Type Style Menu
The Type Style menu lets you select a font for printing and displaying text
on the screen. The font you select is used throughout the document. The
current font style and size for the active document are checked in the Type
Style menu. You have a choice of two styles:

This is Classic type.

This is Modern type.
There are five sizes for each style:

8 Point 20 Pitch

8 Point 15 Pitch

10 Point

12 Point

12 Point PS (a proportionally spaced font)

Font size affects the number of characters that fit on a line. A higher
point size means the font is relatively taller; a higher pitch means the font
is relatively more condensed in width. The document wi II be printed in the
same type style as displayed on the screen if that type style is available on
your printer. You can fit the most characters on a line with a-point,
20-pltch type.

The paragraph you are reading i~ a proportionally ~paoed Modern font.
Proportionally spaced fonts make readable text, but unreadable programs
and tables.

To select a type style, choose either Modern or Classic from the Type
Style menu.

To select a type SIZe, choose one of the five sizes from the Type Style
menu.

4-22

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User:r Guide The Editor

4.2.6 The Markers Menu
A marker is like a bookmark; it saves your place while you work elsewhere
in the dooument so you oan easi Iy soro" baok. A plaoe in the dooument oan
be marked either by moving the insertion point there or by selecting text
at that place.
The Markers menu lets you associate a name with a specific plaoe in a
document. The name is I isted in the menu. The menu contains the Set
Marker command, the Delete Marker command (visible only when at least
one marker Is set), and a list of up to 1 B markers. When you delete a
marker, the name is removed from the list.
Every file has its own set of markers, so you can use the same marker
names in different documents. The Markers menu displays the marker
names for the active document. (Markers for a text fi Ie are saved in its
header block; see Section 4.3.2.1, Pages and Headers, for more
information.)
To set a marker, move the insertion point to the text you want to mark
and ohoose Set Marker from the Markers menu. The Editor asks

Set Harker Na.ad ?

Type any name up to 20 characters long and press Return. The marker is
set. The next time you open the Markers menu you will see the marker
listed.
To scroll to a marker, ohoose the marker name from the Markers menu.

The marked text appears in the window. If the text was marked with the
insertion pOint, the insertion point Is moved to that place. If the text was
marked by seleoting it, the text is now highlighted.
To delete a marker, ohoose Delete Marker from the Markers menu. The
Editor asks

Delete Harker NaMed ?
Type the name of the marker you want to delete and press Return. The
marker is deleted. The next time you open the Markers menu the list wi"
not contain the marker.
To revse an existing marker, move the insertion point to the text you want
to mark and ohoose Set Marker from the Markers menu. Respond to the
prompt with the name of an existing marker. The marker Is reset to point
to the new location.

4-23

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide The Editor

4.2.7 The Windows Menu
The Windows menu lists the names of all open documents, with a check
mark indicating which is the active document. When no documents are
open, only the Clipboard appears in the menu. You oan make a different
document active either by cl icking anywhere in its window or by using the
Windows menu.

Open documents are like a pile of papers on a desktop. /los each document
is opened it is placed on top of any other open doouments. When another
document In the pile Is made active, its window is brought to the top
layer. Sometimes a dooument becomes oompletely hidden in the pile. You
can bring it to the top of the pile by selecting its name from the Windows
menu.

To fl7ake a document active and bring it to the top, choose the document
name from the Windows menu.

4.3 Technical Information
Here is some technical information about the Editor.

4.3.1 Initialization Errors
Error 309 indioates that you were unable to start the Editor due to lack of
disk space. To recover, follow this procedure:

1. Delete some files to provide additional disk space.

2. Kill the Editor process by using the ManageProcess subsystem
of the System Manager.

3. Type E to start a new Editor process.

If you attempt to start a new Editor process without killing the old one,
the Editor will fail with Error J04.

4.3.2 Text Files
The Editor and language prooessors In the Workshop expeot a standard text
file as Input. Teohnloal oharaoterlstlos of text files are desorlbed below.

4.3.2.1 Pages and Headers
The internal struoture of a text file on a blook·structured devioe is as
follows:

• A page consists of two 512-byte blocks.

• Eaoh page contains some number of complete I ines of text and
is padded with null characters (ASCII 0) after the last line as
necessary to complete the page.

• Two 512-byte header blocks are present at the beginning of the
file. The header blocks may be empty.

4-24

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide The Editor

The Editor uses the header blocks to record file-specific information such
as font, markers, and tab interval. You oan read the header blooks in
Pasoal by using the blockread funotion with a blocknum of 0; databuf
must be a 1,024-byte buffer. If you store information in the header blooks
and subseqtlflntly open the file in the Editor;, the header blocks will be
changed. If you do not follow the Editor's header format your file may
not be readable in the Editor. To create a text file that the Editor can
read, write binary zeroes in the header blocks.

4.3.2.2 Blanks Compression
Leading spaces on a line can be compressed Into a two-byte code. The
first byte contains a OLE character. The second byte contains the ASCII
value for SPACE in the high-order nibble and the number of spaces being
compressed in the low-order nibble. The OLE character is represented by
ASCII 16 decimal ($10 hexadecimal). The space character is represented
by ASCII 32 deoimal ($20 hexadecimal).

4.3.2.3 Maximum Line Length
The Editor has a maximum line length of 255 characters. You'll get an
error message if you create a line of more than 255 oharacters. You'll get
a warning if you read in a file oontaining a line of more than 255
characters. (Even using the smallest type font.. you can't display more than
about 150 charaoters in a line.)

4.3.2.4 File Size Limited by Available Memory
The Editor works on a file in memory. If not enough memory is available
to read in a file, you'll get an error message. Close all open windows and
try again. If there's still not enough memory for the file, use the FileDiv
utility to split it into separate files of manageable size. It can be put
together again with the FlleJoln utility. These utilities are described In
Chapter 11.

4.3.3 Response Time
If the Editor becomes sluggish when you have several documents (or a few
large documents) open at the same time, put some of them away; then
oontinue.

4-25

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

A
.. -! <. / 11-· "I (/1 .. /:.£ /'11.' j(f If,/ '/itt) {".-; t, .s t' .s -;-; t' J " //,,'

j. t" ~{., I'''' .)111 i ... /.
/l'., / J

it Ii)) I l(//~/ /t'/!} Av trj,'jll,,j¢ ,j 1~/iCh.(.(

•

• IJt-r/.'~'t 1;), f,r /'.L t. L "..(Vr, -Ie cL
1;, {hi... tv IJ rA S' h 0 ~ f I (H e c-, fe r-+ r, ~ t.' n

t.-:t ...M I (. '" 0 j IJ lte I~ t7,1-1(1 r'€, n ~A' e ,+/tI..... -/-'0., f
,(~ {o 'f.}) q q crT 1 r, pi (\ (e pi iJ 1(' k ;,,1:0 f"\

"7771-eAA. rIA"''''' Y1J fk L,'sc,- o {{;\('e S)-.r +eA
ct"tt.! fer ?I"/fI\.. 0.... f4..fltt'~ aler(t -17'0" 0·,- -flu.

ofvhk~~. A Li!>rttJ rl - t- r:~ ·ar -t~ tvt!Y)J if-I
f, & I..t' t'{ (tf f(jr Cdr al1 i/IQ.. C;J j' .. ke -!I:..e. ~:J (fl,

-tt~ hO-'1"l-e. (j)()CtAM.-#l'lt qqq'.

• E/' ,{r~ CCt.//~/ f:L/U;t-/,,, II ~ ~4;71t.. //~ r4M,A-~rS.

tcJA~11 e;i.. (:/'11 (It/. -II" ernJr ,-,c<':"t..-:I Ilu
..I

k~~r~p-l")1'- c(tllQ... ·Ic~/"I t:?trc'r- /J' ,1j1'/''/~/'(
~ flu?. J.',Ja loF ~/£,"-n', --6._ St.·.I'~~~"'L

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

"
\

Chapter 4
The Editor

4.1 The Editor __ .. _____ . _. __ . __ ' _. _ .. _ __ . ____________ . _______ . ___ . _. ___ 0 _ 4-1

4.2 Using the Editor _________ . ___ . __ .. _________ . _________ . ________ ._. ________ 4-2
4.2.1 Editing Operations .. 4-2
4.2.2 The Menus ... 4-3
4.2.3 Creating and Using Stationery 4-3

4.3 Selecting Text _____ 0 ___ •••• 00 _ 0 _ 0 0.00. __ 0 0 __ 0 0 000000 _. 0 __ 0 __ • __ 0 ___ ••• __ 0 4-4
4.3.1 Moving the Insertion Point 4-4
4.3.2 Selecting Characters .. 4-4
4.3.3 Selecting Words and Lines 4-4
4.3.4 Adjusting the Amount of Text Selected 4-5

4.4 Saolling and Moving the Display 0 __ 0 •• __ ' _ •• __ 0 •••• __ • ___ 0 _ 0 0 _ •• _. ___ 4-:')
4.4.1 Scrolling the Display ... 4-5
4.4.2 MOVing the Window ... 4-6

45 The File Functions _________________________________ . ___ ._._._. __________ 4-6

4.6 The Edit Functions _______________ . _ . _ . _ . _ . ____ .. _ . ____ . _ . _ , 4-8

4_7 The 5ear"ch Functions _. ___ . ___ .. _ 0 ____ ".0 __ • ___ • __ • ______ • __ 0 0 _.00 4-9

4.8 The Type Style Functions ____ _. _ ... _ . ___________ . ___ ... _ ., ... 0. _ •• 4-11

-"L9 The Print Functions __________________________ . _________ . __ . __ ._ _ •• 4-12

See also Release .,l.O Notes for this chapter.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

staUmery (See secUm 4.23)

Olapter 4
The Editor

The Editor

If you want to use stationery on a volt.me other than your bOOt volt.rne, type In
the voll,me rare after you choose Tear Off Stationery.
Note tnat the file rare "PAPER. TExr Is reserveo for the uefault stationery
terT1l1ate and should not be used for other purposes.

Edl~ M.Iltlple Flies (see Sectlm 4.2.4)
If the Eattor becomes sluggiSh when you have many cklclments open at the
same tlme (or a few large c1oclments), put sane Of tnem away, and tIlen
conUrue.

l.JslrvJ the Arrow Kays to MJue the In!mt.lm Point (See sectlm 4.3.1)
You C8'l now use the arrow keys on the runerlc keypaa to move tne 1nsert1on
point. The arrow keys are the +, *, /, and , keys wltn the black trlMgle In a
bOX on tnem, as snown below. Press1ng an arrow key moves the 1nsert1on point
one posltlon In the ct1recUon of the arrow--elther one CI'laracter to the rlf1lt or
left, or one Une l4J or down. If the Insertion point Is at the beglming of a
line, the left arrow will move it to the end of the previous llne; the rlcttt arrow
will move it from the end of a Une to the beg1mlng of the next Une.

You C8'l also use the .. key In COITIblnation witn the arrow keys to move the
insertion point farther. Holding down the • key and pressing the left or rl~t
arrow will move the insertion point to the begtming or end of the line,
respectlvely. Holding down the. key and pressing the l4) or down arrow w111
move the insertion point to the beglmlng or end of the dOOlment, scroll1ng the
windoW If necessary to display It.

r--l r--: ~ ~ I : : :
i Ii i : 1 ~ : ::: L.!:::. \-•• __J ... _ •• ~

:----"l r-----'l ---" ~ i I I I ! : I
I ;1 Ii !rT1
: i: :i i L.!!....J '\,_____ ___ __ , ,,"-_._HI

r-o-, rj r----oi m
! I! I! !T
! I I I I i LJ ... _. __ .. # _ •• _--' _---,

The Arrow Keys

Notes /1-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Worksl1q:J 3.0 MJtes meEd/tor

sel~ the Last LIne of a Doa.ment (See sectJm Il3..3)
A triple-click will not select the last Une of a doCl.ment lI'lless the line endS
with a carrtage return.

WlRbws Men.I
The Windows meru lets you keep track of the windows you haVe open. It l1sts
the names of all open windows, with a check mark Indicating which Is the
active windOW. To make a different window active CI1d brlrg it to the top,
choose that windoW's naTIe from the menu. All example of the Windows meru
Is snown.

Windows
Clipboard
-# 12-M~og.TEXT
-lower-memo. TEXT

-IUntitled- 03

Malkers Meru
The Markers menu lets you associate a name with a spectnc place In a
doctment, CI1d easily find that place again later.
To set a marker.
L select the portion of text that you want marked. This can be an

Insertion point, or EIly selection of text
2. Choose set Marker Named ? from the Markers menu.
3. Type the name you want the marker to have. Marker names can consist

of EIly characters, InclUdIng spaces, l4l to 20 Characters.
4. Type [REl'LRNl

f'.t)thlng In your OOCt.ment w111 be Changed, bUt the marker name will appear In
the t-1arkers meru. When you chOOSe the marker name from the rnerlJ" the
window will scroll so that the point or selection of text associated with that
marker Is visible. You CCI'l set l4l to 18 markers in a doctmenl
Wtlenever you have at least one marker set.,. there Is a [)elete fv'Iarker Named ?
Item tn the rvtarkers meru. This allows you to delete any of the maI1<ers you
have set, When you dOn't neea them anymore.
To delete 8 marker.

L Choose Delete Marker Na'ned ? from the Markers menu.
2. Type the name of the marker you want deleted.

N:Jtss 4-2

I
I
I
I
I
I
I
I
I
I :

I
I
I
I
I
I
I
I
I

Worksl1qJ 3.0 I'kJtes ll1e Editor

3. Type [RfTLRN].

Ttle marker name wm be removed from the Mal1<ers IT'I8fU.

TIle items In the Markers rnet1J are associated wlttl a particular cJoolrnent, so
the IlleflJ will ctalge when you roove between doCt.ments, bUt the markers you
set wlll stay associated with each docl.ment IIlUI you delete them (even When
you leave the Editor or the WorkShop~ An exalllie of the Markers menu Is
shown.

FDe IVIBru (See sectlm 4.5)

Markers
Set Marker ••••
Delete Marker •••

main program
sort procedure
bug?
end

TIle followlng COI'Tl1'Wlds have been aclcIed to the FHe men.t

1l1row Away WIrmw
Discards ttle active window. If you have made CIly ctla1ges to ttle doclment,
the Editor asks If you really WCIlt to discard ttle wlrldO'N. If you have
previously saved the doclment, ttle copy on diSk remains; only the contents Of
the window are discarded.

Eject OlSkette
Ejects the micro diSkette. You CCIl also eject by hOlding c:Jo'Nt"I the .. key and
typing E.

se&ral M!nJ (See sectIm Iln
TIle following challQ8S have been made to the searcn menJ, as ShoWrl on the
next page. I\t)te ttlat the options determining now the search is to be done
(~ther case Is IfTl)Orta"rt., etc.) are no looger marked with a check mark.
Instead, ooly the options currently in effect are ShoWn; to switch between the
two optlalS In each set, ctoose the menJ item.

NJtes 4-.$

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Wor1<sI1qJ 3.0 Atltes

Find II. tif
Find Same liS
Find Contents of Clipboard

Find [, Paste All

Search is Tokenized
Search is Not Case Sensitive
Search is Not Wraparound

Go To Line # eiG
Show Current Insertion Point

Firo cmtents Of Cl~

me Editor

Search for the contents of the CllJXloard. If the CllJXJoard contains more tta1
one line .. the Editor lOOks for only the first Une.

search Is Td(enlzedISearctlls Literal
If search Is Tokenlzed appears in the rnenJ, the Editor lOOkS for the searon
string as a separate word. If Search is LIteral appears, the Editor lOOks for CI'ly
oocurrence of the search strlng, even If It 8Rle8l'S In the mtocUe Of a'lOther
word. To toggle between the two options, choose the menu item. (1lle Search
Is Tokenlzed/SearCh Is LIteral choice replaces the separate Identifiers CIld All
occurrences rneru ttems.) Ttle Cleftnltion of a wanJ nare Is CI'ly combination of
alpharUTlerlc characters, ClOlIar stglS, and lJ1derbars, txllI1deO by spaces,
plIlCtuation, or other Symbols.

5e8ICh Is case senslUve/Se8rCh Is t«Jt case senslUve
If search is case Sensltlve appears in the menu, the Editor lOOks for the search
string with the case of the letters exactly as you typed It If 5eaJch Is Not
Case Sensitive appears, the Editor looks for any occurrence of the search
string, regardless of case. To toggle between the two options, Choose the rnenJ
Item. (1lle Search Is case SensltlVelsearCh is Not case sensitive choice
replaces the cases MAst ,A.gree CJ'ld cases Need not Agree met'lA items.)

I\tJtes 4-4

/~ . 1

TIle Editor

Search Is ~ Is Not ~
A search Is always done starting at the insertioo point. If search is
wraparOUld ~ In the menu, the Editor searches fl'OOl the Insertl00 point
to the end of the doct.ment, then starts at the beg1mlng of the doOlrnent, a"ld
searChes to the insertlon point. If searctl Is ~t wraparCUld appears, the
Editor only searches from the Insertloo point to the end Of the dOC\.rnent. To
toggle between the two optloos, choose the I'TIElt'1J Item.

Go To Line.
The Go TO Une # corrmald lets you scroll the window to snow text startlng at
a particular line runber In a doclrnent. The Editor asks you What Une you
want to go to. If you specify a Une runber greater tnan tne runber Of Uoes
In the doclrnent, you will get a message to Ulat effect. The Go To Une #
cornnlCIld C<Il alSO be executed by hOlding dOWn the .. key a"ld typing G.

ShoW 0Jm!nt. InSertIon PoInt
Choosing Show CUIlent lnsertloo Point scrolls the windoW to Where the
Insertloo point Is. If the Insertion point Is already In the windoW When you
ChOoSe Show CUIlent Insertioo Point, the COl rrnar Id does nothing.

Type style Meru (See sect.lm 4.8)
The Type Style I'TIElt'1J has been cha'YJed so Ulat you C<Il ChOoSe separately the
size of the type in WhiCh a dOOlInent Is displayed, a"ld Whether the type style
Is mooem or classic. The classic type foots have serifs; the modem foots do
not. The new Type style meru 1s snown belOW.

Type Style

odern
Classic

8 Point 20 Pitch
8 Poirt 15 Pitch

orIIO Point
12 Point
12 Point PS

I\tJtes 4-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

TIle Editor

PrInt MenJ (See sect.lm 4.9)
The Plain KeY""Orc.ts and Differentiated Keyworc.ts items are no longer on the
PIlot meru. Keywords are always printed as plain text.

Editor tnluauzaUoo Enors
If the inlt1allzatloo Of the Editor falls we to lack of disK space (Error 309), and
space on the diSk Is then maoe tree, Ule next attefllJt to start the EdItor wlll
also fall (Error 304~ You m.tst enter Ule M8'lageProCess SLOsystem Of the
system Manager, Kill the Editor process, and then try again.

Text FUes
The Editor, language processors, and other Wol1<.Shop ut11ltles expect a standard
• TEXT file as 1'1JU1,. The Internal structure of a text file In a block-structured
device is described 1n the Pascal RefeJ'ence /'w1antIa1..

• Each page (two 512-byte blocKs) contaIns some runber of corflllete Unes
of text and Is padOed wltn rull cnaracters (ASCIJ 0) after the last line as
necessary to COf'f1)lete the page.

• Two 512-byte header blocks are also present at the beglmlng of the file.
1lleSe mayor may not contain Informatim

• A ~ of leading spaces (ASCII 32 deCimal, $20 hexadeCimal) ca"I be
OO'11lressed Into a 2-byte code naTlely, a OLE Character (ASCII 16
deCimal, $10 hexacteclma1), followed by a byte cootalning the value 32
deGlmal plus Ule rumer of spaces represented.

Maxlnun Let'YJUl Of lines
The Edftor t1O'W has a maxlrrun Une length of 255 characters. YoutU get ~
error message If yru create a Une of more Ulan 255 characters, or a warning If
yru read In a flle etrltalnlng a Une of more than 255 characters. (111ls Challge
is lI'lliKely to affect you, since even using the smallest type font, you canat
display more tha'l abOUt 150 Characters In a line.)

/lJJtes 4-6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Editor

4.1 The Editor
The Editor is used to create and modify t.ext files. These files can be used
for many purposes including input to the language processors and as exec files.

If the file you are editing is too big to fit on the screen~ a portion of the file
is displayed. This "window" into the file can be moved to display any part of
the file you want. M example of the Editor display is shown in Figure 4-1.

file Edit Search Tllpe stille Print

2
rile
Seve t. Put Away
Seve 8 Copy In ...
s""~ " Cont I nua
Revert to Prevlou$ Version

Open ...
Duplicate .,'
Tear orr Stationery '"

Ext t Editor

3
Edit
Undo Lest ChM9"

CutIX
Copyll:
P8$te/V

Shirt LertA
Shtrt RightIR

III ED·,T.MENUUEXf 1'111

Fi~e 4-1
The Editor Display

01

[J'

The basic editing operations are inserting characters, cutting a portion of the
text, and pasting text into a new location. Text that is cut goes into a special
window CAlled the Clipboard. Text on the Clipboard can be pasted into any
place in the file or into another file.

All editing action takes place at the insertion point. The insertion point is
marked by a bUnkIng verUcal Une where the next character will be placed.
My characters typed or pasted from the Clipboard are inserted at this point.
This Is true even If the InsertIon point Is not currently displayed In the
window. The window is automatically scrolled to show the insertion point

4-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Gujde The Edjtor

The Edi tor is memory based.. This means that there is a physical 11mi t
on the size of the me that can be edited. If a file is too bIg to edlt,
it should be split into more than one me of manageable size. The
FileDiv and FlleJoin utilities can be used for this. They are described
in Chapter 11.

The mouse is used to scroll the text in the window, move the insertion point,
select text to be cut or copied, point to menus, and select items on menus.

4.2 Using the Editor
Start the Editor by pressing E in response to the Workshop command prompt.
The Editor prompts you for a text file name. If you want to edit an existing
file, enter its name. If you want to create a new file, choose Tear Off
Stationery from the File menu. The Editor prompts you for the stationery
name. Press [RETURN] for the default, which is blank paper, or enter a name.
For more information on stationery, see Section 4.2.3.

The file that you are working on is called the active document. You can have
several documents open and accessible at anyone time, but only the active
document can be edited. The active wIndow Is indicated by a darkened title
bar and scroll bars, and is always on top of all the windows.

To leave the EdItor, select Exit from the file menu, and you will return to the
WorkShop command line.

4.2.1 EdItlng qJemtloos
The basic editing operations are cut, paste, and copy. To cut or copy text,
you must first select the text to be cut or copied. Select text by moving the
mouse whlle holding down the button. See Section 4.3 for complete
information on selecting text. Text that is selected and then cut is removed
from the active document and placed in a special window called the
Clipboard. Text that is copied is placed on the Clipboard and also left in
place in the active document.

The contents of the Clipboard can be pasted at any point in the active
document by placing the insertion point where you want the text inserted and
choosing Paste from the Edit menu.

4.2.2 1lle MenJs
~rations are provided In five menus: File, Edit, Search, Type Style, and
Print. The File menu is used to access documents and stationery, to put away
files, and to exit the Editor. The Edit menu contains the editing operations.
Search provides for finding strings in the active document. The Type Style
menu selects the font for document display. The Print menu controls printing.
Each of these menus is described in more detail in the sections that follow.

4-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide 7J7e Editor

You select an operation from a menu by moving the arrow pOinter to the
menu name on the menu bar and holding down the button. The menu Is
displayed. Choose the menu Item by moving the mouse down until the Hem
you want appears in reverse video. Releasing the mouse button starts the
operation.

4.23 Crea~ m Usirg Stationery
Stationery for a special purpose, such as a letterhead, can be created with the
Editor. Stationery is just a regular text file containing the desired text. To
use any stationery other than the default blank paper, choose Tear Off
Stationery from the File menu, and type the name of the document containing
the stationery when it asks you for the stationery name.

To create stationery, make a document containing the text you want on the
stationery. Save thiS document on the disk. To use thiS stationery, choose
Tear Off Stationery from the Edit menu, and give It the flle name of the
stationery you created.

4.2.4 Editing MJItiple Files
More than one document can be open at one time, but only one document is
the active document. To read in a document when you already have an active
document, choose ~en from the File menu. It asKs you for the document
name. The new document is read into a window on the screen and becomes
the active document. To make another document that is already open the
active document, use the mouse to move the pointer into a portion of that
document and click the mouse button. If you have several documents open,
you might have to move some out of the way.

This capability of working wIth mnre than one document at a time can be
used to copy text from one document to another by using the following
sequence of operations:

• ~en the document containing the text you want to copy.

• Select the text you want to copy and choose Copy from the Edit menu.
This places a copy of the text onto the Clipboard. You can use Cut if you
want the text to be removed from i t3 original file.

• ~en the document you want the text to be copied to. It becomes the
active document.

• Place the insertion point at the place you want the text to be inserted, or
select the text you want to replace.

• Choose Paste, which copies the text from the Clipboard to the active
document.

Further information on each of these operations can be found in the sections
that follow.

4-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Works/7qJ User's Gujde The EdHor

4.3 Selecting Text
The basic editing functions are cut ... coPY ... and paste. Before you can cut or
copy text, you must select the text to be cut or copied. Before you paste, you
place the insertion poInt where you want the text to be placed. You select
text and place the insertion point by using the mouse to move the pointer on
t11e screen.

Within an active document, the pOinter will have one of three shapes:

Text pointer in a document

Arrow pOinter for menus and scroll bars

Hourglass when an operation will take over 20 seconds

Use the mouse to move the pointer on the screen. The Shape of the pointer
changes when you move in and out of the document window.

Within the window, the text pOinter is used to move the insertion point and to
select text.

In selecting text, you can select characters, words, or lines. You can also
select any number of characters, 'Words, or lines. Selected text is displayed in
reverse video.

43.1 Moving the lnsertioo Point
Ttle inseI lion puint is indicated by a bUnking vertical line where the next
character will be inserted. All insertion, whether from typing or pasting,
takes place at this point in the file, even if it is not visible in the window.

To move the insertion pOint, move tne pointer to wnere you want it to be and
cliCk. Note that the insertion point moves when you select text

43.2 Selecting Olaract.ers
To select characters, move the text pointer to the beginnIng Of the characters
you want to select, press and hold the mouse button while moving to the last
character you want to select.

AA alternate way of selecting characters, which is especially useful when
selecting a large block of text, is as follows. Move the pOinter to the
beginning of the text you want to select and click the mouse button. Then
move the painter to the end of the text you want selected and shift click.
Shift click means to hold down the shift key on the keyboard and click the
mouse button. You can use the scrolling controls to display the end of the
text you want selected if it is too big to fit in the window.

4.3.3 Selecting Words CIld Lines
To select a word, move the pOinter into the word and click the mouse button
twice. To select a line, move the pointer into the line and click the mouse
button three Umes.

4-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

-,'~ ,

Workshop User's Guide The Editor

To select multiple words or lines, click the mouse button the required number
of tirnes .. and hold. Move the pOinter to the last word or line you want
selected and release. If you double-click, and hold down the mouse button
while you move the insertion point to the left or right, the selection expands
or contracts by words. If you triple-click, and move the insertion point up or
down, me selectlon expandS or contracts by lines.

All alternate method, especially useful when you want to select more text
than will fit in one display window, is as follows. Click the required number
of times to select the fint word or line. Scroll the wtndow if necessary to
display the last item you want selected. Move the pointer to the last item
you want selected, shift click, and the entire blOCk of text becomes selected.

4..3.4 AdjJstlng the Arrlolrtt of Text Selected
To change the amount of text selected, move the pointer to the position that
you want the selection to extend to and shift click. This can be used to
either expand or contract the selection.

4..4 Scrolling sOO rvtMng the Display
When a document is longer than will fit into the display windOW, only part of
the docurnent is displayed at one time. You can change what part is
displayed by "scrolling" through the display. The vertical bar on the right side
of the active window is the scroll bar. All example of a text window showing
the scroll bar is in Figure 4-l.

The display window can be changed In size and moved on the screen. This
enables you to have mul tiple documents displayed on the screen. These
operations are done using the title bar and size control box as explalned in
Section 4.4.2.

4..4.1 Scrolllrg the Display
There are three ways of moving the display window through the document.
The first is by using the elevator. The elevator is the white rectangle in the
scroll bar. Its position in the grey portion of the scroll bar indicates the
relative position of the currently displayed text window in the document. If
the elevator is near the top, you are near the beginning of the document. If
it is near the middle, the text displayed in the window is near the middle of
the document, and so on. To change the poSition of the text window, you can
move the pointer into the elevator, click and hold the mouse button down
while you move the elevator to the position in the document you want to
display. When you release the button, the display will show the new position.

The second way of moving the wIndow makes use Of me vIew buttons. The
view buttons are the boxes at each end of the scroll bar. If you move the
poInter to a vIew button and cllck, the display moves one windowful toward
the beginning or end of the document, dependIng on which button you clicked.

4-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

WOIkstJop L/seJ"'s Guide TI1e Editor

The third way of moving the window uses the scroll arrows, which are just
above and below the view buttons. If you move the arrow pointer to the
bottom scroll arrow and click, the display window will move one line toward
the end of the document. If you hold the button down, the window will
continue to move a line at a time until you release it. The upper scroll arrow
works the same way, except it moves the window towards the beginning of the
document.

Il..ll2 tv'klvirYJ the WirKtow
You can move the window on the screen and change its size. This lets you
display mUltiple documents on the screen. You can make any visible window
be the active window by moving the pointer into it and clicking.
To move a window, move the poInter to the title bar, press the mouse button
and hold it while you move the window. When you release the button, the
window is redisplayed at the new location.
To change the size or shape of the active window, move the pointer to the
size control box, press the button, and move the pointer until the window is
the right size and shape. Release the button and the resized window will be
displayed. The size control box is the box in the lower right hand corner of
the window. Olly the active window can be resized.

4.5 The File FlI"K:tions
The file menu provides functions for readIng in and writing out documents,
updating oocuments, copying oocuments, anO exltlng the Editor. The File
menu is shown in Figure 4-2. Each function is explained below.
save & Put Away
This writes out the active document anO closes iL

Save a Copy In . . .
This writes out a copy of the active document to another document name.
You are prompted for the name of the document to write to.

save & Contil'lJ8
This saves all changes made so far by writing out the document to Oisk,
wi thout closing the document.

Revert to Previous Version
This returns the document to the way it was before you started editing it, or
when you last saved it. This is done by reading in the document from the
disk.

4-6

I
J
i

I -... ~-
)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I ".-r-'. _,

I"
i

"

I
I

Workshop User's Guide

~ ...

Save & Put Away
~OVI" 0 Copy in ...

Save & Continue
Revert to Previous Version

Open ...
Duplicate ...
Tear Off stationery. II

Exit Editor

Fig.rre 4-2
Tl1e File Meru

The Editor

This tells the Editor to get a new document. It prompts you for the document
name, then reads it in and makes it the active document The Editor supplies
the .TEXT extension on the file name. If the file name that you want doe~
not end in .TEXT, you must end the file name with a period. See Section 1.5,
The Workshop User Interface.

l:qlllcat.e _ . _
This enables you to read in a copy of an existing document to edit Into a new
document. It is read in with the default name "untitled"

Tear Off Stationery ...
This gets a new piece of stationery and makes it the active document. See
Section 4.2.3 for more information on stationery. The stationery is given the
default name "untitled".

Exit Editor
This first asks you if you want to put away any modified documents. If you
answer yes, they are written out to disk. Then it exits the Editor. If you
make the Editor reSident, you can exIt and restart the Editor withOUt losIng
any information between invocations. Section 3.4, Process Management, gives
instructions on how to make the Editor resident.

4-7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Wo.rkshop User's Guide TI1e Editor

4.6 TIle Edit FlIlCtions
The Edit menu provides editing functions and tab setting. It is shown in Figure
4-3.

The three basic edit functions are cut, paste, and copy. These make use of
the special window called the Clipboard. The Clipboard can hold one piece of
text. Text is put into the Clipboard by selecting it in the active document,
and either cutting it or copying it. Text is copied from the CUpboard and
inserted at the insertion pomt with the paste operation.

C~It:

COP!A
Paste

Shift: 1..I.~ft:

Sl'Iift nI~~ht

Set Tabs ...

Select RII of Document .R
Figure 4-3

TIle Edit MenU

F or example, to move text from one place in a document to another:

1. Select the text to be moved.

2. Choose Cut from the Edit menu. The text is removed from the active
document and placed on the Clipboard.

3. Place the insertion point where you want the text to be.

it Choose Paste from the Edit menu. The text on the Clipboard is inserted
at the insertion point.

Tne EOit menu also enables you to aOJust selected text left or rlgnt oy
inserting or deleting spaces, and to set labs.

4-8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide T/7e Editor

Some edit functions can also be done by holding down the" key and pressing
another key. The key that corresponds to each function is shown in the Edit
mp.nu~ as you can see in Figure 4-3.

um Last 0la1ge
This command puts the document back to the way it was before the previous
operation, if possible. You will receive a warning message if the last
operation cannot be undone.

cut
Cut places a copy of the currently selected text onto the Clipboard and
removes the text from the actlve document. You can also Cut by pressing the
x key while holding down the" key.

Copy
Copy places a copy of the currently selected text onto the Clipboard" but
does not remove it from the active document. You can also Copy by pressing
the C key while holding down the " key.

Paste
Paste inserts a copy of the text on the Clipboard at the insertion poInt in the
active document. If a section of text is selected, Paste replaces it. You can
also Paste by pressing the V key while holdIng down the" key.

Shift Left
Shift Left moves selected text left by deleting a single space from the left of
each line. It does not delete any characters other than spaces. It is most
often used to adjust the left margin of a block of text. You can shift left by
preSSing the L key while holding down the" key.

Shift Rig-.t
Shift RIght is similar to Shift Left, except that it moves the selected text to
the rlght by inserting spaces at the beginning of each line. This can also be
done by pressing the R key while holding down the " key.

set Tms ...
Set Tabs enables you to set the spacing of the tab stops.

Select All of Ooctment
This command selects the entire document. You can also select the entire
document by pressing the A key while holding down the " key.

1l.7 The Search FlI'lCtions
The Search menu gives you the ability to search for a text string in the
active document. The basic operation is Find, which locates the next
occurrence of the string and selects it. Find &. Paste All replaces each
occurrence of the string wi th the contents of the Clipboard. Several options
are provided to specify how the match is to be found. The Search menu is
shown in Figure 4-4.

4-9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Qjjde

t-~ -" -- "---- ---"--
Find ... WF
Find Same .S
Find [, Paste All

...,tSeparate Identifiers
All Occurrences

...,t[ases Need Not Agree
[ases Must Agree

Fi~ 4-4
The Search MenU

The EdHor

All searches start at the insertion poInt, and go to the end of the document.

There are three search nperations in the Search menu~ as follows:

Find .•.
Find prompts you for the string to search for, then finds the next occurrence
of the string. If a match is found, it is selected. If not~ the system tells you.
The Find command can also Oe executed by pressing the F key whlle hOlding
down the " key.
Find Same
Find Same repeats a previously specified Find, and selects the next occurence
of the string. You can do a Find Same by pressing the S key while holding
down the " key.
Find &; Paste All
Find & Paste All finds all occurrences of the specIfied string from the current
insertion point to the end of the file, and replaces each of them with the
contents of the Clipboard.

The other four items in the Search menu tell how a match is to be found.
There are two areas to describe: searching for tokens or characters, and if
case must be matched. The options currently in effect have a check mark in
front of them. To change the option, you choose a new one.

The first set of options tells whether to search for tokens or to search
literally:

4-10

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop Users Guide The EdHo".

Separate Identifiers
When Separate ldenti fiers is chosen, the search operation looks for a "token"
or word to match the search string. A token is a word bounded by spaces.

All O::CUrrenc:es
When All (Xcurrences is chosen, the search operation matches any string
containing the same characters, even if it is only part of a word.

The next optlons indicate 1 f case is signi flcant in finding a match:

Cases Need Not Agree
When Cases Need Not Agree is chosen, any string with the same characters is
a match, regardless of whether they are in uppercase or lowercase.

Gases MAst Agree
When Cases Must Agree is chosen, the string with the same characters, and
matching case, is selected.

4.8 The Type style FLI1Ctims
The Type Style menu enables you to change the display font. The Type Style
menu is shown in Figure 4-5. A check appears in front of the font in which
the document is currently displayed. You can change the font by selecting
another font from the menu.

The font selected affects how many characters can be displayed on a 11ne, and
whether or not the display is proportionally spaced. When a document is
printed, it Is printed In the same type style it Is displayed In, If that type
style is available on your printer.

Type Style
20 Pitch Gothic
15 Pitch Gothic
12 Pitch Modern

12 Pitch Elite
10 Pitch Modern
10 Pitch Courier
PS Modern
PS Executive

Figure 4-5
The Type Style r-1eru

4-11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

WOrksfJqJ User's Gujde The EdHor

4.9 The Print FlJ'lCtiom
The Print menu provides functions for printing a document. You can print all
or part of a document, choose what form of footers are to be printed, specify
if Pascal keywords are to be emphasized, and tell what type of printer Is
being used. The Print menu is shown in Figure 4-6.

The Print functions are as follows:

Print All of OoruTlent
The Print All of Document command prints the entire document.

Print Selectlm
The Print Selection command prints only the currently selected portion of the
document.

Both of the print commands wait if the printer is not ready.

The remaining options in the Print menu involve how the print is to be
performed. They are organized into three sets of two options. The currently
selected option in each set is indicated by a check mark. You can choose any
combination of options you wanl

II of Document

ull Footers

lain Keywords
Differentiated Keywords

Matrix Printer

Daisy Wheel Printer

Figure 4-6
TIle Print I'1enJ

Tne fIrst opuons contra} what type Of footers are prInted at the bOttom of
the page.

4-12

/~~
"

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Gujde The Edjtor

Full Footers
When Full Footers Is chosen, each page prInted has a footer conslsting of the
document name, the page number, and the date. If the document is less than
one page long, no footer will be printed.
Page ~r fl1ly
Choosing Page Number O1ly results in only a page number on the bottom of
each printed page. If the document is less than one page long, no page
number will be printed.
The next options are used for printing Pascal programs.
Plain Keywords
Choosing Plain Keywords causes Pascal keywords to print as normal text.
Differentiated Keywords
Choosing Differentiated Keywords causes Pascal keywords to print with
underlining. In addition, the read procedure, write procedure, and other
standard Pascal procedures and functions are underlined.
You choose the type of printer to print on with the next options. Select the
type of printer you have attached to your Lisa: Dot Matrix Printer or Daisy
Wheel Printer.

4-13

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Chapter 5
The Pascal Compiler

5_1 The Pascal Compiler ____________ ._. _ . ___ ._ _ ... _ . ___ _ 5-1

52 Using the Pascal Compiler _ ... _ 5-1
5.2.1 Using the Code Generator 5-2

53 The Pascal Compiler Commarm __________ . _____ .. __________ ... __ .. __ . 5-2

5.4 The Pascal Run-Time Environment _._._ •.................. _ 5-3
5.4.1 The PASLIBCALL Unit 5-3
~t4.2 The Pascal Heap .. 5-5

See 81so the Release .1.0 Notes for this chapter.

I
I
I
I
I
I
I
I
I
I (

I
I
I
I
I
I
I
I
I

~\Iorkshop 3.0 Notes The Pascal Compiler

Chapter 5
1he Pascal Compiler

New CompUer Commands (See Section 5.3)
Five new Compiler commands have been added: $ASM, Sf, 1M, SiP, and SU.
SASM controls whether or not the listing shows the assembly code generated
by your Pescal statements. SE lets you automatically invoke the Editor. 1M
lets you generate Macintosh code. $P starts a new page in your listing. SU
controls the Compiler's search for a regular or intrinsic unit's interface.

For a detailed update, consult the 3.0 Release Notes for Chapter 12, The
Compiler .. of the Pascal Reference Manus} for the Lisa.

Notes 5-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Pascal Compiler

5.1 The Pascal Cor1"l>iler
The Compiler translates Pascal source statements into object code. This
translation is done in two steps. The first step, parsing, converts the program
Into semantically equivalent tree structures called I-code. The second step
translates the resulting I-code into machine language.
A complete definition of lisa Pascal is found in the Pascal RefeJ'1!!f7Cf! I'1lnAJJ
for the LIsa. A Pascal program can call assembly language routines. More
infonnation on assembly language is in Chapter 6 of this manual.
The qJerating System provides a number of routines that can be called from a
Pascal program to perfonn various system functions. These routines are in the
SYSCALL unit, which is described in the Q:Je.l7iting System Refe.mnce 1'18nt.I81
for UJe Lisa.

The Pascal run-time support routines are in the library IOSPASLIB.OOJ. The
support routines for floating point operations are in IOSFPLIB.OOJ. After
generating the Object code, it is necessary to link the program with
IOSPASLI6.Il3J before you can run it. If you are using real numbers, you must
also link with IOSFPLIB.OOJ. for information on how to link the program, see
Chapter 7 in this manual.

5.2 Uslrg the P85Cal Con1>Uer
The CompHer expects a text fIle contaIning a Pascal source program as input.
You can create this text file using the Editor.
When you have prepared a source program, use the CompHer to translate it
Into object code. Start the Compiler by pressing P in response to the
Workshop conmand prompt. The Compiler first asks:

Input file[.TEXT]
Type the name of the file that contains the source program. You do not need
to add the . TEXT extension. The Compiler then asks:

list file(. TEXT]
Type the name of the file that you want the listing to go to, or press
[RETURN] if you don't want a l1stlng. You can display the listing on the
console by using the -console pathname. The CompUer next asks you where
to store the I-cOde fonn of the program:

I-code fl1e[<lnput name»[.I)

5-1

I
I
I
1
I
I
I
I
I
I.

I
I
I
I
I
I

Wofksl7cp User's GuieX! Pascal Ctrnpiler

If you want the I-code to be stored in a file with the same name as the
source f1le, OUt wltn a .I extension Instead of the .TEXT, just fress [RETURN).
If you want another name, type the name and press [RETURN
After the last input, the Compiler translates the program into I-code and
stores it in the I-Code file. If tnere were any errors, they are displayed in
the listing file, or on the console if there is no listing file. When a I1'leSsage
is displayed on the console, you are given a choice of aborting the compUe by
pressing [CLEAA1 or continuing the compilation to look for more errors by
pressing the space bar. A few errors give additional information after you
press the space bar. Errors can also be placed in a separate error file by
using the $€ Compiler corrmand.

5.2.1 Usirg the Code Generator
To translate the I-code into object code, press G in response to the WoI1<shop
conmand prompt. The code generator first asks:

Input file [.1 J
Type the name of the I-code file. You do not need to add the .I extension.
The generator then asks:

OUtput File [<input name>][.OBJ] -
To accept the default name .. press [RETURN~ If you want a different name
for the output file, type the name and press [RETURN~ The .OOJ extension
will be added to the name for you.
The output file from the code generator is object code, but it is not
executable because it does not contain the Pascal run-time support routines.
The run-time support routines are contained in IOSPASLIB.OOJ, and
IOSFPLIB.CI:3J for floating point operations. These routines must be added to
the Object file by using the Linker. See Chapter 7 in this manual for more
information on the Linker.)!;

5.3 The Pascal ~ller ca ,., a Ids
Compiler commands allow control of code generation, Input file control, listing
control, and conditional compilation. The commands all start with a $, and
are placed as comments in the source program where you want the command
to take effect. All the CompHer commands are listed in Table 5-1. A
complete explanation of the Compiler cOl'Tll"118l1d3 is found in the Pascal
Reference M8ntJ8l for tile Lisa.

5-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide

$1 filename

$U filename

$C+ or $C-

~+ or~-

$S segname

$X+ or $X-

$0+ or $0-

$E filename

$l filename

$1..+ or $'-

$DECL list

$SETC

$IFC

$ELSEC

P8sc8l Compiler

Twle 5-1
Pascal CorTlliler Corrmands

Mecr1irYJ

Include contents of filename in this compilation.

Search filename for units used.

Turn code generation on (+) or off (-) for a procedure.
Default $(;+.

Turn range checking on (+) or off (-). Default ~+.

Start putting code modules into segment segname.

Turn automatic stack expansion on (+) or off (-).
Default $X+.

Turn procedure name generation for Debugger on (+)
or off (-~ Default $0+.

List Compiler errors in filename.

Produce Compiler listing in filename.

Turn source listing on (+) or off (-). Default $l +.

Declare compile time variables.

Assign a value to a compile time variable.

Begin condi tional compilation section.

Begin ELSE clause of conditional compilation.
$ELSEC is optional.

$ENDC End of conditional compilation section.

5.4 The Pascal Rl.Il-TIme Envll 011' 181 It
The Pascal run-time environment provides a unit PASLIBCALL which allows
you to use some special system functions. It also provides special heap
manipulation functions.

5.4.1 1he PASlIBCALL U1lt
The unit PASLIBCALL provides you with some additional system functions. In
order to access the PASLIBCALL routines" you must use the units SYSCALL
and P ASLlBCALL:

USES
{$1.J syscall} SVSCALL,
{$U paslibcall} PASLIOC'.ALL;

This gives you access to the routines listed below. These routines are
contained in IOSPASLIB.CBJ" so programs using them require no additional
inputs to the Linker.

