Lisa Pascal 3.0 Systems Software
T R e

A ITINGALW o7 0 THLLE)M

EX LIBRIS
David T. Craig

The Standard
Apple Numeric Environment

Contents

Imtroduction e 1-1
Data TyPes - iemn——aaaa 1-2
2.1 Choosing a8 Data Type oottt it 1-2
2.2 Yalues Represented e 1-3
2.3 Range and Precision of SANE Typeso iiieieieaans 1-3
A S a4 12T 12 O 1-5
Arithmetic Operabions e emememamnn——— 1-8
o T80 S = =T = o = 1-8
32 Round to Integral Value iiiiiiiii it araaaans 1-9
CONVET S ONE et eeaeeeiecceamaaraan 1-10
4.1 Conversiors Between Extended and Single or Double................. 1-10
4.2 Conversions to Comp and Other Integral Formats 1-10
4.3 Conversions Between Binary and Decimalcooiii i, 1-11
431 Conversions from Decimal Strings to SANE Types 1-11

432 Decform Records and Conversions from SANE Types
to Decimal Stringso i e 1-12
433 The Decimal Record TYPE «..ovrirriniii i ieieeeaeeas 1-13
434 Conversions from Decimal Records to SANE Types 1-13
435 Conversions from SANE Types to Decimnal Records 1-14
4.4 Conversions between Decimal Formsts 1-14
44.1 Conversion from Decimal Strings to Decimal Records 1-14
44.2 Caonversion from Decimal Records to Decimal Records 1-15
Expression Evaluabion . i ieiiiiiicieaans 1-16
5.1 Using Extended Temporariescooiimiiiimiiiieiiiaiieiaaann. 1-16
5.2 Extended-Precision Expression Evaluation............. 1-16
5.3 Extended-Precision Expression Eveluation and the IEEE Standard .. 1-17
COmMPEE S ONS e iimceeceicceeam———————- 1-18
Infinities, NaNs, and Denormalized Numbers 1-19
0 S 1 U L L2 1-19
T 2 NN L e 1-19
7.3 Denormalized NUmbers i 1-20
7.3.1 Why Denormalized Numbers?ol 1-21
74 Inquiries: Class and SiOniiiiiir et aae s 1-21

8 Environmental Comtrol ieiiieecieceeeeana- 1-22
8.1 Rounding Direction ..ot 1-22
8.2 Rounding Precision.... 1-22
8.3 Exception Flags and Halts i, 1-23

B3l Exceplions . ..o i reiieiiiiieerrreeeeeaae- 1-23
8.4 Managing Environmental Settingsccoviiiimniiiiii 1-24

9 Auxiliary Procedureso oo emecme e meea—c—————- 1-27
9.1 Sign Manipulationo .. i 1-27
9.2 Next-After FunCtionsoiiiiii i 1-27

9.2.1 Special Cases for Next-After Functions........................ 1-27
9.3 Binary Scale and Log Functions... iiiiiiiiiiiiiii... 1-28
9.3.1 Special Cases for Logbo 1-28
10 Elementary Functions . ici-- 1-29
10.1 Logearithm Functionso i 1-29
10.1.1 Special Cases for Logerithm Functions 1-29
10.2 Exponertial Functions e e ettt eeeeeeeceeeenaeeanan 1-29
10.2.1 Special Cases for 2%, €*, exp(I)Xccveeiiiiiniiiiiiiiieen., 1-30
10.2.2 Special Cases for xd i 1-30
10.2.3 Special Cases for x¥...... et e et eeeeoceirennateeraraaaen 1-30
10.2 Financial FUNCtionS i ittt tieataaaannan 1-30
10.3.1 Compound ...t aieeaieecaaaaaaes 1-30
10.3.2 Special Cases for Compound(T,n)cooiiiimiiiereiiiannnnnnn 1-31
10.3.3 ANNUILY ... o e, 1-31
10.3.4 Special Cases for Annuityv(I,n)t 1-32
10.4 Trigonometric Functions i i 1-32
10.4.1 Special Cases for sin(x), CoS(X)ccceeiemiiiiiiiieeiiiiinnnaes 1-32
10.4.2 Special Cases for tan(X)coceiirimiieie i eiieeeiaaeenaans 1-32
10.4.3 Special Cases for arctan(x)coovvvviiiiiiiiiiiirerienanns 1-32
10.5 Randorm Number Generatorieiiiiiimeeiiiiieiceeaaaanas 1-33

Appendixes
= e 2) A-1
[(e T o B-1
C Other Elementary Functions ittt iiiiiiaanns C-1

The Standard
Apple Numeric Environment

1 Introduction

This manual describes the Standard Apple Numeric Environment (SANE).
Apple supports SANE on several current products and plans to support SANE
on future products. SANE gives you access to numeric facilities unavailable
on almost any computer of the early 1980s--from microcomputers to
extremely fast, extremely expensive supercomputers. The core features of
SANE are not exclusive to Apple; rather they are taken from Draft 10.0 of
Standard 754 for Binary Floating-Point Arithmetic [10] as proposed to the
Institute of Electrical and Electronics Engineers (IEEE). Thus SANE is one of
the first widely available products with the arithmetic capabilities destined
to be found on the computers of the mid-1980s and beyond.

The IEEE Standerd specifies standardized data types, srithmetic, and
conversions, along with tools for handling limitations and exceptions, that are
sufficient for numeric applications. SANE supports all requirements of the
IEEE Standard. SANE goes beyond the specifications of the Standerd by
including a deta type designed for accounting applications and by including
several high-quality library functions for financial and scientific calculations.

IEEE arithmetic was specifically designed to provide advanced features for
numerical analysts without imposing extra burden on casual users. (This is
an admirable but rarely attainable goal: text editors and word processors, for
example, typically suffer increased complexity with added features, meaning
more hurdles for the novice to clear before cornpleting even the simplest
tasks.) The independence of elementary and advanced features of the IEEE
arithmetic was carried over to SANE.

1-1

The Standard Apple Numeric Emvironrent SANE

2 Data Types
SANE provides three gpplication deta types (single, double, and comp) and
the arithmetic type (extended). Single, double, and extended store
floating-point values and comp stores integral vealues.

The extended type is called the arithmetic type because, to make expression
evaluation simpler and more accurate, SANE performs all arithmetic
operations in extended precision and delivers arithmetic results to the
extended type. Single double and cornp can be thought of as space-saving
storage types for the extended-precision arithmetic. (In this manual, we
shall use the term extended precision to denote both the extended precision
and the extended range of the extended type.)

All values representable in single, double, and comp (as well as 16-bit and
32-bit integers) can be represented exactly in extended. Thus values can be
moved from any of these types to the extended type and back without any
loss of information.

2.1 Choosing a Data Type

Typically, picking a data type requires that you determine the trade-offs
between

= Fixed- or floating-point form,
= Precision,

= Range,

= Memory usage, and

= Speed.

The precision, range, and mernory usage for each SANE data type are shown
in Table 2-1. Effects of the data types on performance (speed) vary armong
the implementations of SANE. (See Section 4 for information on conversion
problems relating to precision.)

Most accounting applications require a counting type that counts things
(pennies, dollars, widgets) exactly. Accounting applications can be
implemented by representing money values as integral numbers of cents or
mils, which can be stored exactly in the storage format of the comp (for
computational) type. The sum, difference, or product of any two comp values
is exact if the magnitude of the result does not exceed 253 - 1 (that is,
9,223,372,036,854,775,807). This number is larger than the U.S. national debt
expressed in Argentine pesos. In addition, comp values (such as the results
of accounting computations) can be mixed with extended values in
floating-point computations (such as compound interest).

Arithmetic with comp-type variables, like all SANE arithmetic, is done
internally using extended-precision arithmetic. There is no loss of precision,
as conversion from comp to extended is always exact. Space can be saved

1-2

'

The Slandsrd Apple Nurneric Emsironment SANE

by storing numbers in the comp type, which is 20 percent shorter than
extended. Nonaccounting applications will normally be better served by the
floating-point data formats.

2.2 Values Represented
The floating-point storage formats (single, double, and extended) provide
binary encodings of a sign (+ or -), an exponent, and a significand A
represented number has the value

+significand * 2exponent
where the significand has a single bit to the left of the binary point (that is,
0 ¢ significand ¢ 2).

23 Range and Precision of SANE Types
This table describes the range and precision of the numeric data types
supported by SANE. Decimal ranges are expressed as chopped two-digit
decimal representations of the exact binary values.

The Standard Apple Nurneric Environmernt SANE
Table 2-1
SANE Types
Type class Application Arithmetic
Type identifier Single Double Comp Extended
Size (bytes:bits) 4:32 8:64 8:64 10:80
Binary exponent
range
Minimum -126 -1022 -_— -16383
Significand
precision
Bits 24 53 63 64
Decimal digits 7-8 15-16 i8-19 19-20
Decimal range
(approximate)
Min negative -3.4E+38 -1.7E+308 =-9 2618 -1.1E+4932
Max neg norm -1.2£-38 -2.3E-308 -1.7E-4932
Max neg denorm* -1.5E-45 -5_.0E-324 ~-1.96-4951
Min pos denorm* 1.5E-45 5.0E-324 1.9E-4951
Min pos norm 1.2E-38 2.3-308 1.7E-4932
Max positive 3.4E+38 1.7E+308 = 9.2F18 1.1E+4932
Infinities* Yes Yes No Yes
NalNs* Yes Yes Yes Yes

s Denorms (denarmalized nummbers), NaNs (Not-a-Numbes), and infinities are
defined in Section 7.

Usually numbers are stored in a normealized form, to afford maximum
precision for a given significand width. Maximum precision is achieved if
the high order bit in the significand is 1 (that is, 1 £ significand ¢ 2).

.

The Standsrd Apple Numeric Ervironment SANE
Example
In Single, the largest representable number has
significand = 2 -2
= 1.1111311131311113111131111111,
exponent = 127
value = (2 - 223) *» 2z
® 3.403 * 10%0
the smallest representable positive normalized nurnber has
significand = 1
= 1. 0000O00O000OANOOO000000,
exponent = -126
value = 1 727126
® 1.175 % 1038
and the smallest representable positive denormalized number (see Section 7)
has
significand = 223
= 0 . 000N OCOOOOOOOO00 12
exponent = -126
value = 73 » 27128
% 1.401 * 1095
24 Formats

This section shows the formats of the four SANE numeric data types. These
are pictorial representations and may not reflect the actual byte order in any
particular implementation.

Single
A 32-bit single format number is divided into three fields as shown below.

1 8 23 widths
[s] e | f I
msb 1sb msb 1sb order
1-5

The Stendard rApple Numeric Environment SANE

The value v of the number is determined by these fields as follows:

if 0 ¢ e ¢ 233, then v = (-1)8 * 2(e-12?) * (] f);
ife= Oandf+ 0, thenv = (-1)% * 2(-126) * (().
ife= Oandf =0, thenv = (-1)% * O;
ife=2¥andf =0 thenv = (-1)5 * «;

ife=25 and f = 0, then v is a NaN.

See Section 7 for information on the contents of the f field for NaNs.

Double
A 64-bit double formet number is divided into three fields as shown below.

1 11 52 widths
s e I f I

msb 1sb msb 1sb ordexr

The value v of the number is determined by these fields as follows:

if 0 < e < 2047, then v = (-1)8 * 2(e-1023) % (1 f);
ife= Oandf 0, thenv = (-1)% * 2¢-1022) * (0 f);
if e = O0and f =0, thenv = (-1)5 * O;
if e=2047 and f =0, thenv = (-1)5 * «;
if e = 2047 and f # O, then v is a NaN.
Comp
A 64-bit comp format number is divided into two fields as shown below.
i 63 widths
sl d I
msb lsb order
1-6

I

-

L.

The Standard Apple Nurmeric Emvironment

The value v of the number is determined by these fields as follows:

if £ = 1andd=0, then v is the unique comp NaN;

otherwise, v is the two's-complement value of the 64-bit representation.

Extended
An 80-bit extended format number is divided into four fields as shown below.
1 15 1 63 widths
s e li] f |
msb 1sb msb 1sb oxrder

The value v of the number is determined by these fields as follows:

if 0 (= e < 32767, then v = (-1)5 * 2(e-16383) * (j f);

if e = 32767 and f = 0, then v

(-1)s * », regardless of i;

if e = 32767 and £ # O, then v is a NaN, regardless of i.

1-7

The Slandard rpple Numeric Environment SANE

3 rfArithmetic Operations
SANE provides the basic arithmetic operations for the SANE data types:

= Add.

= Subtract.

= Multiply.

= Divide.

= Square root.

= Remainder.

= Round to integral value.

All the basic arithmetic operations produce the best possible result: The
mathematically exact result coerced to the precision and range of the
extended type. The coercions honor the user-selectable rounding direction
and handle all exceptions according to the requirements of the IEEE Standard
(see Section 8). See Sections 9 and 10 for auxiliary operations and
higher-level functions supported by SANE.

3.1 Remainder
Generally, remainder (and mod) functions are defined by the expression

XIremy=x-v*n

where n is some integral approxirmation to the quotient x/y. This expression
can be found even in the conventional integer-division algorithm:

n (integral quotient approximation)
(divisor) y) x (dividend)

X -v*n (remainder)

SANE supports the remainder function specified in the IEEE Standerd:

When y # O, the remainder r = x rem y is defined regardless of the rounding
direction by the rathematical relation r = x - y * n, where n is the integral
value nearest the exact value x/y; whenever |n - x/y| = 1/2, n 1s even. The
remainder is always exact. If r = 0, its sign is that of x.

The Standsrd Apple Numeric Environment SANE

Example 1

Find Srem 3. Herex =5andy = 3. Since 1 ¢ 5/3 < 2 and since 5/3 =
1.66666... is closer to 2 than to 1, n is taken to be 2, so

Srem3 = r = 5-3%2 = -1

Example 2

Find 7.0 rem 04 . Since 17 ¢ 70/04 < 18 and since 7.0/0.4 = 17.5 is equally
close to both 17 and 18, n is taken to be the even quotient, 18. Hence,

70rem0.4 = r = 70-04*%*18 = 0.2

The IEEE remainder function differs fromn other commonly used remainder
and mod functions. It returns a remainder of the smallest possible
magnitude, and it always returns an exact remainder. All the other
remainder functions can be constructed from the IEEE remainder.

32 Round to Integral Value

An input argument is rounded according to the current rounding direction to
an integral value and delivered to the extended format. For example,
12343678.875 rounds to 12345678.0 or 12343679.0. (The rounding direction,
which can be set by the user, is explained fully in Section 8)

Note that, in each floating-point format, all values of sufficiently great
magnitude are integral. For example, in single, numbers whose magnitudes
are ot least 223 are integral.

1-9

The Standard Apple Numeric Emvironment SANE

4 Conversions
SANE provides conversions between the extended type and each of the other
SANE types (single, double, and comp). A particular SANE implementation
will provide conversions between extended and those nurneric types supported
in its particular larger environment. For example, a Pascal implementation
will have conversions between extended and the Pascal integer type.

|single] ___ ————— | system-specific
double| |extended| | integral
comp | — | types |

SANE implementations also provide either conversions between decimal
strings and SANE types, or conversions between a decimal record type and
SANE types, or both. Conversions between decimal records and decimal
strings may be included too.

————— — |decimal strina]
|single
I

I
|double |
Icnmp | |
extended |
—_—— |decimal record|

4.1 Corwersions between Extended and Single or Double
A conversion to extended is always exact. A conversion from extended to
single or double moves a value to a storage type with less range and
precision, and sets the overflow, underflow, and inexact exception flags as
appropriate. (See Section 8 for a discussion of exception flags.)

42 Corwversions to Comp and Other Integral Formats
Conversions to integral formats are done by first rounding to an integral
value (honoring the current rounding direction) and then, if possible,
delivering this value to the destination format. If the source operand of a
conversion from extended to comp is a NaN, an infinity, or out-of-range for
the comp format, then the result is the comp NaN and for infinities and
values out-of -range, the invalid exception is signaled. If the source operand
of a conversion to a system-specific integer type is a NaN, infinity, or
out-of-range for that format, then invalid is signaled (unless the type has an
appropriate representation for the exceptional result). NaNs, infinities, and

1-10

The Slandard Rpple Numeric Environment SANE

out-of -range values are stored in a two's-complement integer format as the
extreme negative value (for example, in the 16-bit integer formeat, es
-32768).

Note that IEEE rounding into integral formats differs from most common
rounding functions on halfway cases. With the default rounding direction (to
nearest), conversions to comp or to a system-specific integer type will round
05to0, 1.5to 2, 25 to 2, and 3.5 to 4, rounding to even on halfway cases.
(Rounding is discussed in detail in Section 8)

4.3 Corwersions between Binary and Decimal

431

The IEEE Standard for binary floating-point arithmetic specifies the set of
numerical values representable within each floating-point format. It is
important to recognize that binary storage formats can exactly represent the
fractional pert of decimal nurnbers in only a few cases; in all other cases,
the representation will be approximate. For example, 0.5y, or 1/24¢, c8n be
represented exactly as 0.1;. On the other hand, 0.139, or 1/10y4p, is &
repeating fraction in binary: 0.00011001100....,. Its closest representation in
single is 0.0001106011001100110011001101,, which is closer to 0.10000000149;4

than to 0.1000000000044.

As binary storage formats generally provide only close approximations to
decirnal values, it is important that conversions between the two types be as
accurate as possible. Given a rounding direction, for every decimal value
there is a best (carrectly rounded) binary value for each binary format.
Conversely, for any rounding direction, each binary value has a corresponding
best decimal representation for a given decimal format. Ideally,
binary-decimal conversions should obtain this best value to reduce
accumuleted errars. Corwersion routines in SANE implementations meet or
exceed the stringent error bounds specified by the IEEE Standard. This
means that although in extreme cases the conwversions do not deliver the
correctly rounded result, the result delivered is very nearly as good as the
correctly rounded result. (See the IEEE Standard [10] for a more detailed
description of error bounds.)

Conversions from Decimal Strings to SANE Types

Routines may be provided to convert numeric decimal strings to the SANE
data types. These routines are provided for the convenience of those who do
not wish to write their own parsers and scanners. Examples of acceptable
input are

123 123 4E-12 -123. .456 3e9 -0

-INF Inf NAN(12) -NaN() nan
The 12 in NAN(12) is a NaN code (see Section 8).

The accepted syntax is formally defined, using Backus-Naur farm, in Table
3-1:

1-11

The Slandard Rppls Nurnsric Emcironment SANE

432

Table 4-1.
Syntax far String Conversions

{decimal number> = {space | tab}] <left decimal)
(left decimal> = +|-] <unsigned decimal)

<unsigned decimal) = (finite number) | <infinity) | <NAN>
(finite number> ;= (significand> [<exponent>]
(significand> ;= Kinteger) | <mixed>

¢integer) ;= (digitsy [.]

(digits> i= 10|1|2|3|4|5|6|7|8|9]
mixed) .= <digits)] . <digits)

{exponent> ;= E [+]-] <digits)

(infinity) ;= INF

NAN> = NAN[([<digits>])]

Note: Square brackets enclose optional items, curly brackets enclose
elements to be repeated at least once, and vertical bars seperate
alternative elements; letters that appear literslly, like the £ marking the
exponent field, may be either upper or lower case.

Decform Records and Conwersions from SANE types to Decimal Strings
Each conversion to a decimal string is controlled by a decform record, which
contains two fields:

style -- 16-bit integer (0 or 1)
digits — 16-bit integer

Style equals O for floating and 1 for fixed. Digits gives the number of
significant digits for the floating style and the number of digits to the right
of the decimal point for the fixed style (digits may be negative if the style
is fixed). Decimal strings resulting from these conversions ere always
acceptable input for conversions from decimal strings to SANE types.
Further formatting details are implementation dependent.

1-12

4

434

“ «

The Standard Apple Numeric Emvironment SANE

433 The Decimal Recard Type

The decimal record type provides an intermediate unpacked form for
programmers who wish to do their own parsing of numeric input or
formatting of numeric output. The decimal record formeat has three fields:

sgn — 16-bit integer (0 or 1)
exp — 16-bit integer
sig —— string (meximum length is implementation-dependent)

The value represented is
(-1)s9" * sig * 1029

when the length of sig is 18 or less. (Some implementations allow additional
information in cheracters past the eighteenth.) Sig contains the integral
decimal significand: the initial byte of sig (sig[0]) is the length byte, which
gives the length of the ASCII string that is left-justified in the remaining
bytes. Sgn is O far + and 1 for - For example, if sgn = 1, exp = -3, and
sig = '85' (sig[0] = 2, not shown), then the number represented is -0.085.

Conversions from Decimal Records to SANE

Conwversions from the decimal record type handle any sig digit-string of
length 18 or less (with an implicit decimal point at the right end). The
following special cases sapply:

= It sig[1] = '0' (zero), the decimal record is corwverted to zero. For
example, a decimal record with sig = '0913' is converted to zero.

= If sig{1] = 'N', the decimal record is converted to a NaN. Except when
the destination is of type comp (which has & unique NaN), the
succeeding characters of sig are interpreted as a hex representation of
the result significand: if fewer than 4 characters follow N then they are
right justified in the high-order 15 bits of the field f illustrated under
Formats in Section 2; if 4 or more characters follow N then they are
left justified in the result's significand; if no characters, or only O's,
follow N, then the result NaN code is set to nanzero = 15 (hex).

= If sig[1] = 'I' and the destination is not of comp type, the decimal
recard is cornverted to an infinity. If the destination is of comp type,
the decimal record is converted to a NaN and invalid is signaled.

= Other special cases produce undefined results.

1-13

The Slandard Apple Numesric Emvironment SANE

435 Conversions from SANE Types to Decimal Records
Each conversion to a decimal record is controlled by a decform record (see
above). All implementations allow at least 18 digits to be returned in sig.
The implied decimal point is at the right end of sig, with exp set
accordingly.

Zeroes, infinities, and NaNs are converted to decimal records with sig parts
0 (zero), I, and strings beginning with N, while exp is undefined. Far NaNs,
N may be followed by a hex representation of the input significand. The
third and farth hex digits following N give the NaN code. For example,
‘N0021000000000000" has NaN code 21 (hex).

When the number of digits specified in a decform record exceeds an
implementation maximum (which is at least 18), the result is undefined.

A number may be too large to represent in a chosen fixed style. For
instance, if the implementation's maximum length for sig is 18, then 1015
(which requires 16 digits to the left of the point in fixed-style
representations) is too large for a fixed-style representation specifying more
than 2 digits to the right of the point. If a number is too large for a chosen
fixed style, then (depending on the SANE implementation) one of two results
is returned: an implementation may return the most significant digits of the
number in sig and set exp so that the decimal record contains a valid
Tloating-style representation of the number; alternatively, an implementation
may simply set the string sig to '?'. In any implementation, the test

(—exp <> decform digits) or (sig[1] = '?')

determines whether a nonzero finite number is too large for the chosen fixed
style.

44 Comwersions between Decimal Formats

SANE implementations may provide conversions between decimal strings and
decimal records.

441 Cowersion from Decimal Strings to Decimal Records
Thie conversion routine is intended as an aid to programmers doing their own
scanning. The routine is designed for use either with fixed strings or with
strings being received (interactively) character by character. An integer
argument on input gives the starting index into the string and on output is
one greater than the index of the last character in the numeric substring just
persed. The longest possible numeric substring is parsed; if no numeric
substring is recognized, then the index rernains unchanged. Also, a Boolean
argument is returned indicating that the input string, beginning at the input
index, is a valid numeric string or a valid prefix of a numeric string. The
accepted input for this conversion is the same as for conversions from
decimal strings to SANE types (see above). Output is the same &s for
conversions from SANE types to decimal records (also above).

1-14

I _ The Standard Apple Numeric Emvironrnent SANE
I Examples
I Input String Index Output Yalue Yalid Prefix
in_out
I 12 103 12 TRUE
126 1 3 12 TRUE
126- 1 3 12 TRUE
126-3 1 6 126-3 TRLE
I 12E-x 1 3 12 FALSE
12E-3x 1 6 126-3 FALSE
x12E-3 2 7 126-3 TRUE
' IN 11 UNDEF INED TRUE
INF 1 4 INF TRE
442 Corwersion from Decimal Recards to Decimal Strings
This conversion is controlled by the style field of a decform record (the
I_r digits field is ignored). Input is the same as for conversions from decimal

records to SANE types, and output formatting is the same as for conversions
from SANE types to decimal strings. This conversion, actually a formatting
operation, is exact and signals no exception.

o

1-13

The Standard Apple Numeric Environrnent SANE

5 Expression Evalustion
SANE erithmetic is extended-based. Arithmetic operations produce results
with extended precision and extended range. For minimal loss of accuracy in
more complicated computations, you should use extended temporary varisbles
to store intermediste results.

3.1 Using Extended Temporaries
A programmer may use extended temporaries deliberately to reduce the
effects of round-off error, overflow, and underflow on the final result.

Example 1
To compute the single-precision sum

S = X[1]*Y[1] + X[2]*Y[2] + ... + X[N]*Y[N]

where X and Y ere arrays of type single, declare an extended variable XS

and compute
X =0
FORI := 1 TONDO
XS = XS + X[I]*Y[I]; extended-precision arithmetic }
S = X5; deliver final result to single.

Even when input and output values have only single precision, it may be very
difficult to prove that single-precision aerithmetic is sufficient for a given
calculation. Using extended-precision arithmetic far intermediate values will
often improve the accuracy of single-precision results more than virtuoso
algarithms would. Likewise, using the extra range of the extended type for
intermediate results may yield correct final results in the single type in
cases when using the single type for intermediate results would cause an
overflow or a catastrophic underflow. Extended-precision arithmetic is also
useful for calculations irvolving double or comp variables: see Example 2.

32 Extended-Precision Expression Evaluation
High-level languages that suppart SANE evaluate all non-integer numeric
expressions to extended precision, regardless of the types of the operands.

1-16

The Standard rRpple Numeric Emcironment SANE

- Example 2

If C is of type comp and MAXCOMP is the largest comp value, then the
right-hand side of

C := (MAXCOMP + MAXCOMP) / 2

would be evaluated in extended to the exact result C = MAXCOMP, even
- though the intermediate result MAXCOMP + MAXCOMP exceeds the largest
possible comp value.

53 Extended-Precision Expression Evaluation and the IEEE Standard
The IEEE Standard encourages extended-precision expression evaluation.
Extended evaluation will on rare occesions praduce results slightly different
from those produced by other IEEE implementations that lack extended
evaluation. Thus in a single-only IEEE implementation,

Z ;=X +y

with x, v, and z sll single, is evaluated in one single-precision operation,
with at most one rounding error. Under extended ewvalustion, however, the
addition x + y is performed in extended, then the result is coerced to the
single precision of z, with at most two rounding errors. Both
implementations conform to the standard.

The effect of a single~ or double-only IEEE implementation can be obtsined
under SANE with rounding precision control, as described in Section 8.

1-17

The Standsrd Apple Numeric Emcironment SANE

6
SANE supports the usual numeric compearisons: less, less-or-equal, greater,
greater-or-equal, equal, and not-equal. For real numbers, these comparisons
behave according to the familiar ordering of real numbers.

SANE comparisons handle NaNs and infinities as well as real numbers. The
usual trichotomy for real numbers is extended so that, for any SANE values &
and b, exactly one of the following is true:

a<{b
a>b
a=>b
a and b are unordered

Determination is made by the rule:

If x or y is a NaN, then x and y are unordered; otherwise, x and y are less,
equal, or greater accarding to the ordering of the real numbers, with the
understanding that +0 = -0 = real 0, and - ¢ each real number ¢ +o,

(Note that a NaN always compares unordered--even with itself)

The meaning of high-level language relational operators is a natural
extension of their old meaning based on trichotomy. For example, the Pascal
or BASIC expression x ¢= vy is true if x is less than vy ar if x equal y, and is
false if x is greater than y or if x and y are unordered. Note that the SANE
not-equal relation meeans less, greater, or unordered--even if not-equal is
written <), as in Pascal and BASIC. High-level languages supporting SANE
supplement the usual comparison operators with a function that takes two
numeric arguments and returns the appropriate relation (less, equal, grester,
or unardered). This function can be used to determine whether two numeric
representations satisfy any combination of less, equal, greater, and unordered.