5-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Gujde Pascal Compjjer

fll1Ctioo PAbortFlag : lxx:Ilea1

This function tells whether or not the .-period key combination has been
pressed. It enables programs to exit out of long operations. The flag is
cleared when PAbortFlag is called. If you want your program to stop
when you press "-period, you must use this function in the program to
detect that the key combination has been pressed. For example:

{This prograTI fr8l}lEl1t hcJlgs in 1I1 infinite IDql II1tll .-period
is pressed}

aborted : =false

Repeat {Wait for .-period. Yru mi~t wmt to do other things
here}

aborted : =PAbortF lag;

II1til cIJorted.

procewre ScreerCtr (cootrfll1 : integer);

This procedure provides standard screen control functions, and enables
programs to perform screen control without having to to use escape
sequences. Escape sequences are explained in Appendix C. The parameter
specifies the screen control function. It is defined in the constants as
follows, in the PASLlBCALL unit:

Function
clear screen
clear to the end of screen
clear to end of line
move cursor to home posi tion
cursor left one position
cursor right one posi tion
cursor up one line posi tion
cursor down one line posi lion
Screen control example:

Constant
Value

Dec~ Hex
CclearScreen 1 1
CclearEScreen 2 2
CclearELine 3 3
cgoHome 11 B
CleftArrow 12 C
CrlghtArrow 13 0
CupArrow 14 E
CdownArrow 15 F

{This program fr8l}1Etlt clears the screen, and positioos the
cursor on the third line}

SCreeri!tr (CgoI-k:lme);
SCreerCtr (CClearSCreen);
ScreerCtr (CdoWlArrow);
SCreerCtr (CdoWlArrow);

5-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Worksl7t:p User's Guide Pesc81 CrxTpiler

prc::an.n-e GeUJlrefix (var prefix : pa~);

This procedure provides your program with the first level prefix setting in
the File-Mgr in the Workshop.

proced..Jre Ge1:PrOevice (var PrOevice : e_name);

This procedure returns the corresponding defaul t printer device name so
that you can perform additional device control functions using
DEVICE _ C()\/TRCL. (The t:perstJng System ReF'e.mnce MantIs) f'or the Lisa
explains the device control call.) The default printer device name is the
one corresponding to the logical device '-printer', Note that the device
name returned contains a leading '-'.

procedure PlINIll£AP (var errun, refrun:lnteger;
slze,c1elta:lcrglnt
Idsn : integer;
s~le:boolea1);

where:

enun

size

refrun

delta

Idsn

swapable

is the error number returned if the procedure has any
problems making a data segment having a mem _size of
size bytes. Appendix A contains an explanation of the error
codes for the Workshop.

is the number of bytes in the heap.

is the refnum of the heap.

Is tile amount you want t.he data segment to increase when
the current space is used up. If you use a large heap" use a
large number for delta.

is the logical data segment number used for the heap. The
default is 5. For more information see the QleIllting System
ReF'erence Manual for tI7e Lisa.

is the boolean that determines if the system can swap the
heap data segment out to disk if it needs to.

This procedure can be used when you have special needs; for example,
when you want to specify your own Idsn or heap size. When you use
PLINITHEAP, you must call it before calling other heap routines. For
more information on the heap, see Section 5.5.

5.4.2 The Pascal ~
The Pascal heap is one contiguous piece of memory, a data segment, which
works automatically without any initialization call. See Chapter 11 of the
Pescel Reference MBnlI8/ F'or the Lise for information on the normal heap
functions.

5-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide Pascal CompIler

When a Pascal program starts execution, no heap space is allocated (no data
segment made~ 01 the first call to one of the heap routines or on the first
PLINITHEAP call, the heap Is created with either a default sIze of 16k bytes
or the size specified in the PLINITHEAP call.

PLINITHEAP makes the heap as a private data segment so that the qJerating
System removes it when the process calling PLINITHEAP terminates. Note
that when the heap is initialiZed, size and delta are put on 512 byte block
boundaries. Therefore, if you use the PLINITHEAP call and specify values for
size and delta that do not fall on block boundaries, the procedure increases
the values to the next block boundary.

If the heap runs out of space while it is being used, the size of the heap is
increased by the default of 16k or the delta specified in PLINITHEAP. The
default Idsn used is 5. If you want a different Idsn for the heap data
segment, call PLINITHEAP. Remember that the size of a data segment is
limited by the Idsn you use. For ldsn 16, you can get only 128k (actually 96k
safely), for ldsn 15 you can get only 256k, fur ldsn 14 you can get only 3841<,
and so forth. See the cperaling System Refemnce H8I7ual for tlJe Lisa for
more information on ldsn's and data segments.

If swapable Is true, the heap is made with disc_size equal to size so the data
segment is not memory resident. This uses up disc _size bytes on the startup
disc. The default for swapable is false. When swapable is false, the
procedure creates a data segment that has a disc_size of 0 (zero), which
makes it memory resident.

The built-in Pascal heap routines are NEW, MEMAVAIL, MARK, RELEASE, and
I-EAPRESUL T.

• If you call NEW and not enough space is available, the size of the heap is
increased by either the default of 16k or the delta size specified in
PLINITHEAP.

• MEMAVAlL provides the maximum number of words you could ever expect
to get, taking into account the Idsn you used as well as the amount of free
space the ~rating System currently has available. If another process is
using memory concurrently, its use of memory also affects MEMAVAIL.
MEMAVAlL does not show the amount of memory left in the heap's data
segment alone, since the heap's nata segment can grow and shrink over
time.

• MARK sets a painter to the lowest free area on the heap. It is used with
RELEASE to deallocate variables from the heap.

• RELEASE deal locates variables from a marked area of the heap. If you
release the heap to a point wIthIn the orIginal sIze of the heap data
segment, the heap data segment is reduced to its original size. More
information on MARK and RELEASE can be found in the Pascal Reference
Hanual for tile Lisa.

5-6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Wolf<shop User's Guide Pescs/ Compiler

• HEAPRESUL T returns a 0 if the last heap operation was successful,
otherwise it contains the ~erating System error number Indicating what
failed. A list of the qJerating System errors is in Appendix A

5-7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Chapter 7
The Linker

7.1 The Unker-........... 7-1

7.2 lJsing the LinkEI' •.••..••..•..........•.........•...................•.... 7-2

7..3 The Unker Options ... 7-2

7.4 How Do I Link a Main Program? _ ______ . _ •...••• _ •.. _ ... 7-4

7..5 Regulm- and Intrinsic Units _ .. __ . _ __ ... ___ _ .. 7-.4
7.5.1 How Do I Link with a Regular Unit? 7-5

7.6 The tinker Listing .. 7-5

7.7 Resolving External Names ... 7-6
7.8 Module Inclusion __ ... __ . ___ . __ .. __ . ______ . _______ . _________ 7-6

7.9 ~ntation __ ... OM •••••••••••••• OM •••••••••••••••••• OM ••• OM •••••••••••• 7-7

See aJso tile ReJease .1.0 Notes (or tills C!1BPter.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(

Chapter 7
The Linker

New Linker Options (See Section 7.3)
The Linker accepts the following new options;

+C moduleN8me segmentNmne

The Linker

Make a copy of module Name in segmentName. Used for
performance reasons to prevent cross-segment calls and t.he possible
need for a segment swap.

+F Means the link is a link of system code that runs in Domain 0/ and
therefore cannot use MMU's 1-16. The default is -F.

+1 Include interfaces in an intrinsic library link. The default is + 1.
(Note: this is a change--in previous releases, interfaces were not.
included.)

+0 Emit OS data record for main programs. Used by the OS for initial
program loading. The default. is +0.

+X Mac link--generate an object file specially designed for the
Macintosh Resource Compiler. The default is -X.

+Z Warn if codesize is too large. The default. is +l.

The -H and +S options (for setting initial disk space and stack size) no
longer have any effect.

JrUinsic Units (See Section 7.5)
. You can now link to intrinsic units you've created yourself; you are no longer

limited to those provided by Apple. For information on writing intrinsic
unitsJ see the Release 3.0 Notes to the Pl!JSCal Reference "18nu8~ Chapter 9,
Units.

Notes 7-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Linker

7.1 The Lln<er
The Linker combines object files. Its input consists of commands and object
files. Its output consists of object files, link-map information, and error
messages. The output of the Pascal compHer must oe l1nked with
IOSPASLIBJBJ before it can be executed. other object files, including
intrinsic unit libraries, and object files produced by the Assembler .. can also be
linked Into the output object file.

When a program is compiled into an object file, it contains the following sorts
of things:

• (])ject code, in the form of reloc:atable machine language, that expresses
the algorittvn of the program.

• Symbolic (named) references to all locations that were not known at
compile time. These include externally compiled routines (units and
intrinsic units) and the Pascal library support routines (IOSPASLlB.CBJ~

• Other information to be used by the Linker.

The purpose of the Linker is to resolve all the symbolic references (link
references to definitions), and output an object file that can be executed. The
Link.er also sorts the code modules into named segments. These segments are
swapped into memory at run time by the qJerating System.

The Linker does its work in two phases. In the first phase, it reads all the
input files, and finds all symbolic references and their corresponding
definitions. Errors such as duplicate and missing references are detected
during phase one. In the second phase, the Linker copies code from the Input
files into the output files in executable formal

If the Linker can't find something that is addressed symbolically .. this is an
error. AA error message will be printed, indicating the missing module. This
process of finding the real addresses that correspond to the symbolic addresses
is called mso}vjng the extems} mferences:

The Linker expects to find the file INTRINSIC.L1B. INTRINSIC.L1B is a
directory of llbraries and intrinsiC units, and includes information for the use
of the Linker. INTRINSIC.L1B defines all the intrinsic units supplied with the
Workshop system.

To create an executable file, the Linker must have the following inputs:

• The object file from a main Pascal program.

• IOSPASLIB.CBJ to provide the standard Pascal procedures and flXlCtions.

7-1

iiiii •
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Worksllop User's Gujde Tile Ljnker

• IOSFPLIBJ13J .. 1f you are using any floating point varIables.
• ctJject files for any other external procedures referenced by the main

program. These can be Pascal units .. assembly language rouUnes, or
intrinsic units defined in INTRINSIC. LIB.

The Linker combines these flIes and creates an executable Object file. If it is
unable to link these files correctly to create a legitImate output file, the
Linker displays an error message. If there is an error, the object file is not
prodUced.
When llnklng a main program, all references to external Objects must be
resolved. Partial links are not supported.
Whlle it Is l1nklng a main program, the Linker does a dead code analysis and
does not include any routines that are not referenced. Unnecessary routines
are ellminated from the main program, and from the regUlar units given as
Inputs to the link.

7.2 USlng U1e Ur1<er
The Linker is started by pressIng L in response to the WOrkshop command
prompL The Linker prompts you for the input files, the listing file, and the
output file. ~tions can be entered after entering "?" in response to the input
file prompL After all file names and options are entered, the link begins.
Hence the set of options in effect Is the same throughout the link. It is not
posslble to change options part way through the link. When entering an input
file name, it is not necessary to enter the .OOJ extension; the Linker will
provide that as needed for input flies.
Tne Linker w111 accept optlon commands and Input flle names from a
command file. A command file Is a text file contalning the file names and
options, one per Une. If a blank llne exIsts In the file, the Linker treats thIs
as the [RETURN] that Signals the end of the input flIes. You use a command
flle by typing "<" followed by the name of the text flle the commands are in.
It is not necessary to enter the .TEXT extension; the Linker wUl provlde that
as needed for all Input command flles. Create the text file by usIng the
Editor.

The aefault llsting Is -console. You can send the Hsting to a text file by
entering its name In response to the listing file prompL When sending the
listing to a text file, you do not need to provide the .TEXT extenSion, Since
the Linker provides it.
After entering the ouput fUe name, the link begins. If no errors occur during
the link and all external references are resolved~ the output flle is executable.
A message is printed at the end of the link to tell you if the output Is
executable.

7.3 TIle Ur1<er q:,tlons
To enter the Linker options mOde, type "? [RETURNj' in response to the
prompt for an input file. To leave options mode and return to entering input
fUes, press [RETURN] III response to the options prompt. The order in which

7-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide The Linker

options are entered is unimportant, because they have no effect until the link
begins. The last value entered for an option is the value used when the link
is performed.

Q:ltions are represented by a single character. A " ... " in front of the character
makes that option take effect. A "-" sets the Linker so that option will not
happen. In addition to being set on or off, some options have additional
parameters. Numeric parameters can be in either decimal or hexadecimal.
Hexadecimal numbers are indicated with a leading "$". The current setting
of all options can be displayed by entering a "?" in response to the request
for an input file or an option.

The Linker options are as follows:

"'A Alphabetical listing of symbols. The default is -A

"'0 Debug information. The defaul t is -D.

II num -H sets the initial disk space allocated to the program's stack.
The default is to automatically include space for the program
variables and the value specified in the ... S option.

+L Location ordered listing of symbols. The default is -L. The
location is the segment name plus offset.

... M fromName toName
+M maps all occurrences of the segment fromName to the
segment toName. This allows you to map several small segments
into a single larger segment. You can thereby postpone
segmentation decisions until link time by using many segment
names in the source code.

Because options have an effect only when the link begins, it is not
possible to map a segment name to several different names using this
option. Also, you cannot use this option to map segments to or from
the blank segment.

+S num +S sets the starting dynamic stacksize to 'num'. The default is
10000 .

... T num ... T sets the maximum allowed location of the top of the stack to
'nurn'. The default is 128K

+W

?

+ W tells the Linker to get intrinsic uni t information from a file
other than INTRINSIC.LIB.

Prints the options available and their current values.

7-3

• •

I
I

I
I
I
I

Wo.rksl7Op User's GuIde TIle LInker

7.4 How Do I Uri< a Main proglalll?
A main program consists Of a Pascal program linked with all routines
necessary for it to run. A main program Is the only type of executable object
flle produced by the Llnker. To llnk a maIn program you must have the
followlng:

• A compIled Pascal PROOR,AJv1 object file.

• (])Ject files for any other unlts the program uses. ThIs includes flles for
regular units and assembly language routines. My intrinsic units used
must be defined in INTRINSIC.LIB.

• IOSPASLIB.OOJ, and IOSFPLIB.OOJ (if any real variables are used~

When you have all the above files, proceed as follows:

1. Execute the Linker by pressing "L" when the WorkshOp command prompt Is
displayed. The Linker displays a header and asks you for an input file.

2. Enter any desired options. To enter the options mode, press "? [RETURN]'
in response to the request for an input fHe. See Section 7.3 In thIs
chapler for information on Llnker options. Press [RETURN] after each
opUon entered. When you have entered all the opUons, press [RETURN] to
begin entering input file names.

3. Enter the file names for all the object files" pressing [RETURN) after each
one. The file names can be entered in any order. You do not need to
enter the .03J extension; the Linker will automatically append it.

4. Press [RETURN] to Indicate the end of the Input fUes.

5. The Linker prompts you for a listing file. Enter the file name desired, or
press [RETURN] to accept the defaul t of dlsplaying the Ustlng on the
-console.

6. The Linker prompts you for the output file. Enter the name of the
executable file you want produced. You do not need to enter the .03J
extenSion; it is supplied automatically .

The linking process begins when you press [RETURN] after entering the output
file name. If the link is successful, the message "()Jtput is executable" will be
displayed. If the link is not successful, error messages are displayed.

7.5 R~ar em IntrInSic Ullts
The two types of units are regular units and intrinsic units. Each is a
separately compiled code module that may be used by a main program or
another unit. The syntax of a Pascal unit is explained in the Pascal
Reference M8fl(jaJ for t/7e LIsa.
A regUlar unit is combined with a main program by the Linker and included in
the resulting object fHe. An intrinsic unitl on the other hand, is stored
separately on the diskl and loaded at run time. Thus, only one copy of an
intrinsic unit is kept on the disk. no matter how many main programs use it.

7-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(

(

WoJkslJop User's Guide The Llrirer

In addItion to being shared on the dIsk, an intrinsIc unIt is also shared in
memory.

The current implementation has no provision for users to create new
intrinsic units. All intrinsic units are supplied by Apple computer.

7 S.l How 00 I Lin< with a Regular llit?
A regular unit is a separately complied segment of code. It is written In
Pascal, and compiled like a regular program. See the Pascal Reference
ManiJal for tile LIse for information on how to write a unit See Chapter 5
in this manual for information on compiling the unit.

After you have created a unit, the routines in it can be accessed from any
other program or regular unit you write. The Linker combines a main program
with all units It uses. The result is an executable object file containing all
the needed rouUnes.

To use regular units with a main program, follow the procedure in section 7.4.
As Input, you must gIve the Linker:

• The object file of the main program.
• The object files of aU lIlits used by the main program.
• IOSPASLIB.OOJ, and IOSFPLIB.OOJ (if any floating point variables are used~

The Linker combInes all these object files into an executable object flle. It
also does a dead code analysis to eliminate any routines that are not used .. to
reduce the sIze of the object file.

7.6 The Lln<er Listing
A listing is produced each time a p~ram Is linked. This listing can be sent
to a file, or displayed on the console (the default~ The +A option gives you
an alphabetical 11st of the symbols (procedure names) used in the link. The +L
option gives you a list of the names in order of their location. The listing is
produced in stages, as follows:

1. The input fUes are read, and a summary of the resources used Is prInted.
2_ The llnldng process begIns. Information about the $12e of each segment is

printed.
Errors are reported as they are found, and you are told whether or not the
output is executable.

If you requested optional listings, they are also printed. An eX8I1lIle of a
Linker listing with no options requested is shown in Figure 7-1. Linker
listings are mainly used for debugging at the machine code level. See
Olapter 8 for more information on the Debugger.

7-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide

e,gl nn I n9 ry - 262~ee
Aft.r static allocation, •••• ry - le6915
Inrut fll. ['OBJJ ? TRANSVOL
Inrut fll, L09JJ ? IOSPASLlB
Input fllo ['OBJl ?
L1!tlng fllo [CONSOLEIJ/LTEXTJ
Out~ut flit ['OBJJ - lRANSfERJLS
Pudlng filiI TRANSVOL.OBJ
Rudlng tt It I IOSPASLlB.09J
Rud 2 f I In, ".. tee

~ •• ; .. nt!, II.' 1(9
16 •• clul .. , 1~5e
3Z .n\.r If''!!, _Ix· ~ooc

39 rof. Illto, UX' eeee
12~ rohroncu, 16eee

LInking H.ln Progrn.
Actlv., ~ of 16 r .. d.
VI51blfl I of 32 rnd.
Glnhal dlhl Seee61C
Conon dot .. leMese
Linking .. g .. ni W, e , fli. (J1) •• gl 1.lu, 290B

aoglnnlng n/ leHB1
Endln; I .. or~ - 18~832
9 Error. dotociod.

Ino output II ... cutanl •.
E h~nd t loll 298 and 3e~!leee IOC ond ••
That '. III Folk. ! II •••

Figure 7-1
A Lit1<er ListiflJ

7.7 ResolvlflJ External NBnes

The Linker

fVl external name is a symbolic entry point into an object module. All such
names are visible at all times--there is no notion of the nesting level of an
external name. External names can be either global or locaL A local name
begins with a $ followed by 1 to 7 digits. Local names are generated by the
Pascal compiler. A global name is any name that is not a local name.

The scope of a global name is the entire program being linked. Unsatisfied
references to global names are not allowed. Olly one definition of a given
global name can occur in a given link.. The one exception to this is that the
Linker accepts duplicate names where one instance is in a main program or
regular unit and the other is in an intrinsic library file. In this case" a
warning is issued, and the entry in the main program or regular unit is used.

The scope of the local name is limited to the file in which it resides. All
references to a given local name must occur within the same input file.
When a link is done" global names are passed through to the output file
unmodified, but local names are renamed so that no conflicts occur between
local names defined in different files.

7.8 MoWle Irx;lusim
When linking an intrinsic unit, all code modules in the unit are included.
When linking a main program with regular units, the Linker does a dead code
anal ysts and does not include any modules that are not called.

7-6

/,.,..":~,

. 'J1

,;--,l

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

--"

"
,~ .).

Workshop User's Guide TlJe Lit*er

7.9 5egnenlaUm
Segmenting a program makes it possible for portions of the program that are
not beIng used to be swapped out to dISK, thus making better use of memory.
The way a program is segmented affects its performance.
Segmentation is controlled by three things:

• The $S compiler command and the .SEG Assembler option, which asslgn
segment names to source code modules.

• The +M Linker option, which enables you to remap compiler segment
names into new segment names.

• The ChangeSeg utility, which enables changing the segment names prior to
llnking. See Chapter 10 for information on ChangeSeg.

7-7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Chapter 9
Exec Files

9.1 Introduction to Exec Files __ 9-1
9.1.1 The Exec Processor ... 9-2
9.1.2 Distinguishing between Exec Lines and Workshop lines 9-3

9.1.2.1 The Dollar-Sign Convention 9-3
9.1.3 Introduction to Variables and Parameters 9-4

9.1.3.1 Variable Names and Numbers 9-4
9.1.3.2 Setting Variable Values 9-6

9.1.4 Syntax of Exec Lines and Workshop Lines 9-7

9..2 Writing an Exec Program ___ _ ___ . 9-10
9.2.1 Declaring e.nd Setting V8Iiables , 9-10

9.2.1.1 The EXEC and ENDEXEC Commands 9-10
9.2.1.2 The SET and DEFAULT Commands 9-11
9.2.1.3 The REQUEST Command ,. 9-11

9.2.2 Inpllt and Output ... 9-12
9.2.2.1 The RESET I REWRITE, and CLOSE Commands 9-12
9.2.2.2 The READCH and READLN Commands 9-13
9.2.2.3 The vJRITE and WRITELN Commands 9-13
9.2.2.4 The RESETCAT Command

and NEXT FILE Function 9-14
9.2.2.5 The IORESUL T Function 9-15
9.2.2.6 The Program Communication Buffer 9-15

9.2.3 Conditional Statements 9-17
9.2.3.1 String and Numeric Comparisons in Boolean

Expressions , 9-18
9.2.3.2 The IF Statement 9-19
9.2.3.3 The WHILE and REPEAT Statements 9-20
9.2.3.4 The EXISTS and NEWER Boolean Functions 9-21

9.2.4 Built-In String Functions 9-22
9.2..4.1 The CONCAT Function 9-22
9.2.4.2 The UPPERCASE and LOWERCASE Functions. 9-23
9.2.4.3 The LENGTH, COPYI and POS Functions 9-23
9.2.4.4 The CHR e.nd ORO Functions 9-24
9.2.4.5 String Arithmetic Using the EVAL Function 9-24
9.2.4.6 The RETSTR Function 9-25
9.2.4.7 The TRIMBLANKS Function 9-25

9.2.5 Controlling the Screen Display 9-26
9.2.5.1 The CLEAR Command 9-26
9.2.5.2 The CURSOR Command 9-27
9.2.5.3 The GOTOXY Comrna.nd .. _ _ ., _. __ '. 9-27

I·
1
1
1
1
1
1
1
I
1
1
1
1
I
1
1
1
I
1

9.2.6 Calling Another Exec Program 9-28
9.2.6.1 Calling an Exec Procedure with

the SUBMIT Command 9-28
9.2.6.2 The RETURN Command 9-29
9.2.6.3 Calling a User Function 9-29

9.2.7 Commands that Control the Exec Processor 9-31
9.2.7.1 The HALT and ABORT Commands 9-31
9.2.7.2 The Exec RUN and ENDRUN Commands '" 9-31
9.2.7.3 The DOlT Command 9-32

9.3 Ru1ning an Exec Program __ _ _ ___ . _'" ___•.. '" 9-32
9.3.1 The Workshop Run Command 9-33
9.3.2 Processor Options .. 9-33
9.3.3 Using the Step Option 9-35
9.3.4 The File Cache and the Input Buffer 9-37

9.4 Sample Exec Programs ______ ___ ._. __•.. _ __ __ 9-37
9.4.1 Exec File Chaining ... 9-38
9.4.2 A Recursive Exec Program 9-40
9.4.3 A Recl.Jl"sive User FLlnction 9-40
9.4.4 An Exec Application ... 9-41

9..5 Exec File Errors ._ __ .. _________ _ _ .. 9-44
9.5.1 Syntax Errors ... 9-44
9.5.2 110 Errors ... 9-46
9.5.3 Other Exec Errors .. 9-46

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Exec Files

9.1 Introduction to Exec files
Sitting at your computer and typing Workshop commands is like driving a car
yourself. Using exec files is like teaching a chauffeur the route, then saying,
"T ake me there again" and sitting back while the chauffeur drives. With
exec files you can execute Workshop commands automatically, without
retyping them each time.

An exec file is actually a program. You can pass parameters to the exec
file, and you can execute its statements conditionally. Its programming
language consists of the exec commands described in this chapter plus
h1orkstfOp comm8l"td!; you already know.

F or instance, you can create a test procedure called TESTEXEC that runs a
set of application prograrns. Then each time you modify a program you can
rerun the entire test simply by typing the Workshop Run command

R<TESTEXEC

Here's what TEST EXEC looks like:

$EXEC
Rsa.les
Rexpenses
Rgenledger

$EHDEXEC

The first and last lines of TESTEXEC are exec commands. The other lines
each contain a Workshop Run command.

Like other programs, an exec program doesn't run directly from its source
statements--it has to be processed first. You use the Editor in the
Workshop to create an exec SCUTce file. Then at process time you invoke
the Exec Processor to create an exec run (ile which is run by the Workshop
at run time,. as shown in Figure 9-1.

9-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshop l.lse.r's Guide

Exec Processcr

process time

exec
run
file

flpe 9-L OYerv1ew rI Exec fUes

9_1-1 The Exec PrOCesscI

Exec Files

... i~~
;.:;

run time

The Exec Processor operates under the Workshop Run command. When you
type

R<pathn_e

or

REXEC/pathn8lAe

in the t,.IJorkshop command line, the < or EXEC/ (upper or lower case) tells the
Exec Processor to process an input file. The input file is usually an exec
source file but it may be e previously created exec run file.

The exec run file--the output of the Exec Processor--contains only Workshop
commands. The Exec Processor looks at variables in the exec source file
and determines their process-time value; then, bosed on conditional ex ecution
of exec commands, it determines which Worl(shop lines to place in the exec
run file. The Exec Processor's final step is to give the exec run file to the
\,I.,lorkshop, which runs iL

An exec source file normally has a file name with a ".text" extension. An
exec run file always has the same file name with a " .. text" extension:

Exec Source File Exee Run File
lIYexec _ text ==) lIyexec __ text
lIyexee ==> Ityexee __ text
ay_exec_text .. ""> ny_exec __ text
ny_exec "" .. > ny_exec __ text

The normal Exec Processor function is "process-and-run," but a number of
commands and opt.ions are provided for greater flexibility. For instance, the
WIT command tells the Exec Processor to give the current contents of the
exec run file to the Workshop to run immediately; the Workshop then returns
control to the Exec Processor so it can continue processing the the source

9-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshop '-/ser's Guide Exec Files

file. The Keep and Rerun Processor options allow you to save the exec run
file and run it again without reprocessing. (For more information on exec
run filss, see Section 9.3, Running an Exec Program.)

To terminate processing when the Ex ec Processor is running, press
.-period.

9.L2 Distinguishing between Exec Unes and Wtrkshop Lines
There are two kinds of exec source lines: exec lines and Workshop lines.

exec lines contain exec commands, written in a language similar to Psscal;
these commands are described in Section 9.2, Writing an Exec Program.
Exec commands allow you to change variable valUes, skip over Workshop
lines: under exec controt perform 110, and control the Exec Processor.

Each exec command must begin on a new text line; it can occupy more than
one text line. The Exec Processor looks for a continuation line only if the
commend is syntedice.11y incomplete. In the following example, line 5
completes a valid command, so line 6 is flagged as an error:

1. repeat

~. until reply = 'YES'
6. or count > 5

To notify the Exec Processor that the command continues, rewrite line 5 so
that it is syntactically incomplete:

~. until reply = 'YES' or
6. count > 5

y.,lorks-hop lines contain either responses to the Workshop command line-
such as File-Mgr and Linker commands--or input to any programs you run
under the Workshop. Workshop lines should be typed in the exec source file
just the w&;/ you would enter them from the keyboard, following the
dollar-sign convention you have chosen (see below).

9.L2.1 The Dollar-Sign CorMBion
The dollBT-sign ($) cornlention allows the Exec Processor to distinguish
between exec lines and Workshop lines.

If the first line of your exec program, the EXEC command, begins with a
dollar sign, the Exec Processor considers every line that begins with a dollar
sign to be an exec line, except if the line is the continuation of a comment;
other lines ere considered Workshop lines.

9-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Ior kshop User's Guide Exec Files

If the EXEC command does not begin with a dollar sign, every line witltout
an initial dollar sign is considered an exec line, and you must precede every
Workshop line with a dollar sign.

NOTE
The command formats in this chapter are shown without an initial dollar
sign, but many of the examples use the dollar sign on exec lines. If
you write an exec that calls another exec, the two exec files need not
use the same dollar-sign convention.

9.13 Introduction to Variables and Parameters
A ~"8Ii8ble is a string whose contents can change during execution of an exec
program. Variables allow 'lOU to generalize an exec program so that you can
use the same exec in a variety of situations.

Variables in exec: language are locsl to the exec that declares them. If you
give a variable the same name in two different exec files, you will still have
two separate local variables.

A p8fsmeter is a variable to which you expect to give an initial text value
from outside the exec program. You can pass a list of parameter values to
an exec when you invoke it either from the main command line or from
another ex ec.

Variables and parameters are identified either by a name or by a number.
They are written in one of the following Wf!!yS:

'" where n is a variable number (0-9): '3
x where x is a variable name in an exec line: var3
[x] where [x] is a variable name in a Workshop line or an exec

irNocation: [paramJ]

9.1.3.1 Variable Names and Numbers
You can declare up to twenty named variables or parameters. The first ten
of them can be referred to by number as well. Numbered variables have the
advantage of not having to be declared; named variables provide more
meaninoful documentation. Values are essianed to variables in the same
wet:f whether you use names or numbers. You can use both numbers and
names in a given exec program, and you can refer to the first ten variables
either by name--if you declared them--or number.

When you use variable numbers, these rules apply:

• The numbered veriables are shown as a percent sign followed by a
number from 0 to 9: to through 19.

9-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop I.)ser's Guide Exec Files

• You can supply initial values for numbered variables in an invocation
parameter list (see Section 9.3.1). The value for SO must be first in
the list, the value for 11 next, and so on in numeric order.

When you use variable names, these rules apply:

• Variable names must be declared in the EXEC command's variable
declaration list. The list is enclosed in parentheses and contains
variable names separated by commas; for instance,
(payday,paytype,proritshare,bankJ

• You can supply initial values for named variables in an invocation
parameter list. The values must be listed in the order in which the
corresponding variable names were declaredi for instance,
(05104/B5)lc:Jw"1y,.0276,FlrstStot.e) supplies values for the veriable
declaration list above.

• A variable name mu.st be alphanumeric and must begin with an
alphabetic character; the name can be es long as you like, but only the
first eight characters are significant.

• A veriable name in a Workshop line, an expanded string constant, or an
exec invocation must be enclosed in square brackets ([]) to distinguish
it from ordinary text.

• You can refer to the first ten named veriables either by name or by
number. If you declere five v6Iiable names, they correspond to
variables SO through '-4.

The two examples shown below function identically. The first example uses
numbered variables:

exec (N.I1BERED VARIABLES
~·source file name, ~l·counter)

if exists(·~_textH) then
set %1 to eval(%1-1)
$f{iler)O{eletel~_text
$D{uit the filer}

endif

endexec

9-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~/orkshop User's Guide Exec Files

The second example uses variable names (note the variable declaration list
following the EXEC command):

exec (oldsource,counter) {NAMED VARIABLES}

if exists("[oldsource1.textH) then
set counter to eval(counter-1)
Sf{iler)D{elete) [oldsource].text
$O{uit the filer}

endif

endexec

9.1..3..2 Setting Vmiable Values
You can 8lter the w!llue of a variable by using the SET, DEFAlA. T, and
REQUEST exec commands described in Section 9.2.L

The initi81 v8lues of variables at process time are supplied in an i(11./oc8tion
p8J"8meter Jist--a list in parentheses following the exec name in a Workshop
Run command, a SUBMIT command, or a user function. Values in the list
consist of text separated by commas. If a parameter value is not provided
for a given variable, its inital value is the null string.

Whether you use numbered or named variables, the invocation parameter list
is the same. For instance, the following Run command will work with either
example in Section 9.1.3.1 above. The value of the '<> or olmolKce variable
is l-backup-oct6"i the value of the '1 or coumer variable is "4".

R<files(-backup-oct6,~)

You can supply initial values for some, none, or all of the variables your
exec program uses. The Workshop Run command below contains initial
values for pmameters to and '2--or their named equivalents. A value for
'1 is not supplied.

R<exsales(-lower-customers"Accounts Receivable)
To demonstrate the use of variables to make an exec more versatile, let's
generalize the lIIIfIIkec:xteprog exec, shown in the next example.

9-6

.. ""

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

l,A,lorkshop User's Guide E;rec Files

$EXEc { ·lIIakeoneprog"· -- This exec file cOllpiles and
links a speciric Pascal progrmn named ONEPROG. }

P{ascal compile}ONEPROG
{ no listing file }
(default object file)

L{ink}ONEPROG
IOSPASLIB
{ end of linker input }
{ no list file }
OHEPROG{ output file name }

$EHDEXEC

If you want to compile and link a Pascal program named OTt-ERPROO, you
can't use the mekeolJleprog exec file. To compile and link any Pascal
program, change the name of the Pascal program in the exec from ONEPROG
to ANYPROO and declare it as a variable. We'll call the new exec
rnak.ean/P:og.

$EXEC (ANYPROG) { ".akeanyprog" -- This exec file
compiles and links any Pascal
progra._ }

P{ascal compile} [ANYPROG] {program-name variable}
{ no listing file }
{ default object file)

L{ink} [ANYPROG)
IOSPASLIB
{ end of linker input }
{ no list file }
(AHYPROG]{ output file name

$Ett:>EXEC

You can run makeanyprog to compile and link the ONEPROG program. The
initial value "0NEPROG' replaces every occurrence of the variable
ANYPROG when you use the following Workshop Run command:

R<makeanyprog(ONEPROG)
T a compile and link the OTHERPROO program, you can run makeanyprog
again, simply changing the Run command:

R<makeanyprog(OTHERPROG)
9.L4 Syntax of Exec Lines and Wm'kshop Lines

This section contains rules for writing exec lines and Workshop lines. You
can use it first as a general introduction and later as a reference tool.

The Exec Processor places a Workshop line in the exec run file after
performing the following processing:

9-7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(4orkshop User's Guide Exec Files

• Removing the inital dollar sign, if arJ'y'.

• Processing tildes.

• Substituting the current values of variables.

• Removing comments.

• Eliminating leading and trailing spaces (unless the Blanks process-time
option was specified).

SpeciBl chl:irracters are used as delimiters and as signals to evoke special
processing by the Exec Processor; they include , ,

[]
{ } , ,
II •

<

Execl'lhrkshop distinguishing character
Numbered vm-iable chm"acter
Variable narne delimiters (W)
Commert delimitEn
Simple string COI'Btant delimiters (E)
Expended string constart. delimiters (E)
Tilde literalizing character (W)
Exec iJM1C8t.ion character

(W) means this character has special Significance only in Workshop lines. (E)
means this character has special significance only in exec lines.

Comments can be included in exec or Workshop lines. A line that consists
of nothing but comments is considered an exec line or a Workshop line
depending on the dollar-sign convention. A comment can extend over more
than one line, as in the exec program examples in Section 9.1.3.2. Any
information in braces ({ }) is considered a comment and is ignored by the
Exec Processor. For example, the Workshop line

A%O

can be documented with comments; in the example shown beloW, the first
line is a Workshop line and the second line is an exec line:

A{sse.ble}~{source file}
'{Use a separate line if .ore com.ents are necessary~}

It's good practice to write all separate comment lines as exec lines because
e. Workshop line with nothing but comments causes a [RETURN] to be placed
in the ex ec run file.

~ and JOk'tIr case in Workshop lines is passed intact to the ex ec run file.
In exec lines, case 1s significant only in string constanlsi that is, varl is the
same variable name as VAR1, but 'YES' is not equal to 'yes'.

Spsces are delimiters in exec lines (extra spaces are ignored). In Workshop
lines, leading and trailing spaces are removed before the line goes into the

9-8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

{,-,Jorkshop User's Guide Exec Files

exec run file unless you specify the Blanks option at process time; whether
spaces are significant within Workshop lines depends upon the program you
Sl'e running.

The dolltiT sign ($) is used to distinguish between Workshop lines and exec
lines. See Section 9.1.2.1, The Dollar-Sign Convention, for more information.

The tilde C) is used as a literalizing ch8T8cter (Workshop lines only). The
special character that follows the tilde is not interpreted by the Exec
Processor but is placed in the exec run file as is; for example,

-$40, 723.78 -{Cost of Sales} 35. ,-,

In this example the dollar sign is not interpreted according to the dollar-sign
convention. The information within braces, which would normally be
discarded as a comment, is placed in the exec run file. (Because a tilde
cancels the effect of the left brace as a comment delimiter, the right brace
has no meaning and does not require a tilde.) The' is not interpreted as
the first character of a numbered variable.

To represent the tilde itself in a Workshop line, use two tildes in a row.

The exec invocation chtIracter f<J should be followed by the pathname of an
exec file. This character is used to call a user exec function; in the
following example, devname is an exec file that returns a function result:

$set checkvol to <devname([checkvol],-.yvol)

The invocation character can also be used in a Workshop Run command to
cause chaining to another exec program (see Section 9.4.1, Exec File
Chaining):

R<linkif
SilTf1le string t:OI'I.S1l!Jt7ts(exec lines only) consist of text surrounded by single
quotation m8TkS! 'text'.

NOTE
The maximum length of any string is 255 characters.

Expsnded string constIJrlt$(exec lines only) consist of text and/or variables
surrounded by dOUble quotation msrkS': "Text [var] text" or "Text 10 text".
The Exec Processor places the current value of each variable in the string
before executing the exec command.

String flllCtions (exec lines only) are built-in functions or user-defined
functions that return a string value. See Section 9.2Ai compare Boolean
functions.

string eXpI'essions (exec lines only) contain one or more of the following:
simple string constants, expanded string constants, string functions, Bnd
variables.

9-9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshop User's Guide Exec Files

Boolean ct1f'IStI1nts (exec lines only) are true and false.

Boolem fIIK:ljons (exec lirles only) are built-in functions that return a
Boolean result true or false. You cannot write an exec that returns a
Boolean value.

Boo/em eXJressions(exec lines only) are expressions that return a Boolean
result true or false. Th6l,' can contain the following: Boolean constants,
Boolean functions, comparisons of string expressions Dr numeric expressions,
and combinations of the preceeding with logical operators. See Section
9.2.3.1, String and Numeric Comparisons in Boolean Expressions, for more
inforrnation.

/lAJmeric constants (exec lines only) are integers, not enclosed in quotes; for
example: 0, -255, 1984. Numeric constants are permitted in numeric
expressions, where they are treated as numbers, and in string expressions,
where they are treated as strings.

Ntlneric exrressions (exec lines only) are resolved arithmetically, not as
strings; they return a numeric result that can be used only where specified in
the syntax for each exec command. To produce a string containing the
result of a numeric expression, make the numeric expression the argument of
the EVAL function. Numeric expressions consist of numeric constants,
string functions that yield a numeric value, variables that contain a numeric
value, and numeric operators (see Section 9.2.4.5, String Arithmetic Using the
EYf'lL Function).

9.2 l.,Witing an Exec Program
This section describes all the available exec commands. These commands
are executed by the Exec Processor, before the exec run file is run.

92.1. Declaring and Setting Variables
The commands described in this section tell you how to declare named
variables and how to change the value of a variable.

9.2.1.1 The EXEC and Et-DEXEC Commands
Every exec program must begin with the EXEC command and end with the
ENJEXEC command. The EXEC command is where you identify the names
of any named variables you use in the exec.

The first line of an exec program has the format

EXEC (variable-declaration-list)
where (var-iable-declmation-list) is a list in parentheses containing variable
names separated by commas. It is required only if you use variable names
for parameters or internal variables (see Section 9.1.3.1, Variable Names and
Numbers). For example,

$exec (leapyear,debits)

9-10

/~
! \

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\IDrkstrop User's Gwde

declares variables named leapye8l' and debits.

The last line of an exec program has the format

ENDEXEC

E.re'C Files

The last line in the exec program doesn't have to be the last line in the file.
It's possible to imbed an exec program in a Pascal program or another
programming language source file by using the Imbed Processor option; see
Section 9.3.2, Processor Options, for more information.

9..2_1.2 The SET and DEF AUL T Commands
The SET and DEFAULT commands let you assign a value to a variable within
the exec program.

The SET command replaces the current value of a var iable with a new value;
it overrides an initial value specified in the invocation parameter list. The
format of the SET command is

SET vori8ble TO string-expression
The format of string expressions is described in Section 9.1.4, Syntax of Exec
Lines and Workshop Lines. Examples of the SET command follow:

$set %0 to '-backup-oct6'
Sset counter to '4'

The DEFAULT command is executed only if the specified variable has the
null string as its value. DEFAULT does not override an initial value supplied
in the invocation parameter list. The format of the DEFAUlT command 1s

DEFAULT vllriable TO string-expression
If execA contains these commands

Sexec (vol,.onth,day)
$default vol to --paraport"
$set month to nJuly·
$default day to -17"

and is run with this invocation parameter list

R<execA(,Septe.ber,23)
then--after the commands are executed--the results are as follows:

The value of .onth becomes "July·
The value of vol becomes --paraportH
The value of day becomes -23"

92.13 The REQt,EST Command
The REQUEST command prompts the user for keyboard input. Like the SET
command" the REQUEST command replaces the current value of the variable.

9-11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

l-\Iorkshop l..frer's Guide Exec Files

REQUEST causes the Exec Processor to wait until (RETURN] is typed. The
format of this command is

REQUEST variable WITH string-expression

For instance"

Srequest to with -.onth?-

string-expression is displayed on the console as a prompt. Variable is set to
whatever value the user types in response to the prompt.

9.2.2 Input and Output
In addition to using the invocation parameter list and the REQUEST
command, you can provide input to an exec program and create output from
it through the commands discussed in this section. You can

• Read a character or a line from the keyboard or a text file (READCH
and READlN commands).

• Yv'rite to the screen or a text file (WRITE and WRITELN commands).

• Open and close a text file (RESET, REWRITE" and CLOSE commands).

• Obtain filenames from a directory (RESETCAT command and NEXTFILE
function).

• Check for successful completion of 110 (IORESLL T function). ~ll of the
above commsnds- set the 10RESlA... T .function.

9.2.2.1 The RESET, REWRITE, 80d CLOSE Commands
Use these exec commands when reading or writing text files. RESET opens a
file for input; REWRITE opens a file for output; CLOSE closes an open file.
These commands set the IORESUL T function, which is described in Section
9.2.2.5.

The format of the commands is

RESET fl1e-ld, f1lename
REWFUTE file-id, filename
CLOSE file-id

File-id is asSOCiated with a file when the file is openedi it identifies the file
for subsequent read, write, and close commands. It is a global file identifier
that is allocated when the file is opened. It is deallocated either when the
file is closed or when the exec program finishes running. It is not a string
variable and can be used only where a file identifier is expected. It does
not have to be declared in the EXEC command. Its name foHoylS the rules
for variable names. Its identifier can be any number of alphanumeric
characters, but only the first eight characters are significant; the first
character must be alphabetic.

9-12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

y,lorkshop Liser's Guide Exec Files

Filename is any string expression that yields a valid pathname; it must refer
to a text file.

Here are some example.s of exec commands that open and close fUes:

$reset fileone, "execdata.text"
$rewrite errmso, H-pay-afo-address.update.errs.text H

$close err.so

9.2.2.2 The REAOCH and READLN Connlonds
With the READCH and Fl:ADLN commands you can read data from the
keyboard or from a textfile and assign it to a variable. REAOCH reads one
character. READLN reads one line--up to and including the next [RETURN].
These commands set the IORESUL T function. The format of the commands
is

READa-t (file-id) variable
READLN (file-id) variable

(File-id) assclciates the read command with the pathname specified in the
RESET command. If (file-id) is not specified, the READCH or READLN
command reads from the keyboard. This causes your exec to pause until a
value for variable is typed; for READlN, the value must be followed by
[RETURN). When reading from the keyboard, it's a good idea to prompt the
user using 'n'RITE or WRITElN to indicate what information the exec
program is waiting for.

Variable identifies the variable that will hold the information to be read. If
end-of-file is encountered while reading, variable is set to 'EOF'. In the
first example below, a character is read from a file into a numbered
variable, %J; in the second example, a line is read from the keyboard into a
named variable, title.

$readch (fileone) ~3 {read one character from a file}
$readln title {halt/read a title from the keyboard}

9.2..23 The WRITE and WRITELN ColTllTl8flds
\tylith the WRITE and WRITElN commands you can write data to the screen
or to a textfile. 'n'RITELN ends its output with [RETURN] and I.HRITE does
not; otherwise the commands are identical. These commands set the
IORESUL T function. The format of the commands is

WRITE (file-id) string!, strino2, ... stringN
WRITElN (file-id) string1, string2, ... stringN

(File-id) is required only if you are writing to a textfile; it associates the
write command with the pathnarne specified in the REWRITE command for
the same file.

9-13

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

?\Iorkshop Llser's Guide Exec Files

stringl through stlingN represent any number of string expressions separated
by commas. The strings are written consecutively--at the current cursor
location in the CBSe of screen output, or at the current location in the fUe in
the case of textfile output. Here are some examples:

kite 'Ready to stop? Type Y or N ••. '
$criteln (percentage) ·value of 't4 is ~7-~·
kiteln 'finished w.riting to file ',outfile

9..2.2.4 The RESETCAT Command and t£XTFILE FtKlCtim
The RESETCAT command opens an OS directory; NEXTFD..E is a string
function that returns the name of a file in the open directory. These
commands set the IORESUL T function. The format of the RESETCAT
command is

RESETCAT directoryname

Direct.cxymme is a string expression that specifies the pathname of a
volume, catalog, or filei the wildcard character = may be used in the
filename part only. For instance,

$resetcat "-[vol]1I
$resetcat ' •. obj'

If directoryname includes a filename part but no wildcard, the filename part
is used as a prefix. In other words, RESETCAT lI-{volHcatHfiler is
equivalent to RESETCAT A-{vul]-{cul]-{file]=-.