A high-level language comparison that involves a relationsl operstor
containing less or greater, but not unordered, signals invalid if the operands
are unordered (that is, if either operand is a NaN). For example, in Pascal or
BASIC if x or y is a quiet NaN then x (y, x <=y, x >=y, and x » y signal
invalid, but x = y and x ¢ y (recall that <> contains unordered) do not. If a
comperison operand is a signaling NaN, then irwvalid is always signaled, just
as in arithmetic operations.

1-18

/

The Standsrd pRpple Numeric Emvironment SANE

7 Infinities, NaNs, and Denocmalized Numbers
In addition to the normalized numbers supported by most floating-point
packages, IEEE floating-point arithmetic also supports infinities, NaNs, and
denarmalized numbers.

7.1 Infinities
An Infinity is a special bit pattern that can arise in one of two ways:

» When a SANE operation should produce an exact mathematical infinity
(such as 1/0), the result is an infinity bit pattern.

» When a SANE operation attempts to produce a number with magnitude
too great for the number's intended floating-point storage format, the
result may (depending on the current rounding direction) be an infinity
bit pattern.

These bit patterns (as well as NaNs, introduced next) are recognized in
subsequent operations and produce predictable results. The infinities, one
positive (+INF) and one negative (-INF) , generally behave as suggested by
the theory of limits. For example, 1 added to +INF yields +INF; -1 divided
by +0 yields -INF; and 1 divided by ~INF yields ~0.

Each of the storage types single, double, and extended provides unique
representations for +INF and -INF. The comp type has no representations for
infinities. (An infinity moved to the comp type becomes the comp NaN.)

72 NaNs
when a SANE operation cannot produce a meaningful result, the operation
delivers a special bit pattern called a AlaN (Not-a-Number). For example, O
divided by 0, +INF added to -INF, and sqrt(-1) vield NaNs. A NaN can occur
in any of the SANE storage types (single, double, extended, and comp); but,
generally, system-~specific integer types have no representation for NaNs.
NaNs propagate through srithmetic operations. Thus, the result of 3.0 added
to a NaN is the same NaN (that is, has the same NaN code). If two
operands of an operation are NaNs, the result is one of the NaNs. NaNs are
of two kinds: quiet ANaNs, the usual kind produced by floating-point
operations; and signaling NaNs. When a signaling NaN is encountered as an
operand of an arithmetic operation, the invalid-operation exception is
signaled and, if no halt occurs, & quiet NaN is the delivered result. Signaling
NaNs could be used for uninitialized variables. They are not created by any
SANE operations. The most significant bit of the field f illustrated under
Formats in Section 2 is clear for quiet NaNs and set for signaling NaNs.
The unique comp NaN generally behaves like a gquiet NaN.

A NaN in a floating-point format has an associated NaN code that indicates
the NaN's arigin. (These are listed in Table 7-1). The NaN code is the 6th

through 15th most significant bits of the field f illustrated in Section 2. The
comp NaN is unigue and has no NaN code.

1-19

The Randard rApple Numeric Emnvironment SANE
Table 7-1.
SANE NaN Codes

Name Dec Hex Meaning
NANSORT 1 $01 Invalid square root, such as sqrt(-1)
NANADD 2 $02 1Invalid addition, such as (+INF) — (+INF)
NANDIV 4 $04 Invalid division, such as 0/0
NANMUL 8 $08 Invalid multiplication, such as O * INF
NANREM 9 $09 Invalid remainder or mod such as x rem O
NANASCBIN 17 $11 Attempt to convert invalid ASCII string
NANCOMP 20 %14 Result of converting comp NaN to floating
NANZEROD 21 $15 Attempt to create a NaN with a zero code
NANTRIG 33 $21 Invalid argument to trig routine
NANINYTRIG 34 $22 Invalid argument to inverse trig routine
NANLOG 36 924 Invalid argument to log routine
NANPOWER 37 $25 Invelid argument to xi or xy routine
NANFINAN 38 $26 Invalid argument to financial function
NANINIT 255 $FF Uninitialized storage (signaling NaN)

73 Denarmalized Numbers

Wwhenever possible, floating-point numbers are narmalized to keep the
leading significand bit 1: this maximizes the resolution of the storage type.
When & number is too small for a normalized representation, leading zeros
are placed in the significand to produce a denormalized representation. A
denormalized number is a nonzero number that is not narmalized and whose
exponent is the minimum exponent for the storage type.

Exarmple

The sequence below shows how a single-precision value becomes
progressively denormalized as it is repeatedly divided by 2, with rounding to
nearest. This process is called gradual underfiow.

Ao = 1.100 1100 1100 1100 1100 1101 * 2-126 =z 0 1y * 27122

Ay = A2 = 0.110 0110 0110 0110 0110 0110 * 2126 (underflow)

f; = A/2 = 0.011 0011 0011 0011 0011 0011 * 2-126

fs = Ap/2 = 0.001 1001 1001 1001 1001 1010 * 2-1% (underflow)

1-20

EalY

The Standard Apple Numeric Emvironment SANE

Bzz = An/2 = 0.000 0000 0000 0000 0000 0011 * 2-126

Azs = Ap/2 = 0.000 0000 0000 0000 0000 0010 * 2125 (underflow)
g = Aps/2 = 0.000 0000 0000 0000 0000 0001 * 2-126
A = Ap/2 = 0.0 (underflow)

Ay...Az ore denormalized; Agq is the smallest positive denormalized number
in single type.

731 Why Denarmalized Numbers?
The use of denormalized numbers makes statements like the following true
for all real numbers:

x -y =0 1if and only if x =y

This statement is not true for most older systems of computer arithmetic,
because they exclude denormalized numbers. For these systems, the smallest
nonzero number is a normalized number with the minimum exponent; when
the result of an operation is smaller than this smallest normalized number,
the systemn delivers zero as the result. For such 7lush-to-zero systems, if x
y but x - y is smaller than the smallest normalized number, then x - y =

0. IEEE systems do not have this defect, as x - vy, although denormalized, is
not zero.

(A few old programs that rely on premature flushing to zero meay require
modification to work properly under IEEE arithmetic. For example, some
programs mey test x - y = O to determine whether x is very near y.)

74 Imnquiries: Class and Sign
Each valid representation in a SANE data type (single, double, comp, or
extended) belongs to exactly one of these classes:

= Signaling NaN.
= Quiet NaN.

= Infinite.

« Zero.

= Normalized.

= Denormalized.

SANE implementations provide the user with the facility to determine easily
the class and sign of any valid representation.

Environmental controls include the rounding direction, rounding precision,
exception flags, and halt settings.

1-21

The Standerd Apple Numeric Environment SANE

8 Emwironmental Control

81 Rounding Direction
The available rounding directions are:

= To-nearest.
= Upward.

= Downward.

= Towerd-zero.

The rounding direction affects all conversions and arithmetic operations
except comparison and remainder. Except for conversions between binary
and decimal (described in Section 4), all operations are computed as if with
infinite precision and range and then rounded to the destination format
according to the current rounding direction. The rounding direction may be
interrogated and set by the user.

The default rounding direction is to-neerest. In this direction the
representable value nearest to the infinitely precise result is delivered; if the
two nearest representable values are equally near, the one with least
significant bit zero is delivered. Hence, halfway cases round to even when
the destination is the comp ar a system-specific integer type, and when the
round-to-integer operation is used. If the magnitude of the infinitely precise
result exceeds the format's largest value (by at least one half unit in the
last place), then the corresponding signed infinity is delivered.

The other rounding directions ere upweard, downward, and toward-zero. When
rounding upward, the result is the format's value (possibly INF) closest to and
no less than the infinitely precise result. When rounding downward, the
result is the format's value (possibly -INF) closest to and no greater than the
infinitely precise result. When rounding toward zero, the result is the
format's value closest to and no greater in magnitude than the infinitely
precise result. To truncate a number to an integral value, use toward-zero
rounding either with conversion into an integer format or with the
round-to-integer operation.

8.2 Rournding Precision
Normally, SANE arithmetic computations produce results to extended
precision and range. To facilitate simulations of arithmetic systems that are
not extended-based, the IEEE Standard requires that the user be able to set
the rounding precision to single or double. If the SANE user sets rounding
precision to single (or double) then all arithmetic operations produce results
that are correctly rounded and that overflow or underflow as if the
destination were single (or double), even though results are typically delivered
to extended formats. Conversions to double and extended formats are

1-22

The Standsrd Rpple Numeric Environmesnt SANE

affected if rounding precision is set to single, and conversions to extended
formats are affected if rounding precision is set to double; corversions to
decimal, comp, and system-specific integer types are not affected by the

rounding precision. Rounding precision can be interrogated as well as set.

Setting rounding precision to single or double does not significantly enhance
performance, and in some SANE implementations may hinder performance.

83 Exception Flags and Halts
SANE supports five exception flags with corresponding halt settings:

= Invalid-operation (or invalid, for short).
= Underflow.

= Overflow.

= Divide-by-zero.

= [nexact.

These exceptions are signaled when detected; and, if the corresponding halt
is enabled, the SANE engine will jump to a user-specified location. (A
high-level language need not pass on to its user the facility to set this
location, but may halt the user's program). The user's program can examine
or set individual exception flags and halts, and can save and get the entire
environment (rounding direction, rounding precision, exception flags, and halt
settings). Further details of the halt {trap) mechanism are SANE
implementation specific.

8.3.1 Exceptions
The imcealid-operation exception is signaled if an operand is invalid for the
operation to be performed. The result is a quiet NaN, provided the
destination format is single, double, extended, or comp. The irnvalid
conditions are these:

= {(addition or subtraction) magnitude subtraction of infinities, for example,
(+INF) + (-INF).

= (multiplication) O * INF.

= (division) 0/0 or INF/INF.

= (remainder) x rem y, where vy is zero or x is infinite.
= (square root) if the operand is less than zero.

= {conversion) to the comp format or to a system-specific integer format
when excessive magnitude, infinity, or NaN precludes a faithful
representetion in that format (see Section 4 for details).

= {comparison) via predicates involving < ar >, but not "unordered," when
at least one operand is a NaN.

= Any operation on a signaling NaN except sign manipulations (negate,
absolute-value, and copy-sign) and class and sign inquiries.

*

A
.

1-23

The Standard Apple Numeric Emeironment

SANE

The underflow exception is signaled when a floating-point result is both tiny
and inexact (and therefore, perhaps significantly less accurate than it would
be if the exponent range were unbounded). A result is considered tiny if,
before rounding, its magnitude is smaller than its format's smallest positive
normalized number.

The divide-by-zero exception is signaled when a finite nonzero number is
divided by zero. It is also signaled, in the more general case, when an
operation on finite operends produces an exact infinite result: for example,
logb (0) returns -INF and signals divide-by-zero. (Overflow, rather than
divide-by-zero, flags the production of an inexact infinite result))

The overfiow exception is signaled when a floating-point destination
format's largest finite number is exceeded in magnitude by what would have
been the rounded floating-point result were the exponert range unbounded.
(Invalid, rather than overflow, flags the production of an out-of-range value
far an integral destination format.)

The Iinexact exception is signaled if the rounded result of an operation is
not identical to the mathematical (exact) result. Thus, inexact is always
signaled in conjunction with overflow or underflow.

Valid operations on infinities are always exact and therefore signal no
exceptions. Invalid operations on infinities are described above.

64 Managing Erwironmental Settings

The environmental settings in SANE are global and can be explicitly changed
bv the user. Thus 8l] routines inherit these settings and are capable of
changing them. Often special preceutions must be taken because a routine
requires certain emvironment settings, or because a routine's settings are not
intended to propagate outside the routine.

Exarnple 1

The subroutine below uses to-nesrest rounding while not affecting its caller's
rounding direction. (Examples in this section use Pascal syntax. SANE
implementations in other languages have operations with equivalent
functionality.)

var r: RoundDir; { local storage for rounding direction }
begin
r := GetRound; { save caller’'s rounding direction
SetRound (TONEAREST); { set to-nearest rounding
SetRound (x) { restare callexr's rounding direction }
1-24

|

The Slandsrd rpple Nurneric Emcronment

Note that, if the subroutine is to be reentrant, then storage for the caller's
envircnment must be local.

SANE implementations may provide two efficient functions for managing the
environment as a whole: procedure-entry and procedure-exit.

The procedure-entry function returns the current erwironment (for saving in
local storage) and sets the default environment: rounding direction to-neerest,
rounding precision extended, and exception flags and halts clear.

Example 2

The following subroutine runs under the default environment while not
affecting its caller's environment.

— - -

var e: Erwirorment; { local starage far erwiromnment }

- — -

begin
ProcEntry (e); l save caller's erwirnoment and
set default enviromment
SetEnvirorment (e) { restore caller's erwiromment |}
end;

The procedure-exit function facilitates writing subroutines which appear to
their callers to be atomic operations (such as addition, sort, and others).
Atomic operations psss extra information back to their callers by signaling
exceptions; however, they hide internal exceptions, which may be irrelevant
or misleading. Procedure-exit, which takes a saved erwironment as
arguments, does the following:

1. It temporarily saves the exception flags (raised by the subroutine).
2. It restores the environment received argurmnent.

3. It signals the temporarily saved exceptions. (If enabled, halts could
occur at this step)

Thus exceptions signaled between procedure-entry and procedure-exit ere
hidden from the calling program unless the exceptions remain raised when
the procedure-exit function is called.

1-23

SANE

The Standsrd Apple Numeric Emcironment SANE

Exarmple ¥

The following function signals underflow if its result is denormal, and
overflow if its result is infinite, but hides spurious exceptions occurring from
internal computations.

function compres: double;

var e: Enviromment; l local storage for enviromsent

c: Nunllass; for class inquiry
begin {compres} _)

ProcEntry (e); save caller's enwviromment and }

set default erwiromment -

{ now halts disabled }

compres := result; s result to be returned }

c := ClassD (result); class inquiry }

ClearXcps; { clear possibly spurious exceptions }

{ now raise specified exception flags: }

if ¢ = INFINITE then SetException (OVERFLOW, TRUE)
else if ¢ = DENDRMALNLM then SetException (UNDERFLOW, TRLE);
ProcExit (e) { restore caller's erwiromment,
{ including any halt enables, and
{ then signal exceptions from
subroutine

g Sy vty gt

end {compres} ;

1-26

-
Ln 2

921

The Standsrd Apple Numeric Emvironment SANE

9 Auxiliary Procedures

SANE includes a set of special routines--

negate,
absolute value,
copy-sign,
next-after,
scalb,

logh,

--which are recommended in an appendix to the IEEE Standard as aids to
programming.

9.1 Sign Manipulation

The sign manipulation operations change only the sign of their argument.
Negste reverses the sign of its argument. Absolute-value makes the sign of
its argument positive. Copy-sign takes two arguments and copies the sign of
one of its argurnents onto the sign of its other argument.

These operations are treated as nonarithmetic in the sense that they raise no
exceptions: even signaling NeNs do not signal the invalid-operation exception.

92 Next-After Functions

The floating-point values representable in single, double, and extended
formats constitute a finite set of real nurnbers. The next-after functions
(one for each of these formats) generate the next representable neighbar in
the proper format, given an initial value x and another value vy indicating a
direction from the initial value.

Each of the next-after functions takes two arguments, x and y:

nextsingle(x,y) (x and y are single)
nextdouble(x,y) (x and y are double)
nextextended(x,y) (x and y are extended)

As elsewhere, the names of the functions may vary with the implementation.

Special Cases far Next-After Functions
If the initial value and the direction velue are equal, then the result is the
initial value.

If the initial value is finite but the next representeble number is infinite,
then overflow and inexact are signaled.

If the next representable number lies strictly between -M and +M, where M
is the smallest positive normalized number for that format, and if the
arguments are not esqual, then underflow and inexact are signsled.

1-27

The Randard Apple Numeric Emdronment SANE

93 Binary Scale and Log Functions
The scalb and logb functions ere provided for manipulating binary exponents.

Scalb efficiently scales a given number (x) by a given integer power (n) of 2,
returning x * 20,

Logb returns the binary exponent of its input argument es a signed integral
value. When the input argument is denormalized, the exponent is determined
as if the input argument had first been normalized.

931 Special Cases for Logb
It x is infinite, logh(x) returns +INF.

If x = 0, logh{x) returns -INF and signals divide-by-zero.

1-28

The Standard Apple Nurneric Emcironment SANE

10 The Elememtary Functions

SANE provides a number of basic mathematical functions, including
logarithms, exponentials, two important financial functions, trigonometric
functions, and a random number generator. These functions are computed
using the basic SANE arithmetic heretofore described.

All of the elementary functions, except the random number generator, handle
NaNs, overflow, and underflow appropriately. All signal inexact
appropriately, except that the general exponential and the financial functions
may conservatively signal inexact when determining exactness would be too
costly.

10.1 Logearithm Functions

1011

SANE provides three logarithm functions.

~ base-2 logarithm : loga(x)

- base~-e or natural
logarithm : In(x)

- base-e logarithm of
1 plus argument : 1n1(x)

Lni(x) accurately computes In{1 + x). If the input argument x is small, such
as an interest rate, the computation of Inl(x) is more accurate than the
straightforward computation of In(1 + x) by adding x to 1 and taking the
natural logarithm of the result.

Special Cases far Logarithm Functions

If x = +INF, then logy(x), In(x), and Ini(x) return +INF. No exception is
signaled.

If x = 0, then logx{x) and In(x) return ~-INF and signal divide-by-zero.
Similarly, if x = -1, then Ini(x) returns -INF and signals divide-by-zero.

If x < O, then logyx) and In(x) return a NaN and signal invalid. Similerly, if
x < -1, then Ini(x) returns a NaN and signals invalid.

10.2 Exponertial Functions

SANE provides five exponential functions.

- base-2 exponential : 2%

- base-e or natural
exponential : eX

—~ base-e exponential

1-29

The Standard Apple Nurneric Environment SANE
minus 1 : expi(x)
- integer exponential xi (i of integer type)
— general exponential : xY

Expi(x) accurately computes eX - 1. If the input argument x is small, such
as an interest rate, then the computation of expl(x) is more accurate than
the straightforward computation of eXx - 1 by exponentiation and subtraction.

1021 Special Cases far 2% %, expl(x)
If x = +INF, then 2%, eX, and expl(x) return +INF. No exception is signaled.

If x = -INF, then 2X and eX return O; and expl(x) returns -1. No exception is
signaled.

1022 Special Cases for xi

If the integer exponent i equals O and x is not a NaN, then xi returns 1.
Note that with the integer exponential, x0 = 1 even if x is zero or infinite.

If x is +0 and i is negative, then xi returns +INF and signals divide-by-zero.

If x is -0 and i is negative, then xi returns +INF if i is even, or -INF if i is
odd: both cases signal divide-by-zero.

10.23 Special Cases far x¥

If x is +0 and vy is negative, then the general exponential xy returns +INF and
signals divide-by-zero.

If x is -0 and vy is integral and negative, then x¥ returns +INF if y is even,
or ~INF if y is odd; both cases signal divide-by-zero.

The general exponential xY returns a NaN and signals irwvalid if
both x and y equal 0;
x ig infinite and y equals O;
x =1 and y is infinite; or
x Is -0 or less than O and y is nonintegral.

103 Financial Functions

SANE provides two functions, compound and annuity, that can be used to
solve various financial, or time-value-of-money, problems.

10.3.1 Compound
The compound function computes

compound(x,n) = (1 +)"

1-30

" Pa
. . J"
M. -

The Standard Apple Nurneric Environment SANE

where r is the interest rate and n is the number (perhaps nonintegral) of
periods. when the rate r is small, compound gives a more accurate
computation than does the straightforward computation of (1 + rf by addition
and exponentiation.

Compound is directly applicable to computation of present and future values:

PV
Py = FY * (1 + 1) =

compound(x, n)

FY = PV * (1 +)0 = PY * compound(r, n)

10.3.2 Special Cases for Compound(r,n)
If r =0 and n is infinite, or if r = -1, then compound(r,n) returns a NaN and
signals invalid.

If r = -1and n <0, then compound(r,n) returns +INF and signals
divide-by-zero.

1033 Annuity
The annuity function computes

1 - (1+ 1)

annuity(r,n) =
r

where r is the interest rate and n is the number of periods. Annuity is more
accurate than the streightforward computation of the expression above using
hasic arithmetic operations and exponentiation. The annuity function is
directly spplicable to the computation of present and future values of
ordinery annuities:

1- (1+1)em
»

PY = PMT
T
= PMT * annuity(r, n)
(1+xr)0-1
FVY = PMT % ———o—
Y
1-(1+)M
= PMT * (1 + 1)n »
r
= PMT * compound(x,n) * annuity(r,n)

where PMT is the amount of one periodic payment.

1-31

The Standsard Apple Nurneric Emvironrnent SANE

1034 Special Cases far Annuity(r,n)
If r = 0, then annuity(r,n) computes the sum of 1 + 1 + ._ + 1 over n periods,
and therefore returns the value n and signals no exceptions (the value n
corresponds to the limit ss r approaches 0).

If r < -1, then annuity(r,n) returns a NaN and signals invalid.

It r = -1 and n > 0, then annuit\r,n) returns -INF and signals divide-by-zero.

104 Trigonometric Functions
SANE provides the basic trigonometric functions:

cosine E cos(x)
sine : sin(x)
tangent : tan(x)
arctangent : arctan(x)

The arguments for cosine, sine, and tangent and the results of arctangent are
expressed in radians. The cosine, sine, and tangent functions use an
argument reduction based on the remainder function (see Section 3) and the
nearest extended-precision approximation of pi/Z2. Thus the cosine, sine, and
tangent functions have periods slightly different from their mathematical
counterperts and diverge from their counterparts when their arguments
become large. Number results from arctangent lie between -pi/2 and pi/2.

The remaining trigonometric functions can be easily and efficiently computed
from these four (see Appendix C).

104.1 Special Cases far sin(x), cos(x}
It x is infinite, then cos(x) and sin(x) return a NaN and signal invalid.
1042 Special Cases for tan(x)-
If x is the nearest extended approximation to =pi/2, then tan(x) returns =INF.
If x is infinite, then tan(x) returns a NaN and signals invalid.

1043 Special Case for arctan(x):

If x = 2INF, then arctan(x) returns the nearest extended approximation to
*pi/2.

1-32

. T

The Slandsrd FRpple Numeric Environment SANE

105 Random Number Generator
SANE provides a pseudorandom number generator, random. Random has one
argument, passed by address. A sequence of (pseudo)random integral values r
in the range

1¢r¢221-2

can be generated by initializing an extended variable r to an integral value
(the seed) in the above range and making repeated calls random (r); each call
delivers in r the next random number in the sequence.

If seed values of r are nonintegral or outside the range

1srs2 -2

then results are unspecified.
A pseudorandom rectangular distribution on the interval (0,1) can be obtained
by dividing the results from random by

2% -1 = scalb (31,1) - 1.

1-33

- 7

The Standsrd Apple Numeric Environment Bibliogrephy

Appendix A
Bibliography

Apple Computer, Inc. "Appendix A: The Transcend and Realmodes

. Units" and "Appendix E: Floating-Point Arithmetic," Apple 1! Pascal

Frogremmer's Manual Yolume 2, pp. 2-9, 56-85.

These appendixes describe the implementation of single-precision
arithrnetic in Apple 111 Pascal, which was based upon Draft 8.0 of the
proposed Standard.

Apple Cormputer, Inc. Apple IIl Fascal Nurnerics Manusl: A Guide to
LEsing the Rpple I Fascal SANE and Elems Lnits.

This manual describes the Apple III Pascal implementation of the
Standard Apple Numeric Environment (SANE) through procedure calls to
the SANE and Elems units. This was Apple‘'s first full implementation
of IEEE arithmetic.

Apple Computer, Inc. Aople Il Fascal Numerics Manuel: B Guide to
Using the Apple lll Fascal SANE and Elems ULiilts.

This manual, generalized from the Apple II1 manual (number 2 above),
describes the Apple II and Apple III Pascal implementation of the
Standard Apple Numeric Environment (SANE) through procedure calls to
the SANE and Elems units.

. Cody, W.). "Analysis of Proposals for the Floating-Point Standard."

IFEE Cornpiter. ¥ol. 14, No. 3, March 1981, pp. 63-68.

This paper compares the several contending proposals presented to the
wWorking Group.

. Coonen, Jerome T. "An Implementation Guide to a Proposed Standard

for Floating-Point Arithmetic." IEEE Computer, Yol. 13, No. 1 January
1960.

This paper is a forerunner to the work on the draft Standard.

. Coonen, Jerome T. "Underflow and the Denormalized Numbers." /EEE

Computer, ¥ol. 14, No. 3, March 1981, pp. 75-87.

. Coonen, Jerome T. "Accurate, Yet Economical Binary-Decimal

Conversions." To appear in ACM Transactions on Mathematicsl
Software.

The Standard RApple Numeric Emvironment Bibliography

8.

10.

11,

12

13,

Demmel, James. "The Effects of Underflow on Numerical
Computation." To appear in S/AM Jowrnal on Scientific and Statistical
Computing

These papers examine one of the major features of the proposed
Standard, gradual underflow, and show how problems of bounded
exponent range can be handled through the use of denormalized values.

Igateman, Richard J. "High-Level Language Implications of the
Proposed IEEE Floating-Point Standard." ACM Transactions on
Frogramming Languages and Systems, Yol. 4, No. 2, April 1982, pp.
239-257. ’

This paper describes the significance to high-level languages,
especially FORTRAN, of various features of the 1EEE proposed
Standard.

Floating~-Point Working Group 754 of the Microprocessor Standsrds
Committee, JEEE Computer Society. "A Standard far Binary
Floating-Point Arithmetic." Proposed to IEEE, 345 Esst 47th Street,
New York, NY 10017.

The implementstion of SANE is based upon Dreft 10.0 of this Standard.

Floating-Point Working Group 754 of the Microprocessor Standards
Committee, JEEE Computer Society. "A Proposed Standard for Binary
Floating-Point Arithmetic." JEEE Cornputer, Yol. 14, No. 3, March 1981,
pp. 51-62.

This is Draft 8.0 of the proposed Standard, which was offered for
public comment. The current Draft 10.0 is substantially simpler than
this draft; for instance, warning mode and projective mode have been
eliminated, and the definition of underflow has changed. However, the
intent of the Standard is basically the same, and this paper includes
some excellent introductory comments by Devid Stevenson, Chairman
of the Floating-Point Working Group.

Hough, D. “Applications of the Proposed IEEE 754 Standard for
Floating-Point Arithmetic." JEEE Computer, Vol. 14, No. 3, March 1981,
pp. 70-74.

This paper is an excellent introduction to the floating-point
environment provided by the proposed Standard, showing how it
facilitates the implementation of robust numerical computations.

Kahan, W. "Interval Arithmetic Options in the Proposed IEEE
Floating-Point Arithmetic Standard,"inien-al Mathernatics 1930 (ed.
K.E.L. Nickel). New Yark: Academic Press, New York, 1980, pp.
99-128.

This paper shows how the proposed Standard facilitates interval
arithrnetic.

The Stendard Apple Numeric Emvironment Glossary

i

Appendix B
Glossary

application type: A data type used to store data for applications.

arithmetic type: A deta type used to hold results of calculations inside the
cormnputer. The SANE arithmetic type, extended, has greater range and
precision than the application types, in order to improve the mathematical
properties of the application types.

binary floating-point number: A string of bits representing a sign, an
exponent, and a significand. Its numerical value, if any, is the signed
product of the significand and two raised to the power of its exponent.

comp type: A 64-bit application data type for staring integral values of up
to 18- or 19-decimal~digit precision. It is used for accounting applications,
among others.

denormalized mamber, or denorm: A nonzero binary floating-point number
that is not normalized (that is, whose significand has a leading bit of zero)
and whose exponent is the minimum exponent for the number's storage type.

double type: A 64-bit application data type for staring floating-point values
of up to 15- or 16-decimal-digit precision. It is used for statistical and
financial applications, among others.

erwironmental settings: The rounding direction and rounding precision, plus
the exception flags and their respective halts.

exceptions: Special cases, specified by the IEEE Stenderd, in arithmetic
operations. The exceptions are invalid, underflow, overflow, divide-by-zero,
and inexact.

exception flag: Each exception has a flag that can be set, cleared and
tested. It is set when its respective exception occurs and stays set until
explicitly cleared.

exponent: The part of a binary floating-point number that indicates the
power to which two is raised in determining the value of the number. The
wider the exponent field in a numeric type, the grester range it will handle.

extended type: An 80-bit arithmetic data type for storing floating-point
values of up to 19- or 20-decimal-digit precision. SANE uses it to hold the
results of arithmetic operations.

[
\‘

B-1

The Standerd Apple Numeric Emvironment

Glossary:

halt: Each exception has a halt-enable that can be set or cleared. When an
exception is signaled and the corresponding halt is enabled, the SANE engine
will transfer control to the address in a halt vector. A high-level language
need not pass on to its user the facility to get the halt vector, but may halt
the user's program. Halts remain set until explicitly cleared.

infinity: A special bit pattern produced when a floating-point operation
attempts to produce a number greater in rnagnhitude than the largest
representable number in a given format. Infinities are signed.

integer types: System types for integral values. Integer types typically use
16- or 32-bit two's complement integers. Integer types are not SANE types
but are available to SANE users.

integral value: A value in a SANE type that is exactly equal to a
mathemnastical integer: ..., -2, -1, 0, 1, 2, ...

NaN (Not a Number): A special bit pattern produced when a floating-point
operation cannot produce a meaningful result (for example, 0/0 produces a
NaN). NaNs can also be used for uninitialized storage. NaNs propagate
through arithmetic operations.

normalized number: A binary flosting-point number in which all significand
bits are significant: that is, the leading bit of the significand is 1.

quiet NaN: A NaN that propagates through arithmetic operations without
signaling an exception (and hence without halting a program).

rounding direction: When the result of an arithmetic operation cannot be
represented exactly in a SANE type, the computer must decide how to round
the result. Under SANE, the computer resolves rounding decisions in one of
four directions, chosen by the user: to-nearest (the default), upward,
downward, and toward-zero.

gign bit: The bit of a single, double, comp, or extended number that
indicates the number's sign: O indicates & positive number; 1, a negative
nurnber.

signaling NaN: A NaN that signals an invalid exception when the NaN is an
operand of an arithmetic operation. If no halt occurs, a quiet NaN is
produced for the result. No SANE operstion creates signaling NaNs.

significand The part of a binary floating-point number that indicates where
the nurmnber falls between two successive powers of two. The wider the
significand field in a numeric type, the more resolution it will have.

single type: A 32-bit application data type for storing floating-point values
of up to 7- or 8-decimal-digit precision. It is used for engineering
applications, among others.

The Standard Apple Nurmeric Environment Elementary Functions

Appendix C

Other Elementary Functions

High quality transcendental functions which are not part of the Standard
Apple Numeric Environment (SANE) can be constructed from the functions
which SANE provides. Sorne common functions ere provided below in
pseudo-code. It should be relstively easy to adapt them for your use.

These functions are besed on algorithms developed by Professor William
Kahan, University of California at Berkeley. They are robust and accurate.
The constant C is 2-33 = scalb (-33,1). It is chosen to be nearly the largest
value for which (1 - C2) rounds to 1. All variables are extended.

Exception Handling
Unlike the SANE elementary functions, these functions do not provide
complete handling of special-cases and axceptions. The most troublesome
exceptions can be correctly handled if you:

= Begin each function with a call to procedure-entry.
= Clear the spurious exceptions indicated.
= End each function with a call to procedure-exit (see Section 8).

Functions
Secant
sec(x) <——~ 1 / cos(x)
CoSecant
csc(x) <—~- 1 / sin(x)
CoTangent

cot(x) <——- 1 / tan(x)

The Standard Rpple Numeric Ervironment Elementan: Functions
fircSine
y - |x|

If vy 2 0.3 then begin
y <(——— Atan (x/sqrt ((1-x)*(1+x)))
spurious divide—by-zero may arise
end
else if y 2 C then y <——— ftan (x / (sqrt (1 - x"2))
glse y (—— X
arcsin(x) (—— vy

fArcCosine

arccos(x) <(— 2 * Atan (sort ((1-x)/(1+x)))
spurious divide-by-zero mey arise

Sinh
y ¢ |x]
If y 2 C then begin
y (—— expi(y)
y (== 0.5 % (y + y/(1+y))
end
copy the sign of x onto vy
sinh(x) -y
Cosh

y <—— exp(|x])
cosh(x) ¢— 0.5%y + 0.25/ (0.5 * y)

Tanh

y <— |x|
If vy 2 C then begin
Y (—— expl[-?*y}
y(— y/(2+y
end
copy the sign of x onto v
tanh(x) ¢(— vy

C-2

/

—

-

The Standard Apple Numeric Emironment Elementary Functions
ArcSinh
y —— |x]|

If vy 2 C then begin
v ¢— 1nl (v +y 7/ (1A + sgrt(1 + (14)%2)))
spurious underflow may arise
end
copy the sign of x onto y
asinh(x) ¢— vy

frcCosh

Soosh(x) ke 1n1 ((sart (y-1)) * (saxt (y=1) + sart (yo1)))
fircTanh

y (— |x]

If vy 2C theny (— 1nl (2%y/(1 - y)) / 2
copy the sign of x onto y
atanh(x) <— vy

c-3

i}

The 68000
Assembly-1 anguage SANE Engine

Contents
Introduction . i cceemcemeecemeceaam——aan 1-1
BASICS . e 1-2
2.1 Operation FormS ittt 1-2
2.1.1 Arithmetic and Auxiliary Operationscooeieiviiainn... 1-2
A W A s 1 V=) 43 () ¢ R 1-3
P4 W T s 7o 1Y o £ o T USRI 1-3
2.14 Other Operationsooiii e et aaeeeeaaannns 1-3
AV = 4 A Y R o Tod o = 1-3
2.3 CaAlliNg SBOUBNCE ..ottt ittt ettt e e e e 1-4
231 The OpWOrd . it 1-4
2.3.2 Assembly-Language Macroscoiiiiiiiiiie i iaiaaeaaas 1-4
24 Arithmetic ADUSe ... o . e 1-5
DAL TYPeS e ———— 1-6
Arithmetic Operations and Auxiliary Rowtines 1-7
4.1 Add, Subtract, Multiply, and Divideo 1-7
4 Square ROOt e 1-7
4.3 Round-to-Integer, Truncate-to-Integer...............ccoiiiiiriininea. .. 1-7
B 0 B = 1= g g = ¥ 4T Y i-8
2 B TR W To |« T (- 1 4 R 1-8
4.6 Negate, Absolute Yalue, Copy-Sign.. i, 1-8
S A o34 A - S 1-9
COMVETSIONS . eemeeeecemeeem—aeeacan—an 1-10
5.1 Conversions Between Binary Formatscoiviiroinainnean.. 1-10
5.1.1 Conversions to Extendedottt 1-10
5.1.2 Conversions from Extendedc.coiiiimiiiiiii.. 1-10
5.2 Binary-Decimal ComVerSions . i reraeeaa., 1-11
5.2.1 Binary to Decimal 1-11
5.2.2 Decimal to Binary 1-11
Comparisons and InQUITies .. iiiiecccecaacanan 1-13
6.1 Comperisons N 1-13
IV (475 [1)) ¢ U~ R 1-14

7 Environmental Comtrol ... ececmcemeeenaa- 1-13
7.1 The Environment Word it rraraaanan 1-15
7.2 Get-Environment and Set-Environment, 1-16
7.3 Test-Exception and Set-Exception......... ..., 1-16
7.4 Procedure-Entry and Procedure-Exit 1-16
[1 & P 1-18
8.1 Conditions for a Halt e eeeeeeeeeaateeeeeeeeeeeans 1-18
8.2 The Halt Mechanism.....iiiiioia.. et aaa. 1-18
8.3 Using the Halt Mechanism i i iiiiiiiiiiiiiiiiiiaiennns 1-19
Elementary Functions iiiiecimceeceaaa- 1-21
9.1 One~Argument Funcltions. i 1-21
9.2 Two-Argument Functions i 1-21
9.3 Three-Argument Functions oo oottt 1-22

fAppendixes
A 68000 SANE ACCEES .. iiiioitiieiiaeataaaaeanesasaresaaasosacecacecnneanans A-1
B 68000 SANE MBEOIOS viiimiiieitiiae ot i e icaca e e eeeeceeennnnaans B-1
C 68000 SANE Quick Reference Guideccciciiiiiiiairiianennn..s C-1

= o

The 68000
Assembly-1 anguage SANE Engine

1 Introduction

The purpose of the softwere package described in this manual is to provide
the features of the Standard Apple Numeric Environment (SANE) to
assembly-language programmers on Apple's 68000-based systems.
SANE--described in detail in 7The Standard Apple Numeric Emdronment in
this binder--fully supports the IEEE Standard (754) for Binary Floating-Point
Arithmetic; it augments the Standard to provide greater utility for
applications in accounting, finance, science, and engineering. The IEEE
Standard and SANE offer a combination of quality, predictability, and
portability heretofore unknown for numerical software.

A functionally equivalent 6302 assembly-language SANE engine is available
for Apple's 6302-based systems. Thus numerical algorithms coded in
assembly language for an Apple 68000-based system can be readily recoded
far an Apple 6502-based system. Suggested macros for accessing the 6502
and 68000 engines have been chosen to further racilitate algorithm
portability.

This manual describes the use of the 68000 Assembly-Language SANE engine,
but does not describe SANE itself. For example, this manual explalne how to
call the SANE remainder function from 68000 assembly language but does not
discuss what this function does. See 7he Standard Apple Nurneric
EmaironmentT far information about the sernantics of SANE.

See Appendix A far infarmation about accessing the 68000 SANE engine from
the Apple 68000-based systems.

1-1

The 8¢ SANE Engine The 58000 SANE Engine
2 Basics
The following code illustrates a typical invocation of the SANE engine,
FP6BK.

PEA A_ADR ; Push address of A (single format)
PEA B_ADR ; Push address of B (extended format)
FSUBS ; Floating-point SUBtract Single: B <— B — A

FSUBS is an assembly-language macro taken from the file listed in Appendix
B. The form of the operation in the example (B <-- B - A, where A is &
numeric type and B is extended) is similar to the forms for most FPEBK
operations. Also, this example is typical of SANE engine calls because
operands are passed to FP68K by pushing the addresses of the operands onto
the stack prior to the call. Details of SANE engine access are given later in
this section.

The SANE elementary functions are provided in Elems68K. Access to
Elems68K is similar to access to FPB6K; details are given in Section 9.

21 Operation Fooms
The example above illustrates the form of an FP68K binary operation. Forms
far other FP68K operations are described in this section. Examples and
further details are given in subsequent sections.

211 #aArithmetic and Auxiliary Operations
Most numeric operations are either unary (one operand), like square root and
negation, or binary (two operands), like addition and multiplication.

The 68000 assembly-language SANE engine, FP6BK, provides unary operations
in a one-address form:

DST <—— <op> DST ... for example, B (—— sqrt(B)

The operation <op> is applied to (or operates on) the operand DST and the
result is returned to DST, overwriting the previous value. DST is called the
destination operand.

FP&EBK provides binary operations in a {wo-address form:
DST <-- DST <op> SRC ... for exemple, B <—-B / A

The operation <op> is applied to the operands DST and SRC and the result is
returned to DST, overwriting the previous value. SRC is called the source
operand.

In order to store the result of an operation (unary or binary), the location of
the operand DST must be known to FP68K, so DST is passed by address to
FP68K. In general all operands, source and destination, are passed by
address to FP6BK.

1-2

The o832 SANE Engine The 5830 SANE Engine

For most operations the storage format for a source operand (SRC) can be
one of the SANE numeric formats (single, double, extended, or comp). To
support the extended-based SANE srithmetic, a destination operand (DST)

must be in the extended format.

The forms far the copy-sign next-after functions are unusual and will be
discussed in Section 4.

212 Corwersions
FP6BK provides conversions between the extended format and other SANE
formats, between extended and 16- or 32-bit integers, and between extended
and decimal records. Conversions between binary formats (single, double,

extended, comp, and integer) and conversions from decimal to binary have
the form

DST ¢(— SRC
Conversions from binary to decimal have the form
DST ¢~ SRC according to SRC2

where SRC2 is a DecForm record specifying the decimal format for the
conversion of SRC to DST.

2.13 Comparisons
Comparisons have the form

<relation> ¢-—— SRC, DST

where DST is extended and SRC is single, double, comp, or extended, and
where <relation> is less, equal, greater, or unordered according as

DST <relation> SRC
Here the result <relation} is indicated by setting the 68000 CCR flags.

214 Other Operations
FP68BK provides inquiries for determining the class and sign of an operand
and operations for accessing the floating-point environment word and the halt
address. Forms for these operstions vary and will be given as the operations
are introduced.

227 External Access
The SANE engine, FP6BK, is reentrant, position-independent code, which may
be shared in multi-process environments. It is accessed through one entry
point, labeled FPEBK. Each user process hes a static state area consisting of
one word of mode bits and error flags, and a two-word halt vector. The
package allows for different access to the state word in single and
multi-process environments.

The package preserves all 68000 registers across imvocations, except that
REMAINDER modifies DO. The package modifies the 68000 CCR flags.
Except for binary-decimal conversions, it uses little more stack area than is
required to save the sixteen 32-bit 68000 registers. Since the binary-decimal

The 68X SANE Engine The 880 SANE Engine

conversions themselves call the package (to perform multiplies and divides),
they use about twice the stack space of the regular operations.

The access constraints described in this section also apply to Elems68K.

23 Calling Sequence
A typical invocation of the engine consists of a sequence of PEA's to push
operand addresses followed by one of the Appendix B macros:

PERA {source address>
PEA {destination address>
<FOPMACRO>

PEA's for source operands always precede those for destination operands.
{FOPMACRO> represents a typical operation macro defined as

MOVE W (opword), —(SP) ; Push op code.

JERFP
The macro JSRFP in turn generates a call to FP6BK; for Macintosh, it
expands to an A-line trap, while for Lisa it expands to an intrinsic unit
subroutine call

R FP6EK

231 The Opward
The opword is the logical OR of a operand format code and an operation
code.

The operand format code specifies the format (extended, double, single,
integer, or comp) of one of the operands. The operand format code typically
gives the farmat for the source operand (SRC). At most one operand format
need be specified, since other operands' formats are implied.

The operation code specifies the operation to be performed by FP68K.

Opwords are listed in Appendix C; operand format codes and operation codes
are listed in Appendix B.

Exarmnple

The tformat code for single is 0200 (hex). The operation code for divide is
0006 (hex). Hence the opword 0206 (hex) indicetes divide by & value of type
single.

232 pssembly-Language Macros
The macro file in Appendix B provides macros for

MOYE .W <opword»y, -(SP)
JERFP

for most common <{opword> calls to FP6BK.

The 8300 SANE Engine The 680 SANE Engine
Example 1
To add a single-format operand A to an extended-format operand B, simply
write:
PEA A_ADR Push address of A

PFEA B AR . Push address of B
FADDS ; Floating-point ADD Single: B <— B + A

Example 2

Compute B (-~ sqrt(A), where A and B are extended. The value of A should
be preserved.

PEA A_ADR ; Push address of A

PEA B ADR ; Push address of B

FX2X ; Fleating-point eXtended to eXtended: B <— A

PEA B_ADR ; Push address of B

FSQRTX ; Floating SQuare RooT eXtended: B <— sqrt(B)
Example ¥

Compute C <—- A - B, where A, B, and C are in the double format. Since
destinations are extended, a temporary extended variable T is required.

PEA A_ADR Push address of A

-

PEA _ADR ; Push address of 10-byte temporary variable
FD2X ; Fl-pt corwert Double to eXtended: T <— A
PEA B ADR ; Push address of B

FER T_ADR ; Push address of temporary

FSUBD ; Fl-pt StBtract Double: T <— T - B

PER T_ADR ; Push address of temporary

FEA C_ADR ; Push address of C

FX2D ; Fl-pt corwert eXtended to Double: C <—

24 fArithmetic Abuse
FP68BK is designed to be as robust as possible, but it is not bulletproof.
Peassing the wrong number of operands to the engine will damage the stack.
Using UNDEFINED opword parameters or passing incorrect addresses will
produce undefined results.

1-5

The 58000 SANE Engine The 68000 SANE Engine
3 Data Types
FP6BK fully supports the SANE data types
single —— 32-bit floating-point
double -- 64-bit floating-point
comp -~ 64-bit integer

extended - 80-bit floating-point
and the 68000-specific types

integer -- 16-bit two's complement integer
longint -- 32-bit two's complement integer

The 68000 engine uses the convention that least-significant bytes are stored
in high memory. For example, let us take a variable of type single with bits

s —-- sign
ed ... e7 —- exponent (msb...1lsh)
fO ... f22 — significand fraction (msb...lsb)

The logical structure of this four-byte variable is shown below:

| msb 1sb msb | 1sb olrder
I I
Isle| | |I|e|f|III|IIIIIlIIIIIIIIIIIf'I
IIOI | lo]o] PPty ety rvrrriiz
|0l ||7I0|I |II|II||I|||IIIIIII2|I
1000 1001 1002 1003

If this veriable is assigned the address 1000, then its bits are distributed to
the locations 1000 to 1003 as shown. The other SANE formats (see Section
2 in The Standerd Apple Numeric Emvironrment) are represented in memory in
similar fashion.

1-6

7

The 68320 SANE Engine The 583 SANE Engine

4 Arithmetic Operations and Auxiliary Routines
The operations covered in this section follow the access schernes described
in Section 2.

unary operations: DST <—- <op) DST (one-address form)
PEA (DST address>
<FOPMACRO)>

binary operations: DST <—— DST <op» SRC (two—address form)

PEA ({SRC address>
PEA {DST address)
<FOPMACRO>

The destination operand (DST) for these operations is passed by address and
is generally in the extended format. The source operand (SRC) is slso pessed
by address and may be single, double, comp, or extended. Some operations
are distinguished by requiring some specific type for SRC, by using a
nonextended destination, or by returning auxiliary information in the DO
register and in the processor CCR status bits. In this section, operations so
distinguished are noted. The examples employ the macros in Appendix B.

4.1 Add, Subtract, Multiply, and Divide
These are binary operations and follow the two-address form.

Example
B <(—— B/ A, where A is double and B is extended:

FEA A_ADR ; push address of A
PEA B ADR ; push address of B
FDIVD ; divide with source operand of type double

42 Square Root
This is a unary operation and follows the one-address form.

Example
B ¢—— sqrt(B) , where B is extended.
PEA B_ADR ; push address of B
FSORTX ; square root (operand is always extended)
4.3 Round-to-Integer, Truncate-to-Integer
These are unary operations and follow the one-address form.

Round-to-integer rounds (according to the current rounding direction) to an
integral value in the extended format. Truncate-to-integer rounds toward
zero (regardless of the current rounding direction) to an integral value in the
extended format. The calling sequence is the usual one for unary operators,
illustrated above for square root.

The 68X SANE Engine The 88000 SANE Engine

44 Remainder
This is a binery operation and follows the two-address form.

Remainder returns auxiliary information: the low-order integer quotient
(between -127 and +127) in DO.W. The high half of DO.L is undefined. This
intrusion into the register file is extremely valuable in argument
reduction--the principal use of the remainder function. The state of DO
after an invalid remainder is undefined.

Example
B <—— B rem A, where A is single and B is extended.
PEA A_ADR ; push address of A
PEA B ADR ; push address of B
FREMS ; Tremainder with source operand of type single

435 |Lognh, Scalb
Logb is a unary operation and follows the one-address form.

Scalb is a binary operation and follows the two-address forrn. Its source
operand is a 16-bit integer.

Exarmple

B <— B * 2!, where B is extended.
PEA I ADR ; push address of I
PEA B ADR ; push address of B
FSCALBX ; Scalb

4.6 Negate, Absolute Value, Copy-Sign
Negate and absolute value are unary operations and follow the one-address
farm.

Copy-sign uses the calling sequence

PEAR {SRC address)
PEA <DST address)
FCPYSGNX

to copy the sign of DST onto the sign of SRC. Note that copy-sign differs
from most two-address operations in that it changes the SRC vealue rather
than the DST value. The formats of the operands for FCPYSGNX can be
single, double, or extended. (For efficiency, the 68000 assembly-langusge
programmer should copy signs directly rather than call FP68K.)

The 88 SANE Engins The 68200 SANE Engine

Example

Copy the sign of B (single, double, or extended) into the sign of A (single,
double, or extended).

PEA A_ADR ; push address of A
PEA B ADR ; push address of B
FOPYSGNX ; copy—-sign

47 Next-After
The next-after operations use the calling sequence

PEA (SRC address>
PER {DST address>
<next-after macro>

to effect SRC <-- next value, in the format indicated by the macro, after
SRC in the dirction of DST. Next-after operations differ from most
two-address operations in that they change SRC values rather than DST
values. Both source and destination operands must be of the same
floating-point type (single, double, or extended).

Exarnple

A <-- next-after(A) in the direction of B, where A and B are double (so
next-after means next-double-after).

E PEAR A_ADR ; push address of A
PEA B_ADR ; push address of B
NEXTD ; next—after in double farmat

1-9

The b0 SANE Engine The 5800 SANE Engine

5 Conversions

This section discusses cornversions between binary forrmats and conversions
between binary and decimal formats.

5.1 Corwersions Between Binary Formats
FP6BK provides conversions between the extended type and the SANE types
single, double, and comp, as well as the 16- and 32-bit integer types.

511 Conversions to Extended

FP6BK provides carversions of a source, of type single, double, comp,

extended, or integer, to an extended destinstion.
single
double

extended {—- comp

extended
integer

All operands, even integer ones, ere passed by address. The following
example illustrates the calling sequence.

Example
Convert A to B, where A is of type comp and B is extended.

PEA A_ADR ; push address of A
PEA B ADR ; push address of B
FC2X ; corwert comp to extended

3.1.2 Cowersions from Extended
FP6BK provides conversions of an extended source to a destination of type
single, double, comp, extended, ar integer.

single

double

comp {—- extended
extended

integer

(Conversion to a narrower format may alter values.) Contrary to the usual
scheme the destination for these cornversions need not be of type extended.
All operands are passed by address. The following example illustrates the
calling seguence.

1-10

The 85K SANE Engine

The 66000 SANE Engine

Example
Convert A to B where A is extended and B is double.

PEA A_ADR push address of A
PEA B_ADR push address of B
FX2D corvert extended to double

LY TER)

5.2 Binary-Decimal Comnwversions

521

FP6BK provides conversions between the binary types (single, double, comp,
extended, and integer) and the decimal record type.

Decimal records and decform records (used to specify the form of decimal
representations) are described in Section 4 of The Standard Apple Numeric
Emvironment. For FPEBK, the maximum length of the sig digits field of a
decimal record is 20. (The value 20 is specific to this implementation:
algorithms intended to port to other SANE implementations should use no
more than 18 digits in sig.)

Binary to Decimal

The calling sequence for a conversion from a binary format to a decimal
record passes the address of a decform record, the address of a binary
source operand, and the address of a decimal-record destination. The
maximum number of significant digits that will be returned is 19.

Example

Convert a comp-format value A to a decimal record D according to the
decform record F.

PEA F_ADR ; push address of F
PEA A_ADR ; push address of A
FEA D_ADR ; push address of D
FC2DEC ; convert comp to decimal

Fixed-Format “Overriow”

If a number is too large for a chosen fixed style, then FP&6E6K returns the
string '?' in the sig field of the decimal record.

5.22 Decimal to Binary

The calling sequence for a conversion from decimal to binary passes the
address of a decimal-record source operand and the address of a binary
destination operand.

The maximum number of digits in sig is 19. If the length of sig is 20, then
sig represents its first 19 digits plus one or more additional nonzero digits
after the 19th. The exponent corresponds to the 19-digit integer represented
by the first 19 digits of sig.

1-11

The 633 SANE Engine The XXX SANE Engine

Example
Conwvert the decimal record D to & double-format value B.

PEA D_ADR ; push address of D
PEA B_ADR : push address of B
FDEC2D ; convert decimal to double

Techniques ror Extreme RACCUracy

The following techniques apply to FPEBK; other SANE implementations
require other techniques.

For maximurn accuracy, insert or delete trailing zeros for the sig field of a
decimal record in order to minimize the magnitude of the exp field. For
example, for 1.0E60 set sig to '10000000C0C00000000000000000 (17 zeros) and
exp to 43, and for 300E-43 set sig to '3’ and exp to -41.

If you are writing a parser and must handle a number with more than 19
significant digits, follow these rules:

» Place the implicit decimal point to the right of the 19 most significant
digits.

» If any of the discarded digits to the right of the implicit decimal point
are nonzero, then concatenate the digit '1' to sig.

1-12

/

The 58000 SANE Engine

The 68X SANE Engine

6 Comparisons and Inquiries

6.1

FP&BK offers two comparison operationg: FCPX (which signals invalid if its
operands compare unordered) and FCMP (which does not). Each compares a
source operand (which may be single, double, extended, or comp) with a
destination operand (which must be extended). The result of a comparison is
the relation (less, greater, equa), or unordered) for which

DST <xelation> SRC
is true. The result is delivered in the X, N, Z, ¥, and C stetus bits:

(relatiom> Status bits
XNzZzvVC
greater 00000
less 11001
equsal 00100
unordered 00010

These status bit encodings reflect that floating-point compearisons have four
possible results, unlike the more farmiliar integer comperisons with three
possible results. It's not necessary to learn these encodings, however; simply
use the FBxxx series of macros for branching after FCMP and FCPX.

FCMP and FCPX are both provided to facilitate implementation of relational
operators defined by higher level languages that do not contemnplate
unordered comparisons. The IEEE standard specifies that the invalid
exception shall be signalled whenever necessary to alert users of such
languages that an unordered comparison may have adversely affected their
program's logic.

Framplie 1

Test B <= A, where A is single and B is extended; if TRUE branch to LOC;
signal if unordered.

PERA A_ADR push address of A

PEA B AR : push address of B
FCPXS ; compare using source of type single,
; signal inwalid if unoxrdered
FBLE LoC ; branch if B <= A
Example 2

Test B not-equal A, where A is double and B is extended; if TRUE branch to
LOC. (Note that not-equal is equivalent to less, greater, or unordered, so
invalid should not be signaled on unordered.)

1-13

The 6830 SANE Engine The 58000 SANE Engine

PEA A_ADR ; push address of A
push address of B

FCHPD : compare using source of type double,
; do not signal irnwvalid if unordered
FENE Loc ; branch if B not-equal A
6.2 Inquiries

The classify operation provides both class and sign inquiries. This operation
takes one source operand (single, double, or extended), which is passed by
address, and places the result in a 16-bit integer destination.

The sign of the result is the sign of the source; the magnitude of the result
is

1 signaling NaN

2 quiet NeN

3 infinite

4 Zero

95 normal

6 denoxrmal
Exarnple

Set C to sign and class of A.

PEA A_ADR ; push address of A
PEA C ADR ; push address of result
FCLASSS ; classify single

1-14

s

The 58XQ SANE Engine

7 Emvirommental Control
7.1 The Ernwvironment Word

The 680 SANE Engine

The floating-point environment is encoded in the 16-bit integer format as
shown below in hexadecimal:

Imsb | lsb|
i—lrlrlxIdIoIUIi‘~IRIRIXID|0|UIIi
rounding exception rounding halt
direction flags precision enables
rounding direction, bits 6000 Y
0000 — to-nearest
2000 -- upward
4000 -- downward
6000 ~- toward-zero
exception flags, bits 1F0Q
0100 —— invalid i
0200 —— underflow u
0400 —— overflow 0
0800 -- division-by-zero d
1000 — inexact X
rounding precision, bits 0060 RR
0000 -- extended
0020 -- double
0040 -~ single
0060 -- UNDEFINED
halt enabled, bits O01F
0001 -- invalid I
0002 -- underflow I_I
0004 —— overflow 0
0008 -- division-by-zero D
0010 -- inexact X

Bits 8000 and 0080 are undefined.
Note that the default environment is represented by the integer value zero.

1-15

The s8X¢ SANE Engine The 6 SKRNE Engine

Example

With rounding toward-zero, inexact and underflow exception flags raised,
extended rounding precision, and halt on invalid, overflow, and

division-by-zero, the most significant byte of the environment is 72 and the
least significant byte is OD.

Access to the environment is via the operations get-environment,
set-erwironment, test-exception, set-exception, procedure-ertry, and
procedure-exit.

7.2 Get-Erwironment and Set-Erwironment
Get-Em-ironment takes one input operand: the address of a 16-bit integer
destination. The environment word is returned in the destinsation.

Set-Enmvironment hes one input operand: the address of a 16-bit integer,
which is to be interpreted as an erwironmsant word.