When RESETCAT is executed, the value of t£XTFILE is set to the first
pathname in the directory that meets the criterion specified in
directmynmne. (In searching a directory, NEXTFILE returns catalog names as
well as filenames.) In the examples shown above, after the first execution of
RESETCAT the value of t£XTFILE is as described belOW:

Directmyname Value or NEXTFILE
"-[vol]" ·first file in [vol] directory
'=.obj' ·first file with .obj suffix on

the default (prefix) volume

When NEXTFILE is called again, it contains the name of the next file (or
catalog) in the directory that meets the directoryname criterion. When no
slJch file exists, or if the directory is empty~ NEXTFILE returns an empty
string. Here's an example of an exec routine that checks for a blank volume
and lists filenames:

9-14

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

exec (vol,ior,savefile,count)
resetcat --[vol]-
if ioresult <> II then

set ior to ioresult
writeln 'Bad volume'
writeln ior

else
set savefile to nextfile
if savefile = '" then

writeln vol, I has an empty directory.'
else

set count to 1
while savefile <} do

writeln -file [count] on volume [vol] is -,
savefile

set count to eval(count+l)
set savefile to nextfile

endwhile
endif

endif

92.2.5 The IORESUL T Function

Exec Files

IORESUL T is a string function that tells ~'OU if an error occurred during a
previous RESET, REINRITE, READCH, READLN, WRITE, WRITELN,
RESETCAT, or t-,EXTFILE operation. If the 110 operation was successful, the
value of the IORESUL T function is an empty string. If an error occurred,
IORESUL T contains an Operating System error message in the form

Error <number>: <message>
You can display the error message as follows:

Sreset infile
Sset err.sg to ioresult
Sif errmsg (> II then

$writeln errllsg
Sandif

This example demonstrates the need for an intermediate variable to save the
contents of IORESUL T before displaying it because the WRlTELN command
also sets the IORESUL T variable.

92.2.6 The Program Communicaion BuN'er
Programs that run under the Workshop can communicate with each other by
writing and reading in a lK-byte communication buffer made available by
the ProgComm unit. (See The ProgComm Unit in the third binder of this

9-15

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshop User's Guide Exec Files

set.) You can open and close the communication buffer and v,Irite to or read
from it from an exec program by using the exec I/O commands (REWRITE,
RESET, CLOSE, READCH, READLN, ItJRITE, and WRITELN) 'ith a special
keyword file identifier I COMMBUFR.

Some of the I/O commands require an access' key that limits access to t.he
buffer. Access-key is a string expression. Since several applications can
share the buffer, programs within each application must agree upon a value
for access-key. The format of the 1/0 commands for use with the program
communication buffer is

RESET COHMBUfR, access-key
REWRITE COMMBUfR, access-key
CLOSE COMMBUFR, access-key
REAOCH (COttt1BUFR) variable
REAOLN (COHMBUfR) variable
WRITE (COHHBUFR) string1, string2, ___ stringN
WRITELN (COMMBUFR) string1, string2, ... stringN

These formats correspond to the formats described earlier in Section 9.2.2
except for the CLOSE command, which requires an access key when used
with the communication buffer.

NOTE

Do not close COIVMBUFR after a write command. The communication
buffer should be closed after reading, in order to empty it. CLOSE
flushes the buffer for the specified access key; REItJRITE flushes the
buffer unconditionally.

The following exec program demonstrates communication buffer 110:

exec (key, line, ior, n, ch)
repeat {do one cycle of w.r1 ting, then reading}

clear screen
request key wi th • Open CmnBufr fur: wri te ... key ? •
rewrite ctIIIIbufr, key
request line with 'Write what to buffer? •
while line {) ,. do {te:r.inate input with empty line}

writeln (CtDlbufr) Une
request line with 'Write what? '

endwhile
writeln
repeat {try opening until we succeed}

request key with "Open CClllllBufr for read ... key ? '
reset coonbufr, key
set ior to ioresult
if ior <> ., then

writeln 'C«:aI8ufr open failed:' ior
endif

9-16

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop L(ser'.s Guide

until iar = "
set n to 'I'
repeat {write out CmnBurr lines}

readln (ctllllbufr) line
if line (> 'EDf' then

writeln 'CD(" n, '): ., line
set n to eval(n + 1)

endif
LntH line = 'EDf'
writeln
write 'Do you want to try another test? (Y ar [H)) ,
readch ch

until uppercase(ch) <> 'Y'
hal. t 'Done '
endexec

9~3 Conditional statements

Exec Files

Like other programming languages, exec language allows you to execute
commands under some circumstances but not others. The IF, ~LE, and
REPEAT statements described in this section are similar to their Pascal
counterparts, but the conditions they test are examined 1ft process time, not
run time.

The example that follows below and on the next page demonstrates the use
of IF, WHILE, and REPEAT statements to prompt for a series of directories
and list their contents:

EXEC (cat,ioerr,file)
REWRITE text,"catlist.text'
IF IORESULT = '" THEN {successful list file open}

REPEAT
REQUEST cat WITH 'Search what directory?
IF cat = " OR LOWERCASE(cat) = 'quit' THEH

CLOSE text
HALT 'Done'

ENDIF
RESETCAT cat
If IORESUlT = II THEN (successful catalog open)

SET file to NEXTFILE
WHILE file (> '" 00

WRlTELN (text) file
SET file to NEXTFILE

EH>WHILE
ELSE

SET ioerr TO IORESULT
WRITELN 'Could not open ',cat
WRITELN 'os error: ',ioerr

EN>IF

9-17

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide

UNTIL FALSE (endless loop}
ELSE

SET ioerr TO IORESULT
WRITELN 'Could not open output file'

ENOIF
ENOEXEC

923_1 string and l\Uneric Comparisons: in Boolean Exp-essions

Exec Files

The condition tested by a conditional statement is in t.he form of a boolesn
expression--an expression whose value is either true or false. The constants
true and f8lse may also be used in boolean expressions. In the boolean
expression

uppercase(answer) = 'NO'
upperC8Sf.(8If'ISWeI'") is a string funct.ion with its argument, "" is a st.ring
comparison operator" and 'NO' is a string const.ant; the value of the
expression is true if the value of answer is anyone of the following: NO, No,
nO, no.

Use the string comparison operstors in a boolean expression to compare
string expressions:

<>
>

{equal}
{not equal}
{,,"eater than}

}=

<
(=

{,,"eater than or equal}
{less thati
{less than or equal}

Use the numeric comparison operators in a boolean expression to compare
st.ring expressions that yield a numeric result:

EQ {equal}
NE {not. equal}
GT {~eater than}
GE {~eater than or equal}
l T {less thati
lE {less U)8l1 or equal}

String comparisons proceed character by character; numeric comparisons
cause two numeric values to be compared. The results may be the same
either way: COUNT = 1 (string comparison) is equivalent t.o COtJNT EQ 1
(numeric comparison). Usua.lly, however, the results are not the same. For
example, the string comparison 1006 < 509 is true (because '1' is less than
'5'), while the cOlTe~ponding numeric comparison 100fi. I T o;oq is falSE!.

9-18

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

l,,o,Iorkshop liser's Guide Exec Files

You can use the following logicsl opel'stors in a boolean expression:

AND {exfll'"ession is tr-ue if both terms are true ..• A AN) B}
OR {exJression is true if either term is true.... A OR B }
NOT {exJression is true if the term is false NOT (A) }

The expression following NOT must be enclosed in pBfentheses. The default
sequence of evaluation of a boolean expression is left to right. You can also
use parentheses to control the sequence according to the rules of algebra
F or instance,

not (A) or B {true if A is false or B is true }}
not (A or B) {true if A and B are both false

9.2.3..2 The IF statement
The IF statement. lets you choose an action depending on conditions
evaluated at process time; it consists of t.he IF, ELSBF, ELSE, and ENDIF
commands, Each command must begin on a new line and may occupy more
than one line. EfIL>IF always ends an IF statement. ELSEIF and ELSE are
optional. More than one ELSEIF may be present in an IF statement. Nesting
is permitted; that is, any number of IF statements can be contained wit.hin
an IF st.atement.

The format of the IF statement is shown below.

IF boolean-expression THEN
Workshop and exec commands

ELSEIF boolean-expression THEN
Workshop and exec commands

ELSEIF ...
ELSE

Workshop and exec commands
ENOIF

The IF statement is evaluated in the order it appears in the exec source file.
""Ihen the first true boolean expression in an IF or ELSEIF command is
encountered, its cOlTesponding THEN clause is selected --that is, its
Workshop commands are processed and placed in the exec run file, and its
exec commands are executed. If no true condition is: encountered, the ELSE
Workshop and exec lines, if present, are selected. Exec lines that are not
selected are examined for correct syntax, Here is an example of an IF
statement that. submits a different exec file depending on the day of the
,",,'eek:

9-19

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\'orkshop l..lser's Guide

exec (date, ledger, payroll, payable, bankbal,personnel)
if dat e = 'FRIDAY' then

submit endweek([ledger], [payroll])
writeln 'Have a good weekend"

elsei f date = 't1OK>AY' then
submit startwk([payable], [payroll])

else {tuesday, wednesday, thursday}
su~it .idweek([bankbal], [personnel])

endif
endexec

Exec Files

Here are the Workshop Run commands needed to run this exec file on three
different days of the week:

R<weekday(fRIDAY,-ledger.march,-payroll.hourly)
R<weekday(MONOAY,,-payroll.exempt,-payable.march)
R<weekday(HIDWEEK",,-bankbal.march,-personnel)

9.2.33 The WHILE and REPEAT statements
The """,",ILE statement lets you repeat an act.ion while a condition remains
true,: the condition is tested before the action is performed. The REPEAT
stat.ement lets you repeat an action until 8 condition becomes fl!Jlse; the
condition is test.ed Bfter the action is performed. The condition is in the
form of a boolean expression. Each command in a REPEAT or WHILE
statement must begin on a new line and may occupy more t.han one line.

The WHILE st.atement consists of t.he WHILE and Et-..l:>'NHlLE commands.
ENJ'.NHILE always ends a '.NHILE statement. The format of the WHILE
st.atement is

WHILE boolean-expression DO
Workshop and exec commands

ENOWHILE
When the boolean expression in a \.VHILE command is true, the Exec
Processor selects the corresponding 00 clause by executing its exec
commands and placing its Workshop lines in the exec run file. Then the
Exec Processor reevaluat.es the WHILE command. If the expression is still
true, the 00 clause is selected again. When the expression becomes false,
processing continues at the command following ENDWHILE. Commands that
are not selected are examined for correct syntax. Here is an example of a
'NHILE st.atement that deletes a series of object files named fileN, fileN-l,
and so on:

9-20

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshap User's Guide

f{iler}
$while inputval > '0' do

D{elete}-[vol]-[file][inputval].obj
Sset inputval to eval(inputval-l)

Sendwhile
Q{uit}

E.rec Files

The REPEAT statement consists of the REPEAT and UNTIL commands. The
format of the REPEAT statement is

REPEAT
Workshop and exec commands

UNTIL boolean-expressi.on

The example shown above for the 'n'HILE statement can be rewritten using
the REPEAT statement:

f{iler}
Sif inputvol > '0' then

$repeat
O{elete}-[vol]-[file] [inputval].obj
$set inputval to eval(inputval-l)

$until inputval = '0'
$endif
Q{uit}

9..2..3.4 The EXISTS and t-.EWER Boolean FtrlCtions
The EXISTS function returns a value of true if the specified file, catalog,
volume, or device is online at process timei otherwise the value false is
returned. A volume or device is online if it is mounted; a file is online if it
exists on a mount-ed device. The format of the funct.ion is

EXISTS (pathname)
Pathname is any string expression that yields a valid file, volume, or device
name. Some ex amples follow:

$if exists (--slot2chanl-) then
$if exists ("-[vol]") then
$if exists (·-paraport-~l.objN) then

{device}
{VOlute}
{file}

The NEWER function returns a value of true if the Last-Mod-Oate of the
first file specified is more recent than t.hat of t.he second filei otherwise t.he
value false is returned. Both files must be online at process time or an
error will be reported. The format of the function is

NEWER (filel, file2)
Filel and file2 can be any string expressions that yield a valid pathname.
Some examples follow:

9-21

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshop l..lser's Guide

Si f newer ("- [fed]-taxes·, "- [state]-taxes")
then {calc state}

Erec Files

Sif not (newer (·-~3.obj·, "-%3.backup")) then {backup
is current}

Sif newer (n [pgm]. TEXT", • [pgm] .OBJ") then (recompile}

9.2.4 Built-In SUing Functions
A string function is: a. function whose result is a. strinQ (text) value. The
types of strings used in exec files are described in Section 9.1.4J Synt.ax of
Exec Lines and Workshop Lines. Even a. function result that is a number (for
example, ORO) is returned as a string. Since the ORO, POS, LENGTH, and
EVAL functions always return a number, they may always be used in a
numeric expression even though the function result is a. string. In fact, any
string function can be used in a numeric expression as long as it returns a
number.

Several built-in string functions a.re included as pa.rt of the exec language. In
addition, you ca.n write your own functions (see Section 9.2.6.3J Calling a
User Function). The built-in string functions provided by the Exec Processor
are

CONCAT
UPPERCASE
L{)t..4JERCASE
LENGTH
COPY
POS
CHR

ORO

EVAl
RETSTR
TRIMBLANKS
NEXTFILE
IORESULT

Combines strings
Converts a string to uppercase
Converts a string to lowercase
Gives the length of a string
Copies all or pa.rt of a. string
Gives the position of a. string within another string
Translates a number into its corresponding ASCII
character
Translates an ASCII character into its
corresponding number
Provides string arithmetic
Returns the ProgComm return string.
Trims leading and trailing blanks.
Refer to Section 9.2.2.4.
Refe.r to Section 9.2.2.5.

9..2..4.1 The CONCAT FlM1Ction
The CONCAT function lets you combine string expressions and functions to
produce a single string result. The format of the CONCAT function is

CONCAT (string 1, string2, _. stringN)

stringl is a string expression .. string2 through stringN are optiona.l string
expressions. The function result is a string containing the string parameters
in the order they were given. Here's an example that combines two string
variables and three string constants:

9-22

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1,4orkshop i.,(ser's Guide E,ree Files

exec (vol,file,pathname)

set pathname to concat('-',vol, '-',file,' .text')
Note that you can accomplish the same result by using an expanded string
constant:

set pathname to --[vol]-[file].textR
9..2..4.2 The UPPERCASE and LOYJERCASE Fooctions

The UPPERCASE funct.ton converts any lowercase letters in a string to
uppercase. The LOWERCASE function converts any uppercase letters in a
string t.o lowercase. Nonalphabetic characters remain unchanged. For
instance, UPPERCASE converts ABc,dEt.3$gh to ABC,DEF.3$GH. The format
of the functions is

UPPERCASE (string-expression)
LOWERCASE (string-expression)

You can save the result of the function in the sarne variable it converts:

$set pathname to uppercase(pathname)
You can also convert a string in order to compare it. In the following
example, the expression is t.rue whether the value of reply is YES, yes, or
any othe.r uppercase and lowercase combination of these three characters.

$while lowercase(reply)='yes' do
9.2.4..3 The LENGTH, COPY, and POS Functions

LENGTH gives the number of characters in a strin~ COpy duplicates part or
all of a string, and POS gives the location of a substring within a string.

The LENGTH function returns the length of a string in its function result.
(The length of a null string is '0'.) The format of the LENGTH function is

LENGTH (string-expression)
For example,

Sif length(word) GT 24 then
$writeln word,' is even longer than

'disestablisn.entariani .. ,'
$endif

The COPY function copies all or part of a string into the result string. The
format of the Copy function is

copy (source, pOSition, count)
Sowce is the string expression containing the substring (part of a string) to
be copied. Position is a numeric expression indicating the place in StU"Ce of
the first character to be. copied; the first pOSition in StU'ce is 1. Cocri is a
numeric expression indicating the number of characters to be copied. If
fewer than c~ characters are found at position I those t.hat are found are

9-23

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide Exec Files

placed in the function result. (Note that this differs from the Pascal Copy
function.) If position is beyond the end of the source string, COPY returns a
null function result. The following example copies establishment out of
disestablishrnenterianism:

set ~ to copy('disestablishmentarianis.',4,13)
The POS function returns the position of a substring within a string. If the
substring does not appear in the string, the function result is '0'. The format
of the POS function is

POS (substring, source)
Substring and stU'ce are string expressions. In the COPY example above,
you can use the POS function if you don't know the position of establishment
in the source string:

set ~7 to 'disestablishmentarianism'
set ~ to copy(~7,pos('est8blish.ent',~7),13»

9.2..4.4 The a-tR and ORO ftMlCtions
The CHR function returns a one-character string that represents the
character value of a number. The ORO function returns a string that
represents the numeric value of an ASCII character or any other character in
the Lisa's extended charact.er set. For any character x, a-tR(~x» is x.
The format of the CHR function is

CHR (numeric-expression)
Numeric-BxJB"esslon must result in a whole number; it is taken MOD 256,
producing an intermediate result in the range 0 .. 2". C~ returns the
character that. corresponds to the intermediate result.

You can use the CHR function to generat.e a nonkeyboard character. The
following example writes a BEL character:

Sif ioresult<>" then {there's an error}
$write chr(7) {ring bell}

Sendif
The format of the ORO function is

ORO (string-expression)
String-expression must not be an empty string, or a process-time error will
occur. If string-exJB"cssion yields a string longer than one character, t.he
numeric value of the first character is placed in the ORO function result.

9.2..4..5 String Arithmetic Using the EV AL Function
The EVAL function lets YOll do long-integer arithmetic. It evaluates a

9-24

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Norkshop l)ser's Guide Exec Files

numeric expression and returns an integer value in the function result string.
The format of the function is

EVAl (numeric-expression)

Numeric-exJ,X'ession consists of numeric (decimal) constants" variables that
contain intege.r values, string functiOns that yield integer values (such as
LENGTH, POS, and OROt string constants with integer values (such as '25t
and the operators list.ed below. You can use parentheses to control the
sequence of operations as in algebra. The numeric operators are;

+ Addition
Subtraction

• Multiplication
I Division
MOD Modulo

Here is an example of an exec routine that takes a word and writes it
vertically, one character per line:

set count to length(word)
while count GT 0 do

wri teln copy(word, 1, 1)
{write first char}

set count to eval(count-l)
{reduce count by 1}

set word to copy(word, 2, count)
{remove first char from word}

endwhile

9.2-4_6 The RETSTR Function
The RETSTR function returns a string containing whatever is currently in the
ProgComm unit's retLlrn string. The format of the RETSTR function is

RETSTR

The value of RETSTR can be set by any program that L1se.s the ProgComm
unit's PCSetRetStr procedure. (Refer to the System Software 1'v1anuals binder
of this set. for more information about the ProgComm unit.) If you rLln a
progl"e,m containing PCsetRetSt.r from an exec file, you can check the results
using the RETSTR function. For example,

exec
run 'coma_pro?_obj'
if retstr () SUCCESS' then

abort 'Program failed_'
endexec

9.2..4.7 The TRIMBLANKS Function
The TRIMBLANKS function strips leading and trailing blanks and tab

9-25

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Exec Files

characters from a string. The format of the TRiMBLAl\lKS function is

TRIMBLANKS (string-expression)
9.2..5 Cortrolling the Saeen DispI8jf

"",Ihen you write to the screen with '.f..IRITE or WRITELN, the information is
displayed at the current cursor location. Three commands--GOTOXY,
CLEAR, and Cl..IRSOR--are provided to let you do custom formatting of a
screen display by moving the cursor and/or clearing the screen.

9.2.5.1 The CLEAR Corrmond
The CLEAR command erases all or part of the screen. The format of the
CLEAR command is

CLEAR option
Option is one of the following keywords:

SCREEN Clears screen, moves cursor to home pOSition.
ENJSCREEN Clears screen from current cursor position to end.
ENJLlNE Clears current line from cursor position to end.

For instance, the following exec program demonstrates the use of all three
forms of the UEAR command, plus the GOlOXY command, to display text
on a diagonal across the screen:

exec (OisplayStr, x, y)
clear screen
repeat

gotoxy 0,0 (move cursor to home)
clear endline {clear for input, but don't destroy

previous display}
write '}' {prompt}
readln DlsplayStr (get text}
if lowercase(DisplayStr)=' quit , then

halt 'Done'
else (display text on diagonal, one char at a ti.e}

set x to 20
set y to 6
clear endscreen {leave prompt, clear display}
while DlsplayStr (> II do

{display high-order char, then delete}
write copy (DisplayStr,l,l)
set OisplayStr to copy (DisplayStr,2,255)
{move cursor to next point on the diagonal}
set x to eva! (x+2)
set y to eva! (y+l)
gotoxy x, y

9-26

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iork.shop UseJ's Guide

endwhile
endif

until false
endexec

9..2..5..2 The CURSOR Command

Exec Files

The CURSOR command lets you move the cursor relat.ive to its current
location. (To move the cursor to an absolute coordinate, LIse the GOTOXY
command described in the next section.) The only change the CURSOR
command makes to the screen display is t.o relocat.e the cursor. The format
of the ctJRSOR command is:

CURSOR option

Option is one of the following keywords:

HOME Cursor moves to location 0,0 (upper left corner).
UP n Cursor moves n positions up from current. loca.tion.
DOWN n Cursor moves n posit.ions down from current location.
LEFT n Cursor moves n positions left from current location.
RIGHT n Cursor moves n pOSitions right from current location.

N is an optional numeric expression; if you don't give it a value, it defaults
to 1. Here is an example of the CURSOR command where the value of n is
determined by the EVAL function:

$write ~6
$cursor left eval(length(~6)-1)) {Rove cursor to start

of previous write}
9_2..53 The OOTOXY Command

The GOTOXY command moves the cursor to the screen coordinates you
specify. (To move the cursor relative to its current position .. use the
CURSOR command.) The format of the GOTOXY command is

GOTOXY x, Y

X and y are numeric expressions representing screen coordinates: x
represents the location of the cursor in the horizontal plane; y represents its
location in the vertical plane. The top left corner of the Lisa screen is
location O,Oi the lower right corner is location 79/31. If you supply a value
of x or y beyond the limit for the coordinate, the limit value will be
substituted.

If Iastx and Iasty represent the right.most location and the down most location
respectively, the following example moves the cursor to the center of the
screen:

$gotoxy lastx/2, lasty/2

9-27

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshop User's Guide Exec Files

9.2.6 Calling Another" Exec Program
One exec program can call another either as a u. ... ~er rt.lnctio~ which returns a
string result to its caller, or as an exec procedure, which does not return a
result, Although a single exec program can call any number of execs as
procedures or functions" only one exec run file is generated. Nested calls
are permittedi that is, a called exec may in turn contain exec procedure and
function calls.

~\/hen em exec is called 8S 8 pl'ocedw'e by using the SUBMIT command, it
must not return a function value. The exec procedure may end by executing
its last line or by issuing a RETURN command with no argument.

In/hen 811 exec is called 8S a user function., it must end with a RETURN
command that returns a string result. See Section 9.2.6.3, Calling a User
Function, for more information.

In the case of both exec procedures: and user functions .. the Exec Processor
executes the exec lines in the called exec" processes its Workshop commands
and places them in the exec run file. The exec run file contains the output
from processing all of the input exec files.

The im'ocation of an exec procedure or user fLlnetion specifies the pathname
of the called exec, its parameter list, and Processor options where permitted.
The Exec Processor treats the invocation as text--as if it. were in a
Workshop line. Within this text, imbedded built-in and user function calls
are not permitted. The invocation must. be on a single line. The length of
the invocation after processing must not exceed 255 characters. The only
processing performed on the invocation is as follows;

• Process ti1cles.

• Substitute the current values of variables. (Named variables must be
enclosed in square brackets, as in Workshop lines.)

• Remove comments.

9..2_6.1 Calling an Exec ProcedtLe with the SUBMIT Con.nand
The SUBMIT command calls an exec procedure. The Exec Processor
processes the called exec and puts its Workshop lines into the current exec
run file.

The SUBMIT command mLlst be on a single line. The format of the SlJBMIT
command is

SUBMIT exec-run-command

Exec-run-cOllMAsnd is the invocation text and follows the rules described in
the previous section. The format of exec-f"un-convnand is

filename (invocstion-parameter-list) option-list
Filename is the pathname of the exec procedure.

9-28

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

f"v'orkshop User's Guide Exec Files

Invocation-parwneter-list is an optional list of initial values to be passed to
the exec procedure,; the values must be separated by commas. If the
parameter list is empty and is followed by options or other significant text,
its place must be indicated by parentheses.

Option-list is an optional list of Processor optionsi only the Imbed and
Blanks options are valid on a SUBMIT command. See Section 9.3.2 for more
information on Processor options.

Some examples of the SUBMIT command follow:

submit testexec
submit .akeanyprog.text(oneprog)I
submit noparams()B
submit end"eek ([ledger], [payroll])

9~6..2 The RETURN Command
The RETURN command tells the Exec Processor to resume processing the
calling exec. In a user function, the RETURN command must be the last
command executed. The format of the RETURN command is

RETURN function-value
Function-value is a string expression that contains the value returned by the
called exec:. If t.he called exec is a user function, runct.ion-value is required;
if the called exec is a procedure, function-value is not permitted. Here are
some examples of valid RETURN commands:

$return
$return -The data is ~5.
$return 'done'

An exec procedure needs a RETl.JRN comma.nd only if the exec procedure
does not end by ex ecuting the ENJEXEC command. In the ex ec procedure
shown below, the RETURN command terminates an endless loop:

EXEC
WHI LE TRUE DO

If <condition> THEN
RETURN

ENOIF
ENOWHILE
EN>EXEC

9_2..6.3 C8l1ing a User" Ft.n:!tton
A user function is a user-written exec program that returns a string value
using the RETURN command. You cen call a user function from another
exec wherever you would use a string expression. If the user function
contains Workshop lines, including comment lines, they will be processed and
placed in the exec run file.

9-29

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide Exec Files

The format of a user function invocation is
< filena.e (invocation-parameter-list)

where < tells the Exec Processor to process a user function. Filel'lame is the
pathname of the user function exec file_ InvocBtion-parameter-1ist is
optional and follows the rules for the exec-run-cornrnand (see Section 9.2.6.1).
F or instance,

$while <~taxes~quarter() > '0' do

Here is an example of a user function, GETDATA, that returns data to the
calling exec each time the function is invoked; when no more data can be
read, GETDATA returns the st.ring value 'done' in its function result. The
function contains two RETURN commands; one or the other is executed as
the lest command. The count variable is set by the calling exec.

exec (count, data) (GETDATA}
if count eq 1 then {open datafile}

reset 1ndata, data. text
endif
read (indata) data
if ioresult = '" then

return data
else

close indata
return 'done'

end1f
endexec

The routine below is from an exec program that calls the GETOATA function.
(This routine does not use the same dollar-sign convention as GETOATA.)

$exec (counter, reply)

$set counter to 'I'
$set reply to <getdata([counter])
$while reply <> 'done'

$writeln '#',count,' = ',reply
$set counter to eval(counter+l)
$set reply to <getdata([counter])

$endwhile

9 .. 30

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's tiuide Exec Files

9.2.7 Commands that Control the Exec Processm
There are four exec commands that affect the running of the Exec Processor:

• HALT tells the Exec Processor to stop processing and run the exec run
file created thus far.

• ABORT tells the Exec Processor to stop processing without running the
exec run file.

• RUN tells the EXEC Processor to run a program and then resume
processing the exec file.

• DOlT tells the Exec Processor to run the current contents of the exec
run file and then resume processing the exec file.

9.2.7.1 The HALT and ABORT Corrmands
The HALT command tells the Exec Processor to stop processing the exec
source file and run the exec run file in its present state. The ABORT
command terminates processing without running the exec run file. With
either command you can display a message. The format of the commands is

HALT string-expression
ABORT string-expression

string-expression is optional; if present, the contents are displayed on the
console. For instance,

Shalt 'Processing stopped at program '3'
ABORT "Incorrect date [INDATE] in parameter list"

9.2.72 The Exec RUN and Et-DRUN Commands
The exec RLN command is a command within an exec program--it is not the
same as the Workshop Run command. The format of the exec RUN
command is

RUN filename
Filename is a string expression resulting in the pathname of a program you
want to run during exec processing. When the Exec Program finds the RLN
command, it suspends processing of the exec source file and runs the
programi then it resumes processing; for ex ample,

Sif duy = '1' then
$run '-monthly-firstduy.obj'

Sendif
The ENJRLN command is required only if you want to supply input data to
the program named in the RUN command. In this case, you must also
specify the INPUT keyword in the RUN command as follows:

RUN filename INPUT
input lines

ENORl.foJ

9-31

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

!,.>,Iorks-hop tlser's Guide

The input lines between RUN and Et>.DRUN ere placed in a temporary file
and have no effect on the exec run file.

The Generate Processor option disables the exec RUN command.

9~7.3 The DOlT Corrmand
In a simple exec program without DOlT commands, all of the exec commands
ere executed (by the Exec Processor) before any Workshop lines ere executed.
The DOlT command allows the execution of Workshop lines to be interleaved
with the execution of exec commands. The format of the DOlT command is

DOlT
When the Exec Processor finds the OOIT command" the following actions are
taken:

1. Processing of the exec source file is suspended.

2. The current contents of the exec run file are run by the
Workshop.

3. The contents of the exec run file are erased, and a new exec run
file is started.

4. Processing of the exec source file resumes Elt the point where it
was suspended.

These actlons occur even if you 6re stepping through the exec source file
using the step option. However, the Generate option disables the DOlT
command. (For more information see Section 9.3.2, Processor Options.)

You can use the DOlT command to display run-time messages as Workshop
lines are executed. If the DOlT command is omitted from the following
example, the "Backup completed" message will be displayed before the
backup actually takes place:

exec (fromVol, toVol)
writeln 'Now starting backup __ .•
$F{iler}B{ackup} [fromVol]-:, [toVol]-$
$O{uit the filer}
DOlT
writeln 'Backup of ',fromVol,' to ',toVol,

, cOllpleted _ '
endexec

9..3 RtnUng an Exec Program
Exec programs are run under the main command line using the Workshop Run
command. The Run command calls in the Exec Processor to read your exec
source file, execute its exec commands, and create an exec run file
containing only Workshop lines. The Workshop then runs the exec run file,
which is automatically deleted at the end of the run unless you specified the
Keep Processor option.

9-32

-
-

J,4orkshop User's Guide cree Files

When a "'IJorkshop Run command is used to invoke an exec from within
another exec, the result is chaining. The difference between submitting an
exec procedure (see Section 9.2.6) and chaining is that an exec procedure is
processed before any Workshop commands are executed; a chained exec is
processed after all of the vJorkshop commands in the chaining exec have
been executed. See Section 9.4.1, Exec File Chaining, for more information.

9.3.1 The Workshop Run CorrrntnJ
The format of the Workshop Run command that invokes the Exec Processor
is

R<exec-run-command
or

REXEC/exec-run-command
The format of the exec-run-commsnd invocation (also discussed in Section
9.2.6.1) is

filename (invocation-parameter-list) option-list
For example,

r<testexec
r<noparaas()sb
rexec/-upper-compile(-lower-testprog)i

Filename is the pathname of the exec program you want to run. An
extension of .TEXT is Bssumed unless you override the extension b\f B.dding a
period at the end of filename. For example,

You type The WcIkshop looks for
abc abc. text
abc.xyz abc.xyz.text
abc. abc

lrMx:ation-parameter-list is an optional list of initial values for parameters;
if present, it is enclosed in parentheses. It can be empty, or it can include
up to 20 parameter values separated by commas. Omitted parameters are
specified by commasi for example (10 ... (May). If a parameter is not
specified, its value is an empty string (').

Option-list refers to the options described below.

9.32 Processor Options
You can modify the Exec Processor's operation by specifying one or more
Single-letter Processor options follOWing the invocation parameter list.
Processor options allow you to tailor the proceSSing of your exec

• By controlling the way spaces are handled--Blanks option.

• By proceeding even if errors are encountered while running--Error
option.

9-33

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Jorks"op i../ser's Guide Exec Files

• By processing the exec file without running it--Generate option.

• By imbedding your exec in a source file--Imbed option.

• By saving the exec run file that is normally deleted--Keep option.

• By stepping through an exec source file, selectively including Workshop
lines for its exec run file--step option.

• 6"1 running from a previously saved run file--Rerun option.

To request an option, type the option letter after the exec parameter list.
Include an empty parameter list if you want to specify options but not
parameters. For example,

R<firstexec(apples"oranges)BE
REXEC/anotherexec(9,17,7,23)S
$submit lastexec()i

{Blanks, Errors}
{Step}
{Imbed}

The default condition for all options is that they are not in effect unless
specified. Most Processor options are global--they apply to the exec on
which the"y"re specified and also to any execs it calls; they are therefore not
permitted on a SUBMIT command invocation. The two exceptions are the
Blanks and Imbed options, which are local and are permitted with SlA3MIT.
You may not specify Processor options when invoking a user function.

B The Blanks option tells the Exec Processor not to remove leading and
trailing blanks from the Workshop lines it places in the exec run file.
Leading blanks reslJlt from indenting lines to improve exec readability.
(Leading and trailing blanks are not significant to "',",orkshop programs, but
they might be significant to other programs you run under the Exec
Processor .)

E The &TOTS option tells the Exec Processor to continue processing even if
errors are encountered that would normally stop exec file execution. This
option is useful for forcing the completion of a test series.

G The Generate option tells the Exec Processor to generate an exec run file
without running it. Syntax errors are flagged. The DOlT and RUN
commands ere disabled. By specifying the Keep option with the Generate
option, you can retain the exec run file and examine or modify it using
the Workshop Editor. If K is not specified, the exec run file is deleted.

I The Imbed option tells the Exec Processor to ignore the first line of the
exec file because the exec is imbedded in a source program. For
instance, the exec file can also be the source file for the Pascal
Compiler. To use this technique, begin the first line of the exec file with
the Pascal comment delimiter (* and follow the ENDEXEC command with
the Pascal comment delimiter ·)i then begin the source program.

9-34

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iork.shop User's Guide Exec Files

Imbedding works with any language that allows you to extend a comment
over more than one line, including exec language. Here is a Pa'Scal
source program in file -PascaLprog.text that contains an imbedded exec
program:

(* This Pascal program compiles itself!
Sexec {Pascal test)
P{ascal Compile}Pascaltest
Pascaltest.list
Pascaltest.obj
$endexec
*)
PROGRAM Pascal test;
USES .. .
TYPE .. .
VAIl ..•
BEGIN ..•
ENO.

To compile this program, simply type the following Workshop Run command:

R<Pascaltest()I
K The Keep option tells the Exec Processor not to delete the exec run file

after the Workshop runs it. You may then rerun the file using the R
option.

R The Rerun option teUs the Exec Processor to run a previously processed
exec run file that was served using the K option. This option overrides all
other options.

S The Slep option puts the Exec Processor in Step mode so that it displays
the exec run file one line at a time, prompting you for selective skipping
of output lines and SUBMIT commands. Specify the Keep option also if
you want to keep the exec run file. This option is further described
below.

9.33 Using the Step Option
With the step option, the Exec Processor processes the exec source file one
line at a time and prompts you for a decision:

{= Include? for a Workshop line.

<= Submit? for a SUBMIT command line.

When you first enter Step mode, you can get an explanation of the possible
responses by answering Y to the tv1cre details ? prompt. You can also get
help by answering ? to the decision prompts. The responses ere:

Y Include the Workshop line or submitted exec program in the exec
run file.

N Omit the line or submitted exec program.

9-35

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide

S Step through the submitted exec (with Submit 1 only).

A Abort processing; the exec run file is not run.

E.tec Files

K Keep the remaining lines of the exec source file 8S is (process
exec lines, include Workshop lines without further promptingL and
run the ex ec run file.

I Ignore the remainder of the exec source file,. keep previously
included Workshop lines, and run the exec run file.

You can use the step option to skip over the first portion of an exec
file--for instance, when debugging a series of programs. Step through the
exec that runs the series, responding with N to eliminate the programs that
ran successfully. Then when you get to the program that failed and has been
corrected, respond with K to generate the exec run file with only the
remaining programs in it.

You can also select separate sections or modules of a large application. In
this case you can use Step mode most easily if you place each module in a
separate exec file, as in the following high-level exec file called RUNALL
which runs modules A, B, C, 0, and E:

exec {RUNALL}
submit Aexec
submit Bexec
sub.it Cexec
subllit Dexec
subllit Eexec

endexec
To select only modules 8 and 0, invoke RUNALL in Step mode. If you want
to k.eep the exec run file so that you can run it again without going through
the selection process, specify the Keep option as well as the Step option:

r<runall()sk
Your dialog with the Exec Proce.ssor in step mode as you select Bexec and
Dexec for running is shown belo , with your responses in italics:

Step Mode:
-- in response to "Include 1- answer:

Y, H, A (Abort), K (Keep rest), or I (Ignore rest)_
-- in response to "Submit 1" answer:

Y, H, S (Step), A (Abort), K (Keep rest), or I
(Ignore rest)_

Nore details 1 (Y or 1'1) [No]

9-36

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

?\Iorkshop Lis-er's Guide

subtnit Aexee
sutmit Bexee
submit Cexee
submit Dexee
sutmit Eexee

NOTE

(= Submit? N
(= Submit? Y
('" Submit? N
(= Submit? Y
<= Submit? /

E.ree Files

If the exec you are stepping through contains a DOlT command, the
contents of the exec run file are executed when the DOlT line is
encountered (unless it's in the false part of a conditional statement)i
then you are returned to stepping.

9.3.4 The File Cache and the Input Bt.tfer
The Exec Processor uses a file cache for improved performance. If you need
to optimize the performance of an exec program that calls exec procedures
and user functions, understanding the file cache can help you.

The file Cliche consists of five pages (a page is two blocks) that can contain
five small files at a time ln memory. A smail file has a listed size of four
blocks--according to the File Manager's list command--and contains one
header page and one page of text. If an exec procedure or user function is
called repeatedly--within the range of a WHILE statement, for example--it
should be a small file so that it can be read from memory rather than from
disk.

Small files that are accessed by a SUBMIT command or a function call are
placed in the cache. Subsequent access to these files is made from the
cache rather than from disk. The cache is maintained on a
least-recently-used basis. That is, once the cache is fult the file leest used
recently is the one whose space is relinquished for a new small file.

If your exec modifies itself and then calls itself (and we don't recommend
thist the modified version won't execute if the pre\lious version is still in
the cache. To avoid this problem, make the self-modifying exec larger than
four blocks.

The input buffer is the area in mernmv where large exec files SIe read. If
one large file is called repeatedly by a second large file, both files must be
read from disk each time through the loop. To optimize performance,
modularize the large files so that at least one file can be 8.ccessed from the
cache.

9.4 Sample Exec Programs
The following sections contain a series of actual exec programs that
demonstrate some useful techniques like chaining and recursive calls.

9-37

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

h1orkshop l)ser's Guide Exec FiltlS

9.4.1 Exec File Chainino
Chaining takes place when the Workshop Run command is used from within
an exec: the Workshop is executing the current exec run file--the chaining
exec program--when it encounters a Workshop Run command; it then closes
the clJI"rent exec run file and invokes the Exec Processor to begin processing
the new exec source file named in the Workshop Run command--the chained
exec program. The chaining exec is not returned to for further processing;
the lI'Jorkshop Run command is effectively its last command. In the example
illustrated by Figure 9-2 below, exec program A invokes exec program B by
means of the Workshop Run command. Exec run file A is executed. Its last
command is

R<ExecB.text
The Workshop then returns control to the Exec Processor, which processes
exec source file B and gives its exec run file to the Workshop to run.

R<8. TEXT
EIUlE

'" '-" :;';

!JCEC {B}

SOU1Ct
rut

FgJre 9-2. 0'BIrV'g Exec FUes

Here is a set of four exec files that demonstrates the use of exec file
chaining, using Pascal compiles as an example.

• COMP performs a basic Pascal compile.

• COMPIF submits C()IvIP only if the object file does not already exist or
if the source file is newer than the object file.

• LlNKIF links the thr ee units if an~1 of them was changed since the last
link.

• COMPLIt>.I<lF, the calling exec, submits COMPIF for three separate
Pascal units--conditionally compiling them--and then chains to LINKIF.

The COMP exec program foUoINS:

EXEC (unit,objname) { ••• COHP ••• Pascal compile
unit: source to compile
objnate: 8lternate moe for object file}

IEffIJLT objmoe TO unit {if no 8lternate nme use source nme}
SP{Pasc81 compile}(unit]

${no list file}
$(objnate]{object file}

EtIEXEC

The COMPIF exec program follows:

9-38

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\lorkshCip lAser's Guide

EXEC (unit,Objname) { ••• COMPIf ••• conditional caapile
undt: source to ca.pile

Exec Files

ObjnElle: mile of 113J file
lEFIlJlT Objname TO unit {if no alternate nme use source n8lle}
If EXISTS (. [Objmlle] .obj·) 1tEN

If NEWER (·[unit].text", ·[Objna.e].obj·)
1tEN {recmpile i r source ntMer than object)

~T ca.p([unit], (objname])
OOIf

ElSE {object file does not exist, so generate it }
SUBHIT comp((unit], [objname])

EN>IF
ao::xEI:

The LINKIF exec program follows:
EXEC {... LIt«If ... Link. the object aodules into a

new executable program if fDJ
of thera was reca.piled.}

If tt:\tER ('unit1.Obj " 'program.obj·)
(R t£\£R (' unit 2 . obj , , 'prOg:I'lft. obj')
m NEWER ('unit3.Obj', 'program.Obj') 1tEN

SL {ink.} unit 1
Sunit2
$unit3
$iOSp8slib
S{end of input}
S{ no list fHe}
$program{executable output file)

EN>If
EN'E<EC

The COMPlThl<.IF exec program follows:
E><EC (wU. t 1, unit 2, uni t 3) { ... ·OJtlLItiU F· ... cOilpile

if necessary, then chain to
link}

SUBN[T compif([unitl])
SUBHIT caapif([unit2])
~T compif([undt3])
SR<LItl<.IF { Chain to link exec file after canpiles

h8ve run so that LItI<.If ex ec get s the
car.rect file dates. Note the
di fference between process time and run
ti.e.}

9-39

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~Vorkshop /"'(ser's Guide E.l:ec Files

Here's what happens when COMPLINKIF is run:

1. COMPIF is invoked for unitl. If unitl needs to be compiled,
COMP is submitted and the Workshop lines for the compile
are placed in the exec run file.

2. In the same way, COMlIF is invoked for trit2 and unit3,
until the exec run file contains all of the commands necessary
to compile any unit that requires it. The Workshop then runs
the exec run file.

3. When the Workshop finds the command to Run the LINKIF
exec, it calls on the Exec Processor to start a new exec run
file. LINKIF now has available the dates of the most recent
compiles. If LINKIF were submitted rather than chained to,
the compiles would execute after LINKIF compared dates.
(But you CQuld accomplish the same effect as chaining by
adding a DOlT command to force the compiles and then
submitting LINKIF.)

4. The Workshop gives control back to the Exec Processor to
process UN<IF, which creates a new exec run file containing
commands for the Linker.

9.42 A Recursive Exec Program
The RCOMP exec performs up to ten Pascal compiles, using the COMP exec
described in the previous section. RCOt4l takes an argument list with the
names of the units to be compiled.

E><E[: { A:(Jt:) - perfOlll fD/ ntllber (up to 10) Pascal cc:npiles.
It calls (lJtl on its first arguJent and then colIs itself
recursively w1th its arguments shifted lert }

IF \0 <> " Tt£N
SlB1IT cmp(\O) {-ctDp- the first one }

{ -rcomp- the rest, less first}
SlB1IT rCOlP(~l, '%2, ~, ~, ~, ~, ~7, ~, ~9)

EH>IF
~

9.4.3 A Rec..-sive l.Jser Function
The GETPROFLOC exec is a function that prompts the user for the location
of a ProFile and returns a string with the name of the device to which the
ProFile is attached. The function calls itself recursively until a valid device
name is specified.

EXEC (ploc) {.U(£IAU:LOC·" pnDpt user far Profile location)
Ja.lEST pLoc WITH
'Where is the Profile attached (pRrBpart/slot2chanVslot2chan2)'
SET ploc 10 l.PPE.H:&: (pLoc)
IF (ploc <> 'PffWJ(Rf') M> (pLoc <> 'SUJT2Oifttl')

fH) (pLoc <) 'SlOT2llift42') Tt£N

9-40

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~v'orkshop User's Ciuide El:ec Files

~IlELN 'That is not 8. valid device mne. Let" s try again. '
I£T1.Ri <GetProfLoc {recursive function call }

ELSE
I£Tl.Hi pLoc

EIDIF
ENJEXEJ::

9.4.4 An Exec Application
The application listed below verifies the contents of a disk: Ct-ECK lists
missing files, and CHECK2 lists extraneous files. The disk to be verified is
compared against GoodListFile, a text file containing the list of valid files,
one per line. The a.pplication consists of two main execs (Ct-ECK and
CHECK2t a user function (DEVNAME), and an exec procedure
(CHKIORESu... T). Both ma.in exec programs call the DEVNAME function to
format device names and the CHKIORESUL T procedure to ha.ndle 110 errors.

The DEVNAME user function follows:

E)(El: (Devti8lle, DevOefault) { a::vtR'E function returns deVice
name with leading '-' }

OCfruLT DevN8IIe TO DevOefault
IF OPY (DevNf:lle, 1, 1) <) '-' 1l£N

SET DevHaIe 10 aKAT (' - " DevN8IIe)
EK>If
I£TlAt DevNfIIe
ENE<El:

The CHKIOREstJL T exec procedure follows:

E)(El: (Errmttsg, URes) {at<IlJEll..T will abort if we get an
IrnE.SULT errar; sounds bell and prints message }

IF IlR:SULT <> " 1l£N
SET J(Res TO I~ T { so MUTEs below will not change its

value }
~IlELN OR(7), Errarttsg
WllTELN J(Res
fO:RT 'Bye'

EIDlf
EJ«J<EC

9-41

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshop User's Guide Exec Files

The CHECK exec program follows:

EXEC (Goodlistfile, CheckVol, fileName)
{ CHECK looks far Rdssing files on CheckVol; GoodListFile is a

text file containing an alphabetical list of the
files that should be on CheckVol, one file name per
line. }

DEfBJlT Goodlistfile TO 'GoodfileList.Text'
SET CheckVol TO <devNa.e([CheckVol],-HYVOL)

{ check for missing files }
R:SET GoodFile, GoodListFile
SUSHIT chkIOResult(Could not open [GoodListFile])
WUl£LN 'Check of " CheckVol, I against GoodListFile (',

GoodListfile, ') I
~ITELN

ItilEAT { get rile moe and see ir rile exists on CheckVol }
I£fVLN (Goodfil e) FileName
If fileName <> 'EDf' THEN

IF tOT (EXISTS (- [CheckVol]-[FileNme] -» ll£N
~I1ELN 0Il(7), 'Missing file: ., FileHtne

EK>IF
EJt>IF

lHTI L fileName = 'EDf '
CLOSE GoodFile
EJt:E(EL

The CHECK2 exec program follows:

EXEC (GoodlistFile, CheckVol, Goolflelae, FileName, LastGool:Iifllle)
{ CHEOK2 looks for extraneous files on CheckVoli GoodL1stfile

should be the name of a text file ..,ith an
alphabetized list of the files that should be
present, one file nflle per line. }

{ Note: this ..,ill not work if the volume being checked has
sub-catalogs, since the N8IIes cOOIIIIand ..,ill not
return the full pathnames for files within the
catalogs. }

DEfAULT GoodListfile TO 'GoodfileList.Text'
SET CheckVol TO <devHtne([CheckVol],-tfYVOL)
{ get the names of the files on CheckVol }
$f{ile-Hgr}N{8les} [CheckVol]-=,CHECK.TNP.TEXT
~{quit}
DOlT { execute fil~ commands to create list of files in

(H]]{. Tt1P.TEXT }

9-42

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshop User's Guide E.r8C Files

R:SET Nfnefil e, 'OEIX. TtP . TEXT '
SUBMIT ChkIOResult(Could not open 0EIX.1HP.TEXT)
J£1I.)tJt (NElftefile) fileName {ignore 3 title lines hOi NEneS

alOO }
I£MLH (Nellen Ie) fil eNflfte
I£MLH (NElftefile) fileNtJle
RESET Goodfile, GoodListfile
SUBMIT chkIOResult(Cound not open [Goodlistfile))
SET lastGoOfflame 10 'A' {al phabeti cally first }
I£MLH (Goodfile) GOC')(flaae { pri .. e the plDpS }
J£MLH (Namefile) fileNeIIe

R:PEAT
s::r GoocJltflllle TO l..JlFlEHI:fEE (GoocJlttDe)
SET fileNBIe 10 lPflEH:&: (fileName)
If (Gooc:lime < lastGooc:lieme) fK) (Goodime <> 'EDf') lI-EN

\lRITELN ~(7), Gooc:lieme, , is not alphabetical in '
Goodlistfile

IHRT 'Bye'
EH>If
SET lastGOOffltJIe TO GoOfJilRe
If (GomlitDe == • EDf') fH) (f il eNtRe = 'EDf') 1tEH

HAlT 'Done'
ELSElf GoodiEllle ... 'EDf' ThEN

WilLE fileName <> 'EDf' 00
WAITTELH CHR(7), 'Extra file: " fileName
I£MLH (Namefile) fileName

EtIMULE
HAlT 'Done'

ElSEIf fileName = 'EDf' 1tEH { missing files will be
detected by other test }

HAlT 'Done'
ElSElf fileNtne = Goo€lieme 1tEH

J£MLN (Goodfi Ie) Goo€litDe
J£MLH (Namefile) fil eNtRe

ElSE { misaatch -- list extra files & resynchronize }
IF Gooftitne < fileName 1tEH {missing files}

A:PEAT
J£MLH (Goodfi 1 e) GooftiElfte
SET Goodiame to lJlflEOC&:(Gooc:li8lae)

tNTI l (Good'-lfIRe) = Fi 1 flNfDe) m (riooc:lieme = 'EDf')
EH>If
IF GooftitDe <> fileName 1l£N

I£PEAT
\lRlTELN aR(7), 'Extra file:' fileNtue
Iff il eNeme < Gooc:lieme 1tEH

J£MIJi (NfDefil e) fileNtue

9-43

I -
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

f,J.1orkshop User's Guide

SET fileN1Re ro l..AlEOCASE (fileNate)
EN.>If

Exec Filf!JS'

ltfTIl (fileH8IIe >= Good'f8IIe) m (fileN8lle = 'EDf')
EN.>If
If fi 1 eNeIIe = GoodiElle 1lDI

I£fO.N (Nellefile) fileNalle
EH>If
I£fO.N (Goodfile) Goottlalle

EN.>If
lHTIL FALSE
EJ«:XEC

9..5 Exec File Err,"
The Exec Processor reports syntax errors, I/O errors, and other process-time
errorsi it also reports errors resulting from Operating System calls. The
format in which the Exec Processor reports errors is:

ERROR in <errcr location)
< cmrert. line)
(errCJl" markElf')
<errcr message>

where

(errCJl" locat.ion> is either 'invocation line' or 'line Q<n> of file
<fUe)'.

<CUlTert line> is the text of the exec line in which the error was
detecteu.

<errCJl" marker> is a question mark indicating the place in <current
line> where the error was detected.

<errCJl" message> is one of the messages listed below. The error
message begins with an error number.

9..5_1 syntax Erron
The line containing the syntax error does not conform to the rules of the
exec language. Check to see that you have typed the line correctly; refer to
Section 9.1.4, Syntax of Exec Lines and Workshop lines, and to descriptions
of the individual commands and options for more information.

1 More than 20 parameters on exec procedure/function call
2 No closing) found
3 End of Exec file before ENDEXEC
4 No Exec file specified
6 End of Exec file in comment
7 Invalid percent: not "%0" form
8 Garbage at end of command
9 File does not begin with EXEC

10 No aroument to SUBMIT

9-44

•
I

I
I
I
I

~\Iorkshop l.)ser's Guide E.rec Files

11 ELSE, ELSEIF or ENDIF not in IF
12 ELSEIF after ELSE
13 Nothing following ,..
14 EXEC command other than at start of file
16 More than 20 variables declared
19 ENDWHILE not in WHILE
20 Duplicate paramet.er/variable name
21 Bad number. Numeric constant expected
22 Number too large
23 ORD requires a string argument of at least one character
24 UNTIL not in REPEAT
25 Bad Number for first argument to numeric comparison
26 Number too large for first argument to numeric comparison
27 End of Exec file in RUN command input
28 Bad Number. String expression with numeric result expected

IrNalid command. <token) expected.
<token> is one of the following:

String value
Numeric value
Number
String expression with numeric result
Boolean value
Parameter name
Parameter Ivariable
String compare operator
()

Comma (list delimiter)
Command
Terminating string delimiter
Valid command keyword
(
)
"ENDIF"
"ENDWHILE"
"UNTIL"
Catalog specification
File Identifier
Clear command (Screen, EndScreen EndLine)
Cursor command (Home, Up, Down, Right, Left)
Program name

9-45

I -
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iork.shop User's Guide Exec Files

9.5.2 110 Errocs
The 1/0 error reported by the Exec Processor is followed by an additional
line with the text of the corresponding Operating System error message.

201 Unable to open input file "<file>"
202 Unable to open exec run file "<file>"
203 Unable to access file "<file>"
204 Unable to rerun file "<file>"
205 Unable to reread file "<file>"
211 Unable to reopen input file "<file>"

9-46

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~I''orkshop I..,lser's Guide Exec Files

9.5.3 other Exec Ernrs
5 Line buffer overflow (> 255 chars)

15 Out of memory. Exec processing aborted
17 No value returned from file called as function
18 RETURN with value in file not called as function
28 Bad Number. String expression with numeric result expected
29 Number returned by string expression is too large
206 File variable "(id>" already in use
207 File variable "<id>" is unclefined
208 File variable "<id)" is not open for input
209 File variable "<id)" is not open for output
210 Bad exec run file name generated: "<file)"

9-47

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Chapter 10
The Transfer Program

10.1 Introduction . ____ . _ . ____ ._ .. __ . _'" __ .. ___ . ___ .. ___ .. _ .. __ . _._. _ .. __ 10-1
10.2 Hardware Connection and Software Configuration . _" _. __ . _______ 10-1
10.3 Setting Transfer Pr~Bm Characteristics ____ . _. _______ . _ ... __ _ 10-2

10.3.1 The Connector Menu ... 10- 2
10.3.2 The Baud Rat.e IVlenu "" 10-3
10.3.3 The Parity Menu ... 10-4
10.3.4 The Handshake Menu .. 10-4
10.3.5 The Duplex Menu .. 10-5

10.4 Using the Transfer Program ._ .. _. _______ . _____ . __ ... _ .. _. ______ _10-6
1004.1 The CLlntro} Menu .. 10-6

10.4.1.1 Receiving Text. 10-7
10.4.1.2 Sending Text 10-8
10.4.1.3 Suppressing Text Display ... _____ ____ . ______ 10-8
10.4.1.4 Exiting From the Transfer Program 10-8

10.4.2 Transmitting Special Characters 10- 9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Transfer Program

10.1 Inb"oduction
The Transfer program is a data communicat.ions utility that supports the
transfer of text between your Lisa and another computer that we'll call the
remote computer. The Transfer program can send text from a file to the
remote computer. It can also act as a terminal emulator: Everything you
type on the Lisa keyboard is t.ransmitted to the remote computer. Text
received by your Lisa can be stored in a standard text file that you can read
using the Workshop Editor.

10.2 I-HdWare Connection and Software Conf'iguration
8efore you can use the Transfer program you must establish a physical
connection between your Lisa and the remote computer. Then, in order to
transfer data properly from one computer to another, you must set certain
data communications characteristics on the Lisa to match the remote
computer. Establishing this software connection is known as configuration.

If J/O'u wMt to' cO'nnect the Lisa to' the remcte computer b} .. telephO'n~. attach
a modem to your phone jacl< and to the Serial A or Serial B connector on the
back of the Lisa.

If VotJ want to' cO'nnect the Lisa directi)" to' the remO'te computer, connect a
modem eliminator cable to an RS232 cablei attach the modem eliminator end
of the cable to a sertal port on the remote computer; attach the RS232 end
of the cable to the Serial A or Serial 8 connector on the back of the Lisa.

TO' cO'nfigure the Work.shcp scl'tW!!1r~. let the Workshop know what's connected
to the serial ports by selecting the Preferences tool from the System
Manager command line and USing the Device Connections menu to set either
Serial A or Serial B to Remote Computer.

TO' ccnrigi.D'e the Tr!!1nSrer program sO'l'tw!!1re at the beginning of a transfer/
choose a value from each of the following menus (described in detail in the
next section);

• Baud Rate The speed at. which dala is transferred. Ten baud represents
about one character per second; for example/ 300 baud is equivalent to
30 cps.

• Parity The "insurance policy" that. ensures t.he valid transmission of
data.

• Handshake The hardware or software mechanism for synchronizing data
transmission.

10-1

-
i

I
I
I
I
I
I
I
I
I

Workshop User's Guide The TrlJl'lS'fer Progr8l71

• Duplex The type of information flow between the Lisa and the remote
computer.

• Connectm The serial port you plan to use (A or B).

To control trs.nsmission while the transfer session is in progress, use the
Control menu:

• Control Start or stop receiving or sending data; filter out control
characters; increase transfer speed by suppressing text display;
set line delaYi exit from the Transfer program.

NOTE
When the Workshop shell is initialized, all serial ports are configured as
follows: 9600 baud, OTR handshake, automatic linefeed insertion. When
you leave the Transfer program, these defaults are automatically
restored.

10.3 Setting Transfer Program Characteristics
In order to communicate with a remote computer, the Transfer program
menus must be set so that the Lisa transmits and receives data in the same
way as the remote computer. If you are dialing a service on a mainframe
computer, use the settings specified in the mainframe computer manual. If
you are connecting your Lisa to another Lisa, make sure that both Lisas are
set to the same characteristics.

Each menu has a default setting that is in effect when you start the
I(.,'orkshop. To change the default, open the menu and click on the setting
you want. When you exit from the Transfer program, the Workshop sErVes the
last settings you used: In other wordS, you automatically create your own
custom default settings that last until you change them.

10.3.1 The eo. • .ector MfnJ
This menu a11o 'S you to specify which serial port you will use to connect
your Lisa to the remote computer. (You can only use a connector if it is
specified in the Preferences menu.) The default is Serial A. For more
information on the serial connectors, see the Hardware chapter in the Lisa 2
Owner's Guide.

Connector
v'Serial A

Serial B

10-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide The Transfer Program

10.3.2 The Baud Rate Menu
Baud rate is the speed at which data is transmitted to or from the remote
computer. The baud rate must be set to agree with the remote computer
and modem you are using. The default is 1200 baud. Valid baud rate
settings for the serial ports are shown in the "PortConfig" section of the
Utilities chapter. Note that 3600~ 7200, and 19200 baud are not available on
Serial A.

On telephone-line connections, the faster the baud rate, the less reliability
the data will have. If you are getting garbled transmission or missing data,
you might need to use a lower baud rate (but remember to synchronize with
the remote computer). Standard rates for transmission over telephone lines
are 300 baud and 1200 baud.

Baud Rate
50
75
110
134.5
150
200
300
600

~1200

1600
2000
2400
3600
4800
9600
19200

10-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Transfer Program

10.3.3 The Parity Menu
Data transmission between computers can be unreliable because of pops~
clicks, crosstalk, and noise on telephone linesi hard-wired lines are also
subject to interference and weak signals. P8l'ity error detection is the most
common method of detecting data communications errors. This method does
not correct errors; it merely points them oLlt--the Transfer program displays
characters with bad parity as highlighted question marks.

Parity error detection depends on the fact that the ASCII character set
requires only seven bits of an eight-bit byte to encode the standard 128
characters. The eighth bit, known as the p8l'ity bit, can be set to make each
character transmitted contain either an even number of I-bits (even p8l'it~~J
or an odd number (odd p8l'it}.;l If a bit in a character is inadvertently
changed during transmission, the number of I-bits will not match parity and
the byte will be highlighted as an error. (Note that this method can detect
only an odd number of bit changes in a character. If two, four, or six bits
change, parity checking will not detect an error. This means that parity
checking works best with relatively reliable lines.)

Parity should be set to agree with the remote computer. The parity choices
provided by the Transfer program are Even, Odd, or None. The default is
None. If you are sending or receiving characters from the extended
character set, choose None (see Section 10.4.2, Transmitting Special
Characters, for more information).

10 _ 3 A The Handshake Menu

v NOne

Even
Odd

Handshaking is the exchange of predetermined signals between two computers
in order to synchronize transmission. The Handshake menu allows you to
select XON/XOFF (a software handshake), DTR (a hardware handshake), or
None. The default is None.

XON/XOFF is a software protocol for use with a modem or a modem
eliminator. It allows the transfer of 8 continuous string of characters,
pausing only when the receiving buffer is nearly full. Using this protocol,

10-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(,t.lorkshop User's Guide The Transfer Progrl!Jtn

the Lisa can stop transmission from the remote computer by sending XOFF
and st8ft it again by sending XON; likewise, the remote computer can stmt
and stop transmission from the Transfer program by sending XON and XOFF
to the Lisa.

NOTE

If you use XON/XOFF and the information transmitted includes an XON
or XOFF, the transmission will halt and the Lisa will time out. The
XON and XOFF characters are the same as the ASCII Control-Q ($11)
and Control-S ($13) characters.

DTR (Data Terminal Ready) is a hardware handshake for use with a modem
eliminator cable or modem. The RS232 handshake lines associated with
serial ports A and B are monitored for control signals that suspend or allow
transmission of characters. This arrangement. works well if you are
connecting your Lisa to another Lisa.

If you get error message 647, the Transfer program failed to receive the
appropriate handshake from the remote computer after a timeout. The
session terminates. Before retrying, make sure that the Ch8f8cteristics
settings for the Lisa are in agreement with those of the remote computer.

10..3.5 The Duplex Menu

XOn/XOff
OTR

This menu allows you to select Full or Half duplex. Most remote computer
connections are made using full duplex mode. The default is Full duplex.
Full duplex transmission allows information to flow in both directions at
once; both the Lisa and the remote computer can serild and receive
information simultaneously. Half duplex transmission allows information to
flow in only one direction at a time; when the Lisa is sending, the remote
computer can only receive; and vice versa.

In full duplex mode, the characters you type are sent but not displayed on
the Lisa screen. (Characters received from the remote computer are

10-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

WOTkS'ftop l.,lser's Guide The Transfer Program

displayed.) Normally in full duplex mode the remote computer sends back
the characters you type so that. you can see them on the screeni this is
known as echoing.

In half duplex mode, the characters you type are both sent and displayed.
Normally the remote computer does not echo in half duplex mode. If it
does, you'll see two characters for each one you type.

Half

lOA Using the Transfer Pr(9"Bm
Start the Transfer program by typing T in response to the Workshop
command line. Then use the characteristics menus described in Section 10.3
to configure the Lisa so that it matches the remote computer you want to
communicate with. The Transfer program begins in terminal emulation mode:
Whatever you type on one computer is received on the other computer. To
send from a file or receive to a file, select the appropriate options from the
Control menu.

10 1 The Control Menu
The Control Menu allows you to control transmission by receiving, sending, or
exiting from the Transfer program. Some of the menu items in the Control
menu are toggles: selecting a toggle item turns it on, selecting the same
item again turns it off, and so forth. The toggle items are Receive From
Remote, Suppress Text Display, and Transfer to Remote. The item is on if it
has a checkmark next to it.

The Suppress Text Display option applies to either sending or receiving.

10-6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

-"-----.~-

t\/orkshop l."/ser's Guide

10A.l.1 Receiving Text

•. " 'a ... aive from remote ".
Receive All Text
Receive Filtered Text

SlQJress Text Display

Transfer to remote ...
line Delay

Exit

The Transfer Program

y.,lhen the Transfer program start.s, you are able t.o receive text from t.he
remote comput.er in terminal emulation mode. The first it.em on the Cont.rol
menu, Receive From Remote, lets YOLI specify a file in which t.o save the
text sent by the remote computer. When you select Receive From Remote,
the following message appears.

IIiJUii." (onnector Baud Rate Parity Handshake Duplex

~ Write to Filename [.text]?

Type the name of the file YOLI want to save the transmitted data in. It mLlst
be a text file.

Two opt.ions are associated with Receive From Remote. You must choose
one of them; Receive Filtered Text is the default.

Receive All Text lets you store the transmitted data in the receiving file
exactl~1 as they' are received, including control characters.

Receive Filtered Text does not save control characters in the receiving file.
This option changes [RETURN) to [NEWLINE) and replaces [TAB] characters
l,I,'ith t.he appropriat.e number of spaces. All other control characters are
discarded.

10-7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Jorkshop User's Guide The Trsnsfer Program

To stop storing text in the file, toggle Receive From Remote to close the
file. You can then read the file using the Workshop Editor or any program
that reads standard text files. The Transfer program does not insert a
[RETURN) at the end of the file, so if your file is a program file or other
file that must end with [RETURN], use the Editor to insert one.

10-4.1.2 Sending Text
The Transfer to Remote menu item let.s you send data directly from a text.
file rather than typing it at the keyboard. When you toggle Transfer to
Remote to begin sending, you are prompted for the name of the text file.

The Line Delay option is associated with Transfer to Remote. When you
select this menu item, you are prompted for the number of milliseconds the
Transfer program will wait before sending each line of text. The default is
zero. Specify a line delay when you are transmitting to B remote computer
that is losing data because it cannot keep up with full speed transmission.

li.'Ui'." Connector Baud Rate Parity Handshake Duplex

Set Delay between Lines [in milliseconds] ?

10.4.1.3 SUJ)JI"essing Text Display
The Baud Rate menu lets you select a maximum transfer speed. However,
the actual transfer rat.e may be slower because of the processing t.ime
required to display the text as it is sent or received. Suppress Text Display
is a CClntrol menu item that may be lIsed with either Receive From Remote
or Transfer to Remote. You can toggle it on or off at any time. When
Suppress Text Display is selected, text that is received or sent is not
displayed on the Lisa screen, and the data transmission speed is usually
improved.

10-4.1-4 Exiting from the Transf'er Program
When you hElVe completed your communicat.ions session, select. Exit from the
Control menu. The current characteristics settings are saved and you are
returned to the Workshop command line.

'tOll mus-t explicitly log off Jf the remote computer hss 8 logoff procedure.
If you choose Exit without logging off, neither the session nor the telephone
connection is automatically terminated. When you return to the Transfer
program, the session will still be active and you can proceed as if you'd
never exited.

10-8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

J,,!,1orkshop User's Guide The Trsnster Progrsm

10..42 Transmitting Special Characters
By using special keys, you can type standard terminal control characters. To
transmit a control character from the keyboard, hold down the Apple key and
type a character, as shown in Table 10-L

You can also send internat.ional, mat.hematical, and scientific symbols and
other characters from the Lisa's extended character set (see Appendix B, Lisa
Extended Character Set) if the remote computer is a Lisa. The ext.ended
character set uses the eighth (parity) bit as part of the character identity, so
both Lises must operate wit.h parity set to Nonei if parity checking is on, the
parity bit will be stripped and the character will be received as an ASCII
character.

To transmit a character from the extended character set, hold down the
Option key (or t.he Option key together with the Shift key) and type a
character.

Table 10-1
TltIlSIllitUng Special Characters fnm the Keyboard

Kej'/JoBn1 Trmsmlts

.-backspace DEL

clear ESC

ENTER (alpha keyboard) BREAK (233ms)

ENTER (numeric keypad) RE~

arrow keys their syrrools

.-Q X~

.-s XOFF

.-character other control
characters

Option-CharaCter Ext.enjed

Option-Shift -character Character Set
(see Appendix B)

10-9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Chapter 11
The Utilities

11_1 ByteDiff. _______________ . ___ . _______________ .. __ . _ .. ____ . ___ . _ _ ___ . _ _ 11-2

11.2 ChangeSeg _ 11-3

11_3 CharCotrt _ 11--4

11.4 CodeSize ___________________________ 11-5

11_5 Compare _ _ ________________ . ___ . . _ 11-8

11_6 Concat _. ____________________________ . ___ . __ . __________________________ 11-12
11.7 Copy ______ . __ . ___ . _ . _ ... ____ . __ . _____________ ... _ . _ . _ . ___ . ________ . __ . 11-13

11.8 Diff. ____________________ . __________________ . ____ . _ . _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 11-14

11_9 DumpObj ____ . ______ .. _______ . _. _______________ __ . ____ . _______ . _ 11-16

11.10 DumpPatch __ . _____ . ______ . ______ . _ . _ ... _____ .. _____ ... _______ . _ 11-17

11.11 fulool. __ ____ _ _. _ .. _ _. __ .. __ .. ___ .. _ .. _____ ._. _ 11-19

11_12 FileDiv and FileJoin _ .. ___ .. __ ... _____ __ .. ______ . _______________ 11-20

11_13 Find ___ . _________________________ . _ . __ . 11-21

11.14 GXRef .. __ . _______________________________________ . _____ . _ _ _ _ _ _ _ _ _ _ _ _ _ 11-22

11_15 IUManager ___ . __ . ___ . ___ . ___ . __ . __________________ . ____ . _ . __ . ________ . 11-23

11.16 LineCount __ . ___ . ___ . _______________________________ . _________________ 11-26

11_17 L WCCotrt ______________ . ___________ . ___ . ___ . ___ . ______ . _ _ _ _ _ _ _ _ _ _ _ _ _ 11-27

11_18 MacCom. ___________ . _______________________________ . ______ . ___ . _ _ _ _ _ _ 11-28

11_19 Pasrnat _______________________ .. ____ . _______ . __ .. ______ . _______ ... _. __ 11-31

11_20 PortConfig __________ . ______ . _________________________ 11--45

11.21 ProcNames _. ___________ . _______________________________________ . _____ 11--47

11_22 R~ed{er . __ 11-5()

11_23 Search __ . ___________ . _______________________________________ . _________ 11-51

11.24 SegMap ____________________________ . _________________________________ 11-53

11_25 ShowInterface ___________________________________ _ ______________ 11-54

I
I
I
I
I

11_26 SXRef . ____ ._ _._ .. ___ ... _._ .. _ .. _ ___ 11-56

I 11_27 Tr~lit ____________________________________ . ___ .. ___ . ______ .. _._. ___ .. 11-57

11.28 U XRet __ . _ . _____________________________________ . ___________ . ________ . 11-58

I 11.29

11_30

~dC:olH1t __ • ____ • __ • ____________________ •••••••••••••••• _ ••••••••••• 11-6()
Xref ____ . _________ . ________ . __ ... _____ .. __ . _____ . _____ . __ . __ . _____ ... __ 11-61

I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Utilities

The Utilities are general-purpose programs that run in the Workshop
environment. To run a utility program, use the Workshop Run command. For
example, to run the Copy utility, t'ype

RCOPY

from the Workshop command line. YOll can also run a ut.ility program from
an exec file.

The Utilities are arranged alphabetically in this chapter. Each utility
program is documented as follows:

synopsis Tells briefly I,vhat the program does.

Dialog Lists the program prompts and tells how to
res:pond to them.

Description

Notes

Gives details on input, output, and processing.

Brings special information to your attention.

11-1

- -- ----------

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshop l)ser's Guide

11.1 ByteOitf
Synopsis

The Utilities

ByteDiff compares the contents of tv·,oo files and reports which bytes (words)
are different.

Dialog
Source file?
Target file?

Description
ByteDiff compares the source file to the target file and reports on their
differences. This utility is useful for finding the first differences between
files or for fimUng a small nLlmber of differences.

Tl"le prograIll prompts for an input file and an 'output file. The two files can
be in any format: .t.ext., .obl .i, and so forth.

The output is of the form:

Bytes $xxxxxx differ aaaa bbbb

where:

xxxxxx is the byt.e address in hex
aaaa is the word (two bytes) from the source file
bbbb is the word from t.he target file

After 20 lines of output the user can either terminate by pressing [CLEAR]
or cont.inue by pressing the space bar.

See Also
Diff, E(qual command of the File Mana.ger

Notes
ByteDiff compares any binary files, but once it. finds a difference bet",,.een the t.wo

files, it does not try to resynchronize. This utility does block-at-a-time 1/0.
The program st.ops at. the first. eml-of-file and tlas: no t.ermination message.
ByteDiff is nonstandard user interface.

11-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~v'oTkshDP USliT'S Guide

11_2 ChangeSeg
Synopsis

The Utilities

ChangeSeg changes the segment name in the modules in an unlinked object
file.

Dialog
File to change:
Map all Names (YIN)

Description
The first prompt, "File to Change", asks for the unlinked object file you ant
to change. To exit from the ChangeSeg utility at t.his point type <CLEAR>
<RETURN>.

You are next asked if you want to map all names. If you want to change
segment names in aU modules, respond Y. If you ant to be prompted for
the new segment name for each module, type N. A response of [RETURN]
accepts the default name.

Notes
Changes are made in place (the file itself is changed).

11-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~I''orkshop (Aser's Guide

113 CharCount
synopsis
CharCount counts the number of characters in its input.

Dialog
Paremeter(s) [? for help]:

The format for the parameters is: <stdin >stdout

Description

The Utilities

CharCount counts the number of characters in its input (StdIn), and writ.es
the total to its output (StdOut). The defaults for both Stdln and StdOut are
the console. If the input is from the console, use .-C to indicate the end of
file.

All characters are counted, including RETURN and OLE characters.

11-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

11.4 CodeSize
synopsis

Ti?e UUlities

Determines the code size ane! code segmentation for a unit., a program, or a
library.

Dialog
Input file [.OBJ] -
Resident file [. TEX T] -
Out.put file [-CONSOLE]/[. TEXT] -
The resident file is the file that contains the segment names that 8re
considered resident.. The names in the file must be the same case as in the
code file itself. The resident information is used in the summary report.s to
automat.ically sum the resident and swapping code.

At any time t,~lhen specifying the file names, the run-time opt.ions can be
turned on or off. The run-time options EIre:

+1 turns the mapping of calls to system externals on or off. System
externals are procedures whose names begin with a "%". Using this
option, the syst.em will count t.he number of procedures that call a
particular system external. This option is used to determine which
system routines are being used, for example, if WRITELNs are left in
the code_

+E turns the mapping of calls to nonsystem externals on or off.
f\Jonsystem ext.ernals are procedures in a segment other than the
calling procedure. Using this option, t.he system will count the
number of procedures t.hat call a particular nonsystem external. This
option is used t.o determine which routines are being used/ for
example, which library routine t.he code is using.

+M tells CodeSize that a particular segment is mapped onto another
segment. This information generates the segment mapping summary
and the segment summary. This option is used when smaller
segments are mapped into larger segement.s .. and the sizes of the
smaller and resulting larger segements are needed.

+S turns the main report on and off. Sometimes the summary report is
all t.hat. is needed. Use this option to print only the summary report.

Description
CodeSize generates two types of reports depending on the type of input
file(s): main report and summary -report. The input file can be an execution
file, a library, or an object file. For each file .. the report format will be:

11-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\/ol'kshop User's Guide The I.ltilities

Type of File Main Report Sunmary Report

segment summary
main summary

Ex ecution file segment information

Library file unit information
segment information

unit summary
segment summary
main summary

Object file unit information
procedure information

external summsrV(+E or +%)
unit summary
segment mapping summary(+ M)
segment summary
main summary

The contents of the report section are:

Segment information
segment type
segment name

segment size

Unit informat.ion
unit name
unit global size
unit type

Procedure information
procedLrre name

associated segment

procedLrre size
interface information

external references

External summary

intrinsiC, nonintrinsic, main program
first eight charcters of the segment's
name
size of the segment in decimal or hex

first eight characters of the unit name
how much global space the unit uses
intrinsic, shared intrinsic, regular

first eight characters of the procedure's
name
first eight charact.ers of its segment's
name
size of the procedure in decimal or hex
is the procedLrre in the interface of the
unit?
list of all the external calls the procedure
makes. This is triggered by the +E or +%
options

external procedure name name of the procedure
I of occurrences how many different procedures called the

procedure. This is triggered by the +E or +% options.1Unit summary
unit name first eight charact.ers of the unit's name
unit size size of the unit in decimal or hex
unit type intrinsic or not
unit global size how much global space the unit uses

Segment mapping summary
original ·segment name name of the original segment

11-6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~/ork$hop User's Guide

new segment name
segment size

Segment summary
segment type

segment name

segment size

Main summary
total code size
total resident code

total swapping code

total data globals
total main prog globals

total globals

total jump table

The Utilities

name the segment is being mapped into
size of the segment being mapped. This
is triggered by the + tvl option.

swapping or resident. Resident segment
is specified to CodeSize by the "resident
file".
first eight characters of the segment's
name
size of the segment in decimal or hex

summation of the code size
summation of the code that is considered
resident all the time. Resident code is
specified to CodeSize by "resident file".
summation of the code that is considered
swapping all t.he time. Swapping code is
specified to CodeSize by "resident file."
summation of the global space for data
summa.tion of the global spa.ce in the main
program
sum of main program globals plus data
globals
size of the jump table

11-7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshop User:s l::iuicle

115 Compare
synopsis

The l./tilities

Compare compares the lines of two text files and prints out all their
differences. Opt.ions let YOll compress blanks, delete trailing blanks, ignore
case, set the number of lines that are allowed to mismatch and the number
that must. be equal to be considered a match, and control the format of the
display_

Dialog
Parameter(s) [? for help]:
File 1#1: [. TEXT]
rile 112: [. TEXT)
Options [7 for help]:
Maximum stack depth:
Fixed.Minimum grouping factor:
Maximum displs:y wIdth:

Only the Parameters and Options prompts always appeari the other prompts
don't appear if they are not needed or are speCified ~: explicit paramet.ers:

Parameter(s) [1 for help]: filel file2 [el-e2] [depth] [g] [width] [>listing]

Where:

filel and file2
el-e2
depth
g
width

are the input. files
is a column range to compare (optional)
is t.he st.ack dept.h for resynchronization (optional)
is the grouping factor (optional)
is the listing display widt.h when the H option is used
(optional)

> listing specifies an alternate listing file (optional)

Typing 1 in response t.o a prompt displavs information about t.he response
needed.

Pressing CLEAR in response to a prompt terminates the program. After the
prompts are processed .. you can type .-period to terminate.

Description
Compare reads in filel and file2 in sequence, and compares them line for
line. E:y default., entire lines are compared (up to a maximum of 132
cl18Jacters), but you can specify that only the column range cl-c2 be
compared. (If cl is omit.t.ed, 1 is assumed, if c2 omitt.ed, 132 is assumed.)
As soon as there is a mismatch, the mismatched lines are st.ored in two
st.acks, one stack for each file. Lines are then read alternately starting from
the next. input. line in t.he second file unt.il a match is found t.o put t.he files

11-8

I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshop l..lser's Guide The VUJities

back in synchronization. The optional depth parameter specifies the
maximum stack depth, that is, how far out of synchronization the files should
get before it is no longer wort.h comparing them. Values allowed are 1 to
lOOOj the default is 1000.

A mat.ch is defined according t.o a grouping factor, G. G is the number of
consecutive lines that must be the same to be considered matched. If the
value of G is too small, the files may be put back int.o synchronization at
the wrong place. The default value for G is dynamic, defined by the
formula:

G = Trunc(2.0 * lOG10(M) + 2.0)

where IVI is the number of lines saved in each slack so fer. This means
more lines must be the same after larger mismatches t.han after small
mismatches before the two files resynchronize. Using the above formula, the
following table shows the clynamic grouping factor as a function of the
number of mismatched lines:

Number of

1
4

10
32

100
316

1000
3162

M
~-1ismatched Lines

to 3
to 9
to 31
to 99
to 315
to 999
to 3161
to 9999

G
Dvnamic Grouping Factor

2
3
4
j

6
7
8
9

You can optionally set the lower limit on G wit.h the Q parameter, instead of
using lhe values in this table, but it must be at least 2, because the formula
is always applied. The default value for g is 2.

A second match option allows the grouping factor, G, to be fixed as a
const.ant.. If t.his S (static) option is used, the g parameter specifies a fixed
grouping factor. Values allo ed are 1 to 1000, but if G is too small, the
files ma~1 be put into synchronization at undesirable points; try the dynamic
grouping factor first.

There is a limit to how far out of synchronization the two files can 'let
before it is: no longer worth comparing them. For the ctynamic G opfion, t.he
limit on the number of mismatched lines is preset to 1000, but a lower limit
may be chosen. For the static G option, the limit is aJl,,,ays explicitly
selected (the static valLie of G is also selected). T\/pical values for the
st.atic G ere 1 t.o 5 and the number of mismatched lines about 10 t.o 50.

After a match has been found, the mismatched lines before the group of G
matching lines are displayed. You can display the lines from the two files
side by side., using the H (horizontal) option, specifying the width of the

11-9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

t\lorkshop l"/ser's Guide The Utilities

output listing display with the width parameter. By changing width you
change the number of characters displayed in each portion. Values allowed
are from 70 (Ih'hich shows onl~1 27 characters from ee.ch file; 15 characters
are reserved for line number information) to 132 (which shows 58 characters).

Normally the outPllt is displayed on the console. It ma~/ be redirected b~1
entering >listing in the parameters line, where "listing" is a filename.

Any size files may be compared, as long as they don't. get t.oo far out. of
synchronization (line numbers are only displayed to four places, so the file
size should be kept under 10000).

OptiOns
The following opt.ions are available. Specify the opt.ions by listing them in
response to the Options prompt.

S Delete trailing blanks and treat runs of blanks ~ one blank.

C Ignore case differences (convert all lines to lowercase).

o Dynamic groupingi prompt for t.he depth and the minimum g if they
are not given ~ parameters. Dynamic grouping is done by default,
you don't need this option lInless you want to set the values of depth
and the minimum g and didn't set them in the parameters line. The
default values for depth and minimum g are lOX> and 2, respectively.

H Horizontal form of display. Only part of the mismatched lines from
each file are displayed, side by side. How much of each line is
displayed is controlled by t.he witt.h parameter. (If H is not.
specified, entire lines are displayed .. up to 132 characters, with the
lines of the first file displayed before the lines of t.he second file
for each group of mismatches.)

K Keep output file even if the input files are the same. The default is
not to generate an output file when the files are equaL

S Static (fixed) grouping factor. If the depth and g va.lues in the
parameters line are missing or invalid, YOLl will be prompted for
them.

T Delete trailing blanks. (Does not compress runs of blanks; T is a
subset of S.)

• Ring the bell at completion of the execution.

Note: All comparison criteria that affect the individua.l lines prior to
comparison (the column range, blank compression, trailing blanks, and case
conversion) are applied to those lines before they are stacked. Thus when
the lines are displayed, they are shown in their modified form.

11-10

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

{¥arkshop User's Guide The Utilities

output
The follol,ving messages appear when mismatches are displayed. Lines are
shown with their line numbers:

~tching lines
<both stacks are displayed>

Extra lines in 1st before <In) in 2nd
<lines in file l's stack are displayed>

Extra lines in 2nd before <In) in 1st
<lines in file l's stack are displayed>

Extra lines in 1st file
<lines in file l's stack are displayed>

Extra lines in 2nd file
<lines in file l's stacl<. are displayed>

If, dIEing resynchronization, an end-of-file condition occurs or the maximum
st.ack depth is reached, then one of the above set of messages will appear
followed by one of the following:

... Nothing seatS to lIatch •••
••• Eof on both files •••
••• Eof on file 1 •••

••• Eof on file 2 •••

If both files are in synchronization, and both reach their end-of-files at the
same time, then the message,

••• Eof on both files at the sa.e tiae •••

will appear if an.ll mismatches occurred previously.

If the files match, then the following message is displayed:
••• Files aatch •••

All of these termination (" •••... ".11) messages are shown on the console
even if the output listing has been redirected to some other file.

11-11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

""/arkshap US'er~S' (iuide

11-6 Concat
Synopsis
Concst. copies a list of files into one file.

Dialog
P8rameter(s) [? for help]:
The format for the parameters is: filename L ___] >stdout

Description

The i../tiJities

Concat copies the list of input files to the output file, StdOut. The default
for StdOut is the console. Concat accepts a list of file name parameters
separated by commas or spaces (.TEXT extensions ,,",'ill be addedt and copies
them to the output file in the order they were specified in the list. If there
is only one input file, Concat behaves exactly like Copy_

11-12

_. __ ... --_._-- --_._------ -_ ... _ ... _

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

11..7 Copy
Synopsis
Copy copies all or part of its input to its output.

Dialog
Parameter(s) [? for help]:

T,?S U~liities

The format for the parameters is; <stdin >stdout [LineRange, ...)

Description
Copy is used to copy its input (Stdln) to its output (StdOut). The defaults for
both Stdln and StdOut are the console. If the input is from the console, use
.~C to indicate the end of fUe.

Copy's optional parameter, LineRange, specifies what portion of the inpLlt you want
copied. LineRange is a list of ranges separated by commas or spaces. Each
range is a single line number or pair of line nlJmbers in the form linel-line2.
y..,'hen specifying more than one line, if line! is omit.ted, the first line of the file
is assumed; if line2 is omitted, the end of file is assumed.

ll-B

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshop User's Guide The l./tilities

11.8 Diff
Synopsis
Diff is a program for comparing .TEXT files, in the Workshop. Diff is
designed to be used with Pascal or Assembler source files.

Dialog
(Type '7' to change or display options.)

New file name [.TEXT] -
Old file name [.TEXT]
Listing file [.TEXT] «CR) = -CONSOLE)-

Description
Diff first. prompt.s you for two input file names: the "new" file, and t.he "old"
file. Diff appends ".TE.X.T" to t.hese file names, if it is not present. Diff
then prompts you for a filename for the listing file. Press [RETURN] to send
the listing to the console.

Diff does not know about INCLUDE files. However, Diff does enable the
processing of several pairs of files to be sent. to t.he same listing file. Thus,
~'hen Diff is finished I,vith one pair of files, it prompts you for another pair
of input files. To terminate Diff, simply press [RETURN] in response to t.he
prompt for a new file name.

The output produced by Diff consist.s of blocks of "changed" lines. Each
block of changes is surrounded by a few lines of "context" to aid in finding
the lines in a hard-copy listing of t.he files.

There are three kinds of change blocks:

INSERTION a blocl< of lines in the "new" file which does not. appear in
the "old" file.

DELETIOhJ a blocl~ of lines in the "o}el" file which does not appear in
the "new" file.

REPLACEMENT a block of lines in the "nevi' file " .. hich replaces a
corresponding blocl< of different. lines in the old file.

Large blocks of cha.ngp.:; a.re printed in sLimmar~l fashion: a few lines at the
beginning of the changes and a few lines at. the end of t.he changes, with an
indication of how man'y lines were skipped.

Diff has three options;

C change the number of context lines displayed.

M the number of lines required to constit.ute a match.

o the number of lines displ8lJed at the beginning of a long block of
differences.

11-14

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Utilities

To set one of these numbers, type the option name and [RETURNt followed
by t.he new number to t.he prompt for the first input file name. An entry of
o [RETURN] 100, for example, causes Diff to print out up to 100 lines of a
block of differences before using an ellipsis. The maximum number of
context lines you can get is 8. You can get a display of the current option
set.tings by pressing "?" in response to the first file prompt.

Diff is not sensitive to upperllower case differences. All input is shifted to
a uniform case before comparison is done. This is in conformance with the
language processors, which ignore case differences.

Diff is not sensitive to blanks. All blanks are skipped during comparison.
This is a potential source of undetected changes, since some blanks ere
significant (in string constants., for instance). However, Diff is insensitive to
trivial changes, such as indent.at.ion adjustments, or insert.ion and deletion of
spaces around operators.

Diff does not accept a mat.ching context which is too small. The current
threshold for accepting a match is 3 conseclitive matches. The 1'-1 option
allows you to change this number. This has two effects:

1. Areas of the source where almost every other line has been changed
will be reported as a single change block, rather than being broken
int.o several small change blocks.

2. Areas of the source Wllich are ent1rely dIfferent are not. broken into
different change blocks because of trivial similarities (such as blank
lines, lines with only begin or end, and so fortll)

Diff mal(es a second pass through the input files, to report the
changes detected, and to verify that matching hash codes actually
represent matching lines. Any spurious match found during
verification is report.ed as a "JACKPOru. The probability of a
JACKPOT is very lo~,,', since two different lines must hash to the
same code at 8 location in each file which extends the longest.
common subsequence, and in a matching context I,I,ohich is large
enough to exceed the threshold for acceptance.

See Also
ByteDiff

Notes
Diff can handle files with up to 20c0

11-15

I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshop I.)ser's Guide The (./tilities

11.9 DunpObj
Synopsis
DumpObj is a disa'Ssembler for 6E()CO code. This option provides a symbolic
and formatted listing of t.he contents of object files. It can disassemble
either an ent.ire file, or specific modules wit.hin the file.

Dialog
Input file? [.08J]
Output file? [-CONSOLE]

Dtxnp A(11., S(ome, or P(articular modules [S]?
Dump file positions [N]?
Dump selected object code [N]?

Description
DumpObj first asks for the input file which should be an unlinked object file.
The output (listing) file defaults to -CONSOLE. YOLI are asked whether you
want to dump All, Some, or Particular modules.

If YOll respond S, DumpObj asks you for confirmation before dumping each
module. A response of [CLEAR] gets you back to the top level. If you
respond P, DumpObj asks you for the particular module(s) you want dumped.

The file position is a number of tile form [0,000] where tile first. digit is the
block number (decimal) within the file and the second number is the byte
number (hexadecimal) within the bloc!< at. which t.he module starts. This
information can be used in conjunction with the DLlmpPatch program.

If you want the selected object code to be dumped, respond Y to t.he final
prompt. The default for this prompt is N.

See Also
DumpPatch

Notes
DumpObj displays only the low order 24 bit.s of longint fields, which ere
interpreted as addresses. This is consistent with the hardware, but causes
some bytes of the file not to be displayed.

11-16

",t

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshop Liser's Guide

11.10 DumpPatch
Synopsis
Dump and/or patch a file

Dialog
DumpPatch - Hexadecimal Dump and Patch

File: - Output: [-CONSOLE]/[.TEXT] -

The Utilities

If you want to select t.he default. of [-COt-JSOLEt press [RETURN] and select.
the block number you want to start with; for example, 2.

If you type a file name, the following prompt appears:

y"loulcf you like to access (input file name) int.eractively? (Y or N)

If you respond Y, you y,lill be prompted for the block number 'You want t.o
st.art. with. If you respond N., you will be prompted for starting and ending
block numbers. The default values are 0 for the starting bloe:k number and
EOF for t.he ending block number.

Description
DurnpPatch provides a textual representation of the contents of any file and
the ability to change its contents in either the ASCII character or
hexadecimal form. The file dump is block oriented with the hexadecimal
representation on the left and the corresponding ASCII representation on t·he
right. If a byte cannot be converted to a printable character, a dot is
substituted. The patch facility LlSes t.he arro',.,. keys to move around within
the displayed block and change the value of any byte.

When DumpPatch is Run, \/OU will be asked for t.he full name of the input
file. No ext.ensions are appended. Pressing [RETURN] will exit DumpPatch. If
the input file can be found, you will be asked where you want to direct the
output. The default for the output file is [-printer). If you t.ype an output.
file name, a . TEXT extension will be added if necessary. If you type a
device name; for example~ -print.er~ no extension will be appended.

If an output file name or a valid device name was entered~ you will be asked
if you would like to access the input file interactively. If you answer No,
you will get a quick dump of the input file and will be prompted for the
st.arting block to dump. The default [RETURI-.J) for t.he last block to be
dumped is the last block of the input file. If you specify a block that is
beyond the end-of-file, you will be given the block number of the last block
in the file. Pressing [CLEAR] enables you to exit with no dumping.

Once a file has been completely dumped., DumpPatch asks you for the next
input file. Press [RETURN] to exit the program.

11-17

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshop User~s (]uide The Utilities

If you access the input file interactively, you will be as\.;ed for the block to
dump. The out.put. will be dumped to t.he screen with the option of dumping
it to the output file " .. 'hen you are ready to leave that block. Press the space
bel" t.o look at the next halfblock. Press [CLEAR) t.o go into patch mode.
Press [RETURN) to quit the present block.