Exarnple
Set rounding direction to toward-zero.
PEA A_ADR
FGETENY
; DO gets erwiromnment
R.W #36000, DO ; set rounding toward-zero
MOVE.W DO, (RO) ; restare A

PEA A_ADR
FSETENY

7.3 Test-Exception and Set-Exception

Test-exceplion has one integer destination operand, which contains the hex
values

01 — invalid

02 — underflow

04 -— overflow

08 —- divide-by-zero
10 — inexact

If the exception flag is set for the carresponding bit in the cperand, then
test-exception sets the destination to $100, otherwise, to zero.

Set-exception tekes one integer source aperand, which encodes an exception
in the manner described abhove for test-exception. Set-exception stimulates
the exception indicated in the operand.

74 Procedue-Entry and Procedure-Exit
Frocedure-entry: saves the current floating-point environment (16-bit integer)
at the address passed as the sole operand, and sets the operative
environment to the default state.

1-16

1
1
1
1
1
1
1
1
1
I MOVE W (A0),DO
i
1
1
1
i
1
1
1
i

The 68000 SANE Engine The 5800 SANE Engine

-~

L

Frocedure-exit seaves (temporarily) the exception flags, sets the environment
passed as the sole operand, and then stimulates the saved exceptions.

Example
Here is a procedure that appears to its callers as an astomic operation.
ATOMICPROC
FER E ADR ; push address to store erwirorment
FPROCENTRY ; procedure entry
...body of routine...
FEA E ADR ; push address of ernviromment
FPROCEXTT ; procedure exit
RTS

1-17

The 88000 SANE Engine The 580 SANE Engine

8 Halts

FP6BK provides the facility to transfer program control when selected
floating-point exceptions occur. Since this facility will be used to
implement halts in high-level languages, we refer to it as a halting
mechanism. The assembly-language programmer can write a 'halt handler'
routine to cause special actions for floating-point exceptions. The FP68K

halting mechanism differs from the traps that are an optional part of the
IEEE Standard.

8.1 Conditions for a Halt

Any floating-point exception can, under the appropriate conditions, trigger a
halt. The halt for a particular exception is enabled when the user has set
the halt-enable bit corresponding to that exception.

82 The Halt Mechanism

If the halt for a given exception is enabled, FP68K does these things when
that exception occurs:

1. FP68K returns the same result to the destination address that it would
return if the halt were not enabled.

2. It sets up the following stack frame:
top-or-stack —> [__| A word containing the opcode.
::::l A long word containing DST address.
[1 a long word containing SRC address.
[n long word containing SRC2 address.
[C"1 A long word pointing to MISC.

MISC is a record consisting of:

MISC: [1 & word containing halt exceptions.
[1 A word containing pending CCR.
[C""1 ~ 1ong word containing pending DO.
The first word of MISC contains in its five low-order bits the AND of the
halt-enable bits with the exceptions that occurred in the operation just

completing. If halts were not enabled, then (upon return from FP68K) CCR
and DO would have the values given in MISC.

1-18

The 68000 SANE Engine The 88300 SANE Engine

3. It passes control by JSR through the halt vector previously set by
_ FSETHY, pushing another long word containing a return address in
FP6BK. If execution is to continue, the halt procedure must clear
eighteen bytes from the stack to remove the opword and the DST,
SRC, SRC2, and MISC addresses.

Set-halt-vector has one input operand: the address of a 32-bit integer,
which is interpreted as the halt vector (that is, the address to jump to in
case a halt occurs).

Get-hait-vector has one input operand: the address of a 32-hit integer,
which receives the halt vector.

8.3 Using the Halt Mechanism

This example illustrates the use of the halting mechanism. The user must
- set the halt vector to the starting address of a halt handler routine. This
particular halt handler returns control to FP6BK which will continue as if no
halt had occurred, returning to the next instruction in the user's program.

LEA HROUTINE, AD . A0 gets address of halt routine
MOVE.L AO0,H_ADR ; H_ADR gets same
PEA H_ADR ;
_ FSETHY ; set halt vector to HROUTINE
_ PER ; floating-point operand here
<FOPMACRD)> . a floating-point call here
— HROUTINE ; called by FP6EK
- MOVE.L (SP)+, A0 ; A0 saves return address in FP68K
_ ADD.L #18,SP ; increment stack past arguments
— P (RO) ; Yeturn to FP6BK

The FP6BK halt machanism is designed so thet a halt procedure may be
written in Lisa Pascal. Thig is the form of a Pascal equivalent to
HROUTINE:

l

1-19

The 5800 SANE Engine The 68X SANE Engine

type miscrec = record
haltexrors - integer ;
ccrpending : integer ;
DOpending : longint ;
end {record} ;

procedure haltroutine
(var misc : miscrec :
src2, src, dst : longint ;
opcode : integer) ;

begin {haltroutine)}
end {haltroutine} ;

Like HROUTINE, haltroutine merely continues execution as if no halt had
occurred.

1-20

The 68000 SANE Engine The 58000 SANE Engine

Exarnple
B ¢-- BX, where the type of B is extended.

PEA K_ADR ; push address of K
PEA B_ADR ; push address of B
FXPWRI ; integer exponentiation

93 Three-Argumemnt Functions

Compound and annuity use the calling sequence

PEA SRC2 address push address of rate first

PER SRC address push address of number of periods second
FEA DST address push address of destination third
<EDPMACRD)

to effect
DST <—- <op> (SRC2, SRC)

where <op> is compound or annuity, SRC2 is the rate, and SRC is the number
of periods. All arguments SRC2, SRC, and DST must be of the extended

type.

Example

C <--(1+ R where C, R, and N are of type extended.
PEA R_ADR push address of R

LTER T

N

PEA NAR ; push address of N
PEA C_ DR ; push address of C
FCOMPOLND ; compound

1-22

-
;

o)

B8C SANE Engine BB SANE Access

Appendix A
68000 SANE Access

In your assemblies include the file TLASM/SANEMACS. TEXT, which contains
the macros mentioned in this manual. The standard version is for Macintosh.
For programs that will run on Lisa, redefine the symbol FPBYTRAP as
follows:

FPBYTRAP .EQU O
On Macintosh, the object code for FP68K and ELEMS6BK is automatically

loaded as needed by the Package Manager. On Lisa, it suffices to link your
assembled code with the intrinsic unit file IOSFPLIB.OBX.

B SANE Engine 58X SANE Macros

-

i

Appendix B
68000 SANE Macros

FILE. SANEMACS.TEXT

These macros and equates give assembly language access to
the 68K floating-point arithmetic routines.

NroNT N N N N A

. WARNING: set FPBYTRAP for your system.

FPBYTRAP EQU 1 ;0 for Lisa, 1 for Macintosh
.MARCRO JSRFP
IF FPBYTRAP
_FPBBK ; defined in TOOLMARCS
.ELSE
.REF FP6BK
JER FPG&8K
.ENDC
.ENDM

.MACRO JSRELEMS
dF FPBYTRAP

_ELEMS68K ;defined in TOOLMACS
.ELSE
.REF ELEMS68K
JSR ELEMS68K
-ENDC
.ENDM

;

; Operation code masks.

FOADD EQU $0000 ; add

FOSUB (EQU $0002 ; subtract

FOMUL EQU $0004 ; multiply

FODIY EQU $0006 ; divide

FOCMP EQU $0008 ; compare, no exception from unordered

FOCPX EQU $000R compare, signal invalid if unordered

B-1

BN SANE Engine

LR SHNE Macros

FOREM .EQU $000C ; remainder

FOZ2ZX EQU $OO0E ; convert to extended

FOX22 .EQU $0010 ; convert from extended
FOSQRT .EQU $0012 ; square root

FORTI -EQU $0014 ; round to integral value
FOTTI .EQU $0016 ; truncate to integral value
FOSCALB .EQU $0018 ; binary scale

FOLOGB .EQU $001A ; binary log

FOCLASS EQU $001C ; classify

; UNDEFINED -EQU $001E

FOSETENY EQU $0001 ; set environment

FOGETENY .EQU $0003 ; get environment

FOSETHY .EQU $0005 ; set halt vector

FOGETHY .EQU $0007 ; get halt wvector

FOD2B EQU $0009 ; convert decimal to binary
FOB2D CEQU $000B ; convert binary to decimal
FONEG EQU $000D : negate

FORBS .EQU $000F ; absolute

FOCPYSGNX EQU $0011 ; copy sign

FONEXT EQU $0013 ; next-after

FOSETXCP .EQU $0015 ; set exception

FOPROCENTRY .EQU $0017 ; procedure entry

FOPROCEXIT EQU $0019 ; procedure exit

FOTESTXCP EQU $001B ; test exception

5 UNDEFINED EQU $001D

5 UNDEFINED EQU $001F

; Operand format masks.

FFEXT EQU $0000 ; extended —— B0O-bit float
FFDBL .EQU $0800 ; double — 64-bit float
FFSGL EQU $1000 ; single —- 32-bit float
FFINT EQU $2000 ; integer — 16-bit integer
FFLNG EQU $2800 ; long int — 32-bit integer
FFCOMP .EQU $3000 ; comp -~ 64-bit integer

; Precision code masks: forces a floating point output
; value to be coerced to the range and precision specified.

FCEXT
FCDBL
FCSGL

EQU $0000
EQU $4000
EQU $8000

4
4

/

extended
double
single

C

S0 SANE Engine

BRXN? SANE Macras

e Ne N N Ne N e

single,

comp,

Operation macros: operand addresses should already be on
the stack, with the destination address on top.
suffix X, D, S, C, I, or L determines the format of the
source operand -— extended, double,
integer, or long integer, respectively; the destination
operand is always extended.

The

; Addition.

.MACRO
MOVE W
JRFP
ENDM

.MACRO

.MACRO
MOVE .W
JSRFP
LENDM

FADDX
#FFEXT+FOADD, -(SP)

FRDDD
#FFDBL+FOADD, —(SP)

FADDS
#FFSGL+FOADD, - (SP)

FADDC
#FFCOMP+FORDD, - (SP)

FADDI
#FFINT+FOADD, -{SP)

FADDL
#FFLNG+FOADD, -(SP)

. Subtraction.

.MACRO

FSUBX

B-3

SR SANE Engine

#FFEXT+FOSUB, - (SP)

FSUBD
#FFDBL+FOSUB, —(SP)

FSUBS
#FFSGL+FOSUB, - (SP)

FSUBC
#FFCOMP+FOSUB, - (SP)

FSUBT
AFFINT+FOSUB, - (SP)

FSUBL
#FFLNG+FOSUB, - (SP)

BRI SANE Macros

: Multiplication.

.MACRO
MOVE W
JSRFP
.ENDM

.MACRO
MOYE .W
JSRFP
-ENDM

.MACRO
MOVE .W
JSRFP
.ENDM

MACRO

FMULX
#FFEXT+FOMUL, —(SP)

FMULD
#FFDBL+FOMUL, - (SP)

FMULS
#FFSGL+FOMUL, -(SP)

FMULC

1 -

o

680 SANE Engine

Ed

;

MOVE .W
JSRFP
JENDM

.MACRO
MOVE . W
JSRFP
-ENDM

.MACRO
MOVE .W
JSRFP
_ENDM

88X SANE Macros

#FFCOMP+FOMUL, -(SP)

FMULI
#FFINT+FOMUL, -(SP)

FMULL
AFFLNG+FOMUL, - (SP)

Division.

-MACRO
MOVE .W
JSRFP
.ENOM

-MACRO
MOVE .W
JSRFP
.ENDM

.MACRO
MOVE W
JSRFP
.ENDM

-MACRO
MOVE .W
JSRFP
.ENDM

-MACRO
MOVE .W
JSRFP
-ENDM

"MACRO
MOVE .4
JSRFP
.ENDM

FDIVX
AFFEXT+FODIY, - (SP)

FDIVD
#FFDBL+FODIV, —(SP)

FDIVS
AFFSGL+FODIV, - (SP)

FDIVC
AFFCOMP+FODIY, —(SP)

FDIVI
AFFINT+FODIV, -(SP)

FDIVL
#FFLNG+FODIV, -(SP)

BROQ SANE Engine

4

4

BRI SANE Macros

Square rooft.

.MACRO
MOVE .M
JSRFP
.ENDM

FSORTX
#FOSORT, - (SP)

; Round. to integer, according to the current rounding mode.

.MACRO
MOVE W
JSRFP
.ENDM

FRINTX
#FORTI, -(SP)

; Truncate to integer, using round toward zero.

.MACRO
MOVE .W
JSRFP
.ENDM

FTINTX
#FOTTI, -(SP)

Remainder.

-MACRO
MOVE . W
JSRFP
(ENDM

"MACRO
MOVE .W
JSRFP

FREMX
#FFEXT+FOREM, -(SP)

FREMD
#iF FDBL+FOREN, -(SP)

FREMS
#FFSGL+FOREM, - (SP)

FREMC
#IF FCOMP+FOREM, - (SP)

B-6

I

B SANE Engine SR SANE Macros

.MACRO FREMI
MOVE W #FFINT+FOREM, -(SP)
JSRFP
.ENDM

.MACRO FREML

MOVE .W #FFLNG+FOREM, -(SP)
JSRFP

-ENDM

; Lng.

MACRO FLOGBX
MOVE .W #FOLOGB, -(SP)
JSRFP

. Scalb.

.MACRO FSCALBX

MOVE.W #FFINT+FOSCALB, -(SP)
JSRFP

.ENDM

; Copy-sign.

MACRO FCPYSGNX

MOVE.W #FOCPYSGN, —(SP)
JSRFP

.ENDM

, Negate.

.MACRD FNEGX
MOVE .W #FONEG, —-(SP)
JSRFP

.ENDM

L,

B-7

~

BT SANE Engine B8 SANE Macros

; Absolute value.

MACRO FABSX

MOVE .W #FORBS, —(SP)
JSRFP

_ENDM

Next-after. NOTE: both operands are of the same
format, as specified by the ususal suffix.

N N N N

.MACRO FNEXTS

MOVE.W #FFSGL+FONEXT, -(SP)
JSRFP

.ENDM

MACRO FNEXTD

MOVE .W #FFDBL+FONEXT, -(SP)
JSRFP

ENDM

MACRO FNEXTX

MOVE.W #FFEXT+FONEXT, -(SP)
JSRFP

.ENDM

;

; Conversion to extended.

MACRO FX2X

MOVE .W #FFEXT+F022X, ~(SP)
JSRFP

.ENDM

MACRO FD2X

MOVE.W #FFDBL+FO22X, —(SP)
JSRFP

_ENDM

.MACRO FS2X

MOVE .W #FFSGL+FDZ2X, -(SP)
JSRFP

.ENDM

B-8

X SANE Engine

.MACRO
MOVE .W

ISRFP
JENDM

.MACRO

MOVE W
ISRFP
{ENDM

.MARCRO
MOVE . W
JSRFP
.ENDM

FI2X
#FFINT+F022X, -(SP)

FL2X
#FFLNG+FO22X, -(SP)

FC2X
#FFCOMP+FD22X%, ~(SP)

BRXQ SANE Macras

I

; Conversion from extended.

.MACRO
MOVE .W
JSRFP
.ENDH

.MACRO
MOVE W
JSRFP
-ENDM

MACRO
MOVE .W
JSRFP
“ENDM

.MACRO
MOVE W
JSRFP
.ENDM

.MACRO
MOVE .W
JSRFP
.ENDM

FX2D
#FFDBL+FOX22, - (SP)

FX25
#FFSGL+FOX22, -(SP)

FX21
#FFINT+FOX2Z, -(SP)

FX2L
#FFLNG+FOX22, - (SP)

FX2C
#FFCOMP+FOX22, - (SP)

B-9

L3 SANE Engine

S SANE Macras

;
; Binary to decimal conversion.

_MACRO FX2DEC

MOVE .} #FFEXT+FOB2D, -(SP)
JSRFP

ENDM

MACRO FD2DEC

MOVE.W #FFDBL+FOB2D, -(SP)
JSRFP

_ENDM

.MACRO FSZDEC

MOVE.W #FFSGL+FOB2D, -(SP)
JSRFP

.ENDM

.MACRO FC2DEC

MOVE.W #FFCOMP+FOB2D, -(SP)
JSRFP

_ENDM

MACRO FIZDEC

MOVE.W #FFINT+FOB2D, —(SP)
JSRFP

_ENDM

MACRO FL2DEC

MOVE.W #FFLNG+FOB2D, -(SP)
JSRFP

JENDM

;
; Decimal to binary conversion.

.MACRO FDEC2X

MOVE.W #FFEXT+FODZB, -(SP)
JRFP

.ENDM

-MACRO FDEC2D

MOVE.W #FFDBL+FODZB, ~(SP)
JSRFP

.ENDM

B-10

LA

ez

XX SANE Engine

.MACRO
MOVE .W
JSRFP
-ENDM

-MACRO
MOVE .W
JSRFP
[ENDM

.MACRO
MOVE .W
JSRFP
.ENDM

.MACRO
MOVE W
JSRFP
.ENDHM

FDEC2S
HFFSGL+FODZB, - (SP)

FDEC2C
#FFCOMP+FOD 2B, - (SP)

FDEC2I
#FFINT+FOD28B, —(SP)

FDEC2L
AFFLNG+FOD2B, - (SP)

BN SANE Mscras

;

; Compare, not

signaling invalid on unordered.

-MACRO
MOVE .W
JSRFP
-ENDM

.MACRO
MOVE .
JSRFP
-ENDM

.MACRO
MOVE . W
JSRFP
[ENDM

.MACRO
MOVE .W
JSRFP
.ENDM

-MACRO
MOVE .W
JSRFP
{ENDM

FCMPX
#FFEXT+FOCMP, - (SP)

FCMPD
#FFDBL+FOCMP, -(SP)

FCMPS
#FFSGL+FOCMP, - (SP)

FCMPC
#FFCOMP+FOCMP, - (SP)

FCMPI
#FFINT+FOCMP, -(SP)

B-11

BEXQ SANE Engine 53000 SANE Macros

MACRO FCMPL

MOVE.W #FFLNG+FOCMP, - (SP)
JSRFP

.ENDM

;

; Compare, signaling invalid on unordered.

MACRO FCPXX

MOVE.W #FFEXT+FOCPX, —(SP)
XSRFP

_ENDM

MACRO FCPXD

MOVE.W #FFDBL+FOCPX, -(SP)
JSRFP

_ENDM

.MACRO FCPXS
MOVE.W #FFSGL+FOCPYX, - (SP)
JSRFP
. ENOM

.MACRO FCPXC

MOVE.W #FFCOMP+FOCPX, —(SP)
ISRFP

_ENDM

.MACRO FCPXI

MOVE.W #FFINT+FOCPX, - (SP)
JSRFP

-ENDM

MACRO FCPXL

MOVE.W #FFLNG+FOCPX, —(SP)
JSRFP

_ENDM

; The following macros define a set of so-called floating
: branches. They presume that the appropriate compare
; operation, macro FCMPz or FCPXz, precedes.

MACRO FBEQ
BE %1
{ENDM

B-12

13

s

68000 SANE Engine

MACRO
{ENDM
-MACRO
BLS
-MACRO
-ENDM
.MACRO
.ENDM
.MACRO
BLT

-MACRO
BLE

FBLT
%1

FBLE
%1

FBGT
%1

FBGE
%1

FBULT
%1

FBULE
%1

FBUGT
%1

FBUGE
%1

FBU
%1

FBO
%1

FBNE
%1

B-13

S8000 SANE Macros

B SANE Engine

.MACRO FBLE
BEQ %1
BvS %1
.ENDM

.MACRO FBLG
BNE %1
BYyC %1
-ENDH

SR SANE Macras

Short branch versions.

.MACRO FBEQS
BEQ.S %1
-ENDM

.MACRO FBLTS
BCS.S %1
.ENDM

.MACRO FBLES
BLS.S %1
.ENDM

.MRCRO FBGTS
BGT.S %1
-ENDNM

.MACRO FBGES
BGE .S %1
JENDM

.MACRO FBULTS
BLT.S %1
.ENDM

.MACRO FBULES
BLE.S %1
JENDM

.MACRO FBUGTS
BHI.S %1
LENDM

B-14

30 SANE Engine SR00 SANE Macros
.MACRO FBUGES
BCC.S %1
.ENDM
.MACRO FBUS
BYS.S %1
.ENDM
.MRCRO FBOS
BVC.S %1
.ENDM
.MACRO FBNES
BNE.S %1
-ENDM
.MACRO FBLES
BEQ.S %1
BvS.S %1
-ENDM
MARCRO FBLGS
: BNE .S %1
N BYC.S %1
{ENDM

p
; Class and sign inguiries.

FCSNAN EQU 1 ; signaling NAN
FCONAN EQU 2 ; quiet NAN
FCINF EQU 3 ; infinity
FCZEROD EQU 4 ; Zero
FCNORM EQU 5 ; normal number
FCDENORM EQU 6 ; denormal number

.MARCRO FCLASSS

MOVE W #FFSGL+FOCLASS, —(5P)

JSRFP

.ENDM

.MACRO FCLASSD

MOVE.W AFFDBL+FOCLASS, —(SP)
JSRFP

.ENDM

2

B-15

‘

X SANE Engine

.MACRO FCLASSX

SR SANE Macras

MOYE.W #FFEXT+FOCLASS, -(SP)

JSRFP
JENDM

; Bit indexes for bytes of floating point environment word.

FBINVALID EQU 0
FBUF LOW EQU 1
FBOFLOW EQU 2
FEOIVZER EQU 3
FBINEXACT EQU 4
FBRNDLO EQU 5
FBRNDHI EQU 6
FBLSTRND EQU 7
FBDBL EQU b
FBSGL EQU 6

invalid operation
underflow

averflow

division by zexro

inexact

low bit of rounding mode
high bit of rounding mode
last round result bit
double precision control
single precision control

Na Ns %r N Ne Ne N Ny W N

; Get and set enviromnment.

MACRO FGETENV

MOVE.W #FOGETENY, —(SP)

JSRFP
[ENDM

.MACRO FSETENV

MOVE.W #FOSETENY, -(SP)

JSRFP
[ENDM

; Test and set exception.

;

.MACRO FTESTXCP

MOVE.W 4FOTESTXCP, -(SP)

JSRFP
ENDH

.MARCRO FSETXCP

MOVE .W AFOSETXCP, -(SP)

JSRFP
.ENDH

B-16

0 SANE Engine S8 SANE Macros

. Procedure entry and exit.

;

.MACRO FPROCENTRY

MOVE.W #FOPROCENTRY, -(SP)
JSRFP

ENDM

MACRO FPROCEXIT

MOVE .W #FOPROCEXIT, -(SP)
JRFP

.ENDM

; Get and set halt wvector.

.MACRO FGETHY
MOVE.W #FOGETHY, -(SP)
JSRFP

-ENDM

.MACRO FSETHY
MOVE.W #FOSETHY, ~(SP)
JSRFP

.ENDM

; Elementary function operation code masks.

FOLNX EQU 30000 ; base—e log
FOLOG2X .EQU $0002 ; base-2 log
FOLN1X -EQU $0004 ; 1n (1 + x)
FOLOG21X EQU $0006 ; log2 (1 + x)
FOEXPX .EQU $0008 ; base-e exponential
FOEXP2X EQU $000R ; base-2 exponential
FOEXP 1X EQU $000C ; exp (x) -1
FOEXP21X EQU $O00E ; exp2 (x) - 1
FOXPWRI .EQU $8010 ; integer exponentiation
FOXPWRY .EQU $8012 ; general exponentiation
FOCOMPOUNDX EQU $C014 ; compound
FORNNUITYX EQU $C016 ; annuity
FOSINX .EQU $0018 ; sine
) FOCOSX EQU $001R ; cosine
B-17

> P

S SANE Engine 680 SANE Macros

FOTANX
FOAT ANX

.EQU $001C ; tangent
.EQU $001E ; arctangent

FORANDOMX EQU $0020 ; random

;
; Elementary function macros.

.

MACRO FLNX
MOVE.W #FOLNX, -(SP)
JRELEMS

.ENDM

; base-e 1log

MACRO FLOG2X ; base~2 log
MOVE .W #FOLOG2X, -(SP)

JSRELEMS

.ENDM

MACRO FLN1X . 1n (1 + x)
MOVE.W #FOLN1X, ~(SP)

JGRELEMS

ENDM

.MACRO FLOGZ21X ; log2 (1 + x)
MOVE W #FOLOG21X, (SP]

JSRELEMS

ENDM

MACRO FEXPX ; base-e exponential
MOVE.W #FOEXPX, -(SP)

JSRELEMS

.ENDM

MACRO FEXP2X ; base-2 exponential
MOVE .W #FOEXP2X, —(SP)

JSRELEMS

ENDM

.MARCRO FEXP1X ; exp (x) -1
MOVE .W #FOEXP1X, —(SP)

JSRELEMS

.ENDM

MACRO FEXP21X ; exp? (x) - 1
MOVE W #FOEXP21X, -(SP)

JSRELEMS

_ENDM

B-18

S8 SANE Engine 88000 SANE Macras

MACRO FXPWRI ; integer exponential
MIVE W AFOXPWRI, - (SP)

JORELEMS

.ENDM

MACRO FXPWRY ; general exponential
MOVE .W #FOXPWRY, —(SP)

JSRELEMS

.ENDM

.MACRO FCOMPOUNDX ; compound
MOVE W #FOCOMPOUNDX, - (SP)
JSRELEMS

.ENDM

.MACRO FANNUITYX ; annuity
MOVE .W #FOANNUITYX, -(SP)
JSRELEMS

ENDM

MACRO FSINX ; sine
MOVE W #FOSINX, -(SP)
JSRELEMS

.ENDM

.MACRO FCOSX ; cosine
MOVE.W #FOCOSX, —(SP)

JSRELEMS

.ENDM

MACRO FTANX ; tangent
MOVE W #FOTANX, —(SP)

JSRELEMS

.ENDM

.MACRO FATANX
MOVE .W #FOATANX, - (SP)
JSRELEMS

{ENDM

; arctangent

.MARCRO FRANDOMX ;
MOVE W #FORANDOMX, - (SP)
JSRELEMS

.ENDM

random number generator

B-19

S8R SANE Engine

SRR SHNE Macras

; NaN codes.
NANSORT .EQU 1 ; Invalid square root such as sqrt(-1).
NANARDD .EQU 2 ; Invalid eddition such as +INF - +INF,
NANDIY .EQU 4 ; Invalid division such as 0/0.
NANMUL .EQU 8 ; Invalid multiply such as O * INF.
NANREM .EQU 9 ; Invalid remainder or mod such as x REM Q.
NANASCBIN EQU 17 ; Rttempt to convert invalid ASCII string.
NANCOMP .EQU 20 ; Result of converting comp NeN to floating.
NANZERO .EQU 21 ; Attempt to create a NaN with a zero code.
NANTRIG .EQU 33 ; Inmvalid argument to trig routine.
NANINVTRIG .EQU 34 ; Invalid argument to inverse trig routine.
NANLOG .EQU 36 ; Invalid argument to log routine.
NANPOWER EQU 37 ; Invalid argument to x*i or x"y routine.
NANFINAN _EQU 38 ; Invalid argument to financial function.
233 ; Uninitialized storage.

NANINIT .EQU

,

BRI SANE Engine Quick Reference Guide

68000 SANE
Quick Reference Guide

This Guide contains diagrams of the SANE data formats and the 68K SANE
operations and environment word.

C.1 Data Formats

Each of the diagrams below is followed by the rules for evsluating the number
V.

In each field of each diagram, the leftmost bit is the msb and the rightmost is
the lsb.

Format Diagram Symbols

value of number

sign bit

biased exponent

explicit one's-bit (extended type only)
fraction

- kD W <

Single: 32 Bits

1 8 23 widths
s e I f I

if 0 < e ¢ 235, then v = (-1)s * 2(e-127) * (1.1);

ife= Oandf =#/0, thenv = (-1)s * 2(-126) * (0.f);

ife= Oandf =0, thenv = (-1)s * 0;

if e=255 and f =0, thenv = (-1)s * oo;

if e =235 and f =/ 0, then v is a NaN.

S8 SANE Engine Quick Rerference Guide

Double: 64 Bits
1 11 52 widths

Is| e I f I

if 0 ¢ e < 2047, then v = (-1)s * 2(e-1023) * (1.f1);
if e = 0 and f =#/ 0, then v = (—l]s * 2(1022) * (0.f);
if e = O and f =0, thenv = (-1)s

if e = 2047 and f = O, then v = (1)s

it @ = 2047 and ¥ =+/ 0, then v is a aN

Comp: 64 Bits

1 63 widths

[s] d |

it s =1and d =0, then v is the unique comp NaN;
otherwise, v is the two's-complement value of the
64-bit representation.

Extended: 80 Bits

1 15 1 63 widths
[sl e [1] f |
if 0 <= e < 32767, then v = (-1)s * 2(e-16383) * (i.f);

32767 and f = O, then v

(-1)s * oo, regardless of i;
32767 and f =/ O, then

is a NaN, regardless of i.

[N
-

w
non
< H N

C-2

63X SANE Engine uick Reference Guide

C.2 Operations

In the operations below, the operation's mnemonic is followed by the opword in
parentheses: the first byte is the operation code; the second is the operand
format code. For some operations, the first byte of the opword (xx) is ignored.

C21 Ablxeviations and Symbols

The symbols and abbrevietions in this section closely parallel those in the text,
although some are shortened. In some cases, the same symbol has verious
meanings, depending on context.

Cwerancs

osT destination operand (passed by address)
SRC source operand (passed by address), pushed before DST
SRC2 second source operand (passed by address), pushed before SRC

Data Types

extended (80 bits)
double (64 bits)
single (32 bits)
integer (16 bits)
longint (32 hits)
comp (64 bits)

Dec decimal Record
Decform decform Record

Or=unaXx

8800 Frocessor Registers

data register O

extend bit of processor status register
negative bit of processor status register
zero bit of processor status register
overflow bit of processor status register
carry bit of processor status register

ﬂ<N2X8

Exceptions

invalid operation
undexr f1ow
overflow
divide-by-zero
inexact

For each operation, an exception marked with x indicates that the operation will
signal the exception for some input.

XOO T

B SANE Engine uick Reference Guide

Environment and Hslls

EnWrd SANE environment word (16-bit integer)
HltVctr SANE halt vector (32-bit longint)

C22 Arithmetic Operations and Auxiliary Routines (Entry Point FP68K)

Operation Operands and Data Types Exceptions

ADD DST <¢—- DST + SRC UuobD
FADDX -
FADDD
FADDS
FADDC
FARDDI
FARDDL

0000
0800
1000
3000

PN A SN S S S
N et Sser” e “evaret” et
XK XX X X
X XK X X X
r=nwox
X M X XK X =
Mo oM o X X O
> X X X > o X

2000
2800

SUBTRACT DST «¢--
FSUBX (0002)
FSUBD (0802}
FSUBS (1002)

KX XX X
><><><>(>(><8
_.
1
r—»-r)moxg
MM K I NI b
1
XK X X N x O
|
MO O X M X X

MARTIPLY

FMULX (0004)
FMULD (0804)
FMULS (1004)
FMULC (3004)
FMULT (2004)
FMULL (2804)

{-- DST * SRC

><><><><><><§
DX XXX XX
OO X
O I X DX X
1L ox x x C
o MO X X x O
I]
oM X X O > X

DIVIDE DST <—- DST / SRC
FDIVX (0006)
FDIVD (0806)
FDIVS (1006)
FDIVC (3006)

)

)

Folox > x

X X X X x x O

FDIVI (2006
FDIVL (2806

KX XK XXX
KX XX X
!_H[_JU]DX
XM XK M X XK b
XK o X X X =X C
Mo X X X X XK

C-4

8303 SANE Engine

SQUARE ROOT
FSQRTX (0012)

ROUND TD INT
FRINTX (0014)

TRINC TO INT
FTINTX (0016)

REMAINDER

FREMX (000C)
FREMD (080C)
FREMS (100C)
FREMC (300C)
FREMI (200C)
FREML (280C)

LOG BINARY
FLOGBX (001A)

SCALE BINARY
FSCALBX (0018)

NEGATE
FNEGX (000D)

ABSOLUTE VALUE
FABSX (000F)

COPY-SIGN

FCPYSGNX (0011) XDors

NEXT-AFTER

FNEXTX (0013)
FNEXTD (0813)
FNEXTS (1013)

<

<

=

)<><Z><><><><8

S

<

DST

DST

DST
A

SRC

SRC
X
D
S

{—

{~—

sqrt (DST)
A

rnd(DST)
X

chop(DST)
X

D:

)]

T REM SRC

HKHKHXXK XX
=W oO X

integer quotient DST/SRC,
between -127 and +127

1logb(DST)
X

DST * 2°SRC
X I

-DST
X

|DST|
X
SRC with DST's sign

XDors XDors

next after SRC toward DST

X X

D D

S S
C-5

>

X X X M X X

C

c

gD

GUICk Reference Guide

x > > X

>

[T I 4

3 X > -
> > x

> 3 M X

SR SANE Engine Guick Reference Guide

C.23 Carwersions (Entry Point FP68K)

Operation Operands and Data Types Exceptions
CONVERT

Bin to Bin DST <— SRC IUODX
FX2X (0010) X X X - -~ -
FX2D (0810) D X X X X - X
FX2S (1010) S X X XX =X
FX2C (3010) C X X - - - X
FX21 (2010) I X X - - =X
FX2L (2810) L X X -~ - X
FD2X (0BOE) X D X = == -
FS2X (100E) X S X - — — -
FC2X (300E) X D
FI2X (200E) X)
FL2X (280E) X e
Bin to Dec DST <-- SRC according to SRC2 IUODX
FXZ2DEC (000B) Dec X Decform X — - — X
FD2DEC (080B) Dec D Decform X - - -X
FS2DEC (100B) Dec S Decform X - - - X
FC2DEC (300B) Dec C Decform - - -
FIZ2DEC (200B) Dec I Decform --=-=-x
FL2DEC (280B) Dec L Decform - --=X
(First SRC2 is pushed, then SRC, then DST.)

Dec to Bin DST <¢-—- SRC IUDDX
FDEC2X (0009) X Dec - X X =X
FDEC2D (0809) D Dec - XX -X
FDEC2S (1009) S Dec - XX -X
FDEC2C (3009) c Dec X - =--X
FDEC2I (2009) I Dec X - - - X
FDEC2L (2809) L Dec X - ==X

53000 SANE Engine

C.24 Compare and Classify (Entry Point FP6BK)
Operands and Data Types

Operation

COMPARE

No invalid
for unordered
FCHMPX (0008)
FCMPD (0808)
FCHMPS (1008)
FCHPC (3008)
FCMPI (2008)
FCMPL (2608)

(invalid only for signaling NaN inputs)

Signal invalid
if unordered
FCPXX (000R)
FCPXD (0BOA)
FCPXS (100R)
FCPXC (300R)
FCPXI (200R)
FCPXL (280R)

{relation>

DST
DST SRC
DST = SRC
DST & SRC unordered

SRC

AN

CLASSIFY
(sign>
DST

FCLASSX (001C) I
FCLASSD foan: I
FCLASSS (101C) I

S
X
0
i
0
0

Status Bits

Status Bits

{=—

KX AKX XX

e

X
X
X
X
X
X
tatus Bits
N 2 V¥V C
0 0 0 O
i 0 0 1
0 1 0 0O
0O 0 1 0

{class> <—— class of SRC

(—— sign of SRC

(—— (-1)*¢sign> * {(class>

X
D
)

{relation>
whexre DST <(relstion> SRC

{relation>
where DST <relation> SRC

X

~=0Wwo

r=0unogXx

Gluick Reference Guide

Exceptions

MO X M MK X
|
I
)

—
oy
o
o
x

MM X M X X
| I T R
[T I R
| [
[

IUODX

ERQ SANE Engine Quick Reference Guide

SRC ¢class)] SRC ¢sign>

signaling NaN
quiet NaN
infinite

Zero
normalized
denormalized

positive 0
negative 1

[~ QL I SRR G B

C.2.5 Environmental Control (Entry Point FP68K)

Operation Operands and Data Types Exceptions
GET ENVIRONMENT DST <-- EnvWrd IUDDX
FGETENY (0003)
SET ENVIRONMENT Enviird <— SRC I1U0DX
FSETENV (0001) 1 X X X XX

{exceptions set by set-environment cannot cause halts)

TEST EXCEPTION Zbit <-- SRC Xcps clear IvuoDX
FTESTXCP (001B) r = - -
SET EXCEPTION Enwrd <—— Envird AND SRC IUQODX
FSETXCP (0015) 1 X X X X X
PROCEDURE ENTRY DST <— Enwrd, EnMrd <— 0 I UQODX
FPROCENTRY (0017) 1 X X X XX
PROCEDURE. EXIT ErmMdrd <—— SRC AND current Xcps TUDD X
FPROCEXIT (0019) 1 X X X XX

C-8

L3000 SANE Engine uick Reference Guige

C2.6 Halt Control (Entry Point FP68K)

SET HALT VECTOR Hltvetr <— SRC IUDDX
FSETHY (xx03) Lt -
GET HALT VECTOR DST <— Hltvetr IUO0DX
FGETHY (0007) L e e

C.2.7 Elementary Functions (Entry Point ELEMS68K)

QOperation Operands and Data Types Exceptions
BASE-E LOGARITHM DST <—- 1n(DST) IU0ODX
FLNX (0000) X X X ==X X
BASE-2 LOGARITHM DST <(— 1o0g2(DST) IUDDX
FLOG2X (0002) X X X - - XX
BASE-E LOG1 (LN1) DST <¢— 1n(1+4DST) IUVUO0ODX
FLN1X (0004) X X X X - X X
BASE-2 LOG1 DST (- 1log2(1+DST) IUDD X
FLOG21X (0006) X X X X - X X
BASE-E EXPONENTIAL DST <-- e"DST IUDDX
FEXPX (0008) X X X X X - X
BASE-2 EXPONENTIAL DST <(-- 2°DST IUDDX
FEXP2X (O00A) X X X X X - X
BASE-E EXP1 DST <— e™DsT -1 IUODX
FEXP1X (0O0OC) X X X X X — X
BASE-2 EXP1 DST <(— 2°DST - 1 IUDDX
FEXP21X (OO0E) X X X X X - X
Cc-9

XX SANE Engine Cuick Reference Guide

INTEGER EXPONENTIATION DST <—— DST"SRC IU0DX
FXPWRI (8010) X X 1 X X X XX
GENERAL. EXPONENTIATION DST <—- DSTSRC IUDDX
FXPUWRY (8012) X X X X X X X X
COMPOUND INTEREST DST <— compound{SRC2, SRC) I1U0DX
FCOMPOUND (CO14) X X X X X X XX
(SRC2 is the rate; SRC is the number of periods.)

ANNUITY FACTOR DST <— annuity(SRC2, SRC) IU0DX
FANNUITY (CO16) X X X X X X X X
(SRC2 is the rate; SRC is the number of periods.)

SINE DST <—- sin(DST) IUODX
FSINX (0018) X X X X - - X
COSINE DST <~ cos(DST) IUODX
FCOSX (001R) X X XX - - X
TANGENT DST < tan{DST) IUDODX
FTANX (001C) X X XX = XX
ARCTANGENT DST <-- atan(DST) IU0DX
FATANX (O01E) X X X X ==X
RANDOM DST <-- random(DST) IUuoDX
FRANDX (0020) X X X X X ~ X

C-10

—_——

X0 SANE Engine Guick Reference Guide

C3 Enwironment Word

The floating-point environment is encoded in the 16-bit integer format as shown
below in hexadecimal:

msb 1sb

I-IrlrlxIdIOIUIiI‘—IRlRIXIDIOIUIII

Irounding exception I:roun(.‘l:lng halt

direction flags precision enables
rounding direction, bits 6000 rr

0000 — to-nearest
2000 —- upward
4000 — downwerd
6000 ~- toward-zero

exception flags, bits 1F0O

0100 — invalid i
0200 — underflow u
0400 — overflow]
0800 —— division-by-zero d
1000 — inexact X
rounding precision, bhits 0069 RR
Q000 -~ extended
0020 — double
0040 -- single
0060 —- UNDEFINED
halt enabled, bits O01F
0001 —— invalid 1
0002 —— underflow U
0004 -- overflow 0
0008 — division-by~zero D
0010 — inexact X

Bits 8000 and 0080 are undefined.

Note that the default environment is represented by the integer value zero.

C-11

(
The StdUnit
Contents
1 Imtroduction e
2 Funclional Areas . . . eeieecnaaae
2.1 Inftialization i i
2.2 String and Character Manipulationl
2.3 File Name Manipulation.. i
24 Prompting ...
25 Error Text Retreival (... i iiiiineernan.
2.6 Workshop SUPPOIt ... o i iieieiiieeeiaaaeaaas
A S a1 4.7 ¢-3 L4 -~ N
3 Examples . ceecmmeameacceamaaaaenna-
) 4 Intexface

The StdUnit Unit

1 Introduction

StdUnit is the "Standard Unit," an intrinsic unit that provides a number of
standard functions. It contains functions dealing with:

= Character and string manipulartion.
= File name manipulstion.

= Prompting.

= Errar messages.

= Special Workshop features.

= Conversions.

Workshop tools should use the unit wherever possible, especially for

prompting and Opersating System error reporting, to make the Warkshop
interface consistent.

Note: All names in StdUnit begin with the letters SU. This avoids name
conflicts when incorporating the unit into your code and identifies where
things come from.

2 Functional Areas

21 Initialization

StdUnit needs to be initialized before it can be used. Using the unit without
initializing it will often result in an address or bus error.

2.2 String and Character Manipulation
StdUnit provides a standard string type, SUStr; a type for sets of characters;
definitions for several standard characters (such es CR and BS); and

procedures for case conversion, trimming blanks, and appending strings and
characters.

23 File Name Manipulation
File name functions let you determine if a pathname is a volume or device
name only; add extensions (such as .TEXT) to the file names (the procedure
knows the conventions about when extensions should and should not be
added); splitting a pathname into its three basic components--the device,
volurne, or catalog component, the file name component, and the extension
component; putting the components back together into a file name; and

modifying a file name given optional defaults for missing volume, file or
extension components.

Note: Several of the procedures return overflow flags for identifying when a
file name component has exceeded its chearacter limit. You may choose to

1-1

Lisa Systermn Software Sandard Linit

ignore the overflow condition, particularly if you think it likely to occur only
in perverse circumstances.

Note: The string parameters to these procedures are typed differently,
sometimes SUStr's, or VAR SUStr's, or SUStrP's (pointers to SUStr's). This is
to avoid problems with Pascal string typing when using the procedures with
strings that are not SUStr's (e.g., PathName's), and to take into account the
cases in which the parameters are likely to be string constants.

24 Prompting
StdUnit provides a number of procedures to get characters, strings, file
names, integers, yes/no responses, etc., from the console, providing for
default values where appropriate.

Most of the prompting procedwres return a PrompState indiceting whether an
escape [CLEAR] was typed, whether the default was taken, or whether there
was a request for options with 2. The states returned are given for each
procedure. You can ignore the prompt states you are not interested in. For
example, if you don't want to treat ? as an option request, you can ignore
the SUOptions state and not treat the ? returned as a special character.

25 Error Text Retrieval
StdUnit provides a rmechanism to retrieve single-line error messages frorn
specially formatted error files. Error messages can be looked up by number
in one or more error files.

You can use the OS error file OSErrs ERR to return a real message when an
OS error occurs (see Example 2, below). Note that OS errars are also
returned via Pascal's [ORESULT.

The ErrTool program lets you make your own compacted message files.
Using this error mechanism, you can add and modify messages without
recompiling your program. ErrTool is described in the Warkstop Leer's
Guide Chapter 11, The Utilities.

A call to retrieve a rnessage opens the errar file, searches the directory for
the error nurnber, finds location of the message, and returns the text.

A program can use StdUnit to access more than one error file
simultaneously. For example, your program can access different files for OS
error messages and your own messages.

26 Workshop
Special Workshop functicns let vou:

= Stop the execution of an EXEC file in progress.

= Find out the name of the boot and current prefix volumes (SysYols).

= Use a super-RESET that will try to open a file first on the prefix
volume, then on the boot volume, then on the current process volume.

1-2

Lisa System Software

Sandard Lnit

2.7 Corversions

Conversion procedures let you convert from integers and longints to strings,
and from strings to integers and longints.

3 Examples

Exarnple 1

Assume we are going to prompt for an output file name (OQutFName) and that
we already have the input file name (INFName). We will use SUSplitFN to
split the input file name into its various components. Then we will prompt
for the output file name (with SUGetFN) using the volume and file name
components of the input file name as defaults but with a .ERR extension.
We then do a CASE on the prompt state (PState) returned by SUGetFN. The
will terminate if the file specification is an escape [CLEAR]; say that no
option are available if ? is typed as an option request; prornpt again if no
file is specified, since we want to require an output file; and fall through if
the defeult is accepted or some other file is specified. Note that we only

have to check for the prompt states we are interested in for special
handling.

9999.
WRITE ('Neme of Exrrar Output File ');
SUSplitFN (@InFNeme, @YolN, BFN, GExt);
SUGetFN (@0utFNeme, PState, VolN, FN, '_ERR');
CASE PState OF
SlEscape: EXIT (ExrrFileP); {exit from program}
SUDptions: BEGIN
WRITELN ('No options are available. ');

4

GOTO 9999;
END;
S\iNone: GOTD 9999;
END; {CASE}
1-3

Lisa S\ystem Software Sandard Linit

Example 2

Suppose we have just made a Pascal 1/0 call and want to report an error
(along with the OS message text) if we receive a nonzero IORESULT. Note
that we copy IORESULT into our 10Status variable so that the subsequent
WRITELN will not reset the value of IORESUILT before we get a chance to
use it. (EMsg should be a SUStr.)

IF IORESILT <> O THEN
BEGIN
I0Status = IORESIAT;
WRITELN ('Exrrar opening input file.');
SUETIText ('OsErrs.ERR’, I10Status, @EMsg);
WRITELN (EMsg);
END;

Lisa S)ystem Sortware Sanderd Linit

4 Inteaface

SU:Stdunit
Copyright 1983, 1984, Apple Computer, Inc.

This unit provides a number of standasrd type definitions and a collection
of procedures which perform a variety of common functions. The areas
tcovered are:

(1) String and Character manipulation

(2) File Name Manipulation

(3) Prompting

(4) Retrieval of messages from disk
{ {5; Development System Support

6) Conversions

Fred Forsman 4-25-84

et N e g g gt g N S g g’ S gt gt

{
{$SETC ForOS1lorHigher := TRUE)

$R-} { make it fast, no range checking }
$S SuLib)

UNIT StdUnit;
INTRINSIC;

INTERF ACE

USES
$U 1ib0S/SysCall.obj } SysCall, { for definition of PathNeme, etc. }
$U libPL/PasLibCall.obj } PasLibCall,
{$U 1libPL/PPasLibC.obj PPasLibC;

CONST
SIMaxStrLeng = 255;
SUNullStr = "''
SUSpace ="',
SUOrdCR = 13;
SUMaxPNLeng = 66; { max length of path name }
SUMaxVNLeng = 33; max length of volume name, includes leading '-‘ }
SUMaxFNLeng = 32; 1 maximum length of file name }
SUVolSuffix = '-'; suffix or end of device or volume name }
TYPE
SUSetOfChar = SET OF CHAR;
SUStIP = "“SUStr;

1-5

Lisa System Software Stendsrd Unit

SUStrP = “SUStr;

SuSstr = STRING[255];

SUVolName = STRING [SUMaxVNLeng];

SUFile = FILE;

SUFileP = “SUFile;

PromptState = (SUDefault, { the default (if any) was chosen) }
SUEscape, { the "Clear" key was pressed }
SiNone, { nothing specified in response to prompt }
SU0ptions, { "?" wes entered—-ie, an option query }
SUvalid, { valid reponse }
?UInvalid { invalid repnnse-—eg, non-number to SUGetInt}

ExrTextRet = (SUOK, { successful }
SUBadEFOpen, { could not open error file }
SUBadEfFRead, { error reading error file }
SUErrNNotFound { error number not found }

ConvNState = (SUvalidN, { valid number }
SUNON, { no number —— nothing specified }
SUBadN, { invalid number }
SINOverFlow { overflow —-— number too big }

VAR

SUO0sBootY : SUVolNaie; The volume the 0S was booted from }

{
SUMyProcY : SUYolName; { The volume MyProcess was started from }
SUBell, SUBackSpace, SUCY, SUTab, SUEsc,

SUDle, SUNul : CHAR; { predefined ch vars } {ff 1/23/84}
SUNu11S : SUStr; { predefined str var }
SiKeyBoard : INTERACTIYE; { non-echoing console, used by SUGetCh }
{Ff 2/29/84)

{============================== INIT aND DONE ===============================]

PROCEDURE SUInit;
{ Should be called before using rest of unit. On the 05 this opens
"-KeyBoard". It also initislizes the standard character variables. }

PROCEDURE StiDone;

{ Can be called when done using unit (although this is not strictly
necessary. On the 0S this closes "-KeyBoard". }

{============================ STRINGS AND CHARS =============================}
FUNCTION SUUpCh (Ch : CHAR) : CHAR;

{ SWpCh returns the ch that was passed, uppercased if it was lower
case. }

1-6

3

i1

%,

Lisa S\vslem Software Sandarad Linit

FUNCTION SULowCh (Ch : CHAR) : CHAR;
{ SULowCh returns the ch that was passed, lowercased if it was upper
case. }

PROCEDURE SWUpStr (S: SUStIP);
{ SWpStr uppercases the string that is passed. }

PROCEDURE SULowStr (S: SUStrP);
{ SULowStr lowercases the string that is passed. }

FUNCTION SUEQStr (S1: SUStrP; S2: SUStrP) : BOOLEAN; {ff 2/29/84)
{ SUEqStr returns TRUE if the two strings are equal (ignoring case). }

FUNCTION SUEQ2Str (S1: SUStrP; S2: SUStr) : BOOLEMN; {ee 3/7/84)
{ SUEQ2Str returns TRUE if the two strings are equal (ignoring case).
This variant of SUEQStr allows the second perasmeter to be a constant.}

PROCEDURE SiUTrimlLeading (S: SUStrP); {ff 2/29/84)
{ SUTrimLeading removes the leading blanks and tabs in the passed
string. }
PROCEDURE SUTrimTrailing (S: SUStrP); {ff 2/29/84}
{ SUTrimTrailing removes the trailing blanks and tabs in the passed
string. }

PROCEDURE SUTrimBlanks (S: SUStrP);
{ SUTrimBlanks removes leading and trailing blanks and tabs in the
passed string. }

PROCEDURE SUAddCh (S: SUStrP; Ch : CHAR; MexStrLeng : INTEGER;
VAR OverfFlow : BOOLEAN);
{ SURddCh appends the passed ch to the end of the passed string.
OverFlow is set to TRUE if adding the ch will cause the string to be
longer than MaxStrleng. }

PROCEDURE SUConcat (Sl: SUStxP; S2: S_Btl'p);
{ SUConcat appends the second passed str to the end of the first passed
string. It is assumed that the target string is of sufficient size to
accomodate the new value. }

PROCEDURE SURddStr (S1: SUStrP; S2: SUStrP; MaxStrlLeng : INTEGER;
VAR OverFlow : BOOLEAN);
{ SUAddStr appends the second passed str to the end of the first passed
string. OverFlow is set to TRUE if adding the second string will
cause the resulting string to be longer than MaxStrieng. }

1-7

Lisa System Software Standarg Linit

PROCEDURE. SUSetStr (Dest: SUStrP; Src: SUStrP);
{ SuUSetStr sets the terget string (Dest) to the given value (Src) by
copying the value onto the target. It is assumed that the target
string is of sufficient size to accomodate the new value. }

PROCEDURE SUCopyStr (Dest: SUStrP; Src: SUStzP; Stext, Count: INTEGER);

{ SUCopyStr sets the destination string (Dest) to the specified
substring of the source string (Src) by copying the appropriate part
of the source to the destination. It is assumed that the destination
string is of sufficient size to accomodate the new value, and that the
Stert and Count values are reasonable. }

FUNCTION SUIsVolName (FN: SUStrP): BOOLEAN;
{ SUIsYolNeme returns a boolean indicating whether the passed file name,
FN, is a volume or device name (i.e., not a full file name) }

PROCEDURE SUVolPart (PathN: SUStrP; VolN: SUStrP); {ff 2/29/84}
{ SUYolPart extracts the volume neme part of a pathname (or catalog
specification). }

PROCEDURE SURddExtension (FN: SUStrP; DefExt: SUStrT;
MaxStrLeng: INTEGER; YAR OverFlow: BOOLEAN);

{ SUAddExtension will add the default extension, DefExt, to the end of
the file neme, S, if the extension is not already present. If the
file neme ends with a dot, the dot will be removed and no extension
will be added. If the pathname is a device or volume name only no
extension will be added. Overflow is set true if adding the extension
will overflow the string (determined using MexStrLeng). }

PROCEDURE SUSplitFN (PathN: SUStrP; CatN: SUStrP; FN: SUStrP;
Ext: SUStIP);
{ SUSplitFN splits a PathNeme into its catalog, file name, and file
name extension components. }

PROCEDURE StUMakeFN (PathN: SUStrP; CatN: SUStrP; FN: SUStrP; Ext: SUStr;
YAR OverFlow: BOOLEAN);
{ SUMakeFN constructs a PathName from its catalog, file name, and
file name extension components. The OS CatN's are assumed to have a
leading "-". Ovexflow is set if any of the file name components are
too long. This procedure will not create a file name over SUMaxPNLeng
chars long.}

PROCEDURE SUChKFN (FN: SUStrP; VAR PState: PromptState; DefVol: SUStr;

DefFN: SUStr; DefExt: SUStI‘);
{ SUChkFN checks a file name specification, putting result type in

1-8

Lisa System Softweare Standard Linit

PState. If no file name is given, then DefFN is used. If FN does not
have DefExt in it, then the extension is appended. If no volume is
specifed then the DefYol is used. PState is set sppropriately:

PState = SUOptions if '?' is hit to ask for options

PState = SWDefault if nothing specified when a default is present

PState = SUNone if default overriden with ‘\' or if CR with no
default

PState = SUInvalid if one or more of the file name components
averflowed

PState = Suvalid otherwise }

{:===:::========================= PROMPTING :::::==:=========================}

PROCEDURE SUGetCh (VAR Ch: CHAR);
{ SUGetCh reads a character from the consocle without echoing it and }
{ without interpreting <cr»> as <sp>, as Read (Ch) does. }

PROCEDURE SUGetLine (S: SUStrP; VAR PState: PromptState];
{ SUGetLine reads a line from the console a character at a tlme

performing its own line editing. PState is set appropriately:
PState = SUEscape if <clear) was hit.

PState = SU¥alid otherwise. }

PROCEDURE SUGetStr (S: SUStrP; YAR PState: PromptState; Defval: SUStr);
{ SUGetStr reads a string from the console; it is like SUGetLine with
the addition of defaults. PState is set appropriately:

PState = SUDefault if <cr> only was hit; S is set to DefVal.
PState = SUEscape if <clear> was the first character hit.
PState = SUvalid otherwise. }

PROCEDURE SUGetFN (FN: SUStrP; VAR PState: PromptState; DefVol: SUStr;
DefFN: SUStr; DefExt: SUStr);
{ SUGetFN reads a file name from the console, with result type in

PState. SUGetFN will print out any defaults in brackets [such as
[FOO] [.TEXT]) before prompting for the file name. If no file name
is given, then DefFN is used. If FN does not have DefExt in it,
then the extension is sppended. If no volume is specifed then the
Defvol is used. PState is set appropriately:

PState = SUEscape if <cleer> hit

PState = SUOptions if '?' is hit to ask for options

PState = SUDefault 1if nothing specified when a default is present

PState = SUNone if default overriden with '\' or if CR with no
default

PState = SUInvelid if one or more of the file name components
ogvexrflowed

PState = Suvalid otherwise }

1-9

Lisa System Sollware Standard Linit

PROCEDURE SUGetInt (VAR I: INTEGER; VAR PState: PromptState;
Defval: INTEGER]);
{ sUGetInt reads an INTEGER from the console, with PState set as in
SUGetStr, except that PState = SUInvalid when a non-numexric is input.}

PROCEDURE SWaeitEscOrSp (VAR PState: PromptState);

{ SMaitEscOrSp prints a message 'Type (spsce) to continue, <(clear) to
exit.' & waits for the user to hit a (sp? or <(clear>, setting PState
appropriately:

PState = SUEscape if <(clear) was hit
PState = SUvalid if <sp> was hit }

PROCEDURE StMaitSp:

{ SUwWaitSp prints a message ('Type <space» to continue.') and waits for
the user to hit a <sp>. }

PROCEDURE SUGetChInSet (VAR Ch: CHRR; Chars: SUSetOfChar);
{ SuGetChInSet reads characters from the conscle (without echoing) until
a character from the given set is typed. The accepted character is
echoed}and an end-of-line is written. The character matching ignores
case.