""'hen you are in patch mode, the cursor will be found in the upper left
corner at. word 0 of the tlloc\<. The arrow keys are used t.o move the cursor
around in the cLU"rent block and to previous: or successive blocks. Press
[TAB] to toggle tlet.ween t.he hexadecimal and t.he ASCII port.ions of t.he
display. A change made on one side of the display is automatically updated
on the other side as '.'/ell. Until you get ready to move out of t.he current
block you may undo arry changes by pressing [CLEAR]. When leaving a block
in which you made changes, you will be askec\ if you ',.,'ant to write the
changed block back to t.he input file. This is your last chance to undo any
unwant.ed changes! If you specified output t.o something other than the
console, you will also be asked if you want to dump the current block to the
output file when you try to leave tt-Iat block. To ex it pat.ch mode press
[RETURN].

See Also
DumpObj

11-18

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iork$hop Liser~s Guide

11.11 En Tool
Synopsis
ErrTool is used to create files of numbered messages.

Dialog
Error Input File [.TEXT]
Error Output File [<input file>] [.ERR]
Error Listing File [.TEXT]
Description

The L/tilities

ErrTool lets you create compacted message files in which each message is
associated with a number. The Standard Unit (SidUnit) in SUUb provides
calls (SUErrTest and SUGetErrText) for retrieving the message associated
""'ith a given number. In spite of its name and the names of the SU calls.,
ErrTool is not limited to use for error messages (although that is how it's
principally used by the Workshop tools). The outPLlt of ErrTool is a specially
formatted file with a directory at the start indicating the offsets of the
messages in t.he file.

ErrTool input consists of a t.ext file with lines beginning wit.h an integer
(positive or negativet followed by a space and the message. ErrTool assumes
that the message is everything tletween the space following t.he message
number and the end of the line (no multi-line messages are allowed). The
ErrTool input need not be ordered \,,'ith respect to message number.
Duplicate error numbers will be flagged as a fatal error. The listing file will
contain a sorted list of t.he messages.

11-19

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshop User's Guide

11.12 FileDiv and FileJoin
Synopsis

The t/tilities

FileDiv can be used to break a large file int.o several smaller pieces.
FileJoin can then be lIsed to rejoin these pieces into one file. These
functions are most useful when saving and restoring very large files, or when
you want t.o brea~. 8. large text file into smaller ones t.o be viewed in the
Editor.

Dialog
Is this a .TEXT file? (Y or N)
Infile name : [.text]
Outfile name ; [.text]

You might want to keep portions of a file on more than one disk. To give
you an opportunity to do that, FileDiv contains: the following additional
prompts:

Another disk? (Y or N)

Have YOLI inserted the next. disk? (Y or f\J)

Description
Do not include the suffix in the file name. If, for example, you want to
divide TEMP.TEXT, give TEMP as the input file, and TEMP (or I,a,'hatever) as
the output. file. FileOiv will create a group of files named TEMP.1.TEXT,
TEMP.2.TEXT, and so on, until TE~,1P.TEXT is completely divided up.

To rejoin the pieces of the file, Run FileJoin. The dialog is the same as for
FileDiv.

11-20

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshop ()ser's Guide

11.13 Find
synopsis
Find searches a text file for a pattern.

Dialog
type "?" to display or change options

The {../tzlities

Enter input file name [.TEXT] (name of the file to be searched)
Enter output file name [-CONSOLE]/[. TEX T] (default is the console)
Enter pattern: (pattern to be matched)

Desc:riJ:tion
Find searches text files for lines which match a string pat.tern. Lines found
are printed to the console. The following options are recognized:

+C Matches are case sensitive

+S Matches are space sensitive.

+D Print dots while scanning lines that do no match.

+L As lines are reported, print out. the relative line numbers.

+ T Report the files that are being scanned.

Typing ? in response to any of the input prompts will display a description of
the options available and read in the options. You can leave Find by typing
[RETURN] or [CLEAR] in response to the input or pattern prompts.

More than one file can be input at. a time. Find supports the same wildcard
scheme as the Workshop File Manager. So submitting "-paraport-ch=" will
direct. Find t.o search all of the text files beginning wit.h "ch" on the paraport
directory. Find can also search predefined lists of files; suppose the file
"foobar .text" contained:

to hoohatext
grok..text
bruhaha.text"

Then submitting "(foobar.text" will direct Find to search/ sequentially/
"hooha.text", "grok.text", and t.hen "bruhahatext". If you type "foobar.text"
(without the leading' <') then Find Irvill search ''foobar.text'', not the files
listed therein, for t.he pattern.

Notes
Find truncates out.put lines to 256 chBlactels.

11-21

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

11.14 GXRef_
Synopsis
Global Cross Reference.

Dialog
Input file [.08J) ?
Listing file [CONSOLE: J/[.TEXT] -

Description

The I.../tllities

GXRef lists all the modules which call a given procedure, and all the
modules which that procedure calls. It. provides a global cross reference of
subroutines and modules.

GXRef accepts any number of object. files as input.. When you have ent.ered
all the object files, press [RETURN] in response to the input file request.

GXRef accepts a maximum of 4095 procedure names.

11-22

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

{\Iorkshop User's Guide The (./tilities

11.15 IUMenager
synopsis
The IUI"1anager utility is used to manage the directory of library files. You
can add, delet.e, or change intrinsic units, segments, and files in t.he
directory. To use the IUIVlanager, YOll should be familiar with the way that
units and segments are handled in Pescal on the LiSB.

Dialog
Input file [INTRINSIC.LIB]:
Output file [<input file>]:
INT~INSIC.LIB is the library directory tha.t the system looks for at boot
time. You can can edit. INTRINSIC.UB, or vou can create and use your own
library directories. (But be careful--don't change INTRINSIC.LIB unless 'lOll

know what. yot/'re doing, or your system may not boot.)

Description
The IUIVlanager has three modes, which do the following:

UNITS Add, clelet.e, or change int.rinsic unit.s. An intrinsic unit. is
a unit of Pascal code that. can be accessed by different
proc~;ses. There are two kind of intrinsic lInit.s--reglllar
and shared. A regular int.rinsic unit has a private global
data area associated with it; shared intrinsic unit.s share
data as well as code.

SEGMENTS Add, delete, or change segments. Units can be broken LIP
into segments, so that interdependant parts of different
units will be swapped in and out of memory at the same
time. You can segment your code ""'ith either the $S
Compiler option or the ChangeSeg utility.

FILES Add, delete, or change library files. Units and segment.s
are arranged in library files.

When you first. enter the IUManager, you're in the FILES mode. To switch
between modes, the following commands are available:

S(egments) Enter the SEGMENTS mode and display the segment table.
Entries in the segment table have t.he following
information:

Seg~.Jame

Segll

Filel

FileLoc

The segment name

The segment number

The nU,mber of the file that the segment is in

The byte location of the segment in the file

11-23

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshop User's GiJJde

U:nits)

F(iles)

Tbe UtHities

Packedl
UnPacked The number of packed or unpacked bytes in

the segment

FileName The name of the file that the segment is in

Enter the UNITS mode and display the unit table. Entries
in the unit table have the following information:

The unit name

The unit nllmber

The number of t.he file t.hat tile unit is in

UnitName

Unitl

FileD

Type The type of unit: Intrinsic or Shared Intrinsic

DataSize The number of bytes of global data (Shared
Intrinsic units only)

Enter the FILES mode and display the file table. Entries
in the file table have the following information:

File The file number

FileName The file name

Other than t.he S(egmentst U(nitst and F(iles) commands, the commands
available in all t.hree modes are the same:

C(hange) Change an entry in the currently selected table. You will
be asked for the file, unit or segment number, and
prompted for changes in each field. If you enter an unused
number, the Change command works just like the Add
command.

t:!(dd) Add a new entry in the currently selected table. You will
be asked for the file, unit, or segment number, and
prompted for each field. If you enter a number already
asSOCiated with an entry, the Aaa commana worl.;s just like
the Change command. The default entry number is the
first unused number in the table. If you add a unit or
segment and specify a file name that has not been used, e.
new file will be created with the next available file
number.

i:Xelete) Delete an entry from the currently selected t.able. You are
prompted for the file, unit, or segment name or number. If
you try to delete a file that is used by t.he segment table
or unit table, you will get a warning, and the file will not
be removed. If YOll try to delete a segment that is used
by the system table as a Public Interface segment, the
segment will not be removed.

11-24

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

WotksllOP Us-et's Guide Tl'lS (jUllties

L.(ist) List the entries in the currently selected table.

Q(uit) Quit the IUManager and rewrite the directory.

? Typing ? from the main command line displays the
alternate command line, "'lith the following commands:

.nstall) Install a library in t.he directory. This stores the segment.
and unit tables from the linked object file. The Install
command puts you in the FILES mode if you're not already,
displays the file t.able, and prompt.s ~/OU for the file name
or number to install.

V(erify) Verify that the information in t.he linked object file is
consistent with the directory. You are prompted for the
name of the file to verify.

p(rint) Print all three tables. (You can send the tables to a . TEXT
file instead of -p-inter if you want to look at them in the
Editor .)

? Typing? from the alternate command line returns you to the main command
line.

11-25

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iork$hop L~er's Guide

11.16 LineCount
Synopsis
LineCount counts tile number of lines in it.s input.

Dialog
Parameter(s) [7 for help]:
The format for the perameters is: < st di n) st dout

Description

The Utilities

LineCount counts the number of lines in its input (Stdln)., and writes the total
to its output (StdOut). The defaults for both Stdln and StdOut ere t.he
console. If the input is from the console, LIse w-C to indicate the end of
file.

11-26

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshop User's Guide The Utilities

11.17 LWCCount.
Synopsis
l WCCount counts the number of lines, words, and characters in its input.

Dialog
Parameter(s) [? for help]:

The format for the parameters is: <stdin >stdout

Description
lWCCount counts the number of lines, words, and characters in its input
(Stdln), and writes the totals 6S three lines to its output (StdOut):

1. Number of lines.
2. Number of words.
3. Number of characters.

The defaults for both Stdln and StdOut are the console. If the input is from
the console, LIse j-C t.o indicate the end of file.

A word is considered any seqllence of characters not containing a blank or
any control characters (e.g., RETURN or OLE). The character count includes
RETURNs and OlEs.

11-27

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshop l)sers Guide

11.18 MacCom
synopsis

The Utilities

rv1acCom lets you move files back and forth between the Lisa and the
rv1acintosh, using Macint.osh-format. diskettes. You can also perform ot.her
operations on Macintosh diskettes on your Lisa: initialize diskettes, delet.e
files, set Finder informat.ion, and write boot blocks.

Dialog
The MacCom command line is:

{3.0} MscCm: Delete, Eject, Help, I nit, Lis8-}ttsc, ttac-}Lisa., Nflles, Quit ... 1

Typing ? shows you the second l"lair of the line:

BootBlocks... finderlnfo, ConfiI1l... RenoveSlashes

To execute any command, type the first letter. The commands are described
below. other dialog, such as file name prompts, is self-explanatory.

Description
You can use the MacCom commands in hatever order you like, then Eject
the diskette when you're finished. Each command is independent of the
others; the MaCintosh directory gets written at the end of any command that
changes it. The Delete, Lisa->Mac, and tv1ac-)Lisa commands support the 1,
=, and $ wildcard characters. You can escape from most prompts by
pressing [CLEAR]. To abort the operation when you are being prompted for
YeslNo answers using ?, type .-period followed by N for no. To abort when
you're using =, just type .-period. When prompted for a file name, <
followed by the name of a .TEXT file reads a list of names input from the
file. This can be used recursively.

Note that you can use MacCom to back up Macintosh disl~ettes: first copy all
the files on the diskette to the Lisa with the Mac-)Lisa command, using the
wildcard sequence '=,templ$'; then initialize the second diskette (if you need
to) using Init; then copy all the files from the lisa onto the second diskette
using Lisa-)tv\ac with the wildcard sequence 'templ=,='.

Delete Deletes files on the IVlacintosh diskette.

Eject Ejects the diskette--this is safe at any time.

Help T ells you what each command does.

lnit First checks the disket.t.e and warns you if it already
contains a Macintosh or Lisa as format volume. Init
formats the disk, then adds Macintosh boot blocks and
a directory. The file 'Mac.8oot' must be on your
Workshop boot volume or prefix volume to correctly
initialize a diskette.

11-28

I~ , ,

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\IOl'kshop User~S' Guide The VUlities

Mac-)Lisa Copies a file, or files, from the diskette to any LiSB.
volume. The Finder information for a Macintosh file is
saved on the ~vorkshop in a i-block file using the
IVlacintosh file name with a JV1FEN (for Mac Finder
ENtry) extension. A Macintosh resource file is saved
with a .RSRC extension. If the Macintosh file has both
a resource fork and a data fork, two separate files will
be creat.ed on the Lisa volumei t.he data fork will have
the Macintosh file name, and the resource fork will
have the same name with a .RSRC extension. If a file
has the same name as an existing file on the Lisa
volume, ~Jou will be asked if you want the existing file
ov8P,l,IriUen. The dates on the Hacintosh files 81'e
converted t.o the Lisa's date format.

Lisa.->Mac Copies a file, or files, from any Lisa volume to the
IVlacintosh diskette. If a file you are sending to the
Macintosh clid not come from a "'1acintosh originally (if
there isn't a .MFEN file for it), and you are not.
ovenyriting a file already on t.he Macintos:h volume,
default. Finder information will be set for that file. The
default. values are '????' for Tvpe anel Creator, and the
Bundle bit not. set. otherwise, the Finder information
will be inheritecl from t.he .MFEN file or from t.he
existing file. If you want to enter different Finder
information for a file, use t.he Finderlnfo command and
you will be prompted for Finder information. Files with
a .RSRC ext.ension are assumecl t.o be resource files;
the ext.ension is removed as the file is copied to the
Macintosh, and the file is set up as a resource in the
IVlacintosh directory. If a file has t.he same name as an
existing file on the diskett.e, the file already on the
diskette will be overwritten. If you want a chance to
prevent SLlch a loss of exist.ing files, set Confirm
(below) t.o True. The dat.es on t.he Lisa files are
converted t.o the Macint.osh's date format.

Names List. the names and directory information for all the
files on a Macintosh diskette.

BootBlocl<s lNrite t.he boot blocks on a Macint.osh diskette. This
includes writing the boot. blocks from your own file.

Finderlnfo Set t.he Finder information for all files that you copy
from a Lisa volume to the Macintosh diskette. You can
set. the Type (default '????'), the Creator (default
'?17?'), and the Bundle bit (default not set).

11-29

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

tl/orkshop User's Guide

Confirm

The l./tilities

Ask for confirmation before overwriting old versions of
files on the Macintosh diskette. The default. is Folsei
old files are automatically O'v'erwritten when you CO~I a
new file with the same name as an old file.

RemoveSlashes Remove Workshop prefixes (denot.ed by t.he I charact.er)
from file names as the files are moved from the
Workshop to a Macintosh disket.te. The default is
False; prefixes are left orL

Notes:
MacCom doesn't set the 12 tag bytes on each block while creating or
accessing Macintosh diskettes. Because of this, use the Macintosh to create
8 master disk for anJ'" product !/ou are going to ship. The tag bytes will be
used in the future by a Scavenger to rebuild damaged Macint.osh disks.

MacCom assumes t.hat. the diskett.e is in the internal lisa diskette drive; no
external drives are supported.

If you have been using a pre-3.0 version of MacCom, note t.hat the default
value for 'Type' in the Finder information settings has changed. Previous
versions of MacCom had a default type of 'APPL'; the default is now'????'.
You need to change your Examples/Exec command file to set the type to
APPL when moving an application to the Macint.osh. To do t.his, replace this
line in Examples/Exec:

{set type to APPL}
(which accepted the default type) with the line:

APPl{set type to APPL}

Previous versions of MacCom automatically prompted you for the Finder
information when copying a new file to a Macintosh volume. Now you ere
only prompted if you specify F for Finderlnfo, otherwise the default values
are used.

11-30

fl/orkshop I..)ser's Guide

11.19 Pasmat
Synopsis

The i./tiilties

Pasmat reformats Pascal source code into a standard format that you can
control.

Dialog
Paremeter(s) [? for help]:
Input file: [.TEXT]
Output file: [<input file:» [.TEXT]
Correct /pat tern/replacement/;
Options [? for help]:
Listing file: [-console] [.TEXT]
Rename file: [.TEXT]
Maximum line width: [I/~]
Indenting (tab) value: [t]

Onl'i t.he P&ametcrs o.nd Options prompts alv/ays appear.; the other prompts
don't appear if they are not needelj or are specified as explicit. paramet.ers:

Parameter(s) [1 far help]: input output [rename] [width] [tab] [>listing]
Parameters can be separated by spaces or commas.

Typing 1 in re,:;:ponse t.o a prompt displays information about t.he response
needed.

Pressing [CLEAR] in response to a prompt terminates the program. After the
prompt.s are processed.- you can t.ype .-period to terminatei t.he output file
will not be generat.ed.

Description
Pasmat. reformats Pascal source code into a standard format suitable for
printouts or for compilation. Pesmat options: let ':/ou:

• Convert. a program to uniform case conventions .

• Indent a program to $how it:::: logical ;);:t.ruc:t.ure ami aujLl::::t. lines tu fit
into a specified line length.

• Change the comment. clelimiters (* *) to { }.

• Remove the break character (J from identifiers, rename identifiers, or
change their case.

• Remove all nonprinting characters from the source (except in strings).

• Format include files: named in Pascal include directives.

Pasmat. specifications ere m8.cfe t.hrough options or t.hrollgll special format.ter
directives, which re.serntlle Compiler clirect.ives, and are insert.ed into the
source file as Pascal comment.s.

11-31

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop I.)ser~s ;:;uicle

P.:\sniel accepts full programs, external procedures, blocks, and groups of
st.at.ements. A syntactically incorrect. program usually causes it t.o abort. If
this h;:\ppens, the generated outPl.lt \Nill cont;~in the formatted source up to
the point of the error, unless the output. file and input. file are the same, in
\",.hich case no output file is genenltecL

The input. ancf OL~tput files are required parameters. The out.put. file mB'y
specify patt.ern anef replacement strings: in ttle form /pattern/replacement/
(single or double qlJot.es may be Llsed instead of slashes). This form causes
the ! option to appear when you are prompt.ed for t.he options, implying that
':,Jou want t.o process include Compiler directives and generate a set of
format.t.ed out.put files wit.h t.tle same include structure as t.he input. See ttle
disCLI~:sion of t.he ! c'pt-ion (below) for furt.her dctoi13.

The rename, list.in~1" widt.h, and t.ab paramet.ers are all opt.ionaL The rename
parameter is also a filename" but it should be s:pecified only if the tvt option
is specified (see bel 0 '''i). The widt.h end tab paramet.ers specify the init.ial
values of the output line width and indenting tab value (Le." the initial 0 and
T direct.ive values). Unless told otherwise, the default output. width is 80 and
the default indenting ts.b value is 3.

If you want to see of listing of the output, specify the) listing parameter.
This implies tIle S option (see lJelol,>.,o). (If you specifV tile S option but dicfn't
use t.he > listing parameter, 'You are prompte(j for a listing file.) The listing
filename is preceeled bV a > charact.er, \l~'hich indicat.es t.o Pasmat. tt1at it:s
st.andard output ("St.dOut") is to be redirected.

Formatting Details
Comments: The following nIles £Iovern Pasrnat's formatting of comrnents:.

• A comment t.hat. st.ands alone on a single line is p8.Ssecl to t.he output
ul18.ltered. It.s left. end is set to t.he current incfentation 1e\lel., so that
it.'s aligned with trle statements: before and/or after it. If it.'s t.oo long
to fit with this alignment, it is placed on t.he page as far right 88 it.
\h'ill ~IO.

• A comment that begins 8.8 the first t.hing on 8. line a.nd continues on
another line is passed to t.he output unalterecl, including its
indentation. This type of comment i:s assumed to contain t.ext
format.t.ed by t.he user.

• If a comment. coverecl by one of' the atlove rules doesn't. fit ~'v'ithin t.he
defined output line lengt.h,. the output. line is ex:tencfed as necessar)1 to
accommodate it., and 8. meSS8.ge is printed at the enel of tt1e
formatting.

• A comment t.hat is not. the first. thinQ on a line is formatted in with
the rest of the code. vJords: \'<,'ithin it are rnO'oJed to the next line t.o
make it. fit., so not.hinq that has a fix ed format shoulcl be used in such
8. cClfnment·. TIle comrnent is bmken only at bla.nk~:, and if there is no

11-32

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The VUlities

wav to break a comment and still fit the output within the output line
length, the line is extended as necessary., and a message is written at
the end of the formatting. If no code follo'n's a comment in the input
line, then no code is placed after the comment. in the output. line.
The J directive lets you force t.hese comments to start in a specific
column. n,ls feature is useful for commenting declarat.lOns (see
below).

• A comment that follows a stat.ement on a line anel begins with a
specific character can be (oreeCl to start in a specific column. ThiS
feature is: useful if you are making updates to a program and you want
to show who made the update and when.

statemertt: BUfiching: Statement bunc/ling refers to the way Pasmat aligns a
statement wit.h respect to some component of anot.her st.at.ement t.hat
precedes it. There are three cases:

• A stat.ement following a CASE label.

• A stat.ement following a Tt-EN or ELSE.

• A stat.ement following FOR WHILE, or WITH.

Pasmat allOl.vs some control over how these statements are aligned.

t\lote: The fe,llowing discLt.ssions describe how a statement can be aligned
relative t.el it.s "leed-in" st.at.ement, wtlether it's inClented after or on the same
line as t.he lead-in. Therefore, statement in these cases refers to a simple
st.at.ement. Compound statement.s are usually indent.ed start.ing on a new line
(except for their BEGIN's as controlled try the C directive)

Bilnching with CIiSE iBbeis: The default formatting rLlle for a CASE
statement is to place the selected statements on the same line as the case
label(s). The A directive let.s you specify t.hat the statement appear on a
separate line from the case label. The iJ directive lets you control how far
the statement.s following the case label are indentecl.

Bunching or IF stBtements: The default is: to place the controlled statements
on separate lines. The B directive t.ells Pasmat to place the cont.rolled
st.at.ements on the same line as the THEN or ELSE.

In the special case of a.fl ELSE IF, the default is to put the IF on the same
line as t.he ELSE. The q directive let.s YOLI specify that. the IF appear on the
next line, indented after the ELSE.

Bunching with FOR. (-IJHILE, end (-II/TH The default is to place the controlled
st.at.ement on the same line if it fits. Other\-l,oise, it is indented on the next.
line. The H directive lets you specify that t.he statement always appear on
tIle next. line.

f\Jote: the H directive also affect.s the IF statement.. With IF-bunching off
(8- directive), and t.he H directive off (H-}, t.he controlled statement. wOLlld
normally appear on a separa.te line. If there is no ELSE, then the H directive

11-33

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

tl''orkshop User's (iuide The i../tilities

applies to the IF statement just like FOR, WHILE, B.nd WITHi tllS1 is, the
controllecl sta.tement is ple.cee! on lhe same line ;:lS t.he IF if it. fit.$.

Tabies: Many Pascal programs contain long lists of initializat.ion statement.s,
or of comtant cleclarat.ions that are icll::1ically a sinclle action or declaration.
You can flt these into as fev.J lines tIS -pos~:£IJle lI:~ing t.he G (grouping)
directive. If this is u.sed (G=i forrnt t.ab stops are set. up on the line, and
success:ive statements or com:t.ant. declarat.ions: €Ire aligned to t.hese t.ab s:t.ops
instead of beginning on new lines.

Structured statements, which are normally formatted on more than one line,
Sl'e not affected by the G directive. HQ\,'v'ever, assignment and call
st.at.ements may be gfCIuped with the end c,f the stnlctured statemp.nt (eg .. ,
follol,.,.ing an END statement). A special form of grouping directive is
provided specificall~1 for assignment. anel call st.at.ement.s.

Assignment and Call stlltement Grouping: As clescribecl belo!,>,', the grouping
direct.i've t.o format. tables is G=i, where i is the max irnum number of
st.at.ements per line. This sets up t.ab st.ops t.o align i sta.tement.s or con~:t.ant.
declarations. However, for assignment aml call statement.s, it is not always
known ho",,. many st.at.ements will fit on a line. Even if it is,. these
st.at.ements aligned on t.ab stops may insert t.oo much ,,.,hite space and
produce an aest.hetically unpleas:ing result. A speCial form of grcruping can be
specified Llsing G+, which affects only B;S.signment and call sto.tcments. They
are grouped so that as many tIS possible fit. on a line without exceeding tile
line length. They are never grouped on a line encling a stnlCtured statement.,
so the problem ariSing I~.'ith the G=i form of grouping cannot happen.

You probably won't want to group all assignment a.nd call stat.ements
together everywhere in your program. The preset option is G- to format
assignment and call sta.tements one per linA Bracket the sections of your
code t.hat. you want grouped with G+ and G- directives.

If you are formatting a program that is: already partially formatt.ed ami has
sect.ions of code groLiped, you ma'y' not want it reformatted using G+ and G-.
The "smart" grouping opt.ion UI+) lets 'You specify tllat if more t.r,er, one
assignment or c8.11 statement. ere on the same input line" and they don't
exceed t.he output line I,l,'idth, the\/ are kept. groupecl in the oLitpUt.

l\Jote: if G=i is in effect with i) 1, it has precedence over the effect of G+
and P+. Thus G+ or S+ m~1 be enabled and G=i still be used (except for
G=l).

Declarations: If you want to align declarations so t.hat the objects of the
ident.ifiers (constants or types) all start. at a particular column, or align
comments explaining the identifiers, LIse ttle J directive. It. allows you to
specify the number of columns to reserve for t.he identifiers and in which
column the explaining comment is to begin.

11-34

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The I..)Ulities

OiIectives
Directives are specified by special comment.s included in the Pascal SOU1"ce
code. These cl)mments have tt"le form:

{[directives] optional text}
The direct.ives themselves are eit.her :swit.ches .. wit.h the format

<character>+
or

{character>-
or are numeric directives wit.h the format

<character>=<number}
or a chera.eter directive, which specifies 8. special charact.er, "c"., with the
format

<character>c
For the J directive only, the numeric directive can also have the format

<charact er>:{number} c/{number> cc/< number> c

l,l,'rlere the c's are chBracter~. €Inc! either or botl1 of the first t\'t'o entries can
be omitted (but not the slashes separating them .. e_g_, II<numbenc).

Iv1ultiple directives are separat.ed b~/ commas. Spac~: within a dire.ctive are
not allowecl. For example:

{ [b+, 0"'"72, t=4, r-]}

set.s t.he swit.ch lib" on, "r" of(and sets t.he nurneric directives "0" t.o 72 and
''t'' to 4. Case is ignored in directives.

The following directives are recognized:

A Place a st.atement following a CASE label on t.he same line if it. fits.

DefaLllt H+

B Place €I stat.ement follol,ving Tt-EN or ELSE on t.he S'.ame line if it. fits.

Defal...Ilt B-

C Place BEGIN on same line as it.s introdLlctory keyword. If C+ is
specified, then K- (the (fefault.) shoulcl be used.

Default c-
D Replace t.he comment. delimit.ers (* and *) with { and }_

Default D+

11-35

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshop User's GJ.iide Tl"le i./tilities

E Capitalize the first (or only) letter of identifiers ancl the first letter
follol,l,ling a break or underscore character LJ Retain the underscore
character. E overrides the L and ~\I directives. See also the P
(portabilit.y) option.

Default E-

F Turn formatt.ing on or off. F goes into effect immediately follol,l,oing the
comment in which it is placed. This is useful for saving
he.nd-formatted portions of a program.

Default F+

G Group stat.ements (i per line). G is specified either as a switch (G+ or
G-) or as a numeric directive (G=i). For G=i, the space from the
current indentation level t.o the end of t.he line is divided into i fieldc,
and succe:.."'Sive statements put on the boundaries of successive field. A
st.at.ement may take more than one field, in which case the next
statement again goes on the boundary of the next field. This is similar
to USing tabs on a typewriter. Any stat.ement t.hat requires more than
one line may produce strange results on subsequent statements. The
G=i form affect.s constant declarations and st.atements. By specifying
the G+ form., only assignment and call statements are grouped together
if they fit on a line. G+ only has affect if G=l is set.

Default G-, G=l

H Bunch a single statement on the same line as: FOR, WHILE, or WITH if
it fit.s. Ot.herwise indent it on the next line. This also applies to IF
(without an ELSE) if the B directive is off (8-).

Default H+

I Process include {:iiI filename} Compller (not. Pssmat) directives. Pasmai
provides three different ways to process include files. The third Wgy is
recommended.

• Process all the includes in tIle input to produce a single output file.
To do this, use the 1+ Pasmat directive (or option). As each include
Compiler directive is encount.ered, it is out.put on the line before the
output of the included source. However, to avoid reprocessing of this
directive by the Compiler (assuming t.he output is to be eventually
compiled), the "I" in the directive is not output.

• Treat each include file separately. Each file is given individualy to
Pssmat to format. By placing an I=n Pasmat directive at the start of
each source input file, you can specify t.he initial indenting level for
the file. Indenting for I=n starts a.t column n*t, that is, the specified
level times the indenting tab value (see T directive). (To determine
the indenting level for each include file, you can use the ProeNames
utility, which displays procedure and function names and their level
inforrnafion.) Note that since individual include files need not

11-36

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

H1orkshop User's Guide The t../tilities

represent syntactically complete PfficaI constructs (for example, an
include file can contain a procedure wit.h many nest.ed inner
procedures, but without the body of the outer proceduret Pasmat may
report a syntax error, If this happens, check the output to see if t.he
entire include file was processed.

• Process the entire source as in the first method above, but instead of
generating a single source with the include direct.ives removed,
generate as many output. files as there are input (include) files. The
result is a set of formatted files ith t.he same include st.ructure as
the input. All the include directives are output and edited t.o reflect
the new filenames (which m~1 be the original input and include
filenames, yielding a facilit.y that effectively reformats in place). This
method of proceSSing includes is indicated by specifying the ! option
when Pasmat is invoked. For further details, refer to the discussion of
! in the Options section,

Default 1-, 1=0 (include not processed)

J Special alignment of declarations and ccmments. The general format is
J= < width>:!: I <coli >sdl <coIZ> c,

<width>:!: specifies that (width> columns are to be reserved for all
following CONST, TYPE or VAR identifiers (you can also
control the alignment of the colons in VAR declarations ~\}ithin
the widt~1 by using the : option), The optional sign following
the <width> indicates whether to apply the (width> to record
field lists (if + is used or t.he sign is omitted) or to apply it
to just tile declared variables themselves (if - is specified).

<col1>sd specifies what column a comment. following a statement on
the same line is to start in, r\Jote that <width> is a INidth
specification .. and (coli> is a column specification. <coIl>
allows you to align all comment.s in declarations. All
comments following statement.s are aligned (when the
comment is the last thing on the same line as the statement.),.
unless YOll specify s or d following <coIl>. (Case is ignored,
and t.he letters m8'y be in eit.her order.) If s is specified,
<coIl> is applied only to statements and not to declarations.
If d is specified, <coIl> is on1,:/ applied to decl81'atiollS.
Omit.ting bot.h sand d is the same as specifying both; <col1>
is applied to all comments follo'!t'ing statement.s if tJle
comment is the lest thing on the line.

<coI2>c specifies a starting column for comments, as <coll> does., but
only effects comments that have the trigger character c as
the first comment character,

If (\'r'idth> is omitted, its previous value remains unchanged; the slash in
front of <coll> is required, If <coli> is omit.ted, the previous value remains

11-37

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshop Usel''s Guide The Utilities

unchanged,; the slash in front of it is optiona.l unless <coI2> is specified, in
which case bot.h slashes are required.

For cons:t.ant. declarat.ions:, the G=i (i> 1) directive overricles < width>.
Comment.s should then not be used for these stat.ements. The <width> and
<call> values are ignored for a line if t.hey cannot be Llsed because an
ident.ifier or its declarative information are too wide. A value of 0 for
<I""idth>, <coIl> or <co12> clisables t.he corresponding alignment.

Default J=O/O/O

K Indent. statements between BEGIN/END pairs. Normally the statements
are inclented t.o the same level as t.he BEGIN/END pair. The C directive
determines the actual placement. of the BEGIN. 1'.Jormally t.he BEGIN
appears: on a separat.e line unles.s C+ is used. K- SllOLlld be used if C+
is specified.

Default K-

L The case of reserved worcl's: ancl identifiers is t.o be a literal copy of the
input. L overrides the W directive and is disabled by t.he P direct.ive.
The R direct.ive overrides L for reserved words.

Default L-

N Group formal procedure paJamet.ers. This is similar t.o the G+ opt.ion ..
but only for formal parameters of procedure and funct.ion declarations.
I'-Jorrnall'y t.hese appear one per line.

Default N-

O This: is a numeric directive (Le., !)=w) t.hat. specifies t.he out.put line
IHidth. The maximum value allowed is 132 characters. If a part.icular
token will not fit in t.his widtl\ t.hat. line is lengthened to fit it, and a
message is disple:y'ed at. the end of formatting.

Default 0=80 .. or 3rd pararneter .. or 4th parameter wit.h H option

P Sets port.abilitv mode formatting, wIlier, removes t.he underscore
character U from ident.ifiers. The first letter of each identifier and the
first lett.er following each underscore crlaracter ere capitalizecl while the
remaining characters eJe in lower cese. This overrides the L 8nd W
direct.ives:. TIle case of reserved words is set with the R directive.

Default p-

Q If an IF follows an ELSE, clo not. treat the IF specially. It is indented
on the next line after t.he ELSE.

Def;~ult q-

11-38

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

J,..v'orkshop Llser's (iuic/e The Utillties

R Output all reserved words in upper case, otherwise (R-) output in lower
case.

Default R-

T Specifies the amount of tS.b for each indentation level. This is a
numeric directive (T=n). St.at.ements that continue on successive lines
are additionally indented by half this amount.

Default T=3, or 4th parameter., or 5th parameter with 1""1 option

U Case conventions for each identifer are bBSed on its first occurrence in
the source. The first occurrence of each identifier is left as is; all
subsequent occurrences are made to lool~ exactly like the first
OCCUlTence. U overrides the L 8nd W options, but t.he E and P options
can still be used.

Default u-
V Alion an IF statement so that the THEN is indented on the next line

after the line cont.aining the IF. The ELSE is aligned with the THEN.

Default \/-

W Convert identifiers t.o upper case, otherwise convert to Im','er case. W
is overridden by the L, P, and E directives.

Default w-
X Suppress space around the arithmetic operators +, -l *, and" and the

relational operators =., 0, <, <=, }, and }=. Normally, one space is
placed on each side of these operators. X has no effect on the == used
in CONST and TYPE declarations.

Default x-
Y Suppress space around the assignment operator ":=".

Default y-

Z Suppress space after commBS.

Default z-
il Controls CASE statement tags (la.bels). 3) is specified either as a switch

(3)+ or 3)-), or os a numeric directive (~=i). In ibs ~=i form .. i indicates
that the statements associated with the case tag are to start i columns
after the st.art of the the case t.ag. (This is similar to t.he
J=<width}/<col1>l<co12>c directive where <width} indicates how much
space to reserve for an identifer being declared.) i indicates how much
space to reserve for the case tag(s). If 3)=0 (the defaultL statements
following a case tag are indent.ed (using the current indenting tab value)
on the line following the the tag. If ii)=1, the wiuttl ur the first tag plus
2 (for tile tag's colon and following space) is Llsed to det.ermine the
space to reserve for all following tags in that case statement. This

11-39

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~v'orkshop User~ Guide The t.itilitie...t;?

means you should put your longest. case tag first. For dJ=i (i> i), i
spaces are reserved for the case tags. If the tag is too wide for the
specified ~~'idth, then the statements that follol,o, are placed on the
following line, indented i spaces.

3)+ and ro- specify what. to do "'lith a list of tags tllat don't fit. into the
specified width. a)+ indicates that a tag that is part of a list is to be
put on the next line if it would exceed the i widt.h. 3)- indicat.es t.hat
as many tags as possible are to be kept together on the same line. If
the resultlng I1st 18 longer than i, the statements 6re placed on the
following line indented by i.

Default a)-I al=O

Posit.ioning of colons in aligned VAR declarations. The reserved 'h'idtll
for identifiers in declarations is controlled by the J directive's <width>
parameter. In VAR declarations you have the choice of al1ot,','ing the
colons to immediately follow their identifiers by specifying :- or to
align the colons at the right end of the reserved width by specifying :+.

Default :-

, "Smart" grouping option. If fit is specified, assignment and call
statements that were grouped together on the same line in the input are
grouped together on the same line in the out.put if they don't exceed the
outPLIt line width.

Default 1-

Options
Most of the options change the initial default settings of the directives
described sbove. Options are specified by listing the letters (~vithout t.he +
or -) in response to the options prompt, or in a special options file (described
at t.he end of this section).

A Set A- to disable CASE label bunching.

B Set S+ to enable IF bunching.

C Set C+ for placement of BEGIN on same line as previous word.

o Set D- to disable the replacement of (* *) with { } comment delimiters.

E Set E+ to capitalize identifiers.

F Set F- to disable formatting.

G Set G+ to group assignment and call statements.

H Set H- to disable FOR, WHILE, and WITH bunching.

I Set 1+ to process Compiler includes.

K Set K+ to indent statements between BEGIN/END pairs.

11-40

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshop ljser's Guide The LltiJities

L Set L+ for literal COp~1 of reserved words and identifiers.

M Rename identifiers. This option requires that the third Pasmat
paramet.er specify a file cont.aining a list (If ident.ifiers and their
corresponding new names. Each line in this file contains two identifiers
of up to 32 characters each. The first is the iclentif'ier t.o be renamed
in the input file. TI1e second is the name that. will replace all
occurrences of t.he first identifier in the input. when creating the output.
There must be at least one space between the two identifiers. Leading
and trailing spaces are optionaL The case of' the first. ident.ifier doesn't.
mat.terl but t.he second ident.ifier must be specified exactly the way it is
to appear in t.he out.put. The case of all identifiers not specified in t.he
renaming file are subject to the other case options (EI L, U, and W).
Reserved words cannot be renamed.

Instead of specifying the rename file as a parameter, if you have a file
named input..RENAME.TEXT (where input is whatever t.he name of the
input file is as specified on the Parameter(s) linet and the M option 1s
not explicitly specified (along with its a$sociat.ed rename paramet.er),
then the M option is implied and the implicit file is used.

N Set N+ to group formal parameters.

P Set P+ for portability mode.

Q Set Q+ not to treat ELSE IF sequence specially.

R Set R+ to show reserved words in upper case.

S Generate a display listing of the output. Unless you specified >listing
(where liSting is a filename) in t.he parameters line, YOLl are prompted
for the listing file. The listing file is ignored if either the output or
the inpLlt file is specified as -CONSOLE.

U Rename all identifiers based on their first occurrence. Tl1e rename file
has precedence over this option; if an identifier is specified in t.he
rename file l the identifer's translation is based on the rename file
rather than its first occLlrrence in the source.

V Set V+ to Pllt THEN on a separate line.

W Set W+ to show identifiers in upper case.

X Set X+ to suppress space around operators.

Y Set Y + to suppress space around :=.

Z Set Z + t.o suppress space after commas.

Set :+ to align colons in VAR declarations (only if a J Pasmat directive
in the source specifies a < width».

a Set al+ t.o force multiple CASE tags onto separate lines.

11-41

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

?\Iorkshop I..)ser's Guide The L/tilities

I Set 1+ for "smart" grouping of az:signment and call statements (grouped
assignment and call statements on an input line appear grouped on
output).

Process includes and generate a set of output files wit.h the same
include st.ructure as t.he input. The out.put. file names are generat.ed by
editing t.he input (include) file names according t.o pattern and
replacement strings. The include Compiler directives are also
appropriately changed.

The pattern and replacement editing strings are specified by entering an
output file name in the form lpattern/replacement./ (single or double
quotes can be lIsed in place of slashes). The pattern is a sequence of
characters. (ignoring case) that is to be looked for in the input. pathnarne
and each include pat.hname (t.he entire pathname is used). If the pattern
is found, that sequence of characters is replaced by the replacement
string. The result is e. new pe.thname t.hat. becomes t.he nAme for an
output file. Applying this editing operation to the input name and all
includes produces a set of output files wit.h the same structure as the
input.

The following are examples editing operations and their associated
effect:

"Prefix/' Prefix each name \','ith the :sequence of characters
"Prefix/".

IOldFile/NewFilel Replace each name containing the string OldFile with
the string NewFile.

III Prefix each name with t.he null string--t.he output
names are the same as the input names. The result
is effectively an in-place formatting of the input.

If YOll specified an output file on the paramet.ers line that looks like
Ipattern/replac:ementl (where the slashes could be • or " characters).,
Pasmat shows the , on the optiOns prompt. If you remave t.he ! from t.he
options .• Pasmat interprets the string as an out.put filename. Conversely~
if you entered an invalid editing operation (e.g., you didn't. LIse three
slashes) but you intend to use the ! function, enter it on the options line.
You are then prompt.ed to correct the pattern and replacement.. This
prompt accepts as the delimiter whatever you use as the first character
(e.g., .#abcldefl specifies abc as a pattern and def as a replacement).

• Ring the bell at completion of the execution.

All options except M, S, " and '" have directive counterparts. If you use the
embedded directives, YOll don't. have t.o specify them as optiOns each time
'yOU call Pasmat (though the Options prompt always appears).

11-42

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The lAilities

In adclition t.o explicit.y specif'ying options, you can creat.e an options: file
called PASMAT_OPTIONS_TEXT t.hat. contains t.he options you !",ant· to use.
Pasmat a.lw8.ys looks for this file. Lines in the file contain a sequence of
optiDn characters grouped togeU-ler on t.he same or separate lines. The lines
fTl8.'y be commented lIsing braces ({ }).

The options file may also specify tlte output line width (O=w), t.he indent tab
value (T=n), and the CASE tag width (ID=i). A typical options file might. be:

n {group formal params on same line}
u {auto translation or id's based on 1st occurrence}
r {uppercase reserved words}
d {leave comment brackets alone}
, (smart grouping}
0=82 {output line width}
t=4 {indent tab value}

If Pasmat does find an ClpUOns file, thc1se options w'e shown on the options
prompt. line as if you typect t.hem in. You can press [RETURN] t.o accept
them, or change tl"lem by backspacing over t.hem. If YOll specified the width
and/or t.ab values, t.he specified values appear as the default values l~"hen the
output widt.h and t.ab prompts are given. If you specify the output width emf
tab 1/;9.lues: on the paramet.ers line, tllose values t.ake precedence and tile
associated prompt.s are not given.

Limitations and Errors
There are t.he follo!,.,.ing limit.ations on Pasmat.

• T he max imum input line lengt.h is 132 charact.ers.

• The maximum output length is 132 cflaracters.

• Only syntactically' correct program:::, unit.s., blocks, procedures, and
st.atements are formattee!. This: must be tal<en into consideration wilen
separate include files and condition81 compiler directives ere t.o be
formatted.

• The Pascal include directive should be the last thing on the input line
if includes are t.el be processed. Pasmat does not. act correctly if
anything follows the include comment on the same line. Includes are
processed t.o a maximum nesting dept.h of five. All includes not
processed are summarized at the end of formatting. This assumes the
I direct.ive or option is in effect.. Note t.hat tile "I" in t.he comment
containing t.he directive is not output to avoid reprocessing when the
output is eventually compiled.

The following errors are etetected and noteel:

• An'y syntax error in the code causes the formatting to abort. An error
message will give t.he input. line number on whicll t.he error is
detected. The output file will contain t.he output up to the point that

11-43

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The i./tiJities

tIle syntax error W;9.S detected. Tllis output. may help ~lOU det.ermine
what. the error is. The error checkin~1 is: not perfect; successful
format.t.ing i:s: no IJu8f;:\nt.ee that t.he program will compile.

• In generat premature end-of -file c:onditiCtns in t.he input. are not
reported 8S errors, to accommodate format.ting of inclividuRl include
files that may only be program segments. There ere cases .. however,
1,'lhere the include file is a partial program that Pasmat int.erprets and
reports as a syntax error. Check t.he output to see whether it really
was a svnt.ax enor or just t.rle premat.ure enel of file.

• There is a limit to the number of indentation levels that Pasmat can
haneUe, anel if t.his is ex ceeded, processing will abort.. This probaJ::1Iy
will be rare .

• If a comment. It/ould require more t.han the maximum output length
(132) t.o meet. the rules given,. proce~:sing ,,,,oill abort.. This probably will
be rare.

• If B t.Dken (identifier or string) is too long for t.he output line lengt.h,
the length is extended for that line, and :9. summary is printed at the
end of the forrnBtting giving t.he places in the output where this
occurred.

• If a comment. line is extended according t.o rule 4 in the Comment.s
sect.ion, a summar~1 is printecl at tfle end of t.he formatting giving the
places in t.he output wl1ere t.his occurred.

11-44

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

11.20 PortConfig
Synopsis
PortConfig enables you to configure the RS232 ports.

Dialog
First 'You must. supply information on ho\" to configure the port.

y,,1hich RS232 port do you I,vant to configure? (A or B)

What. parit.y setting ?
0) No paritoy
1) Odd parity; no input parit.y checking
2) Ocld paritYi input parity errors = 00
3) Even paritYi no input parity checking
4) Even paritYi input parity errors = $80

Enter selection (0 - 4) [0]

""Ihat output handshake protocol ?
0) None
1) DTR handshal<e
2) XONI XOFF handshake
3) Delay after CR,LF

Enter selection (0 - 3) [0]

lrlhat baud rat.e? [9600]

Receive and buffer input how ?
0) Buffer input until full request is satisfied
1) Return whatever is received

Enter selection (0 - 1) [1]

Yirlat. input. 118J1dshake protocol ?
0) None
1) DTR handshal<e
2) ;>(ON/XOFF handsllal<e

Enter selection (0 - 2) [0]

Adjust. type-ahead buffer how ?
0) Flush only
1) Flush and re-size
2) Flush, re-size, and set thresholds

Enter selection (0 - 2) [0]

What. form of disconnect. detection ?
0) t-Jone
1} BRE AK det.ect.ed means disconnect.

Enter selection (0 - 1) [0]

The t../tilities

Timeout. on out.put. aft.er rlow many seconds (0 = no timeout.)? [0]

11-45

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshop /...,lser's Guide

Automatic linefeed insertion ?
0) Disabled
f) Enabled

Enter selection (0 - 1) [0]

The Utilities

We are now ready to configure the port. Shall we proceed? (Y or hJ)

PortConfig contains a series of questions. After YOLI answer one, you will be
prompted for an answer to the next one. The default values for each
quest.ion are shown in brackets.