FUNCTION SUGetYesNo : BOOLERN;
{ SUGetYesNo prints the message "(Y or N)" and reads characters from the
console (without echoing) until a 'y', 'Y', 'n', or 'N' is typed. If
a :y' is typed "Yes" will be printed followed by an end-of-line; if

n' is typed "No" will be printed. The appropriate boolean value is
returned. }

FUNCTION SUGetBool (Default: BOOLEAN): BOOLEAN;

{ SUGetBool prints the message "(Y or N) [<default>]" and reads
characters from the console (without echoing) until a 'y', 'Y', 'n'
‘N', space or return is typed. If a 'y' is typed "Yes" will be
printed in the place of the default. If 'n’ is typed "No" will be
printed. If a space or return is tyoed the default is used. The
appropriate boolean value is returned. }

4

zzzzczzasssss=========z=z=====z LRROR TEXT RETRIEVAL ===========================}

PROCEDURE SUGetErrText (ErrFN: SUStr; ErrN: INTEGER; ExrMsg: SUStrP;
VAR ErrRet: ErrTextRet);

{ SUGetErxrText retrieves error message text, given an error number and
and error file to look the error up in. The error file should have
been generated by the error file processor. SUGetErrText uses
SUSysReset to open the error file. }

PROCEDURE SUErrText (ErxFN: SUStr; ErxrN: INTEGER; ExrrMsg: SUStrP);

1-10

Lisa Systemn Software Sandardg Linit

{ SUErrText retrieves error message text, just as does SUGetErrText;

however, if the text is not obtainable due to a non-SUOk ErxRet value
from SUErrText, SUErrText will return the string

"Error message text not available." }
{============================ DEY. SYS. SUPPORT =============================}

PROCEDURE SUStopExec (VAR ExxNum: INTEGER);

{ Should be called to stop the current exec file if an error occurs in a
program running under an exec. Returns any error conditions
encountered in closing the exec file in the errnum var parsmeter.
Informs the shell that the exec file was terminated due to an error. }

PROCEDURE SUCloseExec (VAR ErxrNum: INTEGER); ({ff 3/7/84)
{ Should be called to stop the current exec file only if you want to do
so without informing the shell that the exec file was terminated due
to an exror. You should probably use SUStopExec unless you have a
good reason to use this alternate version. }

PROCEDURE SUInitSysYols;

{ Initializes "SUMyProcy" and "SUOsBootY", the name of the volume on
which my process was created and the name of the volume which the 0S
was booted off of. A message may be printed if there is trouble
getting this information from the 0S. This can be called more than
once; it will only make the 0OS calls the first time.)}

PROCEDURE SUSysReset (F : SUFileP; FN : SUStr; VAR IOStatus : INTEGER);

{ SUSysReset is for opening system files, and will try the prefix, boot,
and current process volumes (in that order) when trying to access a
file. SUSysReset assumes that the file neme FN does not have a volume
name. SUSysReset may sometimes have to call SUInitSysVols. }

{========a===z=l================ CONVERSIONS =n=u:=======================z====}

PROCEDURE SUIntToStr (N : INTEGER; S : SUStIP);

{ SUIntToStr converts an integer into its string form; The string which
S points to should be of length >= 6 (5 digits + sign). }

PROCEDURE SULIntToStr (N : LONGINT; S : SUStxP);
{ SULINntToStr converts an longint into its string farm; The string
which S points to should be of length »>= 11 (10 digits + sign).)

PROCEDURE SUStrToInt (NS : SUStrP; VAR N . INTEGER;
YAR CState : ConvNState);
{ SUStxrToInt converts a string to an INTEGER. Leading and trailing
blanks and tabs are permitted. A leading sign ['-', '+'] is

s,

permitted. The CState variable (conversion state) will be set to

1-11

Liss Systemnm Softwere Standard Linit

indicate if the number was valid, if no number was present, if an
invalid number was specified, or if the number overflowed. }

PROCEDURE SUStrToLInt (NS : SUStrP; VAR N : LONGINT;
VAR CState : ConuNState);

{ SUStrToLInt converts a string to a LONGINT. It behaves just like
SUStrTolnt otherwise. }

1-12

The ProgComm Unit

Contents

...

2.2 Set-Next-Run and the Return String

2.3 The Communications Bufferot avaeieneas
2.4

2.5

Reading from and Writing to the Communications Buffer
Internal Workshop Function

..

...............

...

...

The ProgComm Unit

1 Introduction

ProgComm is an intrinsic unit in SULIb that allows programs to communicate
with the shell and with other programs. Three basic mechanisms are
provided:

= Set-Next-Run Command. A program can tell the Workshop shell what
to run next. The specified program will be run after the current
program is done, taking precedence over even an exec file in progress.

« The Frogram Return String. The return string can be set by your
program and accessed from the exec processor (via the RETSTR
function). This allows exec scripts to be written that meke choices
based on program results.

« The Communication Buffer. The communication buffer is a 1K byte
buffer global to the Workshop for communication between programs. A
set of primitives supporting character- and line-oriented I/0 to and
from the buffer is provided.

These mechanisms can be used in conjunction with each other. For example,
a program can write a series of invocation arguments to the communication
buffer and then tell the shell which program to run next. This second
program can check the communication buffer to find its arguments.
Programs can be written so that, by convention, they first check the
communication buffer for their arguments, and then prompt for input from
the console only if the arguments ere not found in the buffer.

2 ProgComin Rowtines
This section describes the ProgComm unit interface.
2.1 Initializetion ‘
The PCInit procedure initializes the ProgComm unit so that a program may
use it
Procedure PClnit;
PCInit should be called before using the ProgComm unit. The program's
return string (RETSTR in the exec language) is initialized to the null string.
22 Set-Next-Run and the Return String
The PCSetRunCmd and PCSetRet3tr procedures let a program set what
program will run next and pass back a return string to the exec processor.

The SUStr type comes from the Standard Unit (StdUnit in SULib), which
provides a number of string-manipulation routines.

Liss System Soflware Froglormrn

Procedure PCSetRunCmd (RC : SUStr);

PCSetRunCmd lets & program tell the shell whaet progrem or exec file to run
after the current program terminates, allowing program chaining. RC, the
run cormmand passed to PCSetRunCmd, should be a string with the same
progrem pathname or exec file invocation you would give to the Workshop
Run command. The run command set in this way will take precedence over
any keyboard type-shead and over any pending exec file commands.

If you want to use PCSetRunCmd to run a Workshop tool normally irvoked
from the Workshop menu line, set RC to the two-character string consisting
of an escape (CHR{27)) and the appropriate menu command letter. This is
nhecessary because typing £to invoke the Editor is not always the same as
saying Run Editor.0BJ. The Run command looks far Editor.OBJ on the three
prefix volumes, while the E menu command looks on the Workshop boot
volume first and then on the prefix volumes. {(Note that only some items in
the Workshop menu are actually separate tools that can be Run.)

Starting to run an exec file while you are already running another exec file
causes the first one to be terminated so the second can run. This means
that if exec file A runs program P, and P calls PCSetRunCmd to run exec
file B, then, when program P terminates, exec file A will also be terminated
so exec file B can run. Exec file A will not be resumed when exec file B
has completed.

Procedure PCSetRetStr (RS - SUStr);

PCSetRetStr lets a program set a return string that can be accessed through
the exec processor's RETSTR function. This lets exec files meke choices
based on information passed back to the shell by cooperating programs. How
the return string is used and interpreted is up to you, and depends on what
sort of information you want to pass back to the exec processor.

23 The Communication Buffer
The following procedures and functions operate on the communication buffer,
a 1K hyte buffer global to the Workshop shell {that is, it stays around
between program irvocations). The buffer can hold any type of information;
a standard set of functions is provided for Pagcallike character- or
line-oriented access to the buffer.

Following are some constant, type, and variable declarations from the
ProgComm interface which relate to the communication buffer.

CONST
{ communication buffer content types }
PCNone = -1; { nothing in buffer }
PCAny = 0 { for PCReset to match any content type)
PCText = 1; { text, as supported by PCGets & PCPuts }
PCBufrMax = 1023; { max huffer index, ie, bufr is 1K bytes }

1-2

Lisa S\ystern Soflware FrogCorrmn
TYPE
PCBufxP = “PCBufr; { pointer to bufr }
PCBufx = PACKED ARRAY [0._PCBufrMax] OF CHAR;
VAR

PCBufrPtr : PCBufxP; { points to bufr after successful open }

The communication buffer is given a {ype when it is opened for writing with
PCReWrite. This type will be used to determine whether a potential reader
trying to open the buffer with PCReset will be successful. The intent is to
prevent reading of the buffer when the contents are not of the type expected
by the reader. Three predefined constants are provided for buffer-typing:
PCNone means that the buffer has no contents; PCText means that the buffer
contains standard text with CR line delimiters; and PCAny matches any type,
allowing a reader to override the typing mechanism. Other buffer content
types (such as mouse events) may be defined by users, choosing a number to
identify the new type that doesn't conflict with the predefined types. The
only restriction is that communicating programs must have compatible
conventions. To use the buffer for something other than text, use PCBufrPtr

to acce)ss the buffer (using whatever means of interpretation of the buffer is
desired).

The buffer also hes an access ksy, which functions in much the same way as
the content type (i.e., writers set it and readers must match it to gain access
to the buffer). The intent of the access key is to prevent programs from
reading the buffer when they are not the intended recipient. The access key
should be established by agreement between communicating programs. If a
buffer writer does not care shout preventing unintended access to the buffer,
the null string can be used for the access key. Note that the access key is
case sensitive.

Following sre the routines for opening and closing the communication buffer.

Procedure PCReWrite (WriteType: INTEGER; Key- SUStr);

PCReWrite opens the communication buffer for writing. The content type
and access key are set. PCBufrPtr is set to point to start of the
communication buffer. A PCReWrite will override any previous use of the
buffer; that is, it will flush any previous buffer contents. WriteType should
be an integer identifying the type of data yvou plan to write to the buffer. If
you are planning to use the text-oriented primitives provided, WriteType
should be PCText; otherwise, WriteType should be some integer established
¢ agreement between the communicating programs. Key should be a string
also established by agreement between the communicating programs. A
useful form of key is one that identifies the intended recipient, so that
contents left in the buffer are not read inadvertently by programs for which
they were not intended.

1-3

Lisa S)ysterm Software Froglormm

Function PCReset (ReadType: INTEGER; Key: SUStr): BOOLEAN;

PCReset cpens the buffer for reading. Tne boolean result will indicate
whether the open was successful. The open will fail if ReadType does not
match the type set by the last buffer writer or if Key does not match the
key set by the lest writer.

Function PCClose (KillBufr: BOOLEAN; Key: SUStr): BOOLEAN;

PCClose will close (or empty) the communication buffer. If KillBufr is true,
the buffer will be emptied. In genersal, the buffer can be resd more than
once (by multiple readers) if desired. If a reader is finiched with the buffer
and knows that no one else should read the buffer, PCClose should be called
with KillBufr set to true. The call to PCClose will fail if the access key
does not match. PCClose may be used to flush buffers that were written by
someone else, as long as you know the access key. PCCleose may be called
without calling PCReset or PCReWwrite first.

24 Reading from and Writing to the Communication Buffer
The following functions provide a text-coriented buffer facility with Pascallike
character- and line-oriented reads and writes.

Function PCPWtCh (Ch: CHAR): BOOLEAN; ‘
PCPutCh puts a character into the buffer. The boolean result indicates
whether the operation wsas successful. It fails if the buffer is full or if the
buffer wes never opened successfully for writing. Note that PCPutCh(CR) is
equivalent to PCPutLine(").

Function PCGetCh (VAR Ch: CHAR): BOOLEAN,

PCGetCh gets a character from the buffer. The boolean result indicates
whether the operation was successful. It fails if the buffer is empty or if
the buffer was never opened successfully for reading.

Function PCPutLine (L: SUStr): BOOLEAN;

PCPutLine puts a line into the buffer. A CR is put in the buffer following
the string passed to PCPutLine. The boolean result indicates whether the

operation was successful. It fails if the buffer is full or if the buffer was
never opened successfully for writing.

Function PCGetLine (VAR L: SUStr): BOOLEAN;

PCGetLine gets a line from the buffer, where a line is the text from the
current buffer pointer to the next CR or the end of file (whichever comes
first). The boolean result indicates whether the operation was successful. It
fails if the buffer is empty or if the buffer was never opened successfully
for reading.

Lisa System Soflwere FrogCormm

25 Internal Workshop Function

You will notice the following function in the ProgComm interface; it is used
for special-purpose communication between the Workshop shell and various
Workshop tools.

Function PCShellCmd (Cmd: INTEGER; P- SUStrP): BOOLEAN,
For internal use by Warkshop tools only. Don't use this function.

1-5

Lisg System Softwere Froglomm

3 Interface
INTERFACE
USES

{$U StdUnit } Stdunit,
{$U ShellComm } ShellComm;

CONST
{ communication buffer content types for use with PCReset and PCRelWrite }
PCNone = -1 { nothing in buffer }
PCAny = Q; { for PCReset to match any buffer content type }
PCText = 1; { text, as supparted by P{Get's and PCPut's below }
PCBufrMax = 1023; { max Bufr index, ie, comm bufr is 1K bytes }

{ command constants for PCShellCmd }
PC_SetReallyStop = 1; { determines if SUStopExec really stops exec

files } {ff 3/7/84)
PC_GetReallyStop

PC_SetUnSavedEdits

2;
6960; { tells if unsaved edits are left in the

editor } {ff 3/12/84}
PC_GetUnSavedEdits = 8751;
TYPE
PCBufrP = “PCBufr; { ptr to communication buffer }
PCBufr = PARCKED ARRAY [0..PCBufrMax] OF CHAR;
VAR
PCBufrPtr : PCBufrP; { will paint to PCBufr after successful PCReset or

PCReWrite }

PROCEDURE. PCInit;

{ PCInit should be called before using the ProgComm unit. One effect of
note is that the program's return string (RetStr) is initialized to the null
string. }

PROCEDURE PCSetRunCmd (RC : SUStr);

{ PCSetRunCmd enables a program to tell the shell what program (or exec
file)} to run after the current progrem terminates, which allows program
“chaining". The run command set in this way will take precedence over any
keyboard type-ahead and over any pending exec file commands. }

PROCEDURE PCSetRetStr (RS : SUStr);

{ PCSetRetStr allows a program to set a return string which may be
accessed via the Exec Processor's RETSTR funciton. This allows exec files to
make choites based on information passed back to the shell by cooperating

1-6

Lisa S)stemn Software FrogCornm

programs. How the return string should be used and interpreted is up to you,
and will depend on what sort of information you want to pass back tp the exec
processor. (But in order to be a good citizen it is probably best to follow
whatever system—wide conventions emerge and prevail.) }

{ The following procedures and function operate on the COMMUNICATION BUFFER,
which 1s a 1K byte buffer which is global to the Workshop shell. The buffer
can hold essentially any type of information, but a standard set of functions
is provided for Pascal-like character or line-oriented access to the buffer.

The communication buffer is given a TYPE when it is opened for writing
with PCReWrite. This type will be used to determine whether a potential
reader trying to open the buffer with PCReset will be successful. The intent
is to prevent reading of the buffer when the contents are not of the type
expected by the reader. Three predefined constants are provided for buffer
typing (PCNone which means the buffer has no contents; PCText which means that
it has standard text with CR line delimiters; and PCAny which will match any
type, allowing & reader to override the typing mechanism). Other buffer
content types (such a mouse events) may be defined by users, choosing some
number to identify the new type which does not conflict with the predefined
types. We make no attempt here to provide a complete set of predefined types;
the issue is simply one of having compatible conventions (agreement) between
communicating programs. To use the buffer for something other than text, the
variable PCBufrPtr may be used to access the buffer (using whatever means of
interpretation is desired).

The buffer also has an ACCESS KEY, which functions in very much the
seme way as the content type (ie, writers set it and readers must match it to
gain sccess to the buffer). The intent of the access key is to prevent
progreams from reading the buffer when they are not the intended recipient. The
access key, again, is something that should be established by agreement
between the communicating progrems. If a buffer writer does not cere shout
preventing unintended access to the buffer, the null string can be used for
the access key. Note that the access key is case sensitive. }

PROCEDURE PCReWrite (WriteType : INTEGER; Key : SUStr);

{ PCRelirite opens the buffer for writing. The contents type and access

key are set. PCBufrPtr is set to point to the communication buffer. }
FUNCTION PCReset (ReadType : INTEGER; Key : SUStr): BOOLEAN:

{ PCReset opens the buffer for reading. The boolean result will indicate
whether the open succeeded. The open will fail if contents type and access
key do not match the type and key set by the last buffer writer.}

FUNCTION PCClose (KillBufr : BODLEAN; Key : SUStr): BOOLEAN; {ff 2/2/84}

{ PCClose will close the buffer. If KillBufr is true the buffer will be
emptied. In general, the buffer can be read more than once (by multiple
Teaders) if desired. If a reader is finished with the buffer and knows that
no one else should read the buffer, PCClose should be called with KillBufr set
to true. The call to PCClose will fail if the access key does not match. }

Lisa System Soflware Froglormm

FUNCTION PCPutCh (Ch : CHAR) : BOOLERN;

{ PCPutCh will put a character into the buffer. The boolean result will
indicate whether the operation waes successful. It will fail if the buffer is
full or if the buffer was never opened successfully for writing. }

FUNCTION PCGetCh (VAR Ch : CHAR) : BOOLEMN;

{ PCGetCh will get a character from the buffer. The boolean result will
indicate whether the operation was successful. It will fail if there is
nothing more to read or if the buffer was never opened successfully for
reading. }

FUNCTION PCPutLine (L : SUStI') : BOOLEAN;

{ PCPutLine will put a string into the buffer, followed by a CR. The
boolean result will indicate whether the operation was successful. It will
fail if the buffer is full or if the buffer was never opened successfully for
writing. }

FUNCTION PCGetlLine (VAR L : SUStr) : BOOLEAN;

{ PCGetlLine will get & line from the buffer. The boolean result will
indicate whether the operation was successful. It will fail if there is
nothing more to read or if the buffer was never opened successfully for
reading. }

FUNCTION PCShellCmd (Cmd : INTEGER; P : SUStrP): BOOLERAN; {ff 3/7/84}

1-8

QuickPort Programmer’s Guide

Contents
;7 /‘Cﬂ'ZCC {
Chapter 1
Introduction
1.1 What i1s8 QUICKPOIY ? . i reeireae 1-1
1.2 Types of QuickPort Applicationscc..ooo.... 1-1 ,_.2_
1.3 Additional Featuresc.cvvviviiiiieii i iiiiiieeeaenas 1-1
Chapter 2
Using QuickPort
2.1 QuickPort Program Requirements........................... 2-1
2.2 Choices for QuickPort Applicationsccovvveenine.... 2-1 5
2.3 The QuickPort Execution Environment 2-2
24 The QuickPort User Interfaceoociiio.... 2-3
Chapter 3
Advanced QuickPort Features
31 Introduction to the Features 3-1
32 Text Input and the Input Panelc....... 3-1
33 Text Qutput and the Text Panel 3-1
34 Graphic Qutput, the Grephic Panel, and Mouse Input 3-2
3.5 Required to Change Your Programc.ceeeeemeeen. 3-4
3.6 Procedures for All Applications...............c.ccoiiiae... 3-4 02}{
3.7 Procedures for Using the Text Panel....................... 3-7
z8 Procedures for Using the Graphic Panel_. 3-10
39 Printer SUPROIt .. e teaaeaes 3-12
3.10 The Terminal Emuletor 3-13
3.11 Procedures for the QuickPort Hardweare Interface....... 3-14
Chapter
Bringing You Application to the Lisa Desktop
4.1 Adding the USES List Elementscoiiiiiiiirinan.... 4-1
4.2 Systemn Configuration, 4-2
43 Generating Your Tool.....ouvenmiir et 4-3 Cﬂ
4.4 Installing Your Tool ..o 4-4
45 The Icon Editor i 4-5
4.6 Shipping Your Applicationl 4-5
Appendixes 2
A The Standard QuickPort Menus.............cccoveeeinnnn... A-1 7
B Writing Your Own Terminal Emulatorcovee. .. B-1 L{v
u—/

Preface

About This Manual
This manual describes QuickPort, a set of private and intrinsic units that
facilitate porting Pascal programs to the Lisa desktop. This manusal is
written for experienced Lisa Pascal programmers who are already familiar
with the Lisa Workshop and the Lisa Operating System and who understand
the concepts and conventions used by the Lisa User Interface. In addition,
those who intend to write terminal emulators are assumed to know Clescal.

For material not covered in this menual, refer to one of the listed documents
for additional information:

= Operating System Reference Manual for the Lisa.
= Warkshop Lker's Guide for the Lisa.

o Lisa Internais Manual.

» Lisa L&er Interface Guidelines.

= An Introduction to Clascal.

Chapter 1
Introduction
1.1 What is QuickPort? .. e cman—a- 1-1
12 Types of QuickPort Applications . __ 1-1

13 Additional Features

Introduction

1.1 Wwhat is QuickPort?
QuickPort is a set of private and intrinsic units that provide a fast and
reliable way to run Pascal programs in the Lisa Office System. By using
QuickPort, you can make a few changes in a typical Pascal program, and it
will run on the Lisa desktop. Applications that use QuickPort are integrated
so that you can cut and paste to and from other Lisa applications.
QuickPort also provides standard menus for all applications that use it.

12 Types of QuickPort Applications
Before you can use QuickPart to port your application to the Desktop, your
program must

= Run in the Lisa Workshop.
« Use only readlns and writelns for text input and output.

A Pascal program that runs in the Lisa Workshop and uses readlns and
writelns for text input and output is celled a "vanilla" Pascal program.
Yanilla Pascal programs can be ported to the desktop with very few changes.

You can also use QuickDraw calls for graphics, use the mouse to get input,
and use a subset of the Lisa Hardware Interface. However, the addition of a
graphic panel and use of the hardware interface involves more coding to
acheive the port than a vanilla Pascal program.

13 Additional Featwres
QuickPort also provides a set of additonal procedures for configuring the
panels, text output, graphic output, and for applications that use the hardware

interface. Using these features, you can incresse the power of your
application. The additional QuickPort festures are described in Chapter 3.

i1-1

21
22
23

24

Chapter 2
Using QuickPort
QuickPort Program Requirememtscoooo oo 2-1
Choices for QuickPort Applications - 2-1
The QuickPoxrt Execution Erwironment __ 2-2
2.3.1 Using Operating System Callsoiivaiiiiat. 2-2
2311 Yield CPU .. i 2-2
2.3.12 MaKe pPrOCESS i.iiiiiiiiiiiie e, 2-2
2.3.1.3 LDSNs (Logical Data Segment Numbers) 2-2
2314 Terminate Process, Kill_Process 2-3
2.3.15 Terminating the Program Abnormally 2-3
The QuickPart User Interface iiannos 2-3

Using QuickPort

2.1 QuickPart Program Requirements
Yanilla Pascal programs need nothing but the addition of one or two list
elements to the USEs statement in its main program. @A vanilla Pascal
program runs in the Lisa Workshop and uses only readlns and writelns for
input and output. You can use QuickDraw, but there are some minor changes
required. See Section 3.4.1.1, QuickDraw Requirements, in Chapter 3, for
more information. If you use the Lisa Hardware Interface, you must modify
your program and use the QuickPort Hardware Interface. The QuickPort
Hardwere Interface is a subset of the Lisa Hardware Interface; it is described

in Section 3.11, Procedures for the QuickPort Hardware Interface, in Chapter
3.

If your program is a wvanilla Pascal program, you can either enhance it using
the QuickPort features described in Chapter Three, or port it directly to the
Lisa Desktop. If you wish to port your program to the Lisa Desktop without
using any of the additionsl QuickPort features, make sure your program
works in the QuickPort execution environment described in Section 2.3, and
then turn to Chapter Four: Bringing Your Application to the Lisa DeskTop.

22 Choices for QuickPart Applications
You can produce several different types of applications using QuickPort:
« Applications that produce text output only.

» Applications that use QuickDraw to produce graphic and/or text output.

« Graphic applications that use the QuickPort Hardware Interface to get
mouse input in the graphic panel.

QuickPort provides three panels: the text panel, the input panel, and the
graphic panel. The text pansl saves all text output, unless the Don't Save
Buffer command is chosen from the Edit menu. Any application that
produces text output only gets a text panel automatically. The input panel
displays text that has not been read by the program. You can choose to
have the input panel or not; the default is no input panel. Any application
that produces graphic output only gets a graphic panel. Such programs can
use in addition, a text panel, and/or an input panel. The default is one
panel.

The text and graphic panels can both be scrolled vertically and horizontally.
The panels can be enlarged and shrunk to provide different views of the
output. Both panels can be split vertically and horizontally, allowing the
user to see different parts of the output at the same time.

QuickFort Frogrammer's Guide L&sing QuickFort

23 The QuickPart Execution Erwironment

One of the most important things to remember when using QuickPort is that
the Lisa Desktop is a multiprocessing intergrated environment and you can
affect the state of other applications running on the desktop if you don't
keep this in mind. Be perticularly careful about using functions in the
QuickPort Hardware Interface, because these functions change the state of
hardware, thus affecting all applications (including the desktop).

QuickPort preograms can be run in the background (inactive window) when
they are not waiting for input. When a program running in the background
needs input, it is suspended. Programs running in the background compete
with the active window for CPU time. Progrems with long CPU-bound loops
should use either Yield_CPU or OPYield CPU to yield the CPU to the
active window.

User actions such as pulling down the menus and clicking the mouse are
processed only when your program calls call screen 1/0 (WRITEs and READS,
etc). If you have a long CPU-bound loop, be sure to use either Yield CPU
or OPYield_CPU, so that your programn will be mare responsive to the user.
If yvou have a tight loop, there is no way for the user to break out of the
loop, unless the debugger is loaded and you can hit the NMI key to halt the
process. Be sure to put Yield_CPU, OPYield CPU, or PAbortFlag in any
tight loops. Note that you must call QPConfig to pass an ®-period to your
program if you need to call PAbortFlag. QPConfig is described in Section
3.6 of Chapter 3.

2.3.1 Using Operating System Calls

You can make any operating system calls, but remember that Lisa has a
multiprocessing environment. Whenever a document is opened, a process
may be created (tools that handle multiple documents create one process
that handles one ar more documents). If two documents are opened from the
same tool, you have two processes running separate instances of the same
program. This could result in inconsistent data if Write_Datas and
Read_Datas, or Rewrites and RESETs are performed on the same file. If
this is undesirable, you should add additional code to your application to
check whether the file can be opened by more than one process.

2311 Yield_CPU

Yield_CPU gives the CPU to any other ready process, but does not handle
any user actions, such as pulling down menus, and moving windows.
QuickPort provides an alternative procedure, QPYield_CPU, that sllows the
user to pull down menus and move the windows around.

2312 Make_process
If vou call make_process in a QuickPort application, the resulting processes
cannot do any screen input and output.

2313 LDSNs (Logical Data Segment Numbers)
Yau cannot use a logical data segment number lese than 5, or lerger than 11,
Note that LDSN 5 is, by default, used by the Pascal heap. If you use a

2-2

¢

CwickForl Frograrnmer's Guide L&ing QuickFort

Pascal heap larger than 128K bytes, LDSN 6 and up will be used for the
heap. You can use PLInitHeap to change the Pascal heap to a different
LDSN, but make sure you don't collide with the system LDSNs.

« LDSNs 1-4 -- QuickPort

» LDSN 5 -- Default Pascal heap

« LDSN 11 -- OPEN '-printer', RESET, or REWRITE '-printer’
» LDSNs 12-16 -~ Lisalibreries

2314 Terminate Process, Kill Process
QuickPort programs should not call Terminate Process or Kill_Process.
These calls will terminate the program, leaving the user with no chance to
do anything with the output. If you need to terminate program execution,
use halt or drop through to the end statement of your program.
122 PROGRAM TERMINATED*** will appear on the screen, and the user will
be able to save and put away, copy, or print.

2315 Terminating the Program Abnamally
TrantExceptionHandler is the standard QuickPort exception handler for
abnormal termination of a program. You can write your own terminate
exception handler, but you must call TrmntExceptionHandler immediately
in your exception handler. If this call is not made, the systern will hang
because QuickPort will not have a chance to clean up and transfer control to
the desktop manager.

24 The QuickPart User Interface
QuickPort provides a standard user interface for its applications that is, with
the exception of a few menu commands, the same as the standard Lisa user
interface. Manipulating windows and using the mouse follow the standard
Lisa user interface, as do opening and closing documents.

QuickPort provides some menu commands that are different from the
standard Lisa menu commands. These commands allow the user to control
program execution. A standard Lisa spplication continuously loops to get and
process events. A QuickPort program, however, may run from beginning to
end. When a QuickPart program reaches its end, it will not respond to input
from the keyboeard, and its window will remain open to allow the user to
view the output. At this stage, the QuickPort spplication is idle, waiting for
one of the following menu commands:

= Set Aside -- Places the document (without saving) in its icon on the
desktop. If the document is reopened, the application will still be idle.

= Save & Put Away -- Saves the document. The process is then
terminated. If this document is opened again, the program will not run

2-3

GuickForl Frogramimer's Guide L&ing QuickFort

immediately -- it is waiting for the Restart command. If the user
wants to browse through the document, it is not necessary to use the
Restart command. Instead, use Save & Put Away, or Set Aside.

= Restart -- Restarts program execution.

QuickPort spplications are started, from the desktop, by tearing off a
document from the stationery pad and opening the document.

The QuickPart menus are discussed in Appendix A.

Chapter 3
Advanced QuickPort Features

3.1 Introduction to the Featwes ___.____ 3-1
32 Text Input and the Input Panel oiiiiieeicieecanan 3-1
33 Text Output and the Text Panel __ 31
34 Graphic Output, the Graphic Panel, and Mouse Input _____________. 3-2
34.1 QuickDraw Requirements iiiiiiiiiiii.... 3-3

35 Required to Change Your Prograam - ... 3-4
3.6 Procedures far All Applications 3-4
36.1 Configuring the Panels -~ QPConfigccooenun.... 3-4

3.7 Procedures for Lking the Text Parwel _________________________________ 37
37.1 Changing the Terminal Parameters -- SetupTermPara .. 3-7
372 Getting Raw Input from the Console —-- Vread 3-8
373 Clearing the Screen —- ClearScreen........................ 3-8
374 Controlling the Cursor -- YGotoxy and MoveCursor..... 3-9
3.74.1 YGOOXY oot s 3-9

3.74.2 MoVECUISOr ..., iveiiii i iciaeeeecaeeeaanans 3-9

375 Setting and Clearing Tabs -~ SetTab and ClearTab...... 1-9
3751 SetTab ... i, 3-9

3752 ClearTab ..o, 3-9

376 Controlling Keyboard Input -- Stoplnput and Startlnput 3-10
3761 Stoplnput 3-10

3762 Startlnput ... il 3-10

3.7.7 Changing the Character Style -- ChangeCharStyle 3-10

38 Procedures far Using the Graphic Panel 3-10
3.8.1 Mouse Routines i, 3-10
3811 VGetMouse i 3-10

3.8.1.2 MouseButtonl 3-11

3.8.13 MouseEvent 3-11

3814 WaitMouseEventl 3-12

3815 WaitEvent i 3-12

3816 QPGrafPicSizeoiiiiiiiii s 3-12

39 Printer Support e ccmecrannan. 3-12

3.10 The Terminal Emuletor . oo 3-13
3.10.1 The Standard Terminalcc.ciiiiiiiiiiiinannnn.. 3-13
3.10.2 The ¥T100 Terminal Emulator............ i 3-13
3.10.3 The Soroc Terminal Emulatorcooiiini.... 3-14

3.11 Procedures far the QuickPort Hardware IMterface. 3-14
3111 The MOUSE ..ot e e 3-14

3.11.1.1 MMouse Update Frequency 3-15
31112 Mouse Secalingcoooeiiiiiii 3-15
3132 The SCTBBI it e et e 3-16
31121 Screen Size -- ScreenSize 3-16
3.11.2.2 Screen Refresh Counter ~- FrameCounter ... 3-16
3.11.2.3 Screen Contrast -- ScreenContrast,
SetContrast, and RampContrast 3-16
3.11.2.4 Automatic Screen Dimming -- DimContrast and
SetDimContrast _......l 3-17
3.11.25 Automatic Screen Fading —- FadeDelay and
SetFadeDelay i 3-17
3113 The Speakeroiiiiitiiii i 3-17
3.11.3.1 Speaker Yolume -- Yolume and Set¥Yolume .. 3-17
3.11.3.2 tUsing the Speaker --
Noise, Silence, and Beep 3-18
3114 The Keyboardo.oiiii i 3-18
3.11.4.1 Keyboard Identification —- Keyboard.......... 3-20
31142 Keyboard State —- KeylsDown and KeyMap .. 3-21
3115 THhe TimeIS ..ottt it e e tie e e ieanns 3-21
3.115.1 The Microsecond Timer -- MicroTimer 3-21
3.11.5.2 The Millisecond Timer -~ Timer............... 3-21
3.116 Date and Time -- DateTime, SetDateTime, and
DateToTime .. e 3-21
3.11.7 Time Stamp -- TimeStamp, SetTimeStamp
and DateToTime ... i 3-22

7/ §

Advanced QuickPort Features

3.1 Introduction to the Features
QuickPort provides & set of features that you can use to enhance your
application. The additional procedures and functions are far

« Configuring the text and graphic panels.

» Controlling text output.

= Handling graphic output using the mouse for input.
» Providing printer support.

» Using the QuickPort hardware interface.

= Making use of the terminal emulators.

You can combine any of these procedures and functions within a QuickPort
application.

You can also write your own terminal emulator. To do this you must know
enough Clascal to understand subclasses, methods, and overriding methods.
Read An Inlroduction to Clascal before attempting to write your own
terminal emulator. See Appendix B, Writing Your Own Terminal Emulator for
more information.

The logical device, '—printer’, behaves in much the same way as it does in
the Waorkshop, but also interacts with the Desktop's print manager. A section
on printer support i§¢ included in this chapter.

32 Text Input and the Input Panel
QuickPort programe get input in two ways: frorn the keyboard, and from the
clipboard. The input panel digplays the text that hes not yet been consumed
by the program. Text in the input panel comes from two sources: "type
ahead" text (text which is entered from the keyboard too quickly to be
echoed immediately by the program), and text from the clipboard that will be
"pasted" into the text window. The 'Read Input from Cliphoard' command
places the selected text in the input buffer. When the program does a read,
the text in the input buffer is read firstd. If the input buffer is empty, the
read waits for input from the keyboerd or from a peste command.

33 Text Output and the Text Panel
The text output panel displays the writeln output from the program. The
text panel corresponds to the Pascal device output and the logical device

3-1

QuickFort Frogremmers Guide Advanced QuickFort Features

‘-console'. The text panel emulates a terminal display. The default size of
the screen area is 24 lines by 80 columns. The width of the text panel can
be changed either by the program, or by the user from the Setup menu. The
Setup menu is described in Appendix A.

The text panel has a burrer ares that saves text as it is scrolled above the
screen area. The size of the buffer area is increased automatically as lines
are saved. The size of the buffer is limited to the amount of memory
available to increase the size of the buffer. When the buffer size reaches
its limit, the lines scrolled off the top of the buffer area will not be saved.
The limit is spproximately 3500 80-character lines. The user can choose to
save or not save scrolled output using the Setup menu. The Edit menu is
described in Appendix A.

The screen area has a cursor that is affected by readlns and writelns
from the program. The cursor position is always:

« Inside the screen area.
* Relative to the top left position of the screen erea.

The cursor position is the insertion point for input. No menu commands
change the logical cursor position; it is controlled solely by the program.

The cursar position is always vigible when there is a read from the program.
In other words, if the panel has been scrolled so that the cursor position is
hidden, QuickPort scrolls back to the cursor position when encountering a
read. The cursor home position is the top left position of the screen area.

34 Graphic Output, the Graphic Panel, and Mouse Inpt
Graphics in QuickPort applications are crested by QuickDraw. QuickPort
provides an option that allows you to choose two panels, one for text output
and one for graphic output, or one panel for both text and graphic output.
The graphic panel corresponds to the Workshop screen. The screen size is
720 pixels wide and 364 pixels high. The entire graphic panel is equal to
the screen area in the text panel. There is no buffer area in the graphic
panel because graphic output will not be scrolled out of the graphic panel.
All graphic objects created by the program are saved in the graphic panel
using a QuickDraw picture.

In the text panel, the mouse is used to select text. In the graphic panel,
mouse clicks are saved and passed to the program. Whenever the mouse
button is pressed inside the graphic panel, & mouse event, mouseDown, with
the mouse location is saved. When the mouse button is pressed while the
mouse is moved, another mouse event, with different locations, is ssved.
when the mouse button is relessed, a mousellp event is saved. To see if
there are any mouse events in the queue, call MouseEvent. Mousefvent
returns one event at a time, until there are no more mouse events in the
queue. When MouseEvent is called, if the mouse button is down, control
will not be returned to the caller until the button is relessed. For this

3-2

PuickFort Frogremmer's Guide Advenced QuickFort Features

reason, YGetMouse should not be used after a call to MouseEvent, because
the mouse may be rmoved. Each mouse event stores a mouse location
indicating where the mouse button wss pressed. VGetMouse lete you track
the mouse location when the mouse button is not down.

For more information on MouseEvent, Refer to Section 3.8.1.3.

341 QuickDraw Requirements

Pascal programs that run in the Lisa Workshop and use QuickDraw, call
QDINIT and OpenPort (in the QD/Support unit). To use QuickDraw you must

» Remove the call to QDINIT and OpenPort. QuickPort initializes
QuickDraw and opens a grafPort for drawing to the graphic panel.

« Not open a picture in this grafPort since QuickPort uses a picture to
save the graphic output.

= Not customnize low-level QuickDraw drawing routines in this grarPort.

If your program needs to use pictures, you can open & picture in another
grafPort. If your program needs to redefine any of the QuickDraw low-level
routines, you can do this in another grafPort. If your application uses
multiple grafPorts, you must switch to the QuickPort grafPort whenever you
want to draw to the screen.

If your application calls DrawPicture, you must call another QuickDraw
drawing routine before calling DrawPicture. This is because QuickPort
opens the picture when the first QuickDraw drawing routine is encountered.
If DrawPicture is the first drawing routine encountered, QuickPort's picture
will be opened incorrectly because QuickPort can handle only one picture at
a time. Here ig an example showing how to avoid such collisions:

GetPort (sysportptr); {saves system port}
OpenPort (BmyPort); ({references alternate port}
myPicture = OpenPicture (thePort”.portRect);

. make vour QuickDraw calls here

ClosePicture;

SetPort (sysportptr); {switches to system grafPort}

EraseRect (thePort” PortRect); {opens system picture
~— any drawing routing can
be used)

DrawPicture (myPicture, thePort” _PortRect);

3-3

QuickFor! Frogrammer's Guide Advanced QuickFort Features

If you call DOpenPicture while the QuickPort grafPort is the current port,
the following alert message appears on the screen and the program is
aborted:

Your QuickPort tool has called another OpenPicture inside
the QuickPort grafPort. This tool will be aborted.

The QuickDraw procedure ScrollRect is not supported by QuickPort.
ScrollRect is not supported because QuickPort uses .a picture to save the
graphic output, and the effect of ScrollRect is not saved in a picture.

This means that if the user scrolls the window, the picture is redrawn to the
window as if ScrollRect had not been called.

The size limit for the QuickPort picture is 32K bytes. When the picture
approaches this size, an alert is displayed. Subsequent graphic output is
displayed on the screen, but is not saved in the picture. As the size of the
picture increases, the redrawing that happens as the picture is scrolled or the
window moved slows. You can find out the current picture size by calling
QPGrafPicSize. Once the picture size reaches 32K bytes, the only way to
save the remaining grephic output is to EraseRect the entire screen
(thePort” .PortRect). The effect of this call is to delete the old picture
and create a new picture.

You can draw bit images in the QuickPort grefPort. The entire graphic panel,
including the bit images, can be printed. You can copy the bit images to a
LisaWrite document, but you cannot copy bit images from a QuickPort
application to a LisaDraw document.

35 Required Change to Your Program
Before you can call any of the additional QuickPort procedures, you must add

UQPortCall to your USES list:
{$U QuickDraw} QuickDraw,
{$U OP/UQPortCall} UQPortCall,

{$U OP/UQuickPort} UQuickPort; {or UQPortGraph, or
UQPortvT100, or UQPortSoroc)

3.6 Procedures for all Applications

361 Corfiguring the Panels - ig
You can choose several different ways to orient the panels in QuickPort
applications. The procedure QPConfig lets you rearrange the panels and
their orientations. Figure 1 shows some of the different layouts.

QwickFort Frograrmmer's Guide

aavanced QUICKFort Features

Teasc paper i i o
input panel input panel
text panel Q
text panel graphic panel
N\ O
\ graphic panel
S]
—M Eﬂgml
input panel input pencl
graphic panel O O D
S
grophic panel text panel
text panel Q

Figure 1.

QuickPut Window Layouts

Call the QPConfig procedure from your main program before any screen
input and output is performed. You must set all the fields of a global

variable of type TQPConfigRec.

PROCEDURE QPConfig (config : TQPConfigRec);

where
TOPConfigRec = RECORD
tosaveBuffer - BOOLERN;
buffer}

passApplePeriod : BOOLERN;

main program}

showInputPanel
panel}

{save lines in
{pass apple '.' to

- BOOLEAN; {display input

CASE twoPanels : BOOLEAN OF {have both text
and graphic panels}

3-5

QuickFort Frogrammer's Guide Advanced QuickFort Features

TRUE : (vhs : VHSelect; {vertical or
horizontal split. VHSelect
is defined in QuickDraw}

grPanelSize : INTEGER); {initial width or
height in pixels, if < O,
text panel is below or right
of the graph panel}

END;

If @PConfig is not called, the default velues are used. These defaults are
in effect only if OPConfig is never called. If you call QPConfig you must
set all fields, or else they will be undefined.. The default values ere:

tosaveBuffer false
passApplePeriod false
showInputPanel false
twoPanels false

The graphic and text panels can be oriented in several different ways on the
screen. To use QPConfig to set up the panels, you must first declare a
variable of type TQPConfigRec. For example,

VAR
MyConfig: TOPConfigRec;
QPConfig(MyConfig);

To have both a graphic and a text panel, twoPanels must he TRUE. You
must initialize the vhs field if you set twoPanels to TRUE. Once you have
two panels, you can choose to split the windows on the screen vertically ar
horizontally. Refer to Figure 1 to see what the screen looks like with
vertical and horizontal splits between windows. Then you can set the
grPanelSize field to the size you want the graphic panel when the
document is first opened (the text panel will take up the remaining space in
the window).

3-6

QuickFort Frogrammer's Guide Advanced QuickFPort Features

If QPConfig is not called, the default values are used. Programs that
handle only text output have a default of one text panel. Programs that
handle graphic output have a default of one graphic panel.

37 Procedures far Using the Text Panel
The procedures for QuickPort applications that produce text output allow you
to:

« Change the terminal parameters.
= Get raw input from the console.
= Clear the screen.

« Control the cursor.

= Set and clear tabs.

» Control keyboard input.

« Change the character style.

3.7.1 Changing the Terminal Parameters —— SetupTermPara
SetupTermPara sets the terminal parameters for the screen area in the text
panel. You can call SetupTermPara from your terminel emulator or from
your main program, but the call must be made before any screen input or
output is performed. If SetupTermPara is not called before performing
screen input or cutput, the default parameters will not be changed. If you
call SetupTermPara you must set all parameters.

PROCEDURE SetupTermPara (termpara : TTermPara);

where
maxPosLines = 50; {max possible lines for any
terminal emulator}
maxPosColumns = 132;

Tcursorshape = (blockshape, underscoreshape,

invisibleshape);
TTermPara = RECORD
TOWSize : 1. _maxPosLines;
columnsize : 1. .maxPosColuans;
toWraparound : BOOLEAN;

keytoStopOutput : CHAR;

keytoStartOutput : CHAR;

tmcursorShape : Tcursorshape;
END;

3-7

QuickFort Frogrammer's Guide Advanced QuickFort Fealures

If SetupTermPara is not called, the default values are used:

rowsize 24 lines
columnsize 80 columns
toWraparound TRUE
keytoStopOutput &-S
keytoStartOutput %-0
tmcursorShape Block

3.72 Getting Raw Input from the Console — Vread
You can use Yread instead of read to get keyboard input and the control
keys. Yread does not echo characters as they are read.

PROCEDURE Vread (VAR ch: CHAR; VAR keycap : QPByte;
VAR applekey, shiftkey,
optionkey: BOOLEAN):

The keycap is useful when you need to distinguish the numeric keypad from
the main keyboard. Refer to Section 3.11.4 for the keycap definition. Note
thet the option key is typically used to generste extended Lisa characters.

The extended Lisa characters are those characters in the range above ASCII

127. Try not to use the option key for other purposes to avoid confusing the
users.

3.73 Clearing the Screen — ClearScreen
ClearScreen provides six different ways to clear all or part of the screen.
The six ways ere:

» Clear the whole screen.

« Clear from the cursor position to the end of the screen.

« Clear from the beginning of the screen to the cursor position.
» Clear the whole line.

« Clear from the cursor position to the end of line.

» Clear from the beginning of the line to the cursor position.
PROCEDURE ClearScreen (clearkind : INTEGER):

{clearkind definition for ClearScreen procedure}

sclearScreen = 1; {clear the whole screen}
sclearEScreen = 2 {clear to the end of the
screen}
3-8

S~

QuIckFort Frogrammer's Guide Advanced QuickFort Feslures

1]
W

sclearBScreen {clear from the beginning
of the screen to the cursor

position}

sclearl ine =4 {clear the whole line}
sclearfELine = 5; {clear to end of line}
sclearBlLine = 6; {clear from the beginning

of the line ta the cursor
position}

3.7.4 Controlling the Cursor -— YGotoxy and MoveCursor

3741 VGotoxy
VGotoxy moves the cursor to a specified position in the window.

PROCEDURE YGotoxy (x, y : INTEGER);
VGotoxy is the same as the Pascal gotoxy, but faster.

3.7.4.2 MoveCursaor

HoveCursor moves the cursor to a position in the window relative to the
current cursor position. MoveCursor allows vertical scrolling only.

PROCEDURE MoveCursor (scroll : BOOLEAN; xdistance,
ydistance : INTEGER);

For the xdistance, ydistance parameters:
s A positive value moves the cursor to the right or down.
= A negative value moves the cursor to the left or up.

If the cursor is moved down, and scroll is TRUE, the output will be
scrolled up.

3.75 Setting and Clearing Tabs —— SetTab and ClearTab

3751 SetTab
SetTab sets a tab at a specified column, or at the current cursor position.

PROCEDURE SetTab (column : INTEGER);
SetTab sets tab at current cursor position if column <O.

3.752 ClearTab

ClearTab clears & tab at a specified column, or at the current cursor
position.

PROCEDURE ClearTab (clearfill : BOOLEAN; column : INTEGER);
ClearTab clears tab at current cursor position if column <O.

QwickForl Frogremmer's Guide Advanced QuickFort Feslures

3.7.6 Controlling Keyboard Inpit — StopInput and StartInput

3761 Stoplnput
Stoplnput prevents recognition of keyboard input until StartInput is
called.

PROCEDURE Stoplnput;

3761 Startlnput
StartInput allows recognition of keyboard input.

PROCEDURE StartInput;

3.7.7 Changing the Character Style — ChangeCharStyle
ChangeCharStyle changes the character attributes to any style combination
defined by QuickDraw.

PROCEDURE ChangeCharStyle (newstyle : Style);

38 Procedures for Using the Graphic Panel
The procedures for QuickPort applications that produce graphic output allow
vou to use the mouse to get input. These procedures are:

= Get the current mouse location.

= Test to see if the mouse button is up or down.
» Get a mouse event.

» Get either mouse or keyboard input.

3.8.1 Mouse Routines
The mouse routines listed in this section should be used instead of the ones
in the Lisa Hardware Interface.

MouseEvent is a polling function. Programs may loop on MouseEvent to
wait for mouse input. This unnecessarily takes up CPU time. Also, if the
application is run in the background, HouseEvent will farce it to run
periodically, just to find out there is no mouse input, and then control is
returned to the active window. This slows down the execution and user
response in the active window.

WaitMouseEvent is a blocking procedure. WaitMouseEvent will not return
to the caller until there's a mouse event, allowing user actions to be
processed immediately when there are no mouse events. When a program
that uses WaitMouseEvent is in the background, it is suspended and
consequently. does not take CPU time from the active window.

38.1.1 VGetMouse
VGetMouse returns the current mouse location in the coardinates of the
current grafrPort.

PROCEDURE VGetMouse (VAR pt : Point);

3-10

-

QuickFort Frogremmer's Guide Advanced QuickFort Features

Point is a type defined in QuickDraw. Refer to The Lisa Pascal Reference
Manual, Appendix C, QuickDraw for the definition of Point.

38.172 MouseButton
MouseButton returns the current state of the mouse button.

FUNCTION MouseButton : BOOLEAN;

38.1.3 MouseEvent
MouseEvent returns a mouse event if there is one in the queue, and returns
FALSE if there is not a mouse event in the queue. A mouse event is:

= A mouse buttondown (when the user presses the mouse button).
» Mouse motion while the button is pressed.
» A mouse buttonup (when the user releases the mouse button).

Moving the mouse without pressing the mouse button is not a mouse event.
When MouseEvent is called, if the mouse button is down, control will not be
returned to the caller until the button is released.

FUNCTION MouseFvent (VAR aMouseEvent : THouseEvent)
: BOOLEAN;

where

TMouseEvent = RECORD
mouseloc : Point;
clicknum : INTEGER; {max 3 for triple clicks}
mouseDown, meShift, mefApple, meOption -
BOOLEAN;
END;

For each mouse down event (mouseDown = TRUE), several different
mouselLoc events may be returned in subsequent calls. These mouseloc
events are always ended with a mouse up event (mouseDown = FALSE).

For a double click, MouseEvent returns events of down, up, down, up with
the clicknum for the second mouse down event equal to two. If the mouse
button is pressed twice, but the presses do not constitute a double click, the
same sequence of events is returned, but with the clicknum for the second
mause down event equal to one.

For a triple click, MouseEvent returns events of down, up, down, up, down,
up, with the clicknum for the third mouse down event equal to three.

If the mouseDown field is FALSE, all other fields are meaningless.

MeShift is TRUE if the mouse button and the Shift key are depressed.
MeApple is TRUE if the mouse button and the ® key are depressed.
MeOption is TRUE if the mouse button and the Option key are depressed.

3-11

QuickFort Frogremmer’s Guide Advanced QuickFort Features

38.15 WaitMouseEvent
WaitMouseEvent gets a mouse event. WaitMouseEvent blocks the caller
until there is a mouse event in the queue.

You should use this cell instead of MouseEvent to avoid polling and wasting
CPU time. WaitMouseEvent also mekes a program more responsive to user
events such as pulling down menus, clicking in other windows, etc., when the
program is waiting for mouse input.

PROCEDURE WaitMouseEvent (VAR aMouseEvent -
TMouseEvent);

where
TMouseEvent = RECORD
mouseloc : Point;
clicknum : INTEGER: {max 3 for triple clicks}

nmouseDown, wmeShift, mefApple, meOption :
BOOLEAN;

END;

After WaitMouseEvent returns, a call to MouseEvent will get the rest of
the mouse events.

3816 WaitEvent
WaitEvent is a combination of read and WaitMouseEvent, blocking the
caller until there is either keyboard or mouse input.

You should use this call instead of MouseEvent and keypress if you want
both mouse and keyboard input. WaitEvent does not reurn input. You must
call read, Yread, or MouseEvent depending on the value returned from the
call.

PROCEDURE WaitEvent (VAR fromKeyboard : BOOLEAN);

3.6.1.7 QPGrafPicSize
OPGrafPicSize returns the size of the picture in the system grafPort.

FUNCTION OPGrafPicSize : INTEGER;
39 Printer Support

The printer is designated —printer by the Workshop. —printer is a logical
device. To open the printer, use reset or rewrite, passing —printer as
the file name. To send output to the printer, use writeln or write. Use
close when you're finished sending information to the printer. Close lets
the printshop manager know that the program is done with the printer and
causes the last page to print out. If you do not cell close after printing is
finished, the printer is considered in use, and is unavailable to all other Lisa
applications.

3-12

l‘[:
K .

QUIckFort Programmer’s Guide Advanced QuickFort Features

The printer is shared by all applications in the printshop. When you send
something from & QuickPart application to the printer from QuickPort, you do
not get immediate output. First the document is spooled to the printer
queue by the printshop manager in the Lisa Office Systemn. If there is
nothing in the gueue, the information comes out a page at a time. If there
is something in the queue at the time of reset or rewrite, an error
message is returned.

You can change the font the printer uses by calling PrChangeFont. The
default font is 10-point, 10-pitch Century.

Paper size, printing orientation and print resolution can be changed using the
Farmat for Printing command in the File/Print menu. Selections made using
the Format for Printing command take effect only after a reset or
Tewrite.

The Print and Print As Is commands in the File Print menu print all the
output in the selected panel.

3.10 The Terminal Emulators
QuickPort provides three terminal environments: the standard terminal, the
YT100 terminal emulator, and the SOROC terminal emulator. This section
summarizes the three emulators. If you want to write your own terminal
emulator, go to Appendix B, Writing Your Own Terminal Emulataor.

3.10.1 The Standard Terminal
The standerd terminal is the terminal erwvironment QuickPort uses unless yvou
specify otherwise. The standard terminal provides a set of screen and cursor
control functions. The standard terminal does not use escape sequences, but
does interpret a set of standard control keys at output: BELL, backspace,
horizontal tab, line feed, and carriage return (without line feed). Programs
that use reads and readlns will have the backspace key processed
autormnatically, i.e.,, the backspace key will not be passed to your program if
vou use reads and readlns. If your program needs to get the backspace
key, use vread instead.

The standerd Lisa applications use the ®-period combination to terminate
long operations. QuickPart provides an option that suspends the program when
the #-period key combination is detected. The default is to detect the
#-period combination. This option is passed in QPConfig, which is described
in Section 3.6. When a program is suspended, the user can select the
Resume command to resume program execution, or the Save & Put Away
command to terminate program execution.

The Setup menu (in all QuickPort applications) lets you select 80 or 132
columns per line, turn wraparound on or off, and set the tab positions.

3102 The YT100 Terminal Emulator
The QuickPort V¥T100 terminal emulatar interprets all VT100 and VT32 escape
sequences, with the exception of escape sequences related to host
communications. When you use the YT100 terminal emulator, the screen area

3-13

QuickFort Frogearnmer's Guide Advanced QuickFort Festures

in the text panel responds to YT100 and YT52 escape sequences from writes
and writelns.

The character styles supported by the QuickPort ¥T100 terminal emulator are
bold, underline, and highlight. Since highlighted text in Lisa applications
traditionally means a selection, highlighted text in the Y7100 screen area
will be shadowed. Double-height and double-width characters are not
supported.

To use the YT100 terminal emulator, add
{$U QP/UQPOrtvT100} UQPOrtvyT100;

to the USES list st the beginning of your main program. For more
information, refer to Section 4.1, Adding the USES List Elements, in Chapter
4,

3.103 The Soroc Terminal Emulstar
Pascal programs that run in the Lisa Workshop, and on the Apple Il or Apple
IIl, use Soroc escape sequences for output display. QuickPort provides a
Soroc-compatible terminal emulator to help port these applications to the
Liea desktop. The QuickPort Soroc terminal emulator interprets all Soroc
escape sequences, with the exception of those escape sequences related to
display protection.

To use the Soroc terminal emulstor, add
{$U OP/UQPoxrtSoroc} UQPortSoroc;

to the USES list at the beginning of your main program. For more
information, refer to Section 4.1, Adding the USES List Elements, in Chapter
4,

3.11 Procedwres far the QuickPort Hardware Interface
The QuickPort hardwere interface is a subset of the Lisa hardware interface.
These procedures sre for the mouse, the screen the speaker, the keyboard,
the timers, and date and time.