Description
With the PortConfig utility, you can configure the RS232 ports, and establish
such things as the parit\1 sett.ing, handshal<e protocol, baud rate, disconnect
detection, and so fort.h. If you are using Pascal and want additional
information on port configuration, see Sect.ion 2.10.12 in Opersting System
Reference Manual (or the Lise..

NOTE

For Serial A and Serial B pC1rt.s, the baud rat.e can be set to 50, 75, 110,
150, 200, 300, 600, 1200, 1800, 2000, or 2400. Serial A can also be set.
to 4EOO or 9600.

For output only;. Serial 8 can also be set to 3600, 48(X), 7200, 9600, or
19200.

11-46

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

11.21 ProcNBIl1es
Synopsis
F'rochJames lists: all t.he procedure ancl function names in a Pascal program.

Dialog
Pa.r8meter(s,l [? for help]:
Input file: [.TE'<T]
Output file: [-console] [.TEXT]
iJpt.ions (? for help);
Intrinsic.Lib to use for tl1is ProcN8fOes:

The input and output. prompts don't. appear if t.hey Bre specified as explicit
parameters:

Parameter(s) [? for help]: input output
Typing ? in re::::ponse t.o a prompt displays information about t.he response
needed.

Pressing [CLE ARJ in response to a prompt t.erminat.es tlte program. After t.he
prompt.s are processed, ~/(tU can tvpe .-period to t.erminat.e.

Description
Prochlames t.akes a Pascal program as input. amI prc'duc:es a listing of all its
proceclLu'e and function names.

The input. can be a set of files if you clon't give t.he input. file as a
paramet.er, but let Procl'James prompt. ':/OLI for it.i eacll file is process:ed
:separat.elv. ProcNames continues prompting for input files until a null
re::;:ponse is enterect T~le response can also tie of tJI8 form <filename, where
filename conta.ins a list of file names. The default. output. file is the
console. The output. file can also be '~iven t~/ specifying >filename on t.he
paramet.ers line.

The nBmes in t.he ProcNarnes listing 8re dis:played indented t.o show t.heir
nesting 1e','/e1. The nesting level and line number informat.ion is also
displayed.

F'rochJames can be useel in conjllnction 1,'/ith the Pascal "prettv-printer"
ut.ilit.y, Pasmat., when Pasrnat is used to format separate include files. In
this case, Pasmat require,:;: that. t.he initial inclenting level be specified; this is
the information provided by Proct-James.

The" line number information displa~led by ProcNarnes matches that produced
by t.he Pascal crc.tss-reference utility Xref (with or without USES being
processed)" so Procl"James CBn by used in conjunction wit.h the Xref listing to
sho'"" just tIle line numbers of ever~' procedure or function header.

Options
The follolh'ing opt.iom: Bre available. YOll specifV options tlV listing t.rlern in
response to the opt.ions prompt.

11-47

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\I'ol"kshop Uset~s· Guide The UUlities

C Do not process a used unit. if the unit's name or its ($U) object
filename (if a compiler $U- is in effect) is s:pecified in the list of files
to be processed. (This option has tIle same effect on tIle line numbering
as doe::: the C option in the Xref utility.)

M tv1acintosh mode. Ignore any $U:!: direct.i'</~:. ($U- is: assumed.)

N Suppres:s 8.11 line number ;~nd level information in the output display.
Only t.he procedure and function names are s:hown.

P Pasmat. compat.ibility. The default is: to list trle procecture and functIon
ne.rnes as a function of t.heir Compiler indenting level. However, for
indenting purposes onl~l, a special case is made of level 1 procedures in
the IMPLEMEr,JTATIO"J section of a unit. P::!I.Smat formats these
proceclures under t.he word IMPLEMEt,JTATlON, so t.hey are indented as if
they were level 2 procedures. If you intend t.o use the level information
for Pasmat, specify tIle P opt.ion.

T Reset total line number count to 1 on each new file. The default is to
number continuoLlSly through a list. of files (agreeing with the listing
produced by Xref).

U Process USES declsJations. You need to process USES declarations if
vou want t.he line number informat.ion to agree with an .x'ref listing that
also cont.ains processed USES. The default is not t.o process t.he USES
declaration:::, since they h8.'ve no effect on the procedure name listing,
onl~1 the associated line numbers. If yelu specify the t,~ option to
suppress line numlJer information, the U option will be ignored.

$ Use;~ specia.l intrinsic libr;3JY directory; ~/OU will be prompted for the
file name. The clefault. is t.o use Int.rinsic.Lib for int.rinsic units. This
option only has meaning if the U option is used.

* Ring t.he bell at. completion of the execution.

Example
The folloll,'ing shows the output produced b'!., Proc~,James (using source for
F'rochJames itself as t.he input.).

Procedure/Funct i on names for procnames/procnemes. TEXT

17 17 0 Prodimes [Prodimes]
procnames/procnmes.TEXT

116 116 1 Stop
131 131 1 NextChar
173 173 1 Readld
2f)2 2f)2 1 Advance
212 212 2 Opts
218 218 3 GetSegName
251 251 3 Getlnclude
28B 2BB 3 GetUFname

11-48

."", "",

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iork.shop User's Guide

338 338
396 396
-405 405
451 451
464 464
524 524
562 562
007 007
650 650
661 661
673 673
696 696
719 719
734 734
756 756
663 663
908 908
969 969

1097 1097
1108 1108
1265 1265

2
1
2
1
2
2
2
2
2
3
4
4
4
5
5
4
3
2
1
2
1

Dolnclude
Scan

Scanld
Procf)cl

WriteProc
ProcHdr
ScarBody
ScanltfTERF~
ScartJSES

Use
OpertlbjFile
ProcessInterface
FimUnit

NextByte
NextInt

Readlnterface
Du~se

ScartElKDS
Init

I ni tKeywOTds
Process1F il e

••• End ProcNfIltes: 30 Procedures and Functions

The Utilities

nle first two columnl are line number information; tIle third column is the
level number. The first column shows the line nLlmber of a routine within
the total source. The second column shoW'~ the line number I,vithin an include
file (includes are always processed). As each include file changes, the name
of the file from which input is being processed is shown along with the
routine name on t.he first line after t.he chan~le in sOLlrce. Segment. names
(from Compiler $S directives) are similarly processed. Trlese are shown
enclosed in square brackets (a blank segment name is shown as "[<blank>]").

Limitations and Errors
Only syntactically' correct programs: are accepted by Procr'James. Conditional
compilation Compiler direct.ive:> are not processed.

11-49

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshop User's Guide The Utilities

11_22 RMaker
Synopsis
Rt,,1al<er is used to create resource files for ~,1acintCish applications.

Dialog
Input file [sysResDef] [.TEXT]

Description
RMaker is the resource compiler, useel t.o create resource files for Macintosh
applications. It. converts object. files to a lv1acintosh executable form. The
resource file creat.ed by RI'-1aker let.s the 1'-1acintosh Resource Manager know
what. resources (such as menus, icons, and fonts) your application uses.

The name of the RMaker out.put file must be specified on the first.
noncomment line of your RMaker input file.

Informa.tion on t.he format of RHaker's inpLlt. file is c.urrent.1y in IrlSide
"'1Bcjntos~ PLitting Toget.her a fvlacint.osl1 Application. Tile fvlacint.osl1
Resource I'-1anager is described in Inside Macintosh., The Resource Manager:
A Programmer's Guide.

11-50

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Jorksh(jp User's Guide

11.23 Search
synopsis

The l./tilities

Search copies all lines containing a specifiecl pattern from its input to it.s
output.

Dialog
Parameter(s) [? for help]

The format for the parameters is; <stdin >stdout pattern

Description
Search reads its input (Stdln) one line at a time, and writes to its output
(StcIOut.) all lines t.hat. mat.ch the specified p at.t ern. The defaults for bot.h
Stdln and StdOut are the console. If the input is from the console, use Ii-C
to inclicat.e the end of file.

The pattern is a concat.enation of any of the following:

c Literal character c.

? Any character except. [RETURN).

% Beginning of line (only lias meaning when first character of pattern).

$ End of line (only has meaning when lest. character of pettern).

[...] Character class (anyone of the bracketed characters).

[" ...] J\Jegated clisJacter class (all but t.he bracketed characters).

>I< Closure (zero or more occurrences of t.he previous patt.ern) (has no
meaning when first character of pattern).

c Literalized character (special symbol c taken as is, including "').

n [RETURN).

The special meanings for t.hese S'ymbols are lost. when literalized wit.h N or
inside of bracket.s [... J (except "').

A character class consists of zero or more of the following elements
surrounded bV brackets:

c Literal character c (including [).
cl-c2 Range of characters (digits, uppercase err lowercase let.ters) (the

dash has no meaning when at the beginning or end of a class).
J\Jegat.ed character clas:s (only has meaning ',,,,hen first character in
class).

c Literalized character.

11-51

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

?\Iorkshop User's Guide !lIe t,...Itilities

For example, t.o copy all lines ending ','lith a Pasca.l ke~II,'IOrcl or iclentifier:

PHrameter(s): (stdin [a-zA-Z] [a-zA-ZO-9]·$)stduut

To match anything between parentheses (not necessarily balanced):

Parameter(s): (stdin (7*) >stdout

11-52

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshop Liser's Guide

1124 SegMap
Synopsis
Segtv1ap produces a segment map of one or more object files.

Dialog
Files to Ma.p ? [.OBJ]
Listing File? [-CONSOLE)

Description

The U'tilities

SegMap accepts either an object file name or a command file name, which
enables you to include predefined lists of files.

A command file must be preceded wit.h a "(". SegMap adds t.he .TEXT suffix
to the command rile name.

For example, if the file "Apple.text" contains:

"code"
"pasca.l"
"basic"

Submitting "< Apple" directs SegMap to accept sequentially, "code.obj",
"pascaLobj", and "basic.obj".

The map information includes the object file name, the name of the unit in the file,
the names of tM segments Llsed in that unit (if any), and t.he new segment
names.

11-53

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\/orkshop User's Guide

11..25 Showlnterface
Synopsis

The UUlities

ShowInterface allows: YOll tel view t.he interface section of any unit.

Dialog
List file: [-console) [.TEXT]
Intrinsic.Lib: [-!Jll] [INTRINSIC.LIB]
$U filename:
Urn t name:

T~/ping ? in response t.o a prompt. displays information about t.he response
needed.

Pressing [CLEAR] in response to 8. prompt terminates the program. After the
prompts are processed, you can type .-period to terminate.

Description
Showlnterface requires the same information as a Pascal USES statement: the
unit.'s name, whether t.o process t.he unit in {$U+} or {$U-} mode, and if {$U-},
the object file (or library) containing t.he unit. Any number of units may be
processecL

Library units, which are stored in a compressed format by the Linker, are
formatted using a special version of the Pasrnat utility_ I\loncompressed
units are printed as is.

The default listing file is the console. The only way to change the list file
is t.o rerun Showlnt.erface.

You can use a special intrinsic library, instead of the default INTRINSIC.LIB,
for all units accessed by {$U+}. You must rerun ShowInterface to change the
intrinsic library name. The specification of a special intrinsic library here
corresponds to the $W filename Compiler invocat.ion option, which allows you
to use a particular intrinsic library for all the used {$Ut} units of a
particular compilation.

You can process: a unit in {$IJ+} mode or {$IJ-} mode. The default is {$U+}.
{$U-} is indicated by specifying an explicit library or object file.
Functionally, this is similar to tIle following Compiler USES statements:

• No response to the U$U filename" prompt: USES {SUf} unitname, __ i

• Library or object file name response: USES {SU-} ($U filename)
unitname _;

11-54

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

l,A.1orkshop Llser's Guide The l/tilJties

./

{$U+} indicates that the specified unit is to be searched for in the intrinsic
library end, if not found, in the most. recently specified $U filename. ($IJ-}
means that the unit should be searched for only in the $U filename, never
the intrinsic library. Also, in {$U-} mode, the specified filename is accessed
as written. If that file can't be accessed, it is retried with a. .OBJ ext.ension.

The unit you specify is processed in the same manner as in the Compiler;
before processing it, ShowInterface shows you the equivalent Compiler USES
st.atement, and asks you if it's okay. If not., you are prompt.ed again for a
$U filename.

ShowInterface continues to prompt for $U filenames and unit names, and to process
them, until you press [CLEAR). You must exit and rerun the program to change
the listing file or the intrinsic library used.

11-55

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshop lAser's Guide

11.26 SXRef'
Synopsis
Pascal cross reference utility

Dialog
Source File ? [. TEX T]
Output file for List.ing ? [-CrossRef) [. TEX T]
Do YOll want a numbered list.ing of the source ? (Y or N)

The i../tilities

Flag the declarations and assignments of each indentifier ? (Y or N)
DeclaJation ChBrBCler ? ["']
Assignment ChBracter? [=]
Text fUe of words to Omit? [SXRef.OmltJ [. TEXT]

Description
SXRef gives a numbered listing of t.he source files and an alphabetical listing
of identifiers found. For each identifier, all references to the identifier are
listed in the order in which the references were encountered. Procedure and
Function names along with all references to them will be found at the end of
the cross reference listing.

Identifiers follow current Lisa Pascal conventions: the first eight chBracters,
without regard to case sensitivity. Case insensit.ivity is achieved by shifting
identifiers t.o lower case, within the Cross Reference section.

INCLUDE files are automatically processed. User interfaces are not
processed. Comments and strings are recognized and skipped. There is no
conditional compilation processing or elimination of code controlled by
boolean constants.

SXRef will accept multiple source files. This can be used to get a cross
reference of a set of Main Programs together with t.he Units which the
proorams use. References are (liven by file number and line number within
the file. A directory of files read is printed at the end of the source listin9-
and before the cross reference sect1ort.

SXRef attempts to read a file for a list of words to omit from the cross
reference. The default name is SXRef .omit.t.ext, but other names can be
given. If the file cannot be opened, execution proceeds normall'Y without
omitting any identifiers.

SXRef will optionally flag where all identifiers are declared and assigned
values. The default flag characters are: [*] for declaration and [=] for
asSignment.

If SXRef runs short of storage, an error message is given and the program
aborts.

See Also
GXRef, UXRef

11-56

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

t-\Iorkshop Ltser's Guide

11.27 Tr8llSiit
!)'y'nopsis

The Utilities

Translit maps its input character by character and writes the translated
version to its output.

Dialog
Paremeter(s) [? for help];

The format for the parameters is: (st di n ["] src [dest] > st dout

Description
Translit maps all the characters in its input file (StdIn) that match the
characters in src into the corresponding characters in dest in the output file
(StdOut). All charact.ers not in src are simply copied from the input to the
output. The defaults for both Stdln and StdOut 8l"e the console. If the input
is from the console, use Ij-C to indicate the end of file.

To replace all instances of "x" with ''y'':

Parameter(s): (stdin x y)stdout
80th the src and cles:t. par8met.er~ mAy cont.ain substrings of the form cl-c2,
meaning all characters from cl through c2, where cl and c2 are both letters
of the same case or both digit.s. To convert a file to all uppercase letters;

Parameter(s): (stdin a-z A-Z >stdout
If dest is omitted, then all characters specified in src are deleted. If dest is
shorter than src, all characters in src that would map beyond the last
character in dest are mapped to the last character of dest, and adjacent
instances of such characters in t.he input are represented by a single instance
of the last character in desL To convert each string of digits in the input to
the single digit. 0:

Parometer(s): (stdin 0-9 0)stdout
If src is preceded try a caret (A), then all characters except those in src are
used as the source string--t.hey ere all deleted if dest is omitted, or they ere
collapsed to the last character in dest. To replace all nonalphabetic
characters with asterisks:

Parameter(s): (stdin Aa-zA-Z •)stdout
The tilde C) is a lit.eralizing symbol in the src or dest parameters; it passes
the following character as is. The special case II'" nil represents a RETURN
character. To replace all RETURN characters I,I/ith spaces:

Parometer(s): (stdin -n -)stdout

11-57

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

?\Iork.shop l.,(ser's Guide

11.28 UXRef
Synopsis
Show unit dependencies of one or more Pascal source programs

Dialog
Type "?" to see current options
Source File? [.TEXT]
Output file for Listing? [-Cross Ref] [.TEXT)

The Utilities

Text File of unit names with unexpected pathnames ? [UXRef.UMap]
[.TEXT]

Desuiption
UXRef gives an alphabetical listing of programs and units. Each program or
unit listed includes two parts: 1) alphabetically list.s all programs and units
that USE that program or unit, and 2) alphabetically lists all units that ARE
USED BY that program or unit.

UXRef recognizes conditional compilation and will determine the truth value
of any {$ifc ... } expression. Compile-time variables can be of both boolean
and integer types and a {$setc ... } can change a variable to a new type.
Warnings will be sent to the console if a syntactical or semantic error is
found in an {$ifc ... } expression.

Warnings about units that can't be found are sent to the console. Even
though a unit cannot be found it will still show LIp on the Cross Reference
listing.

OptiOns may be turned on or off during file name prompt stage of UXRef.
F Our options are included:

+C You will be ~ked to manually clarify a compile-time
expression or variable that cannot be evaluated correctly. Enter
'T' for true and 'F' for false. If this option is off, the entire
expression will be treated ~ false.

+F As each file is opened, a message will be printed on the
-console specifying the file name and the unit name being read.

+1 "Include Files" will be treated as units and will show up on the
Cross Reference listing. Only those "include files" that are
fOLlnd between the beginning of the program/unit and the end of
the uses section will be listed.

+W All warnings will be written at the beginning of the Cross
Reference listing as well as on the console.

By enterino ? during the file name prompt stage a short description of each
option will appear along with their current values. The default values of the
options are: -C, +F, -I, and -W.

11-58

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\I01'kshop User's Guide The Utilities

UXRef provides a facility to map a unit to an unexpected pathname. For
example, t.he unit. "Faa" might not. be compiled yet. (e.g .. , "FOO.OBJ" does not.
exist) and the source is named "UNIT IFOO.TEXT". UXRef will attempt to
read a file for a list of logically connected unit.s and pathnames and if
FOO,-UPPER-UNIT IFOO.TEXT is an entry in t.hat file then "UNIT IFOO.TEXT"
will be located and searched on the UPPER diskette when the unit FOO is
referenced. The unit name and the pathname must be separated by a comma
with no extra spaces between. In addition this same facilit.y can be used to
shut off unnecessary warnings that occur when an inaccessable unit is
referenced. Normally warnings will be printed when a unit cannot be found,
but if the unit name followed by a comma appears on UXRef.Omit.TEXT (or
some ot.her name provided by the user) the warnings for that unit will be
bypassed. Example entries are:

FOO,-UPPER-UNIT IFOO.TEXT

SYSCALL

See Also
GXRef, SXRef

11-59

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

In'orkshop Llser's Guide

11..29 WordCount
synopsis
t;.,lordCount counts t.he number of words in its input.

Dialog
Perameter(s) [7 for help]:

The format for the parameters is: <stdin >stdout

Description

The UUlities

WordCount counts the number of words in its input (StdIn), and writes the
total to its output (St.dOut). The default.s for both Stdln and StdOut are the
console. If the input is from the console, use j-C to indicate the end of
file.

A word is considered any sequence of characters not containing a blank or
any cont.rol charact.ers (e.g., RETURN Dr OLE).

11-60

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

f,.l,:'orkslIDp L<s-er's Giiide

1130 Xref
Synopsis

Tl1e U~ilities

Xref is a cr():;:'"".S-referencing utilit.y that. displays all variable references in a
P;3Scal source program (or programs).

Dialog
Pararneter(s) [7 for help]:
Input file: [. TEXT)
Output file: [-console] [.TEXT]
Options [7 for help]:
Max imum out put Ii ne wi dt h:
Intrinsic.Lib to use for this Xref:

The input, output, and line-I,,'idth prompts don't appear if they aren't needed
or are specified as explicit parameters t.o the first prompt:

Parameter(s) [? for help]: input output width
T':lping ? in response to a prompt displays information about the response
needed.

Pressing [CLEAR) in response to a prompt terminates tIle program. After the
prompts have been processed, you can type .-period to t.erminat.e.

Description
Xref lists each variable in the source program in alphabetical order., followed
by t.he line numbers on which it appears.

The input. can be a set of files if you don't give Hie input. file as a
paramet.er, but let Xref prompt. you for iti each file is treat.ed as an include
file in t.he cross- reference cfisp18lJ. Xref cont.inues prompting for input. files
until a null respons:e is entered. The response can also be of the form
<filename, I..,.here filena.me conta.ins a list of file names.

The idth parameter is the maximum output width of the crass-reference
li~t.ing (whir,h determines: ho ' mElny line numbers are displayed on each line
of the listing). The ... vidth can be a value from 40 to 132.

Line numbers in the cross-reference listing can refer to the entire source
file, Dr can be relative t.o individual include files ane! units.. Each variable
reference indicat.es whether the variable is defined, assigned, or simply
named (e.g., used in an expression).

Variables in Xref mB:'~/ be up to 16 characters. You can specify that the
variables remain ffi t.he~1 appear in the input, or they can be converted to all
lowercase or all uppercase.

11-61

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide The Utilitie..t;-

y"lhen include files are processed by Xref, each line number displayed is
relative to the stmt of the include file; an additional I<ey number indicat.es
I,.,'hiclt include file is referred to. A list of eacl, include file processed and
it.s associated key number is displayed prior t.o the cross-reference list.ing.

USES dec:larations can also be processecf bV Xref (their 8Ssociat.ed $U
filename, $U+ and $U- Compiler directives are processed as in the
Compiler). These are treateel exactl'y like include files, except that the line
numbers refer to t.he lines of a unit's interface section as they are read from
tile librmy code file of a USEd unit., and, as in the Compiler,. only tile
outermost USES declarat.ion is processed (t.he USES declaration of a USEd
unit is not. processed). Also, as in tIle Compiler, a private Intrinsic.Lib mav
be used.

As an alt.ernat.ive t.o processing USES declarations., ;~~ref accepts multiple
source files. You can use this to get a cross reference of a set of main
programs together with the units usee! by the programs. All the SOLIrCE'S me
treated like include files for displa:y purposes. Xref checks to see if it has
already processed a file (e.g., it. appeared t ice on t.he input. list., or one of
the files already USEd or included it.t 8.nd if so, t.he file is skippecL

Options
H'le follo!'<"ing opt.ions are available. Options are specified bli list.ing t.hem in
response t.o the opt.ions prompt.

A Process all files, even duplicates of files already processed. The default.
is to proces.'S eacrl file or unit on1v once.

B Suppre:;;:$ t.he 11~:>dce.1 informo.tion on t.he SC,I.lrce listing. See ex ample for
furt.her det.ails.

C Do not process a USEd unit if the unit's name or its ($U) object
filename (if 8. Compiler $U- is in effect) is specified in t.he li~:t of files
to be processed.

D Delete all underscores in identifiers. The default is to ret.ain the
under~:cores and treat them as significant. identifier characters (as in tt1e
Compiler).

I Do not process include files. The default is to process them.

L Force all letters in identifiers t.o lower case. The default is t.o leave
them as they appear in the input. (If Land U are both specified., U is
ignored.)

M 1\'1acintosh mode. Ignore an'y' $U:!: directive,s. ($U- is assumed.)

N Do not process USES declarat.ions. The default. is t.o process t.hem. If
N is specifiecf t.hen the C option is io;,1nored.

11-62

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\/orkshop User~s Guide The i./tilities

P Do not print the input source as it is being processed. The default is
to list t.he input. ($P Compiler directives generat.e a form feed to be
generated).

S Suppress include and USES information in all displays. The
cro:ss-reference displa'<jS: (the listing, if the P opt.ion is not useel, and the
cross-reference itself) will not cont.ain any of the include/USES
information. The T option is implied tly s:pecifying the S option.

T Cros:s-reference by total source line number instead of include file line
number. Ttle include infllIfTlatilln is still displayed (if S, 1 or N are ne't,
specified). This option is implied if the S option is specified.

U Force all letters in identifiers to uppercase. The default is to leave
them as they appear in the input. (Ir L amI U are both specified, U is
ignored.)

$ Use a special intrinsic library director~l; you will be prompted for t.he
rile nt\llIe. Ttle default is to use Intrinsic.Lib for intrinsic units.

,. Ring t.he bell at. completion of the execution.

la'entlfiers: Normally,)<ref doesn't change the case clf let.ters in identifiers
or remove underscores, so you can see case differences in the
cross-reference listing. If)/OU use the L or U options., Xref ignores C8S:e (as
the Compiler does). Up to 16 characters of eacll identifier are retained, so,
unlii<",e the Compiler, identifiers that differ in ttleir spellings after the eighth
character appear as different identifiers in the cross-reference listing.

Line numbers: You have the choice of which line numbers are displayed in
the cross-reference listing: include rile line number or tot.al input line
numt.)er. The default is include file line number. If you specify tIle S or T
options. t~le listing shows t.ot.al input line numbers. If the T option is used,
include file information is still shown. The S option slIppresses the include
information.

include/USES information: The I and N optiOIl$ control processing of include
files and USES d~clar8tiore.F re$:pect.ively_ Normally, both of these are
processed. You can suppress process:ing of include files by using the I option
and suppress processing of USES with the hJ option.

If '~IOU don't specifl,.l N, Xref processes :=\ USFS rJAclarAt.il1n exactly like t.he
Compiler. If you want tel cross-reference an entire system, including all of
tIle units of t.hat system, processing the units throu~lh the USES declaration
will only get you the I~"TERF ACE section of each unit. To get both the
INTERFACE and IMPLEMEr\lTATIOhJ sections, specify 8. list of files t.o be
proces:sed t.hat includes the source:::: to the unit.s. In this case.,)/OU should
specifv t.he r'.J option $CI none of the USES cleclarat.ions are processed. If ~/OU
don't halle the sOLirces to all tile L1nits (e.g ... intrinsic units like Sy;:;:Calit and
want. to process some on the USES ejeclar8.t.ion, wllile not. processing the units
whose sources ere specified in t.he list., YOll need to use t.he C option.

11-63

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~I'ixk.shop User ~s GI.J'ide The Utilities

l/ylitll t.he C opthm, if the neme of a USEd unit is the $;~me 8.S one of t.he
filenames specifiecj on the input list (i~lnoring any \lolume name anef .TEXT
e:<tens:ion}, tile unit th'ill not be process;ed on the USES declaration,. since its
full sOLlrce will be (or alread~" Ilas been) processed. If a Compiler $U
directive is in effect, then a {$U filename} Compiler directive specifies the
n8me of the object. code file to be used. This filename is also c:hecked
against the list of files. (Tile second check. is required since a I"mit's name is
not neces8arily t.he same as it.s object code file name.)

T (I s'Jmmarize, you have t.he choice of not. proce..:::Sing t.he USES and
specifying a list of all files you want to process (using the ~~ optiont or you
can just process all the Il\lTERF ACEs through t.he USES declarations like the
Compiler (by omitting the N option), or vou can process some of the unit.s
ttlrougl1 t.he USES and others as full sources: (by specifying t.he C opt.ion). In
all cases where a list of files is specified" no unit. will ever be processed
more than once, unless the A opt.ion is specified.

limitations and Errors
Xref stores all it.s informat.ion on the Pa::::cal heap. It gives a messa~le if it
rum out of space. If the console is not being used for the output listing ..
then Xref displays the amount of available space a~ it. ~:tarts processing each
file or unit. Three pieces of information are given:

• The total 8JTlount of heap space available.

• The maximum number of unique identifiers t.hat. can st.ill be accept.ed.

• The minimum nLlmtler of references t.hat can be clistributed across t.he
identifiers.

Ident.ifiers are accessed throuQh e. hashed svmbol table that can hold a
maximum of 5000 entries. The identifers themselves are not stored in the
table, but are allocated dynamically on the heop. The identifier references
8.re also d'y'namically allocat.ed on the heap. Each identifier take:;: 16 byt.es
and each reference t.akes 8 bytes (10 if t.he T option is used). Bot.h are
competing for the heap space, so tt1e information displayed shows the
minimum number of references for the maximum number of available
identifiers (I.e., refs'" (2*HemAvail-16*id's) DIV 8) (or DIV 10). Fewer
ident.ifiers means: more reference space.

Xref has a rather simple algorithm for determining whet.her a reference is
defined, assigned, or just used. Although Xref will never miss a reference
to a variable, the part of the algorithm t.hat. identifies a definition can be
fooled int.o thinking a variable is defined when it actually isn't. One case in
which t.his happens is in record st.ruct.lIre variants. The record variant's case
tag is flagged as a definition (even when there is no t.ag typel. and the
variant.'s case label constants (if t.hey are identifiers') are sometimes
incorrectly flagged. This only occurs in the declaration parts of the program.

11-64

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~I''orkshop User ~ 1::i.l.,lide The Utilities

Example
This example illustrat.es t.he out.put. produced by .;(;ref. The output. at. the end
of this section is a small program listed by Xref together ~"'ith its
cross-reference listing. It has one included source.

Each line of source is preceded by five fields of information:

Field 1: The total line count.

Field 2; The. include ke.y assigned by)(ref for an include (or USES) file
(see below).

Field 3: The line number of each line \,Alithin the include or main file.

Field 4: This field consists of two indicators (left and right) that
reflect the static block ne5:t.ing level. The left indicat.or is
incremented (mod 10) and displayed whenever a BEGII-.J,
REPEAT, or CASE is encount.ered. On termination of these
st.ructures wit.h an E~.JD or UNTIL, the right indicator is
displayed tllen decrementecl. It. is t.hus easy t.o match BEGIN,
REPEAT .. and CASE stat.ements with their matching
terminations.

Field 5: A let.ter in the fifth field reflects the static level of
proceclure£:. The charader is updated for each procedure nest
level ("A" for levell, "8/1 for level 2, and so ont and
displayed on t.he line cont.aining the heading, and on t.he
8EGIN and END associated with the procedure bocty. Using
this field you can easily find the procedure body for a
procedure heeding when there are nested procedures declared
between the heading and it.s body.

Not.e that Xref does not process conditional compilation directives. Thus
given the right cornbinat.ior1 of $lFC's and $ELSEC's-, Xref's lexic:al
information can be thrown off. If this rrappens, or if you don't In'ant the
lexical information, specify t.he B option.

The '~ l)"s follclwing the line numbers in t.he cross-reference listing are the
include keys of the associated include files (shown in field 2 of the source
listing). The include file names are shoy,on preceding the listing (Le., the "i.
Factorial. TEX T'I). ThLt,s you can see what the line number is in which include
file. The main file has no key and is shown as blank (if a jist of files, even
one, had been specified, the main file would be 1 and the include 2). An
asterisk (*) following a line number indicates a definit.ion of the variable. An
equal sign (;;;;) indicates an assignment. Nothing following a line number
means a reference t.o the identifier.

The last line of the cross-reference listing summarizes the t.otal number of
identifiers and the number of references to those identifiers. The
information in square brackets indicates how much space was still available
at the end of the cross-reference. It shows the total number of bytes

11-65

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

l.

-A-

The i./tilities

remaining, hol,1,' many more identifiers could be accepted., and how many more
references could be sS:ved in the remaining !:rites. (see also Lirnit.at.ions and
Ermrs, ;:Wove). This information is: also shol,'1n on the console (if it is: not the
output device) as each (include) file or unit is: processed. In t.hat case it
reflects the state of memory at the time Xref starts processing the file or
unit..

1
2
3
-4
5
6
7 1
6 1
9 1

10 1
11 1
12 1
13 1
14 1
15
16
17
18
19
1!:)

21
22
23
24
25

1-
2-
3-
-4-
5-
6-
1- A
2-
J()-A
-4-
5-
6-
7-
6-()A
7-
B()-
9 1-

10 -
11-
12 -
13-
14 -
15 -
16 -1
17 --0

F actari al. . TEXT

~lI1 XrefExample;

vm
Argument: longInt;

{$i FaetariBl}
~ION FactariBl(Arg: longlnt): longlnt;

EEiIN {FactariBl}
IF Arg<=1 1lfli

Factarial := 1
ElSE

FactariBl := Arg·Factarial(Arg-l);
EH>; {F act ari Bl }

EEGIN {XrefEx€Dple}
~AT

WriteLn;
Write('Enter argument: ');
Read (Argument);
IF (Imesult<=O) A't) (Argument>=O) ll-EN

WIiteLn(. fact ari Bl (." Argl.Dent: 1" .) = ,
Fact ari Bl (Argument) : 1);

lIfTI l Arguaent <0;
eo. {XrefExample}

Arg 1·(1) -4 (1) 7 (1) 7 (1)
Argunent 4· 12 13 14 15 16

-f-
Factorial 1·(1) 5=(1) 7=(1) 7 (1) 15

-1-
ItResult 13

11 .. 66

~\Iorkshop User's Guide Th,e i./tilities

-L-
LongInt 4 1 (1) 1 (1)

-R-
Read 12

-W-
Write 11
WriteLn 10 14

-x-
XrefExsnple 1·

••• End Xref: 9 id's 24 references [423312 byteS/4~ id's/42934 refs]

11-67

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I

Appendix A
Error Messages

n.l I\ssembler Errors __ . _ _ .. __ ... __ ... _ .. _ ... _ . _ . _ A-I

A.2 Linker Errors. _ __ _ . _ __ .. _______ . _. A-3
A.2.1 ~";ernings... A-3
A.2.2 Errors .. A-3
A.2.3 Fatal Errors ... A-5

A.3 ObjlOLib Errors. _ . ___ . ___ _. _. . _ . __ . . _____ ... _ ... _ _ .. A-6
A.3.1 ~",Iernings: ... A-6
A.3.2 Errors A-6
A.3.3 Fatal Errors ... A-6

A.4 Operating System Errors . _ ___ _ ... _____ . _ . _ . _ . ___ . ___ . _ _ _ A-7
AA.1 Operating System Error Codes A-18

A.5 SULib Errors __ . _ _ . ___ _ _ _ ... _ A-20
A.S.l IOPrimitilJe ... A-20
A.S.2 ProgComm ... A-20

A.6 PasLib Errors __ . ___ ... _ .. __ . _. _ ... __ .. _ ... _. ____ .. _. _. _______ . ____ A-20

A.7 Exec File Errors _. ___ .~ _____________ . ___________ . ___________________ ._. A-21

A.?l Syntax Errors .. A-21
A.7.2 I/O Errors ... A-22
A.7.3 Other Exec Errors ... A-23

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Error Messages

A.l Assembler Err€n
The following errors can be produced by the Assembler.
1 Undefined label
2 Operand out of range
3 Mu~t have procedure name
4 Number of parameters expected
5 Extra garbage on line
6 Input line over 80 characters
7 Not enough .IFs
8 Illegal use of .REF label
9 Identifier previously declared

10 Improper format
11 .EOU expected
12 Must .EOU before use if not to a label
13 Macro identifier expected
14 Word addressed machine
15 Backward .ORG currently not allowed
16 Identifier expected
17 Constant expected
18 Invalid structure
19 Extra special symbol
20 Branch too far
21 Variable not PC relative
22 Unexpected .ENOM
23 Not enough macro parameters
24 Operand not absolute
25 Illegal use of special symbols
26 Ill-formed expression
27 Not enough operands
28 Too many undefined lables in this expression
29 Constant overflow
30 Illegal decimal constant
31 Illegal octal constant
32 Illegal binary constant
33 Invalid key word
34 Macro stack overflow--5 nested limit
35 Include files cannot be nested
36 Unexpected end of input
37 This is a bad place for an .INCLUDE file
38 Only labels and comments may occupy col 1
39 Expected local label

A-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Jork5hop i..,(s-er's Guide

40 Local label stack overflow
41 String constant must be on one line
42 String constant exceeds 80 characters
43 Illegal use of macro parameter
44 Illegal use of .DEF label
45 Expected key word
46 String expected
47 Nested macro definitions illegal
48 = or (> expected
49 Cannot .EOU to undefined labels
50 Not even a register
51 Not a data register
52 Not an address register
53 Register expected
54 Right paren expected
55 Right paren or comma expected
56 Unrecognizable operand
57 Odd location counter
58 Comma expected
59 One operand must be a Data Register
60 Dn,On or -(An),-(An) expected
61 No longs allowed
62 First operand must be immediate
63 First operand must be On or #E
64 (An+), (An+) expected
65 Second operand must be an An
66 Second operand must be a On
67 B<data>,On expected
68 First operand must be a On
69 A~B<displacement> expected
70 An is not allowed with byte
71 Only alterable addressing modes allowed
72 Only data alterable addr modes allowed
73 An is not allowed
74 USP, SR, and COR not allowed
75 Cannot move from CCR
76 Ox, d(A'Y) or d(Ay), Ox expected
77 Only memory alterable addr modes allowed
78 Only control addressing modes allowed
79 Must branch backwards to label
eo Patch out of code buffer boundaries
81 Code buffer overflow
82 Segment name must be in a string
83 Cannot .DEF macro
84 MACRO defined already
85 Illegal use of MACRO
86 Error while writing symbol table file

A-2

Error Messages

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I'
I
I

1,4orkstfOp User's Guide

87 Not enough ENDCs
88 Must have an <EA> (effective address)
89 Unimplemented Motorola directive
90 Operand size must be a word
91 No undefined or forward label in .BLOCK
92 Only byte-size displacement value allowed
93 Only one .MAIN allOCr'/ed

A.2 Unker ErrfrS

Error Messages

Linker errors are either Warnings, Errors, or Fatal Errors. All Linker errors
are listed belo , along ,ith a brief description of their probable cause. The
Linker can also produce errors from ObjIOLib. These errors are listed in
Section A.3.

A.2.1 warnings
A warning message is an indicat.ion of a potential error. However, t.he link
is allowed to continue normally and may produce a valid output file.
~'arnings cannot be ignored! You must make sure that the conditions
indicated by the warning are what was intended. When in doubt, attempt to
remedy the conditions which caused the warning message to occur.

Also an IU segment:
A segement in the link has the same name as as a library segment.

Conflict with Intrinsic Unit Name:
A regular Unit in the link has the same name as a library Intrinsic Unit.

Duplicae ently definitions:
An entry name has been found in a library file which is the same as a name
in the main program. References to the name are interpreted as referring to
the main program entry. (This can be an error if a Unit in the link was
trying to reference the library entry.)

No starting Location:
The file containing the main Pascal program has probably been omitted.

A.2.2 Errors
A error message is an indication of a condition hich prevents the
production of 8 valid output file. The link is allowed to continue" in order to
detect any other errors. However, the output file will not be produced.

Bad block in Ubrl'WY tile.
The library file being read does not have valid contents.

Bad block, stat rI file:
Bad block type
The object file does not have valid contents. Most likely a disk error has
caused to object file to be damaged. You should regenerate the object file
or obtain a copy from a backup disk.

A-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshop User's Guide Error Messages

Bad Module type:
This indicates an internal Linker error, or perhaps an undetected memory
eITOr.

Code Size too big:
The code in the segment being linked exceeds the current limitation of 32K.
You will need to resegment the program either using the + M Linker option~
or by recompiling with different $5 compiler options.

Data Initialization Segment Too Big:
The code segment used to copy the data into the initialized data segment is:
larger than 32K.

Duplicate definition ~ Unit Name
Doubly defined Global Data areB::
Two units of the same name have been provided as input to the Linker.

Duplicste entry definitions.
Two entries of the same name have been found in the Linker input files.

ru Code with main Pf(9'"am.
The input contains both unlinked intrinsic lInits and an unlinked main
program. Link the intrinsic units into a library file. Then link the main
program, using the intrinsic library as input.

I'v'kre than 32K of globa1s
The globals required by the main program and regular units exceeds the
current limitation of 32K. You will need to recompile the program or the
units, moving some large variables to the heap.

M.d.tiple start locations.
More than one main program file has been provided as input to the Linker.

Relocation Block.
COIl1lTll:X1 Definition Block.
The IULinker does not support these object blocks. Either the object file is
very old, or an error has occured in the object file format.

Segrnen: name not found In Intrlnslc.llb:
A name which occurs in an intrinsic library file does not appear in the
directory file. Probably indicates an "architecture" consistency error; that is,
the library file was not linked against the same directory as the current
directory.

Segs 1-16 El'e Reserved:
The directory indicates that a segment name has been associated with one of
the segments reserved for physical addresses.

Undefined Code MoWle:
The module name has been referenced, but not defined. Either an input. file
has been omitted or a spelling error was made in a procedure name.

A-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

H1orkshop ()ser's Guide Error Messages

Undefined data area:
The unit name he6 been referenced, but not defined. Either an input file has
been omitted or a spelling error was made in a unit name.

Undefined friIy:
The entry name has been referenced, but not defined. Either an input file
has been omitted or a spelling error was made in a procedure name.

A.2.3 Fatal Errors
A fatal error indicates a condition which prevents the link from continuing.

Bed Unit Block (Old .OBJ tile?):
Either this is a very old object file, not supported by this Linker, or a disk
elTor has occured.

Con't re-open inFile: xxxxxxx
An 1/0 error has occured which prevents the opening of file "XXXXXXX" for
phase 2 processing. Examine the file using the File Manager, or regenerate
the file. Then attempt to do the link again.

Inconsistent. IntrinsicJib.
Probably indicates an 1/0 error, such as bad media, which has corrupted the
directory file" or the specification of a bad directory.

Unker error -
Indicates an error in internal Linker logic, perhaps caused by an undetected
disk or memory error.

No starting locaioo, linking Main Progr8fTl:
The file containing the Pascal main program has been omitted from the input
list or is damaged.

Not Main or Intrinsic Link:
The Linker has not seen a valid input file to decide what type of link is
desired.

One or l'IlIIe IU Segs not in lntrinsic.Lib:
An intrinsic segment name does not appear in the directory file. Probably
indicates an architecture consistency errori that is, the library file was not
linked against the same directory as the current directory.

Regular tmit d ing Intrinsic Link.
Intrinsic unit during Regular Link..
MainProg as part of Intrinsic LitImy Link:
The Linker has detected an unlinked regular unit or main program mixed with
unlinked intrinsic units.

A-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop Liser's Guide Error Messages

Regular tnt in Intrinsic Seg File:
The Linker has detected an unlinked regular unit in an intrinsic library file.

Too ~ code segments.
The program has too many small segments. The current limitation is for
segments numbered 17 through 105. Reduce the number of segments by
combining small segments with the +M option in the Linker.

A3 ObjlOLib Errors
The IULinker uses a number of units from the ObjIOLib intrinsic library file.
These units are also used by the Compiler, Code Generator, and object file
utility programs. These units detect some error conditions and issue
messages.

A.3.t Warnings
finn detected: No Output .UB file written.
When the error count is nonzero, the directory file is not rewritt.en.

No Code Block found in input LIB file.
For the O.S. Loader, there should be a Code Block in the directory file.
Perhaps this is an old directory file, or a directory for another operating
system.

A.3.2 Errm-s
Attempt. to delete vertex with arcs.
Argument to OppositeVertex is not an endpoirt:
These are errors reported by the Graphs unit. If they occur while the Linker
is executing, there has been an int.ernal logic error, perhaps caused by an
undetected I/O or memory error.

Bad Peek
Bad Peek2:
Indicates an internal error in the ObjIOLib library, perhaps caused by a disk
or memory error. Check your hardware then retry the link.

110 errOl, can't write last butler:
Either the volume does not. have enough space for the file or a hardware
enor has occurred.

"'1emt~ Error:
An error has occurred in the managing of storage elements. Usually this
error is due to insufficient initial space (Allocation error) or due to
exhaustion of available space (~""'emory Full). The cause of the error is
indicated on the next. output line.

A.3.3 Fetal Errars
Attempt. to delete item not on list:
This is an error reported by t.he Lisats unit. If it OCCLrrs ""'hile the Linker is
executing, there has been an internal logic error, perhaps caused by an
undetected 110 or memory error.

A-6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

f,o,lorkshop Urer's Guide

Errc:n during Installation:
Indicates errors during the installation of an object file Hbrery.

File BuN'er less than 2 blocks:
Indicates an internal logic error in FileIO. Perhaps initialization was not
called.

110 enex-.
An 110 error has occurred within FilelO. Usually this is the result of a
volume being almost full or a hardware faUure. The previous message line
indicates whether the error occurred during reading or writing and at what
position within the file the error occurred.

No VersionControl Block..
No uut Table.
No Segment Table.
No File Names Table:
Indicates a bad format for the directory file. The indicated block is missing
from the directory, but is required.

SetObjInvar: VarSize is not divisible by variant size:
Indicates an internal logic error in ObjIO. Either initialization was not
called, or ObjlO globals have been clobbered.

AA Operating system Err(ft
-6081 End of exec rUe input
-6004 Attempt to reset text file with typed-file type
-6003 Attempt to reset nontext file with text type
-1885 ProFile not present during driver initialization
-1882 ProFile not present during driver initialization
-1840 Packet ended in a resumable state (Archive)
-1293 Object is not password protected
-1176 Data in the object have been altered by Scavenger
-1175 File or volume was scavenged
-1174 File was left open or volume was left mounted, and system

crashed
-1173 File was lest closed by the OS
-1146 Only a portion of the space requested was allocated
-1063 Attempt to mount boot volume from another Lisa or not most

recent boot volume
-1060 Attempt to mount a foreign boot disk following a temporary

unmount .
-1059 The bad block directory of the diskette is almost full or difficult

to read
-876 File may be damaged due to 110 Error when flushing file buffer
-696 Printer out of paper dLa'ing initialization
-660 Cable disconnected during ProFile initialization
-626 Scavenger indicated data are questionable, but may be OK
-622 Parameter memory and the disk copy were both invalid

A-7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide Error Messages

-621 Parameter memory was invalid but the disk copy was valid
-620 Parameter memory was valid but the disk copy was invalid
-413 Event channel was scervenged
-412 Event channel was left open and system crashed
- 321 Data segment open when the system crashed. Data possibly

invalid.
-320 Could not determine size of data segment
-150 Process was created, but a library used by program has been

scavenged and altered
-149 Process was created, but the specified program file has been

scavenged and altered
-125 Sepcified process is already terminat.ing
-120 Specified process is already active
-115 Specified process is already suspended
100 Specified process does not exist
101 Specified process is a system process
110 Invalid priority specified (must be 1..225)
130 Could not open program file
131 File System error while trying to read program file
132 Irrvalid program file (incorrect format)
133 Could not get a stack segment for new process
134 Could not get a syslocal segment for new process
135 Could not get sysglobal space for new process
136 Could not set up communication channel for new process
138 Error accessing program file while loading
141 Error accessing a library file while loading program
142 Cannot run protected file on this machine
143 Program uses an intrinsic unit not found in the Intrinsic Librery
144 Program uses an intrinsic unit whose name/type does not agree

with the Intrinsic Library
145 ProQram uses a shared segment not found in the Intrinsic Library
146 Program uses a shared segment whose name does not agree with

the Intrinsic Library
147 No space in syslocal for program file descriptor during process

creation
148 No space in the shared IU data segment for the program's shared

IU globals
190 No space in syslocal for program file description during

List_LibFiles operation
191 Could not open program file
192 Error trying to read program file
193 Cannot read protected program file
194 Irrvalid program file (incorrect format)
195 Program uses a shared segment not found in the Intrinsic Library
196 Program uses a shared segment whose name does not agree with

the Intrinsic Library
198 Disk 110 error trying to read the intrinsic unit directory

A-8

(

!!!!!!!

Workshop US'er's Guide error Messages

199 Specified library file number does not exist in the Intrinsic
Library

201 No such exception name declared
202 No space left in the system data area for Declare_Excep_Hdl or

Signal_Excep
203 Null name specified as exception name
302 Invalid LDSN
303 No data segment bound to the LDSN
304 Data segment already bound to the LDSN
306 Data segment too large
307 Input data segment path name is invalid
308 Data segment already ex ists
309 Insufficient disk space for data segment
310 An invalid size has been specified
311 Insufficient system resources
312 Unexpected File System error
313 Data segment not found
314 Invalid address passed to Info_Address
315 Insufficient memory for operation
317 Disk error while trying to swap in data segment
401 Invalid event channel name passed to Make_Event_Chn
402 No space left in system global data area for Open_Event_Chn
403 No space left in system local data area for Open_Event_Chn
404 Non-block-structured device specified in pathname
405 Catalog is full in Make_Event_Chn or Open_Event_Chn
406 No such event channel ex ists in Kill Event Chn
410 Attempt to open a local event channel to send
411 Attempt to open event channel to receive when event channel has

a receiver
413 Unexpected File System error in Open_Event_Chn
416 Cannot get enough disk space for event channel in

Open_Event_ Chn
417 Unexpected File System error in Close_Event_Chn
420 Attempt to wait on a channel that the celling process did not

open
421 Weit_Event_Chn returns empty because sender process could not

complete
422 Attempt to call Wait_Event_ Chn on an empty event-call channel
423 Cannot find corresponding event channel after being blocked
424 Amount of data returned while reading from event channel not of

expected size
425 Event channel empty after being unblocked, Wait_Event_Chn
426 Bad request pointer error returned in Wait_Event_Chn
427 Wait_List has: illegal length specified
428 Receiver unblocked because lest sender closed
429 Unexpected File System error in Wait_Event_Chn

A-9

'nlorkshop User~s Gu'ide Error Messages

430 Attempt to send to a channel which the calling process does not
have open

431 Amount of data transferred while writing to event channel not of
ex pected size

432 Sender unblocked because receiver closed in Send_Evant_Chn
433 Unexpected File System error in Send_Evant_Chn
440 Unexpected File System error in Make_Event_Chn
441 Evant channel already exists in Make_Event_Chn
445 Unexpected File System error in Kill_Event_Chn
450 Unexpect.ed File System error in Flush_Event_Chn
530 Size of stack expansion request exceeds limit specified for

program
531 Cannot perform explicit stack expansion due to lack of memory
532 Insufficient disk space for explicit stack expansion
600 Attempt to perform 110 operation on non 110 request
602 No more alarms available during drive.r initialization
605 Call to nonconfigured device driver
606 Cannot find sector on diskette (disk unformatted)
608 Illegal length or disk address for transfer
609 Call to nonconfigLlred device driver
610 No more room in sysglobal for 1/0 request
613 Unpermitted direct access to spare track with sparing enabled on

diskette drive
614 No disk present in drive
615 ""''rong call version to diskette drive
616 Unpermitted diskette drive function
617 Checksum error on diskette diskette
618 Cannot format, or write protected, or enor unclamping diskette
619 No more room in sysglobal for I/O request
623 Illegal device control parameters to diskette drive
625 Scavenger indicated data are bad
630 The time psssed to Delay_Time, Convert_Time, or

Send_Event_Chn has invalid year
631 Illegal timeout request parameter
632 No memory available to initialize clock
634 Illegal timed event id of -1
635 Process got unblocked prematurely due to process termination
636 Timer request did not complete successfully
638 Time psssed to Delay_Time or Send_Event_Chn more than 23

days from current time
639 Illegal date psssed to Set_Time, or illegal date from system clock

in Get Time
640 RS232 -driver called with wrong version number
641 RS232 read or write initiated with illegal parameter
642 Unimplemented or unsupported RS232 driver function
646 No memory available to initialize RS232
647 Unexpected RS232 timer interrupt

A-10

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop Liser's Guide

648 Unpermitted RS232 initialization, or disconnect detected
649 Illegal device control parameters to RS232
652 N-port driver not initialized prior to ProFile
653 No room in sysglobal to initialize ProFile
654 Hard error status returned from drive
655 Wrong call version to ProFile
656 Unpermitted ProFile function
657 Illegal device control parameter t.o ProFile
658 Premature end of file when reading from driver
659 Corrupt File System header chain found in driver
660 Cable disconnected

Error Messages

662 Perity error while sending command or writing data to ProFile
663 Checksum error or CRC error or parity error in data read
666 Timeout
670 Bad command response from dr ive
671 Illegal length specified (must .. 1 on input)
612 Unimplemented console driver function
673 No memory available to initialize console
674 Console driver called with wrong version number
675 Illegal device control
600 lNrong call version to serial driver
682 Unpermitted serial driver function
683 No room in sysglobal to initialize serial driver
685 Eject not allowed this device
686 No room in sysglobal to initialize n-port card driver
687 Unpermitted n-port eerd driver function
688 v..'rong call version to n-port card driver
690 lNrong call version to parallel printer
691 Illegal parallel printer parameters
692 N-port card not initialized prior to parallel printer
693 No room in sysglobal to initialize parallel printer
694 Unimplemented parallel printer function
695 Illegal device control parameters (parallel printer)
696 Printer out of paper
698 Printer offline
699 No response from printer
700 Mismatch between loader version number and Operating System

version number
701 OS exhausted its internal space during startup
702 Cannot make system process
703 Cannot kill pseudo-outer process
704 Cannot create driver
706 Cannot initialize diskette disk driver
707 Cannot initialize the File System volume
708 Hard disk mount table unreadable
709 Cannot. map screen data
710 Too many slot-based devices

A-ll

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ylorkshop l)ser's Guide Error Messages

724 The boot tracks do not know the right File System version
725 Either damaged File System or damaged contents
726 Boot device read failed
727 The OS will not fit into the available memory
728 SYSTEM.OS is missing
729 SYSTEM.CONFIG is corrupt
730 SYSTEM.OS is corrupt
731 SYSTEM.DEBUG or SYSTEM.DEBUG2 is corrupt
732 SYSTEM.LLD is corrupt
733 Loader range error
734 Wrong driver is found. For instance, storing a diskette loader on

a ProFile
735 SYSTEM.LLD is missing
736 SYSTEM.UNPACK is missing
737 Unpack of SYSTEM.OS with SYSTEM.UNPACK failed
7'XJ Position specified is out of range
751 No device exists at the requested position
752 Can't perform requested function while device is busy
753 Specified position is not a terminal node
754 Built-in devices cannot be configured
755 Isolated positions cannot be configured
756 The specified pOSition is already occupied
757 Parallel Port doesn't ex ist on this type of machine
758 No room for more devices
790 Can't get buffer space to load configurable driver
791 Configurable driver code file is not executable
792 Can't get memory space for configura.ble driver
793 110 error reading configurable driver file
794 Configurable driver code file not found
795 Configurable driver has more than one segment
796 Could not get temporary space while loading configurable driver
801 IOResuit <> 0 on 110 using the Monitor
802 AS'~nchronous 1/0 request not completed successfully
803 Bad combination of mode parameters
006 Page specified is out of range
809 Irnalid arguments (page, address, offset, or count)
810 The requested page could not be read in
816 Not enough sysglobal space for File System buffers
819 Bad device number
820 No space in sysglobal for asynchronous request list
621 Already initialized 110 for this device
822 Bad device number
825 Error in paremeter values (Allocate)
826 No more room to allocat.e pages on device
828 Error in parameter values (Deallocate)
829 Partial deallocation only (ran into unallocated region)
835 rrna1id s-file number

A-12

I
I
I
I
I
I
I
I
I
I (

I
I
I
I
I
I
I (

I
I

Workshop l..,Iser's Guide

837 Unallocated s-file or 110 error
838 Map overflow: s-file too 18l"ge
839 Attempt to compact file past PEOF
840 The allocation map of this file is truncated
841 Unallocated s-file or I/O error
843 Requested exact fit, but one could not be provided
847 Requested transfer count is <= 0
848 End of file encountered
849 Invalid page or offset value in parameter list
852 Bad unit number
854 No free slots in s-list directory (too many s-fUes)
855 No available disk space for file hints
856 Device not mounted
857 Empty, locked, or invalid s-file
861 Relative page is: beyond PEOF (bad parameter value)
864 No sysglobal space for volume bitmap
866 Wrong FS version or not a valid Lisa FS volume
867 Bad unit number
868 Bad unit number
869 Unit 8lready mounted (mount)/no unit mounted
870 No sysglobal space for DeB or MDDF
871 Parameter not a valid s-file ID
872 No sysglobal space for s-file control block
873 Specified file is already open for private access
874 Device not mounted
875 Invalid s-file ID or s-file control block
879 Attempt to postion past LEOF
881 Attempt to read empty file
882 No space on volume for new data page of file
883 Attempt to read past LEOF
884 Not first auto-allocation, but file was empty
865 Could not update filesize hints after a write
886 No syslocal space for 110 request list

Error Messltl}B$

887 Catalog pointer does not indicate a catalog (bad p8l"ameter)
888 Entry not found in catalog
890 Entry by that name already exists
891 Catalog is full or is damaged
892 Illegal name for an entry
894 Entry not found, or catalog is damaged
895 Invalid entry name
896 Safety switch is on--cannot kill entry
897 Invalid bootdev value
899 Attempt to allocate a pipe
900 Invalid page count or FCB pointer argument
901 Could not satisfy allocation request
921 Pathname invalid or no such device
922 Irwalid label size

A-13

I . ro.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~\Iorkshop User's Guide

926 Pathname invalid or no such device
927 Invalid label size
941 Pathname invalid or no such device
944 Object is not a file
945 File is not in the killed state
946 Pathname invalid or no such device
947 Not enough space in syslocal for File System refdb
948 Entry not found in specified catalog
949 Private access not allowed if file already open shared

Error Messages

950 Pipe already in use, requested access: not possible or dwrite not
allowed

951 File is already opened in private mode
952 Bad refnum
954 Bad refnum
955 Read access not alIOlt'r'ed to specified object
956 Attempt to position FMARK past LEOF not allowed
957 Negative request count is illegal
958 Nonsequential access is not allowed
959 System resources exhausted
960 Error writing to pipe while an unsatisfied read was pending
961 Bad refnum
962 No WRITE or APPEND access allowed
963 Attempt to position FMARK too far past LEOF
964 Append access not allowed in absolute mode
965 Append access not allowed in relative mode
966 Internal inconsistency of FMARK and LEOF (warning)
967 Nonsequential access is not allowed
968 Bad refnum
971 Pathname invalid or no such device
972 Entry not found in specified catalog
974 Bad refnum
977 Bad refnum
978 Page count is not positive
979 Not a block-structured device
981 Bad refnum
982 No space has been allocated for specified file
983 Not a block-structured device
965 Bad refnum
986 No space has been allocated for specified file
987 Not a block-structured device
9BB Bad refnum
989 Caller is not a reader of the pipe
990 Not a block-structured device
994 Invalid refnum
995 Not a block··structured device
999 Asynchronous read was unblocked before it was satisfied

1000 Unable to bring disk online (Priam)

A-14

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(

(

(4orkshop User's Guide

1001 Error during disk formatting operation (Priam)
1002 Invalid Device_Control call for device (Priam)
1003 Unable to get sysglobal space for disk operation (Priam)
1005 Irrvalid request made to device driver (Priam)
1006 Error during disk write operation (Priam)
1007 Error during disk read operation (Priam)
1021 Pathname invalid or no such entry
1022 No such entry found
1023 Invalid newname, check for - in string
1024 New name already exists in catalog
1031 Pathname invalid or no such entry
1032 Invalid transfer count
1033 No such entry found
1041 Pathname invalid or no such entry
1042 Invalid transfer count
1043 No such entry found
1051 No device or volume by that name
1052 A volume is already mounted on device

Error Messages

1053 Attempt to mount temporarily unmounted boot volume just
unmounted from this Lisa

1054 The bad block directory of the diskette is invalid
1061 No device or volume by that name
1062 No volume is mounted on device
1071 Not a valid or mounted volume for working directory
1091 Pathname invalid or no such entry
1092 No such entry found
1101 Invalid device name
1121 Invalid device, not mounted, or catalog is damaged
1122 No space for catalog scan buffer (Reset_Catalog)
1124 No space for catalog scan buffer (Get_Next_Entry)
1128 Invalid pathname, device, or volume not mounted
1130 File is protected; cannot open due to protection violation
1131 No device or volume by that name
1132 No volume is mounted on that device
1133 No more open files in the file list of that device
1134 Cannot find space in sysglobal for open file list
1135 Cannot find the open file entry to modify
1136 Boot volume not mounted
1137 Boot volume already unmounted
1138 Caller cannot have higher priority than system processes when

calling ubd
1141 Boot volume was not unmounted when calling rbd
1142 Some other volume still mounted on the boot device when calling

rbd
1143 No sysglobal space for MDDF to do rbd
1144 Attempt to remount volume which is not the tempor81"ily

unmounted boot volume

A-15

'-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

f'rJorkshop I..,iser's Guide

1145 No sysglobal space for bit map to do rbd
1158 Track-by-t.rack copy buffer is too small
1159 Shutdown requested while boot volume was unmounted
1160 Destination device too small for track-by-track copy
1161 Invalid final shutdown mode
1162 Power is already off
1163 Illegal command
1164 Device is not a diskette device
1165 No volume is mounted on the device
1166 A valid volume is already mounted on the device
1167 Not a block-structured device
1168 Device name is invalid

Error Messages

1169 Could not access device before initialization using default device
parameters

1170 Could not mount volume after initialization
1171 - is not allowed in a volume name
1172 No space available to initialize a bitmap for the volume
1176 Cannot read from a pipe more than half of its allocated pllysical

size
1177 Cannot cancel a read request for a pipe
1178 Process waiting for pipe data got unblocked because last pipe

writer closed it
1180 Cannot write to a pipe more than half of its allocated physical

size
1181 No system space left for request block for pipe
1182 lNriter process to a pipe got unblocked before the request was

satisfied
1183 Cannot cancel a write request for a pipe
1184 Process waiting for pipe space got unblocked because the reader

closed the pipe
1186 Cannot allocate space to a pipe while it has data wrapped around
1188 Cannot compact a pipe while it has data wrapped around
1190 Attempt to access a page that is not allocated to the pipe
1191 Bad parameter
1193 Premature end of file encountered
1196 Something is still open on device--cannot unmount
1197 Volume is not formatted or cannot be read
1196 Negative request count is illegal
1199 Function or procedure is not yet implemented
1200 Illegal volume parameter
1201 Blank file parameter
1202 Error writing destination file
1203 Invalid UCSD directory
1204 File not found
1210 Boot traCK program not executable
1211 Boot track program too big
1212 Error reading boot track program

A-16

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(- Workshop l.(ser's Guide

1213 Error writing boot track program
1214 Boot. track program file not found
1215 Cannot write boot tracks on that device
1216 Could not create/close internal buffer
1217 Boot track program has too many code segments
1218 Could not find configuration information entry
1219 Could not get enough working space
1220 Premature EOF in boot track program
1221 POSition out of range
1222 No device at that pOSition
1225 Scavenger has det.ected an int.ernal inconsistency symptomatic of

a software bug
1226 Invalid device name
1227 Device is not block structured
1228 Illegal attempt to scavenge the boot volume
1229 Cannot read consistently from the volume
1230 Cannot write consistently to the volume
1231 Cannot allocate space (Heap segment.)
1232 Cannot allocate space (Map segment)
1233 Cannot allocate space (SFDB segment)
1237 Error rebuilding the volume root directory
1240 Illegal attempt to scavenge a non-OS-formatted volume
1281 Pathname is invalid because device or object is not present
1282 Pathname syntax is: invalid
1283 Interior pat.hname component does not specify a directory object
1284 Directory cannot be deleted because it is not empty
1285 Operation is not allowed on a volume with a flat catalog
1286 Operation is not allowed on a directory object
1287 Cannot allocate SysLocal space for the directory scan stack
1288 Directory tree is inconsistent
1289 Operation not allowed against a volume or device (Quick_Lookup)
1290 The directory that contained the file hess been deleted

(Unkill_File)
1294 Object is password protected: no or incorrect password wes

supplied
1295 The allocation map of this file is damaged and cannot be read
1296 Bad string argument has been passed
1297 Entry name for the object is invalid (on the VOlume)
1298 S-list entry for the object is invalid (on the VOlume)
1807 No disk in diskette drive
1820 'Nrite-protect error on diskette drive
1822 Unable to clamp diskette drive
1824 Diskette drive write error
1840 Unable to initialize disk drive (Priam)
1841 Error writing to disk (Priam) / Error reading from tape (Archive)
1642 Error reading from disk (Priam) I Error writing to tape (Archive)
1843 Error controlling tape (Archive)

A-17

i.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Workshop User's Guide

1844 Packet ended in a nonresumable state (Archive)
1845 Packet command had an error (Archive)
1882 Bad response from ProFile
1885 ProFile timeout error
1998 Invalid parameter address
1999 Bad refnum

A.4.1 Operating System Error Codes

Error Messages

The error codes listed below ere generated only when a nonrecoverable error
occurs while in Operat.ing System code.

10050 Request block is not chained to a PCB (Unblk_Req)
10051 Bld_Req is called with interrupts off
10100 An error was returned from SetUp_Directory or a Data Segment

routine (Setup_IUInfo)
10102 Error > 0 trying to create shell (Root)
10103 Sem_Count > 1 (Init_Sem)
10104 Could not open event channel for shell (Root)
10197 Automatic stack expansion fault occurred in system code

(Check_Stack)
10198 Need_Mem set for current process while scheduling is disabled

(SimpleScheduler)
10199 Attempt to block for reason other than I/O while scheduling is

disabled (SimpleScheduler)
10201 Hardware exception occurred while in system code
10202 No space left from Sigl_Excep call in Hard_Excep
10203 No space left from Sigl_Excep call in Nmi_Excep
10205 Error from Wait_Event_Chn called in Excep_Prolog
10207 No system data space in Excep_Setup
10208 No space left from Sigl_Excep call in range error
10212 Error in Term_Def_Hdl from Enable_Excep
10213 Error in Force_ Term_Except no space in EnILEx_Oa.ta.
10401 Error from Close_Event_Chn in Ec_Cleanup
10582 Unable to get space in Freeze_Seg
10590 Fatal memory perity error
10593 Unable to move memory manager segment during startup
10594 Unable to swap in a segment during startup
10595 Unable to get space in Extend_Mf\o11ist
10596 Trying to alter size of segment that is not data or stack (Alt_OS_Size)
10597 Trying to allocate space to an allocated segment (Alloc_Mem)
10598 Attempting to allocate a nonfree memory region (Take_Free)
10599 Disk 110 error while swapping in an OS code segment
10600 Error attempting to make timer pipe
10601 Error from Kill_Object of an existing timer pipe
10602 Error from second Make_Pipe to make timer pipe
10603 Error from Open to open timer pipe
10604 No syslocal space for head of time.r list

A-18

-,
"

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

{ Error MlJSS'llgtlS

·10605 Error during allocate space for timer pipe, or interrupt from
nonconfigured device

10609 Interrupt-from nonconfigured device
10610 Error from info about timer pipe
10611 Spurious interrupt from diskette drive 12
10612 Spurious interrupt from diskette drive 11, or no sysJocal space for

timer list element
10613 Error from Read_Data of timer pipe
10614 Actual returned from Read_Data is not the same as requested from

timer pipe
10615 Error from open of the receiver's event channel
10616 Error from l.Nrite Event to the receiver's event channel
10617 Error from Close=Event_ Chn on the receiver's pipe
10619 No sysglobal space for timer request block
10624 Attempt to shut down diskette disk controller while drive is still busy
10637 Not enough memory to initialize system timeout drives
10675 Spurious timeout on console driver
10699 Spurious timeout on pare.llel printer driver
10700 Mismatch between loader version number and Operating System version

number
10701 OS exhausted its internal space during startup
10702 Cannot make system process
10703 Cannot kill pseudo-outer process
10704 Cannot create driver
10706 Cannot initialize diskette disk driver
10707 Cannot initialize the File System volume
10708 Hard disk mount table unreadable
10709 Cannot map screen data
10710 Too many slot-based devices
10724 The boot tracks do not know the right File System version
10725 Either damaged File System or damaged contents
10726 Boot device read failed
10727 The OS will not fit into the available memory
10728 SYSTEM.OS is missing
10729 SYSTEM.CONFIG is corrupt
10730 SYSTEM.OS is corrupt
10731 SYSTEM.DEBUG or SYSTEM.DEBUG2 is corrupt
10732 SYSTEM.LLD is corrupt
10733 Loader range error
10734 l.Nrong driver is found. For instance, storing a diskette loader on a

ProFile
10735 SYSTEM.LLD is miSSing
10736 SYSTEM.UNPACK is missing
10737 Unpack of SYSTEM.OS with SYSTEM.UNPACK failed
10738 Can't find a required driver for the boot device
10739 Can't load 8 required driver for the boot device
10740 Boot device won't initialize

A-19

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

?-Vorksnop t()-er's Guide Error Messages

10741 Can't boot from a serial device
11176 Found a pending write request for a pipe while in Close_Object when

it is called by the last writer of the pipe
11177 Found a pending read request for a pipe while in Close_Object when it

is called by the (only possible) reader of the pipe
11178 Found a pending read request for a pipe while in Read_Data from the

pipe
11180 Found a pending write request for a pipe while in Write_Data to the

pipe
118xx Error xx from diskette ROM (See OS errors 18xx)
11901 Call to Getspace or Relspace with a bad parameter, or free pool is

bad

A.5 SULib Errors
A.5.1 1000imitives

32000 Attempt to use a private file control block
32001 File control block is already open
32002 Includes nested too deep
32003 Attempt to use a private buffer
32004 Not enough heap space for private file control block
32005 Not enough heap space for private buffer

A.5.2 Pr~~
32300 CommBufr open for read failed--bad key or not text
32301 CommBufr close failed--bad key
32302 CommBufr write failed--buffer not open or full
32303 CommBufr read failed--buffer not open

A.6 PMUb Erren
-6081 End of exec file input
-6004 Attempt to reset text file with typed-file type
-6003 Attempt to reset nontext file with text type
60CH Attempt to access unopened file
6002 Attempt to reopen a file which is not closed using an open FIB

(file info block)
6003 Operation Incompatible with access mode with which fHe was

opened
6004 Printer offline
6005 File record type incompatible with character device (must be byte

sized)
6006 Bad integer (read)
6010 Operation incompatible with file type or access mode
6011 Bad text file format encountered
6050 Error trying to open -.rioter in QuickPort
60:;1 Error trying to write to -J:I'1nter in QuickPort
6052 Error trying to close -prirter in QuickPort

A-20

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(I,-\Iorkshop Liser's Guide

6081 Premature end of exec file
6082 Invalid exec (temporary) file name
6083 Attempt to set prefix with null name
6090 Attempt to move console with exec or output file open
6101 Bad real (read)
6151 Attempt to reinitalize heap already in use
6152 Bad argument to NEW (negative size)
6153 Insufficient memory for NEW request
6154 Attempt to RELEASE outside of heap

A.7 Exec File Emrs

Error Messsges

The Exec Processor reports syntax errors, 110 errors, and other process- time
errors; it also reports errors resulting from Operating System calls. The
format in which the Exec Processor reports errors is~

ERROR In (error location>
< cwrent line>
<error nwker>
<eum message>

where
<eum location) is either 'invocation line' or 'line I(n> of file(file>'.

<cwrent line> is the text of the exec line in which the error was
detected.

<errOl' marker) is a question mark indicating the place in <cwrent
line> where the error was detected.

(errm message> is one of the messages listed below. The error
message begins with an error number.

A.7.1 Syntax Errms
The line containing the syntax error does not conform to the rules of the
exec language. Check to see that you have typed the line correctly; refer to
Section 9.1.4, Syntax of Exec Lines and Workshop Lines, and to descriptions
of the individual commands and options for more information.

1 More than 20 parameters on exec procedure/function call
2 No closing) found
3 End of Exec file before ENDEXEC
4 No Exec file specified
6 End of Exec file in comment
7 Invalid percent: not "tn" form
8 Garbage at end of command
9 File does not begin with EXEC

10 No argument to SUBMIT
11 ELSE, ELSEIF or ENDIF not in IF
12 ELSEIF after ELSE
13 Nothing following -

A-21

,".
r '

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Work.shop Us"er's Guide

14 EXEC command other than at start of file
16 More than 20 variables declared
19 ENDWHILE not in WHILE
20 Duplicate parameterlvariable name
21 Bad number. Numeric constant expected
22 Number too large
23 ORD requires a- string argument of at least one character
24 UNTIL not in REPEAT
25 Bad Number for first argument to numeric comparison

Error Messages

26 Number too large for first argument to numeric comparison
27 End of Exec file in RUN command input
28 Bad Number. String expression with numeric result expected
-- Invalid command. <token> expected.

<token) is one of the following:
String value
Numeric value
Number
String expression with numeric result
Boolean value
Parameter name
Parameter/variable
String compare operator
<>
Comma (list delimiter)
Command
Terminating string delimiter
Valid command keyword

~
"ENDIF"
"ENDWHILE"
"UNTIL"
Catalog specification
File Identifier
Clear command (Screen, EndScreen EndLine)
Cursor command (Home, Up, Down, Right, Left)
Program name

A.7.2 110 Enen
The 1/0 error reported by the Exec Processor is followed by an additional
line with the text of the corresponding Operating System error message.

201 Unable to open input file "<file>"
202 Unable to open exec run file "<file)"
203 Unable to access file "<file>"
204 Unable to rerun file "<file>"
205 Unable to reread file "<file>"
211 Unable to reopen input file "<file)"

A-Z2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(

Workshop Us-er'S' Guide Error Messages

A..7.3 other Exec men
5 Line buffer overflow (> 255 ch8l"s)

15 Out of memory. Exec processing aborted
17 No value returned from file called as function
18 RETURN with value in file not called as function
28 Bad Number. String expression with numeric result expected
29 Number returned by string expression is too lerge

206 File variable u<id>" already in use
207 File variable "<id>" is undefined
208 File variable "<id>" is not open for input
209 File v8l"iable "<id>" is not open for output
210 Bad exec run file name generated: "<file>"

A-23

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

('.

/'

(

(

Lisa £xtentiIr1 GJaracter Set

Appendix B
The Lisa Extended Character Set

PrIntIng ASCD ctmacters
ASCII CharaCters In the range hex 20 through hex 7E are supported for screen
display, for prlntlrg on a dot matrix printer, and for printing on a daisy Wheel
printer with the following print Wheels:

• Gothic, 15 pitCh
• Prestige Elite, 12 pitCh
• COUrter, 10 pitch
• Boldface/Executlve, PS.

Printing ASCII CharaCters to a t1a1sy wtleel printer Is not supported for the
three print Wheels with tv10dem type styles.

6-1

I
I
I
I

Worksl1qJ User's Guide Lisa Extended a1snJcter set

Lisa Extended Character Set

I 0 1 234 5 6 7 B gAB C 0 E F

I
I
I
I
I
I
I
I
I
I
I
I
I
I

1 SOH DCl I 1 A Q a q A e 0 ± i - w:mr !\}{
2 STX 002 II 2 B R b r C r ¢ i .., "k~%I~
3 ETX De3 # 3 C S c s ~ i £ 2. J " ~\%~~l}I}t

5~-%5EUeu~r ·u~'.m
6 ACK SY. & 6 F V f v 0 ii ~r a ~ + [?~~~: k~~~I~~

8 IS eM (8 H X h x it 0 ® 1T » y H~%:

A If SUB * J Z j z a 0 ~

B VT ESC + ; K [k { a 0
C ff fS

I < l \ I I
o eft 8$ --M] m }
E SO R$ -. > N - e a I£. at CE V:::::::: ~:?) .;.;.;;;;;;: n
F 51 US I ? 0 o DEL e U " 0 C8 !~~!I~lI kfIJI{)

The first 32 characters and DEL are nonprinting control codes.

The shaded area is reserved for future use.

B-2

- - - - II11111111 __ . - - III1

} , I I »

TT._ ~_ [".'11.] •.• "'_ \ «

~
\.H 1 ~r·turn

? (, I Shift

1lleUsaKeyboard

~ ~~
s· ~
OJ ~
~»
CI)~
a:~ ;:;Q)

C" ,,1-1
CD CD
~ ~

CI)

st

'--,

J
i
~

~
i

,.....

~
~

i
~
~
~

.~~:~~~

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

/

(
~\Iorksttop Liser's Guide Screen Control Characters

Appendix C
Screen Control Characters

To perform standard screen control functions in Pascal, use the ScreenCtr
procedure of PASLIBCALL, as described in Section 5.4. For an alternative
method of screen control, you can use WHilE or WRITELN's with the
corresponding character string from Table C-l below. Some actions take a
Single-character string, others require a two-character string.

In BASIC, use PRINT with the ct-R$ funct.ion, supplying t.he argument that
corresponds to the desired action. For example, to erase t.he screen and
position the cursor on the third line, enter the following BASIC stat.ements:

10 print ctu;$(27); chrS(42); ctu$(10); chr$(10)
20 end

run

C-l

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Screen Control Characters

Table C-l
Screen Control Character strings

ASCII
Desired action Char HEX Decimal Coord
position to home 1E 30

one position left BS 8 8
one position right FF C 12
position up one line VT B 11

position down one line LF A 10

erase to end of' line E.SC-T 1B-54 27-84
erme to end of' screen ESC-Y IB-59 27-89
erase screen ESC-· IB-2A 27-.42
position cursor at x"Y • ESC-== IB-3D 27-61 yx

'" To position the cursor at. screen coordinates (x,y), use the t.wo-character
sequence [ESC]= followed by the coordinates: first the y-axis, then the
x-axis. For example, to position the cursor at screen coordinat.es 0,1 in
BASIC, enter either of the following statements;

10 print chr$(27); chr$(61); chI$(33); chI$(32)
or

10 print chr$(27), ; -=-- -.--I .,
. .

The permissible ranges are shown in Table C-2 below. If you supply
coordinates outside these ranges, a cat.astrophic system error may result.
Refer to Appendix 8 for a complete chart of character equivalents.

C-2

.~
i

~\Iorkshop US'er's Guide Screen Control Characters

Table C-2
Screen Comdinate Ranges

Screen Keyboard
Axis Limit Coord Decimal Char

x lower 0 32 [SPACE]
upper 81 119 w

y lower 0 32 [SPACE]
upper 31 63 ?

C-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

('

(

Appendix 0
Common Problems

0.1 What to Do When You Find Yourself in the Debugger ____________ 0-1
0.2 How to stop Your Program __ 0-2

D.3 What to Do When a ~iskette Won't Eject •• __ •••..• __ ••• _ •••••.•.••• 0-2
0.4 What to Do When You Get a Range Error ___________ • ___ •. __ ._. __ •• 0-2

D_5 What to Do When the system Does Not Respond ___ •. ____________ .0-2

0.6 What to Do with a Runaway Exec File _. ___ .. _. __ ._. ____ .. ___ 0-3

See 81so the Relesse 3.0 Notes for this sppendix.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

" (, ~

(

(

WorkshOp 3.0 Notes

AppendixD
Corrvnon Problems

0.7 Installation Problems

CmYl'XYl P.n:JIJlems

1. The most common Installation problems are caused by not following the
installation instnJctions. To get the correct versions of all the software
onto your diSk, InclucJ1ng booting Information, you must go through the
installation procedUre in Chapter 1 of the manual. Other methods, such
as using your old version Of the FUe Manager to copy the fUes, wlll
cause problems.

2. If you are installing the 3.0 WorKshop over an older version of the
Workshop, and you do not install the opUonal tools from diskettes 6
through 9 (see section 0.8, belOW), the older versions of the tools '1.1111
st111 be on your hard disk. These do not work on the 3.0 Workshop and
take up needless disk space. Consult the list of 3.0 fUes (1n the Pasc81
Reference MantJaJ, Appendix I, Pascal WorKShop FUes) and use the File
Manager's Delete command to delete all fUes on the list that are st111 on
your disk but were not just installed wIth the 3.0 Workshop. A better
way to avoid this problem Is to save any personal fUes you need onto
diskettes, then reinlUal1ze the dIsk, reinstall the Office System if
desired, and install the 3.0 Workshop.

3. The 3.0 WOrkshop wlU not work on the same disk as pre-3.0 versions of
the Office System. Use separate disks if this arrangement is required.

4. The first time you start up the Workshop, It may appear to hang. Don't
worry, this is actually just a long delay--the WOr\(Shop anticipates the
maximum possible number of attached devices (such as hard disks) and
has to "look" the first Ume to see which of these devices Is really
attached. This can take as long as four or five minutes.

0.8 Files NOt PtltanaUcally Installed
The fUes on diskettes 6 through 9 of the release 3.0 Workshop are optional
tools, and are not automatically installed by the Installer program. (These tools
are programming alas such as Fino, 5XRef, and Pasmat; f1lters sUch as
LlneCount and Transllt; and speclallzed tools such as QulckOraw, QulckPort,
and Macintosh support toolS.) Use the File Manager to copy any of these tools
that you wiSh to use frequently onto your hard diSK. When you copy them, you
can shorten some of the file names by ellminaUng the prefix. For example, to
eliminate the "MACI"' prefix from all of the Maclntosh fUes, copy
-LOWER-MAC/- to -. 00 not do this for the QO and QP Object fUes; the
sample programs oepend on the names as they are.

0.9 PIUQIBIIS CDrT1Jlled m Previous Releases Of the Wo11<.stxJp

Notes D-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

WOrkstlop 3.0 Notes Common Problems

Programs created on an earlier release of the WorkstlOp will not work on the
3.0 Workshop untU you have relinked them using the new Linker and llbraries.
Llnless you saved the unlinked object fUe, you must recomplle as well. Old
workshop tools will not work on the 3.0 WOrkShop; use the equ1valent new tool
from the 3.0 release disks.
Programs developed in the 2.0 WOrkshop that use QulckDraw graphics need to
change the llst of files to link to: instead of Unking to IOSPasLib and
<QO/QDStUff (WhiCh contains a list of other QulckDraw fUes), link to
IOSPasLib" QO/SUpport, and SySIL1b.
Minor changes have also occurred in the interface to QulckDraw.

Notes 0-2

-."'<t,.,

,--."

(

Common Problems

ThIs section presents the most common problems that programmers seem to
have with the Workshop with suggestions for handling them.

0.1 What to Do Wte1 You Flro Younelf In the Debugger
You can tell you have entered the Debugger When you suddenly end up with
cryptic looking numbers and symbols on your screen. You are actually viewing
the alternate screen, and the numbers and symbols are a disassembly of the
code where you have stopped and the values of the machine registers. To
return to the normal screen to see where you were before you entered the
Debugger, hold clown the [(PTIeN] key and press the [ENTER] key. Additional
information on the alternate screen Is available in Section 3.2.
Often the Debugger display will include suggestions for what to do next, such
as "Press g to cont1nue". FIgure 0-1 Is an example of what appears on the
screen when you enter the Debugger.

Level 7 Interrupt
LOCALPRO+001A 1D40 FFFS PC MOVE.B n8,$FFFS(A6)
PC=80240022 SR=0000 0 US=0SF7FBEC SS=SeCBFEES DO=1 p#=eee19
D8=081808e9 D1=e8eeeeee D2=eeeeSece D3=eee264A7
D4=88888881 DS=4EF98884 D6=12CC4EF9 D7=8eS4Seee
A8=88F8126E Al=88CCA22A A2=8e24eS6e A3=seCCA22A
A4=08CCA22A AS=88F7FC44 A6=8eF7FBFA A7=88F7FBEC
>

Figure 0-1
Debugger SCreen Display

You can enter the Debugger in a number of ways. most commonly by havIng
an error In your program ... pressing the NMI (nonmaskable Interrupt) key ... or
having a memory partty error. The NMI key Is the "-" key on the runerlc
keypad.
More information on handling the Debugger Is given in Chapter 8. Section 8.2
wUl help you handle accidental entry Into the DebUgger. Section 8.3.2
contains information aboout Pascal run-time errors, particularly range errors.

0-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Wo.rkshop User's Gltjde Common Problems

0.2 How to ~ Yrur Program
If your program tlas been runnIng for longer ttlan you ttllnk it nee Os to, it
mlgtlt be in an infinite loop. Before you stop the program, you stlOulO:

• Ctleck the alternate screen. Maybe your program is waiting for input.
• Try .-perloa to see If It responds.

If neither Of these actions works, press the NMI key, whictl stops your program
in the Debugger. See Section 8.2 for informat1on about wtlat you can 00 from
the Debugger.

0.3 What to Do When a Diskette Won' Eject
The eject request buttons are only recognIzed after the WOrkStlop system does
a Pascal 110 operation. Thus when you press an eject button, nothing wlll
happen untU you press a key, or 110 happens for some ottler reason. (Wtlen
you are in the Editor, ttle Preferences tOOl, or TransferProgram, you do not
need to hit a key after pressing the Olskette button.)
In general .. if a diskette will not eject .. it means that the file system still tlas
some fUe open on it. Use the Illline command to creck the open count,
which will tell you if any files are still open. Then use the List command
from the File Manager to list the contents of the diskette. If some fUes are
open, there is probably a resident process that has a file open or a data
segment open that has been mapped to the Oisk. Use the ManageProcess
Subsystem in the System Manager to kill the process. This wlll close the fUes
and the disk wlll eject.
Further Information on the LIst command can be found in Sections 2.3 ano 2.6.
The ManageProcess subsystem Is described In SecUon 3.4.

0.4 What to Do When You Get a RCIlge Error
A range error drops you into the Debugger. Instructions for handling range
errors are in section 8.3.2.

05 'IIIlat to 00 When t.J'E System Does f'.klt Resporl1
Some of the reasons your Workshop might not respond are:
1. You might be running a program with an infinite loop.
2. You might have stopped console output by pressIng Ii-S.
3. You might have the alternate screen Showing.
4. You might have altered the NMI character.
Press the NMI key (the "-"key on the numeric keypad) to drop into the
Debugger. See section 8.2 for further instructions.
If pressing the NMI key does not work, power off your Usa and reboot the
system.

0-2

.. '~"""'''
\

I
I
I
I
I
I
I
I

I (
I
I
I
I
I
I
I
I
I
I

Worksflop User's Guide Common Pn:XJ/ems

0.6 What to Do with a RlntW8y Exec Flle
If you think. that your exec flle has gone wild, how do you stop It?
When the exec file processor has finished processing your exec flle (s), it has
created a temporary file with the stream of characters that are to perform
the actions in the exec file. The Workshop then sets the run-time
environment so that stanclarcl 1nput comes from the temporary fUe, ana oegins
executing the commands in the temporary file. While they are executing, the
Workshop ignores the keyboard, although the characters you type will be
remembered.
You can terminate standard Workshop programs by pressing ';-perlod, although
termInation mIght not be ImmedIate If the program being run does not
recognize ';-period.

Note that most Workshop tools check for .-perlod from the keyboard
even when running under exec files. This means that you can abort
WorkshOP tools In exec fUes.

Unless user programs are written to recognIze the ';-perIod key combination
as an abort mechanIsm, preSSing those keys wUl not terminate the exec fUe if
a user program is being run. (See PASLIBCALL, Section 5.4, for information
on the function PAbortFlag, whIch tells whether or not those keys have been
pressed.) If tnls Is the case, you can either:

• walt for the user program to terminate so that .-periOd Ccr1 be
recognized by something else, or

• press the NMI key, which forces the system into the DebUgger.
If tne user program does recognize .-perlod, pressIng It w111 termInate the
program but not the exec file. To termInate the exec file, walt until the
Workshop prompt appears and press .-perlod again.

see section 8.2 for instructions on how to stop a user program early.

0-3

I

I r·
I
I
I
I
I
I
I(
I
I
I
I
I
I

I (
I
I
I

Index
Please note that the topic references in this index
are by section number.

If
Abnormal Termination 2.2.4
Absolute Addresses 6.4.6
Access Key 9.2.2.5
Active Window 4.1.1
AddCatalog Command 2.6.3
AddPassword Command 2.4.2.4
Addressine Modes 6.4.6
-ALTCONSOLE 1.4.4
Alternate Screen 1.4.4, 3.2, 0.1
Appendix Problems 0-1
Apple-arrow key 4.1.4.1
Apple-period 0.2, 0.3
Apple-period key combination 5.4.1
Apple-Q 3.2
Apple-S 3.2, 0.5
Arrow keys move the insertion point Notes 4-1
Arroy Pointer 4.1.2
ASCII Character 9.2.4.4, B-1
Assemble Command 1.4.2
Assembler Directives 6.5
Assembler Errors A. 1
Assembler Instructions 8.4.6
Assembler Laneuaee Source Statements 6.2.2
Assembler Options 6.2.1
Assembly Language Program Structure 6.4.1, 6.7.3
Assembly Laneuage Routines 6.6
*(Asterisk) file attribute 2.4.2.4, 2.4.2.6, 2.5.1
Attributes See File attributes; Volume attributes
Automatic Setting of Prefixes 1.4.3.3.

B
B volume attribute 2.2.1
Backing Up Files 2.3, 2.3.2
Backup (B) Command 2.3.2
Backup/Copy/Transfer to Multiple Micro Diskettes

Notes 2.3
Basic Command 1.4.2,
Baud rate 10.1
Baud Rate Menu 10.3.2
BHS 6.3

Index-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Iforkshop User's Ou.ide

Blanks compression in text files 4.3.2.2
Blanks Option 9.1.4, 9.3.2
BLO 6.32
Block-Structured Devices 2.1.1
Boolean Constants 9.1.4
Boolean Expressions 9.1.4, 9.2.3.1
Boolean Functions 9.1.4
Booting the System 1.2.1
Booting from Workshop 1.2
Breakpoint 8.2.1.3, 8.3
Breakpoints and Traces 8.4.8
Built-In Pascal Heap Routines 5.4.2
Built-In String Functions 9.2.4
ByteDiff compares two files 11.1

c
C file attribute 2.4.2.1

Index

Calling Another Exec Program 9.2.6
Calling Assembly Language Routines from Pascal 6.6
Calling an Exec Procedure the SUBMIT Command

9.2.6.1
Calling Pascal I/O Routines 6.7.4
Calling a User Function 9.2.6.3
Canceling a Program 1.5.3.1
Canceling a Prompt 1.5.3.2
Case-sensitive search 4.2.4
Catalog 2.4.1
Chaining 9.3
ChangeSeg changes the segment name 11.2
ChangeSeg Utility 7.9
Changing the Name of a File 2.3.6, 2.10
CharCount counts characters 11.3
CHR and ORO Functions 9.2.4.4
CIFINISH 1.4.3.1
CISTART 1. 4. 3. 1
CLEAR Command erases the screen 9.2.5.1
Clear Key 1.5.3.2
ClearAttributes (C) Command 2.4.2.1
Clipboard Notes 4-4
Code Generator 5.2.1
CodeSize 11. 4
Combine String Expre:ssions 9.2.4.1
Command Set and DEFAULT Command
Comments 6.4.7, 9.1.2.1, 9.1.4, 11.19
Communication Buffer 9.2.2.6

Index-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(

#orkshop lJser's tJuide

Compare compares tvo text files 11.6
Comparing files 2.5.2, 3.2, 11.5
Comparisons 9.2.3.1
Compiler Commands Notes 5-1
Compiling a Pascal Program 9.1.3.2

Index

Concat copies a list of files into one file. 11.6
CON CAT Funct10n 9.2.4.1
Conditional Assembly Directives 6.5.3
Conditional Statements 9.2.3, 9.2.3.1
Configuration 10.2
Configuring the System 1.3
Connecting Device Softvare 3.3.3
Connecting a Printer 3.3.3.2
Connector 3.3.3
Connector Menu 10.3.1
-Console 1.4.4, 2.1.1.3
Console Command 1.4.4, 3.2
Control characters 10.4.2
Control Menu 10.4.1
Conventions and Standards 1.5
Converting to uppercase 9.2.4.2
Copy 11. 7
Copy eC) Command 2.3.1
Copying file(s) 2.3
Copying text 4.2.1.2
Creating text files 4.1.7
Creation-Date 2.6.1
Current Program Location 6.4.7
CURSOR Command moves the cursor 9.2.5.2
Cut Command 4.2.1.2

o
D file attribute 2.5.1, 2.6.3
Dead Code Analysis 7.1, 7.5.1, 7.8
Debug Command 1.4.2
Debugger 6.6.1, D.1
Debugger Commands 8.4
Debugger Commands Summary 8.5
Debugger Notes 8-1
Debugger Output 3.2
Debugger Screen 8.1. 8.4.9.2
Debugger Symbol Table 8.1
Declaring and Setting Variables 9.2.1
Default Extension 1.5.1.2
Default Memory Test 3.3.2

Index-3

'i,

I

t .'

t
!
i

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

IIorkshop User's Guide Index

Default Printer 1.3.2.3, 3.2, 3.3.2, 5.4.1
Default Setting 10.3
Default Startup Disk 3.3.2
Default Volume Names 2.1.2.2, 2.6.2
Defaults in File Name Prompts 1.5.1.2
Delete (D) Command 2.3.4
Deleting Files 2.3, 2.3.4
Deleting a Marker 4.2.6
Device Aliases 2.1.1.2
Diff comparing TEXT files 11.8
Directives 6.4.1, 11.19
Directory 2.1.2.2, 2.0.1
Disassemble 8.3.1
Disassemble Instructions 8.4.5
Disassembly 8.3.2
Disconnecting or Changing Device Software 3.3.3
Diskette won't eject 0.3
Display and Set Memory Locations 8.4.2
DOlT Command 9.2.7.3, 9.3.3
"$" Character 2. 1. 2. 4, 9. 1. 4
$E Compiler Command 5.2
Dollar Sign Convention 9.1.2.1, 9.1.4
Double Quotation Marks 9.1.4
Driver 3.3.3
Dump and/or patch a file 11.10
Dumping Memory to Diskette 8.4.9.5
DumpObj disassembler 11.9
DumpPatch 11.9
Duplex Menu Full duplex Half duplex 10.3.5
Duplicating an existing document 4.2.1.0

E
Echoing 10.3.5
Edit Command 1.4.2
Edit functions 4.1
Editing multiple files 4.3.3
Editor initialization errors 4.3.1
Eject Diskette 4.2.2.5
ELSE command 9.2.3.2
ELSEIF command 9.2.3.2
end-of-file is 9.2.2.2
ENDEXEC Command 9.2.1.1
ENDIF command 9.2.3.2
. EN OM 6.5.2
Entry into Debugger 8.2

Index-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I (
I
I
I

~orkshop User IS Guide Index

Environments Windoy 1.2.1, 1.4.2
"=" Character 2. 1. 2. 4, 2. 5. 1
Equal (E) Command 2.5.2
Error Messages 1.5.4
Errors 6.2
Errors option 9.3.2
ErrTool error messages 11.11
Escape key 1.6.3.2
EVAL Function Arithmetic 9.2.4.5
Exception Handler 8.2.1.1
EXEC Command 9.2.1.1
Exec Errors A.7.3
Exec File Chaining 9.4.1
Exec File Errors 9.5, A.7
Exec Files 9.1
Exec Invocation Character 9.1.4
Exec Line Syntax 9.1.4
Exec Lines 9.1.2, 9.1.2.1
Exec Processor 9.1.1
Exec RUN and ENDRUN Commands 9.2.7.2
Exec Run File 9.1, 9.1.1
Exec Source File 9.1, 9.1.1
Executable Object File 7.1, 7.5.1
EXISTS and NEWER Boolean Functions 9.2.3.4
Exiting from the Editor 4.2.2.6
Exiting from the File Hanager 2.4.2.6
Exiting from the Transfer Program 10.4.1.4
Expanded String Constants 9.1.4
Expansion Cards 3.3.3, 3.3.3.1
Expressions 6.4.6
Extension 9. 1. 1
External Hard Disks 3.3.3.3
External Reference Directives 6.5.4
Externally Compiled Routines 7.1

F
File attributes 2.4, 2.6.1
File Cache and the Input Buffer 9.3.4
File Diagrams 2.1.2.1
File Directive 6.5.6
File Extensions 2.1.2.3
File identifier, COHHBUFR 9.2.2.6
File Menu in Editor 4.2.2
FILE-MaR Command 1.4.2, 2.1.3
File Names 1.6.1.1

Index-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Aforkshop User's 6i/ide Index

File Names List 2.5
File size limit in Editor 4.3.2.4
File Specifier 2.1.2
File System Conventions 1.5.1
FileAttributes (F) Command 2.4.2
FileDiv and FileJoin large files 11.12
Files and devices 2.1.1
Files Not Automatically Installed Notes D-1, D-8
FilesPrivate Command 3.2
Find searches for a pattern 11.13
Finding Patterns in Memory 8.4.3
Finding text 4.2.4.1
Floating Point Operations 5.1
Footers on text pages 4.2.3.1
Function PAbort Fla2 5.4.1

G
Generate Command 1.4.2
Generate option 9.3.2
Generating a Nonkeyboard Character 9.2.4.4
Generic Instructions 6.3
GetGPrefix 5.4.1
GetPrDevice 5.4.1
Getting Help 1.5.2
Global file identifier 9.2.2.1
Global Name 7. 7
Go to Line # 4.2.4
GOTOXY Command moves the cursor 9.2.5.3
GXRef Cross Reference 11.14

H
HALT and ABORT Commands 9.2.7.1
Halting a Screen Display 1.5.3.3
Handshake Menu XON/XOFF OTR 10.3.4
Hardyare Configuration 1.3
Hardware Connections 1.3.1
Hardware Exceptions 8.2.1.1
Header-block format in the Editor 4.3.2.1
Heap Routines 5.4.1-2
Hidden document window, finding 4.2.7
Hierarchical Catalog Structure 2.1.1.1

I
. I 2.1.2.3
I-code 5.1-2

Index-6

I
I
I
I
I
I
I
I

I (
I
I
I
I
I
I
I
I
I
I

'orkshop User's Guide

Identifier Names 6.4.3
IF command 9.2.3.2
IF Statement 9.2.3.2
Imbed option 9.3.2
Infinite Loop 8.2.1, D.2
Initial Values of Variables 9.1.3.2
Initialize (I) Command 2.2.2
Initializing the Prefix 2.6.2
Input File 6.2.2
Insertion Point 4.1.4
Install or Remove Device Softvare 3.3.3
Installation Problems Notes D-1
Installing the 3.0 Workshop Notes D-1
Installing the Workshop 1.2.2-4
I nteeers 9. 1. 4
Intrinsic Units 7.5, 8.4.6, Notes 7-1
INTRINSIC. LIB 2.6.2, 7.1, 11.1&
Invocation 9.2.6

111/11-1'.1

Index

Invocation Parameter List 9'. 1. 3. 2, 9.2.6.1, 9.3. 1
I/O Errors 9.5.2, A.7.2
IOPrimitives A.S.l
IORESULT Function error I/O 9.2.2.6
IOSPASLIB.OBJ S.l, 7.1
IUManager 2.6.2
IUManager library files 11.16

J

K
Keep option 9.3.2
Keyboard 2.1.1.3
keyboard input 9.2.1.3
Kill Process Command 3.4

l
L file attribute 2.4.2.2
Labels 6.4.4
Large exec files 9.3.4
Last-Mod-Date 2.5.1, 9.2.3.4
ldsn default 6.4.2
LENGTH COpy of a string and POS location of a

substring 9.2.4.3
LENGTH of a string 9.2.4.3. LIB 9.2.4.3
Line Delay option 10.4.1.2
Line length limit 4.3.2.3

Index-7

. ,

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

'orkshop User's 8uide

LINECOUNT COUNTS LINES 11. 16
Link Command 1.4.2
Linker Errors A.2
Linker Listing 7.6
Linker Options 7.3
Linker Options Notes 7-1
Linking a Main Program 7.4
Linking a Pascal Program 9.1.3.2
Linking a Regular Unit 7.5.1
Lisa Extended Character Set 8-1
Li sa- Mac 11. 18
List command 2.5.1
Listing File 6.2.4
Listing files 2.5.1
Literal Search 4.2.4.3
Literalizing Character 9.1.4
Local Name 7. 7
Log off 10.4.1.4
Logical Console 1.4.4
Logical Devices 2.1.1.3
Logical operators 9.2.3.1
LWCCount 11. 17

H
M volume attribute 2.2.1
Mac- Li sa 11. 15
MACCOM 11. 18
Macintosh diskettes 11.18
Macintosh Environment 1.2.3
. MACRO 6. 5. 2
Macro Directives 6.5.2
.MACROLIST 6.5.2
Macros to Call Pascal Functions 6.7.4
MacWorks. sharing disk with 1.2.3
MAIN Assembler Directive Notes 6-1
Main Command Line 1.4.2
Main Screen 1.4.4, 3.2
-MAINCONSOLE 1.4.4
MakeBackground Command 1.4.2
Manage Process Command 3.2
Mappi ng 11. 4
Markers Menu 4.2.S
Match cases in text search 4.2.4.3
Maximum length of lines 4.3.2.3
Measuring Execution Times 8.4.8

Index-8

Index

I
I ",""-",

I
I
I
I
I
I
I ,.~ ... '.",

\ ,

I
I
I
I
I
I
I (

I
I
I

lIorkshop User's Guide

Memory Locations 8.4.2
Memory Management Hardware 8.4.7
Modem 10.2
Modem eliminator 10.2
Mount Command 2.2.3
Mounting of Disks 1.4.3.2
House Double-Click Delay 3.3.1.5
Moving Debugger Window 8.4.9.2
Hoving insertion point 4.1.4
Moving Text 4.2.1.2
Moving Window 4.1.3

N

Index

Named Parameters 9.1.3.1
Named Variables 9.1.3.1
Names Command 2.5.1
nesting 9.2.3.2
NMI (nonmaskable interrupt) key 1.6.3.1, 8.2.1.2.

8.3. 8.4.9.3
.NOHACROLIST 6.6.2
numeric comparison operators 9.2.3.1
Numeric Constants 6.4.2.1
Numeric constants integers 9.1.4
Numeric expressions EVAL function 9.1.4
Numeric operators 9.2.4.5

o
o file attribute 2.4.2.1
. OBJ 2. 1. 2. 3
Object Files 6.1, 6.2.3. 7.1
ObjIOLib Errors A.3
Offline, moving files 2.2.~
Online Command 1.3.1. 2.2.1
Opcodes 6.3
Open a new document 4.2.2.1
Operating System Error Codes A.4.1
Operating System Errors A.4
Operation Size 6.3
Operators 6.4.6
Option and Shift Keys B-3
Opt1ons 11.19. 11.30
OSQUIT 8.2.2. 8.4.6
Output Redirect Command 3.2
Override the extension 9.3.1

Index-9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

rorksl1op User's 611ide

p
P file attribute 2.4.2.3
P volume attribute 2.2.1
p volume attribute 2.2.1
Page number and footers 4.2.3.1
Parallel Cable 3.3.3.4
Parameter 9.1.3
Parameter Passing 6.6.3
Parity checking 10.4.2
Parity Menu 10.3.3
Parsing 6.1
Pascal Command 1.4.2
Pascal compile 9.4.1
Pascal Compiler Commands 5.3
Pascal Data Areas 6. 7
Pascal Heap 5.4.2
Pascal Run-time Support Routines 6.1
PasLib Errors A.6
PASLIBCALL Unit 6.4.1
Pasmat reformats Pascal source code 11.19
Passing a Pascal String 6.7.2
Password protection 2.4.2.4, 2.4.2.5
Pathname 1.5.1.1, 2.1.2
Peripheral Device Connections 3.3.3, 3.3.3
Physical Device 2.1.1.2
PLINITHEAP 6.4.1
Poi nter 4. 1. 2
"PortConfi~f' 10. 3. 2
PortConfig configures the RS232 ports 11.20
Powering Off 1.2.1
Preferences tool 2.2.1, 3.3
Prefix (P) Command 2.1.2.2, 2.6.2
Pretty Listing 6.2.1, 6.2.4
Print Menu 4.2.3
-Pri nter 2. 1. 1. 3
Printer Configuration 1.3.2
-printer logical device 3.2
Printing ASCII Characters B-1
Printing Commands Notes 8-1
Printing from Debugger 8.4.9.4
Printing a document 4.2.3.3
Private Files 3.2
Problems Notes 0-1
Procedure information 11.4
Procedure ScreenCtr 5.4.1, C-1

Index-l0

Index

-!!!!
ii
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(<

(

~orkshop User 's Guide Index

Process Management 3.4
Process Status Command 3.4
Process Time 9.1
Processor Options 9.3.2
ProcNames lists procedure and function names in a

Pascal program Pasmat 11. 21
ProgComm A.5.2
ProgComm unit 9.2.2.6, 9.2.4.6
Program Bugs 8.2.1
Program Communication Buffer 9.2.2.6
Program Errors 8.2.1.1
Proportional Spacing 4.2.5
Protect (P) Command 2.4.2.3
Protected Master 2.4.2.3
Psize 2.5.1

q
"1" Character 2. 1. 2. 4
Quit (Q) Command 1.4.2, 2.4.2.6, 3.2, 3.4
Quotes 6.4.2.2

R
Range Check Error 8.2.1.1
Range Errors 8.3.2, 0-4
Read from keyboard from textf11e 9.2.2.2
READCH and READLN Commands 9.2.2.2
Real Numbers 5. 1
Receive All Text 10.4.1.1
Receive Filtered Text 10.4.1.1
Receive From Remote 10.4.1.1
Receiving Text 10.4.1.1
Recursive Exec Program Pascal compiles 9.4.2
Recursive User Function 9.4.2
. REF and .DEF Directives 6.7.1
Register Conventions 6.6.2
Regular Units 7.5
Relocatable Code 6.5.1
Remote Computer 1.4.2. 10.1
Rename (R) Command 2.4.1
Repair damaged files 2.2.4
REPEAT and UNTIL commands 9.2.3.3
Repeating Keys 3.3.1.4
REQUEST Command 9.2.1.3
Rerun option 9.3.2
RESET, REWRITE, and CLOSE Commands 9.2.2.1

Index-11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

l1orkshop User IS Sui de Index

RESETCAT Command and NEXTFILE Function 9.2.2.4
RETSTR Function ProgComm unit 9.2.4.6
RETURN command 9.2.S
RETURN Command user function 9.2.S.2
Revert to Previous Version 4.2.2.3
RMaker resource files Macintosh applications 11.22
RS232 devices 2.1.1.2
Run Command 1.4.2
Run Time 9.1
Run-Time Stack S.S.l
Run a utility program 11.0
Runaway Exec File D.S
Running an Exec Program Workshop Run command 9.3

s
S file attribute 2.2.4
Safety Command 2.4.2.2
Sample Exec Programs 9.4
Saving an active document 4.2.2.2
Scavenge Command 2.2.4
Screen Brightness and Contrast 3.3.1.1
Screen Control Character Strings C-2
Screen Dim 3.3.1.2
Screen Display 9.2.5
Scrolling 4.1.3
Search copies specified pattern 11.23
Search functions 4.2.4
Search Menu 4.2.4
Search for text string 4.2.4.3
Search is TokenizedlSearch is Literal

Command 4.2.4.3
. SEG S. 5. 4
SegMap segment map 11.24
Segment information 11.4
Segment names 11.4
Segmentation 7.9
Select All of Document 4.2.1.5
Select Defaults in Preferences 3.3.2
Selecting text 4.1.5
Sending Text 10.4.1.2
Sequential devices 2.1.1.2
Serial Cable 3.3.34
Serial devices 2.1.1.2
Serial Port 10.3.1
Serial Printer 8.4.9.4

I
I
I
I
I
I
I
I
I (
I
I
I
I
I
I
I
I
I
I

.,

~orkshop User's Ouide

Set Conveniences 3.3.1
Set and Display Registers
Set a marker 4.2.6
Set Tabs 4.2.1.4
Setting and Clearing File Attributes 2.4
Setting Variable Values 9.1.3.2
SHELL. filename 1.2.1
Shift Left Command 4.2.1.3
Shift Right Command 4.2.1.3

Index

Show Current Insertion Point 4.1.4
Showlnterface interface section of unit Pasmat

utility 11. 25
Single Quotation Marks 9.1.4
680000pcodes 6.3
Size Control Box 4.1.3
Slot 3.3.3
Space Allocation Directives 6.5.1
Space Information 6. 2. 1
Spaces 9. 1. 4
Speaker Volume 3.3.1.3
Special Characters 9.1.4
Speeding up Editor response time 4.3.3
Stack Crawl 8.4.6
Stack Expansion Code 6.6.1
Stack Overflow 8.2.1.1
Standard Screen Control Functions C-1
Starting the Workshop 1.2
Startup Disk 3.3.2
Startup and Shutdown Procedures 1.4.3.1
Statement Bunching 11.19
Stationery 4.1.7, 4.2.2.1
Step mode 9.3.3
Step option 9.3.2, 9.3.3
Stop Your Program D-2
Stopping Runaway Exec File 0.6
String comparison operators 9.2.3.1
String Constants 6.4.2.2, 9.1.4
String Expressions 9.1.4
String Functions 9.1.4
SUBMIT command 9.2.6
SUBMIT command a function call 9.3.4
SULib Errors A.5
Suppressing Text Display 10.4.1.3
Swapped to Disk 7.9
SXRef Pascal cross reference 11.26

Index-13

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

II'orksnop User's fit/ide If1de,'r'

Symbolic References 7.1
Symbols and Base Conversion 8.4.9.1
Syntax 9. 1. 4
Syntax Errors 9.5.1, A. 7. 1
SYS_TERMINATE Exception 8.2.1.1
SYSCALL Unit 5.1. 5.4.1
System Does Not Respond D-5
System Malfunctions 8.2.2
System Manager Command Line 3.2
SYSTEM-MGR Command 1.4.2

T
TAS 6.3
Tearing Off Stationery 4.1.7, 4.2.2.1
Terminal emulation mode 10.4
Terminal Emulator 10.1
Terminating Exec Processor 9.1.1
Terminating an Infinite Loop 8.2.1.2
. TEXT 2. 1. 2. 3
Text file requirements 4.3.2
Text files 9.2.2.1
Text pointer 4.1.2
Throv Avay Window 4.2.2.4
Tilde 9.1.4
Time Command 3.2
Timing Functions 8.4.8
Toggles 10.4.1
Token search 4.2.4.3
Trace 8.4.6
Trace Display 8.3.2, 8.4.4
Transfer (T) command 2.3.3
TransferProgram Command 1.4.2
Transferring a file 2.3.3
Translit translating characters 11.27
Transmitting Special Characters 10.4.2
TRIHBLANKS Function blanks and tab 9.2.4.7
Type Style Menu 4.2.5

U
UBR 8.4.6
Undo Last Change Command 4.2.1.1
Unit Information 11.4
Unmount Command 2.2.3
Upper and Lover Case 9.1.4
UPPERCASE and LOWERCASE Functions 9.2.4.2

Index-14

I
I (
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(.

I
I

lIorkshop User's Guide

User Break 8.2.1.3
User Code Breakpoint 8.4.6
UXRef Pascal cross reference 11.28

V
Validate Command 2.3.3, 3.2
Variable 9. 1. 3
variable-declaration-list 9.2.1.1
Variable Names 9.1.3.1
Variable Number~ 9.1.3.1
Verify copy operations 2.3
Verifyini File Copies 3.2
Video 3. 3. 1. 1
Viey Buttons 4.1.3
Volume attributes 2.2.1

6
Wild Card Characters 2.1.2.4
Windoy 4.1.1
Windoys. opening 4.2.7
WordCount counts yords 11.29
Working Directory 2.1.2.2. 2.5.1
Workshop Command Line 1.4.2
Workshop environment 1.4.2
Workshop Line Syntax 9.1.4
Workshop Lines 9.1.2
Workshop Run Command 9.1.1. 11.0
Workshop Shell 1.4. 1.4.3
Workshop. temp 2.3
WHILE and ENDWHILE commands 9.2.3.3
WHILE and REPEAT Statements 9.2.3.3
Wraparound search 4.2.4, 4.2.4.3
Write Protection 8.4.1
Write to the screen or textfile 9.2.2.3
WRITE and WRITELN Commands 9.2.2.3

.r
Xref a Cross-referencine Pascal 11.30

y

Z

Index-1S

Index

,
: 4t,

i '

" .""

I
I
I
I
I
I
I
I

I (
I
I
I
I
I
I
I
I
I
I

(

Iforkshop User's Guide Index

Index
Please note that the topic references in this index
are by section number.

" Abnormal Termination 2.3.15
Absolute Addresses 6.4.6
Access Key 9.2.2.5
Active Windov 4.2
AddCatalog Command Notes 2-1
Addressing Modes 6.4.6
Appendix Problems 0-1
Apple-arrow key Notes 4. 1
Apple-period 0.2, 0.3
Apple-period key combination 5.4.1
Apple-Q 3.2
Apple-S 3.2, 0.5
-ALTCONSOLE 1.4.4
Alternate Screen 1.4.4, 3.2, D.l
Arrow keys move the insertion point Notes 4-1
Arrow Pointer 4.3
ASCII Character 9.2.4.4, B-1
Assemble Command 1.4.2
Assembler Directives 6.5
Assembler Errors A.l
Assemble Instructions 8.4.5
Assembler Language Source Statements 6.2.2
Assembler Options 6.2.1
Assembly Language Program Structure 6.4.1, 6.7.3
Assembly Language Routines 6.6
Attributes 2.3.4, 2.3.14-15
Automatic Setting of Prefixes 1.4.3.3.

8
Backing Up Files 2.7
Backup/Copy/Transfer to Multiple Micro Diskettes

Notes 2-2
Backup (B) Command 2.3.1
Basic Command 1.4.2,
Baud Rate Menu 10.3.2
Baud rate 10.1
BHS 6.3
Blanks Option 9.1.4, 9.3.2
BLO 6.31
Block-Structured Devices 2.4

Index-l

,.' ',I'

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Iforkshop User's fiuide Index

Boolean Constants 9.1.4
Boolean Expressions 9.1.4, 9.2.3.1
Boolean Functions 9.1.4
Boot1ns from Workshop 1.2
Booting the System 1.2.1
Breakpoint 8.2.1.3, 8.3
Breakpoints and Traces 8.4.6
Built-In Pascal Heap Routines 5.4.2
Built-In Strins Functions 9.2.4
ByteDiff compares two files 11.1

C
Calling Another Exec Program 9.2.6
Calling Assembly Language Routines from Pascal 6.6
Calling an Exec Procedure the SUBMIT Command

9.2.6.1
Calline Pascal I/O Routines 6.7.4
Calling a User Function 9.2.6.3
Canceling a Program 1.5.3.1
Canceling a Prompt 1.5.3.2
Case Sensitive/Search Notes 4-4
Catalog 2.4.1
Chaining 9.3
ChangeSeg changes the segment name 11.2
ChangeSeg Utility 7.9
Changing the Name of a File 2.3.6, 2.10
CHR and ORO Functions 9.2.4.4
CharCount counts characters 11.3
CIFINISH 1.4.3.1
CISTART 1. 4. 3. 1
Clear Attributes Command 2.3.10
CLEAR Command erases the screen 9.2.5.1
Clear Key 1.5.3.2
Clipboard Notes 4-4
Code Generator 5.2.1
CodeSize 11. 4
Combine String Expressions 9.2.4.1
Command Set and DEFAULT Command
Comments 6.4.7, 9.1.2.1, 9.1.4, 11.19
Communication Buffer 9.2.2.6
Compare compares tvo text files 11.5
Comparing Files 2.3.9
Comparisons 9.2.3.1
Compiler Commands Notes 5-1
Compiling a Pascal Program 9.1.3.2

Index-2

I
I

('I . .

I
I
I
I
I
I
I
I
I
I
I
I
I
I

(

I
I
I

rtlrks/lop User's Suide Index

Concat copies a list of files into one file. 11.6
CON CAT Function 9.2.4.1
Conditional Assembly Directives 6.6.3
Conditional Statements 9.2.3, 9.2.3.1
Configuration 10.2
Configuring the System 1.3
Connector Menu 10.3.1
Connecting a Printer 3.3.3.2
Connecting Device Software 3.3.3
Connector 3.3.3
-Console 1.4.4, 2.3.2, 2.4.3
Console Command 1.4.4, 3.2
Control characters 10.4.2
Control Menu 10.4.1
Conventions and Standards 1.5
Converting to uppercase 9.2.4.2
Copy 11. 7
Copy (C) Command 2.3.2
Copying file(s) 2.3.7, 2.7
Creating Text Files 4.1
Creation-Date 2.3.4
Copy Command 4.6
Current Program Location 6.4.7
Cut Command 4.6
CYRSIR Command mover the cursor 9.2.5.2

o
Dead Code Analysis 7.1, 7.5.1, 7.8
Debug Command 1.4.2
Debugger 6.6.1. D.1
Debugger Commands 8.4
Debugger Commands Summary 8.6
Debugger Notes 8-1
Debugger Output 3.
Debugger Screen 8.1, 8.4.9.2
Debugger Symbol Table 8.1
Declaring and Setting Variables 9.2.1
Default Extension 1.5.1.2
Default Memory Test 3.3.2
Default Printer 1.3.2.3, 3.2, 3.3.2. 6.4.1
Default Setting 10.3
Default Startup Disk 3.3.2
Default Volume Names 2.3.5
Defaults in File Name Prompts 1.5.1.2
Delete (D) Command 2.3.3

Index-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~orkshop User's /Juide

Deleting a Marker Notes 4-2
Deleting Files 2.8
Device Aliases Notes 2-1
Diff comparing TEXT files 11.8
Directives 6.4.1, 11.19
Directory 2.4.1, 2.6

Index

Disconnectin2 or Chan2in2 Device Software 3.3.3
Disassemble 8.3.1
Disassemble Instructions 8.4.5
Disassembly 8.3.2
Diskette won't eject D.3
Display and Set Memory Locations 8.4.2
$E Compiler Command &.2
"$" Character 2.5
DOlT Command 9.2.7.3, 9.3.3
Dollar Sign Convention 9.1.2.1, 9.1.4
Double Quotation Marks 9.1.4
Driver 3.3.3
Dump and/or patch a file 11.10
Dumping Memory to Diskette 8.4.9.5
DumpObj disassembler 11.9
DumpPatch 11. 9
Duplex Menu Full duplex Half duplex 10.3.5
Duplicating An Existing Document 4.5

E
Echoing 10.3.5
Edit Command 1.4.2
Edit Functions 4.6
Editing Multiple Files 4.2.4. Notes 4-1
Editor Notes 4-1
Editor Initialization Errors Notes 4-6
Eject Diskette Notes 4-3
Elevator 4.4.1
ELSE command 9.2.3.2
ELSEIF command 9.2.3.2
ENDIF command 9.2.3.2
end-of-file is 9.2.2.2
. ENDM 6.5.2
Entry into Debugger 8.2
Environments Window 1.2.1, 1.4.2
"." Character 2.5
Equal Command 2.3.9
Error Messages 1.5.4
Errors 5.2

Index-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I -",.-~,. ,

(.

I
I
I

fIIorkshop lJs~r' s Ou.z'dt!

Errors option 9.3.2
ErrTool error messages 11.11
Escape key 1.5.3.2
EVAL Function Arithmetic 9.2.4.5
Exception Handler 8.2.1.1
EXEC Command 9.2.1.1
ENDEXEC Command 9.2.1.1
Exec Errors A.7.3
Exec Files 9.1
Exec File Chaining 9.4.1
Exec File Errors 9.5, A.7
Exec Invocation Character 9.1.4
Exec Lines 9.1.2, 9.1.2.1
Exec Line Syntax 9.1.4
Exec Processor 9.1.1
Exec RUN and END RUN Commands 9.2.7.2
Exec Run File 9.1, 9.1.1
Exec Source File 9.1, 9.1.1
Executable Object File 7.1, 7.5.1
EXISTS and NEWER Boolean Functions 9.2.3.4
Exit Editor 4.5
Exiting 2.3.8
Exiting from the Transfer Program 10.4.1.4
Expanded String Constants 9.1.4
Expansion Cards 3.3.3, 3.3.3.1
Expressions 6.4.5
Extension 9. 1. 1
External Hard Disks 3.3.3.3
External Reference Directives 6.5.4
Externally Compiled Routines 7.1

F
FileAttributes Command 2.3.10, 2.3.15
FileAttributes Notes 2-3
File Cache and the Input Buffer 9.3.4
File Diagrams 2.4.2
File Directive 6.5.6
FileDiv and FileJoin large files 11.12
File Extensions 2.4.3
File Functions 4.0
File identifier, COMMBUFR 9.2.2.6
FILE-MGR Command 1.4.2, 2.2
File Manager Notes 2-1
File Menu Notes 4-3
File Names 1.5.1.1

Index-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

rorkshop User's 8uide Index

File Names List 2.3.13
Files Not Automatically Installed Notes D-8
File Specifier 2.2, 2.4.2, 2.5
File Specifiers Notes 2-4
File System Conventions 1.5.1
Files and Devices 2.4
Files Not Automatically Installed Notes D-1
FilesPrivate Command 3.2
Find 4. 7
Find searches for a pattern 11.13
Finding Patterns in Memory 8.4.3
Floatine Point Operations 5.1
Footers 4.9
Function PAbort Flag 5.4.1

G
Generate Command 1.4.2
Generating a Nonkeyboard Character 9.2.4.4
Generate option 9.3.2
Generic Instructions 6.3
GetGPrefix 5.4.1
GetPrDevice 5.4.1
Getting Help 1.5.2
Global file identifier 9.2.2.1
Global Name 7. 7
Go to Line # Notes 4-6
GOTOXY Command moves the cursor 9.2.5.3
GXRef Cross Reference 11.14

H
HALT and ABORT Commands 9.2.7.1
Halting a Screen Display 1.5.3.3
Handshake Menu XON/XOFF DTR 10.3.4
Hardware Configuration 1.3
Hardware Connections 1.3.1
Hardware Exceptions 8.2.1.1
Heap Routines 5.4.1-2
Hierarchical Catalog Structure Notes 2-1

I
.1 2.4.3
I-code 5.1-2
Identifier Names 6.4.3
Imbed option 9.3.2
IF command 9.2.3.2

Index-6

I
I .(

I
I
I
I
I
I
I /,r"'.~

(

I
I
I
I
I
I
I

(

I
I
I

l1orkshop User's Ouide Index

IF Statement 9.2.3.2
Infinite Loop 8.2.1, D.2
Initialize Command 2.3.11, 2.4.1, 2.9
Initialize Command Notes 2-3
Initializing the Prefix 2.3.5
Initial Values of Variables 9.1.3.2
Input File 6.2.2
Installation Problems Notes D-1
Installing the 3.0 Workshop Notes D-1
Insertion Point 4.1
Install or Remove Device Software 3.3.3
Installing the Workshop 1.2.2-4
Integers 9.1.4
INTRINSIC. LIB 7.1, 11.15, Notes 2-3
Intrinsic Units 7.5, 8.4.6, Notes 7-1
Intrinsic Units Notes 7-1
Invocation 9.2.6
Invocation Parameter List 9.1.3.2, 9.2.6.1, 9.3.1
1/0 Errors 9.5.2, A.7.2
IOPrimitives A.5.1
IORESULT Function error 1/0 9.2.2.5
IOSPASLIB.OBJ 5.1, 7.1
IUManager library files 11.15
IULManager Notes 2-3

J

K
Keep option 9.3.2
Keyboard 2.4.3
keyboard input 9.2.1.3
Keywords Notes 4-6
Kill Process Command 3.4
l
Labels 6.4.4
Large exec files 9.3.4
Last-Mod-Date 2.3.4
Last-Mod-Date 9.2.3.4 dsn default 5.4.2
LENGTH COPY of a string and POS location of a

substring 9.2.4.3
LENGTH of a string 9.2.4.3. LIB 9.2.4.3
LINECOUNT COUNTS LINES 11.16
Line Delay option 10.4.1.2
Link Command 1.4.2, 2.6
Linker Errors A.2

Index-7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

#orkshop User's Oi/ide

Linker Listing 7.6
Linker Options 7.3
Linker Options Notes 7-1
Linkin~ a Main Pro~ram 7.4
Linking a Pascal Program 9.1.3.2
Linking a Regular Unit 7.5.1
Lisa Extended Character Set B-1
Lisa-Mac 11. 18
List Command List and Names Commands Attribute

Notes 2-2
Listing Existing Files 2.6
Listine File 6.2.4
Literalizing Character 9.1.4
Literal Search Notes 4-4
Local Name 7.7
Logical Console 1.4.4
Logical Devices 2.4, 2.4.2
Logical operators 9.2.3.1
Log off 10.4.1.4
LWCCOUNT COUNTS LINES, WORDS. CHARACTERS 11.17

If
Macintosh Environment 1.2.3
Macintosh diskettes 11.18
Mac- Li sa 11. 15
MACCOM 11. 18
Macro Directives 6.5.2
. MACRO 6. 5. 2
.MACROLIST 6.5.2
Macros to Call Pascal Functions 6.7.4
MacWorks. sharing disk with 1.2.3
MAIN Assembler Directive Notes 6-1
Main Command Line 1.4.2
-MAINCONSOLE 1.4.4
Main Screen 1.4.4, 3.2
MakeBackground Command 1.4.2
Manage Process Command 3. 2
Mapping 11. 4
Markers Menu Notes 4-2
Match Cases 4. 7
Maximum Leneth of Lines Notes 4-6
Measuring Execution Times 8.4.8
Memory Locations 8.4.2
Memory Management Hardware 8.4.7
Modem 10.2

Index-8

Index

I
I (

I
I
I
I
I
I
I (~:

.~ ~. ,'; .

I
I
I
I
I
I
I

(,

I
I
I

(forkshop User's Ouide

Modem eliminator 10.2
Hount Command 2.3.12
Mounting of Disks 1.4.3.2
Mouse Double-Click Delay 3.3.1.5
Moving Debugger Window 8.4.9.2
Moving Display 4.4
Moving Insertion Point 4.3.1
Moving Text 4.6
Hoving Window 4.4.2

N

Index

Named Parameters 9.1.3.1
Named Variables 9.1.3.1
Names Command 2.3.13
nesting 9.2.3.2
NMI (nonmaskable interrupt) key 1.5.3.1, 8.2.1.2,

8.3, 8.4.9.3
.NOMACROLIST 6.5.2
numeric comparison operators 9.2.3.1
Numeric Constants 6.4.2.1
Numeric constants integers 9.1.4
Numeric expressions EVAL function 9.1.4
Numeric operators 9.2.4.5

o
Object Files 6.1, 6.2.3, 7.1
OBJ 2.4.3
ObjIOLib Errors A.3
Off line 2.3.16
Online Command 1.3.1. 2.3.14
Online Command Notes 2-4
Opcodes 6.3
Open a New Document 4.5
Operation Size 6.3
Operating System Errors A.4
Operating System Error Codes A.4.1
Operators 6.4.5
Options 11.19, 11.30
Option and Shift Keys B-3
OSQUIT 8.2.2, 8.4.6
Output Redirect Command 3.2
Override the extension 9.3.1

p
Page Number 4.9

Index-g

I'
1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

lIorkshop User 's Ouide

Parallel Cable 3.3.3.4
Parameter 9.1.3
Parameter Passine 6.6.3
Parity checking 10.4.2
Parity Menu 10.3.3
Parsing 5. 1
Pascal Command 1.4.2
Pascal Compiler Commands 5.3
Pascal compile 9.4.1
Pascal Heap 5.4.2
Pascal Run-time Support Routines 5.1
PASLIBCALL Unit 5.4.1
PasLib Errors A.S
Pasmat reformats Pascal source code 11.19
Passing a Pascal String 6.7.2
Passyord Protection Notes 2-1
Password Protection Notes 2-1
Pathname 1.5.1.1, 2.5
Peripheral Device Connections 3.3.3. 3.3.3
Physical Device 2.4.2, 2.4.3
Physical Device Names Notes 2-1
PLINITHEAP 5.4.1
Pointer 4.3
"PortConfig" 10.3.2

Index

PortConfig configure the RS232 ports RS232 11.20
Povering Off 1.2.1
Prefix Notes 2-4
Preferences Notes 2-4
Preferences Tool 3.3
Prefix Command Notes 2-2
Prefix (PJ Command 2.3.5, 2.4.3
Pretty Listing 8.2.1, 8.2.4
-Printer 2.3.2, 2.4.3
-printer logical device 3.2
Printer Configuration 1.3.2
Printing A Document 4.9
Printing ASCII Characters B-1
Printing Commands Notes 8-1
Printing from Debugger 8.4.9.4
Print Menu Notes 4-6
Private Files 3.2
Problems Notes D-1
Procedure information 11.4
Procedure ScreenCtr 5.4.1. C-1
Process Management 3.4

Index-10

I
I
I
I
I
I
I
I
I f'
I
I
I
I
I
I
I
I
I
I

iforks/tOp lJ$er's 6'lIide Index

Process Status Command 3.4
Process Time 9.1
Processor Options 9.3.2
ProgComm A.5.2
ProgComm unit 9.2.2.6, 9.2.4.6
Program Bugs 8.2.1
Program Communication Buffer 9.2.2.B
Program Errors 8.2.1.1
Project Command 2.3.10
ProcNames lists procedure and function names in a

Pascal program Pasmat 11.21
Proportional Spacing 4.8
Protected Master 2.3.10
Psize 2.3.4

Q
"?" Character 2.5
Quit (Q) Command 1.4.2, 2.3.8, 3.2, 3.4
Quotes 6.4.2.2

N
Range Check Error 8.2.1.1
Range Errors 8.3.2, D-4
Read from keyboard from textfile 9.2.2.2
READCH and READLN Commands 9.2.2.2
Real Numbers 5.1
. REF and .DEF Directives 6.7.1
Receive All Text 10.4.1.1
Receive Filtered Text 10.4.1.1
Receive From Remote 10.4.1.1
Receiving Text 10.4.1.1
Recursive Exec Program Pascal compiles 9.4.2
Recursive User Function 9.4.2
Register Conventions 6.6.2
Regular Units 7.5
Relocatable Code 6.5.1
RMaker resource files Macintosh applications 11.22
Remote Computer 1.4.2. 10.1
Rename (R) Command 2.3.6, 2.10
Rename Command Notes 2-3
Repair Damaged Files 2.3.15
Repeating Keys 3.3.1.4
REPEAT and UNTIL commands 9.2.3.3
REQUEST Command 9.2.1.3
Rerun option 9.3.2

Index-ll

t
I
\
I .'

t

r
l
i
!
~

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

/forkshop User's 8ui de

RESET, REWRITE,and CLOSE Commands 9.2.2.1
RESETCAT Command and NEXTFILE Function 9.2.2.4
RETSTR Function ProgComm unit 9.2.4.6
RETURN command 9.2.6
RETURN Command user function 9.2.6.2
Revert to Previous Version 4.5
RS232 Devices 2.4.3
Runayay Exec File 0.6
Run Command 1.4.2

Index

Running an Exec Program Workshop Run command 9.3
Run Time 9.1
Run-Time Stack 6.6.1
Run a utility program 11.0

S
Safety Command 2.3.10
Sample Exec Programs 9.4
Saving An Active Document 4.6
Scavenge Command 2.3.15
Screen Brightness and Contrast 3.3.1.1
Search copies specified pattern 11.23
Search Menu Notes 4-3
SegMap segment map 11.24
Selecting Characters 4.3.2
Selecting the Last Line Notes 4-2
Set a marker Notes 4-2
Sending Text 10.4.1.2
Segment information 11.4
Segment names 11.4
Screen Control Character Strings C-2
Screen Dim 3.3.1.2
Screen Display 9.2.5
Scroll Arroys 4.4.1
Scrolling 4.4
Search Functions 4. 7
Search Literally 4.7
Search for Text String 4. 7
Search for Tokens 4. 7
Search is TokenizedlSearch is Literal Notes 4-4
. SEG S. 5. 4
Segmentation 7.9
Select All of Document 4.6
Select Defaults 3.3.2
Selecting Text 4.3
Selecting Words and Lines 4.3.3

Index-12

I

I (
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(

lIorksnop User's Suide Index

Sequential Devices 2.4
Serial Cable 3.3.34
Serial Devices 2.4.3
Serial Port 10.3.1
Serial Printer 8.4.9.4
Set Conveniences 3.3.1
Set Tabs 4.6
Set and Display Registers
Setting and Clearing File Attributes 2.3.10
Setting Variable Values 9.1.3.2
SHELL. filename 1.2.1
Shift Left Command 4.6
Shift Right Command 4.6
Shovlnterface interface section of unit Pasmat

utili ty 11. 25
Shov Current Insertion Point scrolls the vindow

Notes 4-5
Single Quotation Marks 9.1.4
680000pcodes 6.3
Size Control Box 4.4.2
Slot 3.3.3
Space Allocation Directives 6.5.1
Space Information 6.2.1
Spaces 9. 1. 4
Speaker Volume 3.3.1.3
Special Characters 9.1.4
Stack Crawl 8.4.6
Stack Expansion Code 6.6.1
Stack Overflow 8.2.1.1
Standard Screen Control Functions C-l
Starting the Workshop 1.2
Startup and Shutdown Procedures 1.4.3.1
Startup Disk 3.3.2
Statement Bunching 11.19
Stationery 4.2, 4.2.3, Notes 4-1
Step mode 9.3.3
Step option 9.3.2
Stopping Runavay Exec File D.6
Stop Your Program D-2
String comparison operators 9.2.3.1
String Constants 6.4.2.2, 9.1.4
String Expressions 9.1.4
String Functions 9.1.4
SULib Errors A.5
SUBMIT command 9.2.6

Index-13

l'

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Iforkshop User's tluide

SUBMIT command a function call 9.3.4
Suppressing Text Display 10.4.1.3
Syapped to Disk 7.9
SXRef Pascal cross reference 11.26
Symbolic References 7.1
Symbols and Base Conversion 8.4.9.1
Syntax 9.1.4
Syntax Errors 9.5.1, A. 7.1
SYSCALL Unit 5.1. 5.4.1
SYSTEM-MGR Command 1.4.2
SYS_TERHINATE Exception 8.2.1.1
System Does Not Respond 0-5
System Malfunctions 8.2.2
System Manager Command Line 3.2

T
TAS 6.3
Tearing Off Stationery 4.6
Terminal Emulator 10.1
Terminal emulation mode 10.4
Terminating an Infinite Loop 8.2.1.2
Terminating Exec Processor 9.1.1
. TEXT 2.4.3
Text files 9.2.2.1
Text Files Notes 4-6
Text pointer 4.3
Throy Ayay Windoy Notes 4-3
Tilde 9.1.4
Time Command 3.2
Timing Functions 8.4.8
Toggles 10.4.1
Token Search Notes 4-4
Tokens 4. 7
Trace 8.4.6
Trace Display 8.3.2, 8.4.4
Transfer (T) Command 2.3.7
Transfer Operations 2.7
Transferring a File 2. 7
TransferProgram Command 1.4.2
Translit translating characters 11.27
Transmitting Special Characters 10.4.2
TRIHBLANKS Function blanks and tab 9.2.4.7
Type Style 4.8
Type Style Menu Notes 4-5

Index-14

Index

I
I

(

I
I
I
I
I
I
I (_.,

I
I
I
I
I
I
I .. -........

(,

I
I
I

rorkshop User's (Juide Index

U
UBR 8.4.6
Undo Last Change Command 4.6
Unit Information 11.4
Unmount Command 2.3.16
UPPERCASE and LOWERCASE Functions 9.2.4.2
Upper and Lower Case 9.1.4
User Break 8.2.1.3
User Code Breakpoint 8.4.6
Using Pascal Data Areas 6. 7
Using the Editor 4.2
Usini the Step Option 9.3.3
UXRef Pascal cross reference 11.28

V
Validate Command 2.3.2, 3.2
Variable 9. 1. 3
Variable Names 9.1.3.1
Variable Numbers 9.1.3.1
variable-declaration-list 9.2.1.1
Verify Copy Operations 2.3.2
Verifyine File Copies 3.2
Video 3. 3. 1. 1
View Buttons 4.4.1

~

Wild Card Characters 2.5, Notes 2-4
Window 4.1
Windows Menu opens windows Notes 4-2
WordCount counts words 11.29
Working Directory 2.3.5, 2.4.2
Workshop Command Line 1.4.2
Workshop environment 1.4.2
Workshop Lines 9.1.2
Workshop Line Syntax 9.1.4
Workshop Run Command 9.1.1, 11.0
Workshop Shell 1.4, 1.4.3
Workshop. temp 2.3.1
WHILE and ENDWHILE commands 9.2.3.3
WHILE and REPEAT Statements 9.2.3.3
Wraparound/Search Notes 4-5
Write Protection 8.4.7
Write to the screen or textfl1e 9.2.2.3
WRITE and WRITELN Commands 9.2.2.3

Index-iS

/'

I
I

~
,f \

I lIorkshop User's Guide Index

X

I Xref a Cross-referencing Pascal 11. 30

y

I
z

I
I
I
I
I
I
I
I
I
I
I
I
I Index-16

I

I
I

(
,

I
I
I
I
I
I
I

(~-'

I
.:. ~\~

I
I
I
I
I
I
I

("

I
I

WOrkSl7Op User's GuJcte MaJl-Back Fonn

Apple publlcatlons would like to learn aoout readers and what you thInk about thIs
manual In oreter to make better manuals in the future. Please flll out thIs form~ or
wrIte all over It and send It to us. We promIse to read It
How are you using this manual?
[) learnIng to use the product [] reference [] both reference and learnIng
(1
Is it quick and easy to find the information you need in this manual?
[] always [J often [] sometimes [] seldom [J never

What makes thIs manual easy to use7 ________________ _

What makes this manual hard to use? ________________ _

What do you like most abOUt the manual? ______________ _

wnat 00 you I1Ke least aOOUt the manuaI7 ______________ _

Please comment on~ for example, accuracy, level of detail, number and usefulness of
examples, length or brevity of explanation, style, use of graphics, usefulness of the
Index, organIzation, suitability to your partiCUlar needs, readablllty.

What languages do you use on your Usa? (CheCk each)
[] Pascal [] BASIC [] COOI.1 [J other ____________ _

How long have you been programm1ng?
(] 0-1 years [] 1-3 [] 4-7 [lover 7 [] not a programmer
What Is your job
Have you completed:
[] high school [] some college [) BAIBS [) MAIMS [] more
What magazInes dO you reaa? __________________ _

Other comments (please attach more sheets if necessary) _________ _

I
1
1
1
1
1
1
1

.. I'ao · · · .. · · .. · .. · .. · · · · · .. · ·

1
1
1
1
I·········· .. ···· .. ·· ·· .. ·· .. ·· .. ·· .. ····· .. ····· .. ·· .. ··· Fao············

1----
1----
1
1
1
1

.~ppk! computczr
POS publications Department

20525 Mariani Avenue

Cupertlno~ Callfornla 950lij

PLACE
srMP
HEilE