To use the QuickPort hardwere interface, you must add
{$U QP Mardware} Hardware;

to the list elements in your program's USES statement. Refer to Chapter 4
for more information.

3.111 The Mouse
The mouse procedures let you

= Set the frequency at which the current mouse location is updated.
= Choose the relationship between physical and logical mouse movements.
« Count mouse movements.

3-14

GuickFort Frogrammer's Guide Advanced QuickFort Features

31111 Mouse Update Frequency
The mouse location is updeted pericdically, rather than continuously. The
frequency of these updates can be set by calling MouseUpdates. The time
between updates can range from 0 milliseconds (continuous updating) to 28
milliseconds, in intervals of 4 milliseconds. The initial setting is 16
milliseconds.

Procedure MouseUpdates (delay: MilliSeconds);

31112 Mouse Scaling
MouseScaling enables and disables mouse scaling. MouseThresh sets the
threshold between fine and coarse movements.

Procedure MouseScaling (scale:Boolean);
Procedure MouseThresh (threshold: Pixels);

The relationship between physical mouse movements and logical mouse
movernents is not necessarily a fixed linear mapping. Three alternatives are
available: unscaled, scaled for fine movement and scaled for coarse
movernent. Initially mouse movements are unscaled.

When mouse movement is wscaled a horizontal mouse movement of x units
vields a change in the mouse X-coordinate of x pixels. Similiarly, a vertical
movemnent of y unite yields a change is the mouse Y-coordinate of vy pixels.
These rules apply irregardless of the speed of the mouse movement.

When mouse movement is scaled horizontal movements are magnified by 3/2
relative to vertical movements. This is to compensate for the 2/3 aspect
ratio of pixels on the screen. When scaling is in effect, a distinction is
made between rIne (small) movements and coarse (large) movements. Fine
move- ments are slightly reduced, while coarse movements are magnified.
For scaled fine movemerts, a horizontal mouse mavement of x units yields a
change in the X-coordinate of x pixels, but a vertical movement of vy units
vields a change of (2/2)*y pixels. For scaled coarse movements, a horizontal
movement a x units yields a change of (3/2)*x pixels, while a vertical
movernents of v units yields & change of v pixels.

The distinction between fine movements and coarse movements is determined
by the sum of the x and ¥y movements each time the mouse location is
updated. If this sum is at ar below the tAreshold the movement is
considered to be a fine movement. VYalues of the threshold range from O
{which vields all coarse movernents) to 256 (which yields all fine movements).
Given the default mouse updating frequency, a threshold of about 8
(threshold's initial setting) gives a comfortable transition between fine and
coarse mavements.

3-15

QwickForl Frogrammer's Guide Advanced QuickFort Features

31113 Mouse Odometer
MouseQdometer returns the sum of the X and Y movements of the mouse
since boot time. The value returned is in (unscaled) pixels. There are 180
pixels per inch of mouse movement.

Function MouseOdometer: ManyPixels;

3112 The Screen
The screen procedures are used to

« Set the size of the display screen.

« Count the number of screen refreshes.

» Set the screen contrest, set automatic screen dimming.
» Set the fade delay.

3621 Screen Size -- ScreenSize
The display screen is a b2t mapped display. In other words, each pixel on
the screen is controlled by a bit in main memory. The display has 720
pixels horizontally and 364 lines vertically, and therefore requires 32,760

hytes of main memory. The screen size may be determined by calling
ScreenSize.

Procedure ScreenSize (var x: Pixels; var y- Pixels);

3.1122 Screen Refresh Counter — FrameCounter

The screen display is refreshed about 60 times per second. A frame counter
is incremented between screen updstes, st the vertical retrace interrupt. The
frame counter is an unsigned 32Z-bit integer which is reset to O each time
the machine is booted. FrameCounter returns this value. To minimize
flickering, an application can synchronize with the vertical retraces by
watching for changes in the value of this counter. The frame counter should
not be used as a timer; use the millisecond and mircosecond timers instead.

Function FrameCounter: Frames;

31123 Screen Contrast -- ScreenContrast, SetContrast and

RampContrast
The screen's contrast level is under program control. Contrast values range
from O to 255 ($FF), with O as maximum contrast and 233 as minimum.
ScreenContrast returns the contrast setting; SetComtrast sets the screen
contrast. The low order two bits of the contrast value are ignored. The
initial contrest value is 128 ($80).

Function Comtrast: ScreenContrast;
Procedure SetCorntrast (contrast: ScreenContrast);

3-16

e
f

GuickFort Frograrnmer's Guide Advanced QuickFPort Fe{r?w&l‘

A sudden change in the contrast level can be jarring to the user. -
RampContrast gradually changes the contrast to the new setting over a

period of about a second. RampContrast returns immediately, then ramps
the contrast using interrupt driven processing. '_

Procedure RampContrast (contrast: ScreenContrast); I(\
31124 aAuvtomatic Screen Dimming — DimContrast and 1
SetDimContrast '

The screen contrast level is automatically dimmed if no user activity is
noted over a specified period (usually several minutes). The contrast level 1§’
dimmed to preserve the screen phaspher. DimContrast returns the contrast
value to which the screen is dimmed; SetDimContrast sets this value. The
initial dim contrast setting is 176 ($B0).

Function DimContrast: ScreenContrast;
Procedure SetDimContrast (contrast: ScreenContrast);

31125 Auomatic Screen Fading — FadeDelay and SetFadeDelay
The delay between the last user activity and dimming of the screen is under
software control. FadeDelay returns the fade delay; SetFadeDelay sets it.
The actual delay will range from the specified delay to twice the specified
delay. The initial delay period is five minutes.

Function FadeDelay: MilliSeconds;
Procedure SetFadeDelay (delay: MilliSeconds);

3113 The Speaker
The speaker routines in this section provide square wave output from the
Lisa speaker.

The speaker procedures let you
« Set the speaker volume.
= Use the speaker.

3.11.3 1 Speaker Yolume —- Yolume and SetYolume
The speaker volume can be set to values in the range O (soft) to 7 (loud).
Yolume reads the volume setting; SetVolume sets it. The initial volume
setting is 4.

Function Volume: SpeakerVolume;
Procedure SetYolume (volume: SpeakerYolume);

GwickFort Frogrammer's Guide

Advanced QuickFort Fealures

3.11.3.2 Using the Speaker —— Noise, Silence and Beep

3114

Noise and Silence are called in pairs to start and stop square wave output.
Beep starts square wave output which will automatically stop after the
specified period of time. The effects of Noise, Silence and Beep are
overridden by subseguent calls.

Procedure Noise (wavel ength: MicroSeconds);
Procedure Silence;
Procedure Beep (wavel ength: MicroSeconds; duration:

Noise produces a sgquare wave of spproximately the specified wavelength.
Silence shuts off the square wave. The minimum wavelength is about B
microseconds, which corresponds to a frequency of 125,000 cycles per second,
well above the audible range. The maximum wavelength is 8,191 micro-
seconds, which corresponds to about 122 cycles per second.

The Keyboard

Three physical keyboard layouts are defined, the Old US Leyout (with 73 keys
on the main keyboard and numeric keypad), the Final US Layout (76 keys) and
the European Lavout (77 keys). Each key hss been astighed a keycode which
uniguely identifies the key. Keycode values range from O to 127. Figure 2
defines the keycodes for the Final US Layout, using the legends from the US
Keyboard. The Old US Layout has three fewer keys: [\, Alpha Enter, and
Right Option are not on the old keyvboard. The European Layout has ane
additional key, >¢, with a keycode of $43.

Two keys on the Old US Layout generate keycodes different from the
corresponding keys on the Final US Layout. To aid in compatibility, softwere
changes the keycode for from $7C to $68, and the keycode for Right
Option from $68 to $4E.

3-18

QuickFort Frogremmer's Guide

Figure 2
Keycodes for “Final US Layout®

Adianced QuickFPart Features

LoV

01

3

1

100
4

-—
9

w—t
—

we- 000 | o001 | pip
0 1 2

CLEAR

m o —

» |~=

DISK 1
INSERTED

DISK 1
BUTTON

DISK 2
INSERTED

DISK 2
BUTTON

PARALLEL
PORT

HOUSE
BUTTON

HOUSE
PLUG

=< - D gl |0 N on >

Tl |0 |=m-|lpwnws|ve

BUTTON

POVER

-~
.

N

LEFT
OPTION

CAPS
Lock

SHIFT

3-19

ZlojiOo|l<]|]XT]&O&]|™

QuickFort Programmer's Guide

Advanced QuickFort Fealures

The keyboard procedures allow you to
= Find out the keyboard identification number.
» Find out the state of keyboard.

31141 Keyboard ldentification —— Keyboard

The Lisa supports a host of different keyboards. Each keybosrd has three
major attributes: manufacturer, physical /aoid, and Jegends. The chart below
describes how these three attributes are combined to form a keyboard
identification number. The keyboards self-identify when the machine is
turned on and when a new kevbhoard iz attached. Keyboard returns the
identification number of the keyboard currently attached.

Function Keyboard: Keybdld;
Function Legends: Keybdld;
Keyboard identification numbers:

7 6 3 4 3 2 1 0
Manufactwrer | Layout | Legends
Marwt acturer: Layout/l_egends
00 -- APD (i.e., TKC) $OF -- Old US
01 - $26 -- Swiss-German (proposed)
10 -- Keytronics $27 -- Swiss-French (proposed)
Layout: $29 -- Portuguese (proposed)
Q0 -- Old US (73 keys) $29 -- Spanish (proposed)
01 -- $2A -~ Danish (proposed)
10 -- European (77 keys) $2B -- Swedish
11 -- Final US (76 keys) $2C -- ltalian
$2D -- French
$2E -- German
$2F -- UK

$3C -- APL (proposed)

$3D -- Canadian (proposed)
$3E -- US-Dvorak

$3F -- Final US

3-20

o Y

GuickFort Frogramimer's Guide Adanced QuickFor? Features

31142 Keyboard State — KeylsDown and KeyMap
Low level access to the keyboard is provided through a pollable keyboard
state. This state information is based on the physical keycodes defined

above. KeylsDown returns the position of a single specified key. KeyMap
returns a 128-bit map, one bit for each key.

Function KeylsDown (key: KeyCap): Boolean;
Procedure KeyMap (var keys: KeyCapSet);

A zero indicates the key is up, a one indicates down. For the mouse plug, a
zero indicates unplugged, a one indicates plugged in. Certain keys are not
pollable; the corresponding bits will always be zero. These keys are the
diskette insertion switches, parallel port, and power switch. (The parallel
port and mouse plug keys are unreliable across reboots on older hardware))

3115 The Timers

The timer procedures let you use either the microsecond timer or the
millisecond timer.

31151 The Microsecond Timer — MicroTimer
The MicroTimer function simulates a continuously running 32-bit counter
which is incremented every microsecond. The timer is reset to 0 each time

the machine is hooted. The timer changes sign about once every 35 minutes,
and rolls over about every 70 minutes.

Function MicroTimer: Microseconds;

The microsecond timer is designed for performance measwements. It has a
resolution of 2 microseconds. Calling MicroTimer from Pascal takes about
135 microseconds. Note that interrupt processing will have a major effect
on microgsecond timings.

3.11.5.2 The Millisecond Timer —— Timer
The Timer function simulates a continuously running 32-bit counter which is
incremented every millisecond. The timer is reset to O each time the
machine is booted. The timer changes sign about once every 25 days, and
rolls over about every 7 weeks.

Function Timer: Milliseconds;

The millisecond timer is designed for timing user interactions such as mouse
clicks and repeat. keys. It can also be used for performance measurements,
assuming that millisecond resolution is sufficient.

3116 Date and Time — DateTime, SetDateTime and DateToTime
The date and time procedures let you

» Set the current date and time.
« Find out the date and time.

3-21

QuickFort Frogrammer's Guide

3117

Advanced QuickFort Feslures

The current date and time are available as a set of 16-bit integers that
represent the yeer, day, hour, minute and second, by calling DateTime and
SetDateTime. The date and time are based on the hardware clock/calendsr.
This restricts dates to the years 1980-1995. The clock/calendar continues to
operate during soft power off, and for brief periods on battery backup if the
machine is unplugged. If the clock/calendar hasn't been set since the last
loss of battery power, the date and time will be midnight prior to January 1,
1980. Setting the date and time also sets the time stamp described below.
DateToTime converts a date and time to a time stamp, defined in the next
section.

Procedure DateTime (var date: Datefaray);
Procedure SetDateTime (date: DateArray);
Proceduwre DateToTime (date: Datefaray; var time: Seconds);

Time Stamp —— TimeStamp, SetTimeStamp and TimeToDate

The current date and time are also available as a 32-bit unsigned integer
which represents the number of seconds since the midnight prior to 1
January 1901, by calling TimeStamp and SetTimeStamp. The time stamp will
roll over once every 135 years. Bewsare--for detes beyond the rmid 1960's,
the sign bit is set. The time stamp is based on the hardware clock/calendar.
This clock continues to operate during soft power off. If the clock/calendar
hesn't been set since the last loss of battery power, the date and time will
be midnight priar to January 1, 1980. Setting the time stamp also sets the
date and time described asbove. Since the date and time is restricted to
1980-1995, the time stamp is also restricted to this range. TimeToDate
converts a time stamp to the date and time format defined above.

The time stamp procedures let you
= Set the time stamp.
» Convert between standard dete and time and the time stamp.
Function TimeStamgp: Seconds;
Procedure SetTimeStamp (time: Secomnds)
Procedure TimeToDate (time: Seconds; var date: Datefuray);

3-22

3117

QuickFort Frogrammer's Guide Advanced QuickFort Features

The current date and time are available as a set of 16-bit integers that
represent the year, day, hour, minute and second, by calling DateTime and
SetDateTime. The date and time are based on the hardware clock/calendar.
This restricts dates to the years 1980-1995. The clock/calendar continues to
operate during soft power off, and for brief periods on battery backup if the
machine is unplugged. If the clock/calendar hasn't been set since the last
loss of battery power, the date and time will be midnight prior to January 1,
1980. Setting the date and time also sets the time stamp described below.
DateToTime converts a date and time to a time stamp, defined in the next
section.

Procedure DateTime (var date: DateArray);
Procedure SetDateTime (date: DateArray);

Procedure DateToTime (date: Datefyray; var time: Seconds);

Time Stamp —— TimeStamp, SetTimeStamp and TimeToDate

The current date and time are also svailable as a 32-bit unsigned integer
which represents the nurnber of seconds since the midnight priar to 1
January 1901, by calling TimeStamp and SetTimeStamp. The time stamp will
roll over once every 135 years. Beware--for dates beyond the mid 1960's,
the sign bit is set. The time stamp is bassed on the hardware clock/calendar.
Thie clock continues to operste during soft power off. If the clock/calendar
hasn't been set since the last loss of battery power, the date and time will
be midnight prior to January 1, 1980. Setting the time stemp also sets the
date and time described sbove. Since the date and time is restricted to
1980-1993, the time stamp is also restricted to this range. TimeToDate
converts a time stamp to the date and time format defined above.

The time stamp procedwes let you
» Set the time stamp.
= Convert between standard date and time and the time stamp.
Function TimeStamp: Seconds;
Procedure SetTimeStamp (time: Seconds);
Procedure TimeToDate (time: Seconds; var date: DateArTay);

3-23

43
44

4.6

Chapter 4
Bringing Your Application
to the Lisa Desktop
Adding the USES List Elements 4-1
System Configuration 4-2
421 The Development Environmentl 4-2
422 The Run-Time Environmentcooiiiiiiiinann... 4-3
Generating Your Tool ... iiiiiiiiiaan 4-3
Installing Your ToOl e ceciiaaas 4-4
The Icon Editor e, - 4-5
Shipping Your Application e ceaaaaa- 4-5

Bringing Your Application
to the Lisa Desktop

41 Adding the USES List Flements
Before bringing your application to the Lisa desktop you must add the
required USES list elements to your MAIN program and any of your units.
Depending on what kind of application you are porting, you use different
USES list elements.

1. For text output only
{$U OP/UQuickPort} UQuickPort;
2. For graphic (QuickDraw) and/or text output
{$U QuickDraw} QuickDraw,
{$U OP/UQPortGraph} UQPortGraph;
3. If you need to use Graf3D (order of list elements important)
{$U QuickDraw} QuickDrem,
{$U QOP/Graf3D.0BJ} Graf3D,
{$U OP/UQPortGraph} UQPortGraph;
4. For graphic (QuickDraw) and/or text output, and the hardwere interface
{$U QuickDraw} QuickDraw,
{$U OP/UQPortGraph} UQPortGraph,
{$U QP/Hardware} Har dware;
5. To use the YT100 terminal emulator
{$U OP/UQPOrtYT100} UQPOTtVT100;
6. To use the Soroc terminal emulator
{$U QOP/UQPortSoroc} UQPortSoroc;

7. If you are calling the additional QuickPort procedures (order of list
elements important)

{$U QuickDraw) QuickDraw,
{$U QP/UQPortCall} UQPortCall,

{$U OP/UQuickPort} UQuickPort; {or UQPortGraph,
UQPortvT100,
UQPortSoroc}

4-1

" ray + 3 s, e Ty 3 e, v Xy
eickFort Frograminer’s Guids Gringing Vour Applicalion io the Deskiop

UQPortCall, unlike the other units, is only an interface and contains no
code.

42 System Configuration
Thie section assumes that you are using a two-ProFile systemn to develop
vour QuickPort applications. The ProFile with the office system is called
"office" in this discussion, and the ProFile with the Workshop is called
"workshop." In the Workshop, set the prefix to the workshop volume. If you
have a Lisa 2/10 you will not need to set the prefixes as described in this
section because all developrnent will be done on one volume.

There are two different environments to consider:

» The development environment. That is, the environment you use when
developing a QuickPart spplication. The development environment is the
Workshop.

* The run-time environment. This is the environment that the QuickPort
application runs in. The run-time environment is the Office System.

421 The Developmemt Erwironment
When developing, you must

» Boot from the Workshop.

* From the Workshop System Manager, set the prefix to the Workshop
volume.

» Place all files listed in the USES statement on the prefix volume.
You must have the following files on your prefix volume:

= QP/UQPortCall

= QP/UQPortGraph

= QP/UQPartSaroc

= QP/UQPortvT100

= QP/UQuickPart

= QP/Hardware

= QP/Graf 3D

= (QPLib.Obj

= TKLibh.Obj

= TKZLib.Obj

= QP/Phrase
The QuickPort exec file, gp/make, must be on the workshop ProFile.

4-2

QuickFort Frogrammer's Guide &ringing Your Application to the Deskioy

422 The Run-Time Environment
When running a QuickPort application, you must

=« Boot from the office system.

= Hawve all the libraries your application needs on the office system
volume.

» Have TKLib.Obj TK2Lib Obj, and QPLib.Obj on the office system
volume.

43 Generating Your Tool
To generate your tool, you must run the QuickPort exec file, qp/make, or
custorize gp/make to compile, assemnble, and link your tool. Qp/make
assumes all source files are in Pascal. You can customize Qp/make to
assemble your files. Qp/make forces recompilation of all your application's
units, compiles your application's main program, and then links your
application's units with the QuickPort intrinsic units. Then qp/make assigns
the tool name and creates the phrase file using the tool number in the file
name.

Qp/make renames the object code to a file name of the form:
(T##lobj

where ## is the tool number you specified when gp/make was invoked.
Qp/make copies the phrase file to a file name of the form:

(T&##)PHRASE

If your application uses other support files, such as data files, rename the
files using the {T## tool number as the first part of the file name, e.g.,

{T###}suppart

Then, whenever a user selects the tool's icon from the desktop, all the files
with the {T##} will be copied or deleted. Qp/make assumes that the source
files and libraries are on the prefix volume. Refer to Systern Configuration
above for more information.

Qp/make can be invoked in two ways, depending on how rnany units your
application has, and depending on whether you need to specify additional
object files that your application does not generate but needs to link to. If
your application has four or fewer units and does not need to specify
additional abject files for linking, qp/make can be invoked as follows:

Run <qp/make (mainprogram, tool##, tool volume, unita, unitb, unitc,

unitd)

where

mainprogram is the filename of your application's main program.

tool ## is the tool nurnber you want used in your
application's tool name. We recommend you use

4-3

QUIickFort Frogremmer's Guide Bringing Your Application o the Deskiop

your Lisa's serial number plus an offset. Using the
serial number plus an offset will prevent duplication
of tool numbers among different software
developers. For testing you can use any number
greater than 20.

tool volume is the office disk name. The tool will be copied to
the office system.

unita, unitb Up to four units for vour application. If you use
unitc, unitd more than four units, use the alternate way to
invoke gp/make as described below.

If your application has more than four units, and/or needs additional units to
link against, gp/make can be invoked as Tollows:

Run (gpmake (mainprogram, tool#, tool volume, <, UnitList, OtherObjlList)
where
mainprogram, tool £, and tool volume are the same as above.

UnitList is a file that contains the names of all your units.
when you creste your UnitList file, be sure to list
the units in the order they should be compiled.

OthexObjList is a file that lists any object files that your
application links against but you don't generate.

Refer to some QuickPort examples programs (gp sample, note, text, and so
forth) on the relesse diskette.

44 Installing Your Tool

After you run gp/make successfully, you must install the application on the
Lisa desktop. This installation process creates a tool icon and stationery pad
for your tool. To install a tool you run InstaliTool from the Workshop. After
InstallTool is finished, when you leave the Workshop and start the Office
Systemn, your tool and its stationery pad will be on the desktop.

To install a tool, run InstallTool from the Workshop with the tool number you
specified in gpmake.

Run what Program? InstallTool
The InstallTool prograrn will prompt you as follows:

Please enter the name of the device your tool is on. [PARAPORT]
Thisz is the name of your Office System ProFile.

Please enter your tool id number
Enter the tool number you specified when you ran gp/make.
Remember, &ivery tool must have a unique number.

Does your tool create documemnts? (Y or N) [YES]
If vou answer no, a tool like the Calculator is created. In other

=
i

CwickFort Frograrmimer's Guids Bringing Your Application o the Deskiop

words, a tool that allows only one instance of itself at a time.

Can your tool handle more than one document &t a time? If you
don't know, press return. (Y ar N [NO]

Some tools, such as LisaWrite, create one process that controls
multiple documents. You must answer no for QuickPort tools.

The stationery opening rectangle is defaulted to 10, 40, 640, 290
These values are always the same.

Do you wish to specify a different one? (Y ar N) [NO]

If you answer yes, you are prompted for the values for the size
of the rectangle when a docurnent is opened. This rectangle will
he used whenever a docurnent is opened.

Please enter the name of your tool.

Every tool has a tool number and a tool name. when vou enter a
tool name, the install program places the tool name in the
desktop names of the tool and its stationery.

“Tool name" has been sucessfully installed in the Office System
and it will appear in the disk window associated with the device.

After you've finished running the InstallTeol program, boot the Office System.
Your application's tool and stationery pad should be on the desktop. You
only need to run InstallTool once even if you regenerate your tool. If you do
regenerate it, however, the tool name in the object file will be lost, and
“Tool xx" will be listed in all the alerts. To get the tool name back in the
alerts, you must run InstallTool again.

45 The Icon Editor
The icons created by the InstallTool program are blank (without pictures). If
you want to design an icon for yvour application, contact Macintash Technical
Support. ((Use program called “Tewakdit™ in Lise Toolkit)

4.6 Shipping Your Application
Your application's phrase file, as well as the object file, must be shipped.
The phrasze file contains the standard QuickPort menus and alerts, and it
must be shipped with your application.

4-5

= .

Workshop Ler's Guide Standard QuickFort Menus

Appendix A
The Standard QuickPort Menus

A.1 File/Primlt Menu File/Pn,jnt
Set Aside Everything Returns sall Set Aside Everything
windows to their icons without saving Set Rside "basi "
the contents. ic Paper 05/24
Set Aside “your document® Returns the Save & Put Away
current document to its icon without Sae & Continue

saving the contents.
Save & PR Away Saves the contents

Revert to Previous Version

of the document, closes the window, Print fis Is
terminates the program, and returns the Format For Printer ...
icon to its original location. Print ...

Save & Continue Saves the contents of Monitor the Printer ...
the document and leaves the window

open.

Revert to Previous Version Always
gray —- not supported by QuickPort.

Print As Is Prints one copy of the
document.

Famat far Printer Sets formats in the
document based on the printer that will
be used.

Print Prints the document using the
settings from the Format for Printer
dialog box. You may choose to print
multiple copies.

Monitor the Printer Shows the status
of the document(s} being printed.

A-1

Workshop Lier's Guide

A.2 Edit Menu

Copy Copies the current selection
onto the Clipboard. In the text panel
the selection is done &s in LisaWwrite.
In the graphic panel, the entire panel is
copied. If there is a text panel, and a
graphic panel, you must use Select All
Graph to make the selection.

Read Input From Clipboard Places
what is in the Clipboard into the input
buffer.

Erase Erases the current selection.

Save Buffer Saves the lines that
scroll off the top of the screen area.
A check next to Save Buffer indicates
that the lines will be saved.

Don't Save Buffer Does not save the
lines that scroll off the top of the
screen area. A check next to Don't
Save Buffer indicates that the lines
will not be saved.

Select All Text Selects all the text
in the text panel when there is a text
panel.

Flush Input Clears the input panel.
This command is shown only when the
input panel is shown.

Select All Graph Selects the entire
graphic panel when there is a graphic
panel.

A.3 Terminal Specifics

Set up Allows you to select 80 or
132 characters per line, and line
wraparound.

The following dialog box appears for
vou to fill in:

" Desk File/Print Edit Terminal Specifics Execution Page Layout

Standard QuickFort Menus

Kz

Read Input From Clipboard

Erase
Save Buffer
vDon't Save Buffer

Select All Text

Terminal Specirics‘ \
Set up ‘

Show Tab Ruler
Hide Tab Fuler

Characters Per Line W80 []132
Wraparound W Ys [Jho
x
T 0 |
A-2

Workshop L&er's Guide

Show Tab Ruler Displays the tab
ruler.

Hide Tab Ruler Hides the tab ruler.

A.4 Execution
Restart Restarts program execution.

Resume Starts program execution at
the point where it was suspended by an
®-period.

A5 Page Layout

Preview Page Margins Shows the
page margins. Note that the default
page margins are such that the output
in the text panel will not fit in the
width of an 8" by 11" page. Before
printing you should adjust the left and
right mergins ao that each vertical
page will fit in one 8" by 11" page.

Preview Page Breaks Shows the page
breaks.

Don't Preview Pages Does not show
the page boundaries.

Set Horizontal Page Break Sets a
horizontal page break at the position of
the last mouse click.

Set Vertical Page Break Sets a
vertical page break at the position of
the last mouse click.

Clear All Manual HBreaks Clears all
the page breaks set in the docurnent.

Standara QuickFaort Menus

Execution

Restart
Resane My

Headings and Margins...

Set Horlzontal Page Break
Set Vertical Page Break
Clear All Manual Breaks

Appendix B

Writing Your Own Terminal Emulator

Bl IntroduCtion ..o e —an B-1
B2 TObdT e o e emmemeememaem—aacannnna. B-1
B.2.1 TStdTerm Fields it B-1
B.2.2 TStdTerm Methods You Must Override B-2
B.2.2.1 CREATE ... e e B-2
B.222 WWrite B-2
B.2.2.3 Yread.. i B-2
B.2.24 CtrikeyWrite e, B-2
B3 Procedures Terminal Emulataxs Can Call ________..... B-2
B.3.1 Screen Control Functionscoooiiviiiiiiiiiiiaiennn B-2
B3.1.1 Manipulating Lines ~—— VGetLine and VPutLine B-3
B.3.1.2 Redrawing -- RedrawScreen and

Redrawlingcoiririiiiiii e iireaaaannn B-3
B.3.13 Scrolling -- VYScrollLines...........oveeveenenn... B-3

B.3.14 Changing the Number of Columns --
ChangeMaxColumnscoiiiiiiiaiann.. B-3
B.32.153 Changing Fonts -- ChangeFont B-3
B.24 L2539 472 81 4 - U B-3

QuickFort Frogrammer’s Guide Writing & Terminal Ermmuialor

Writing Your Own
Terminal Emulator

B.1 Introduction
This appendix briefly discusses how to write your own terminal emulator,
using the standard terminal as a template. To write a terminal emulator,
you must understand Clascal. Specifically, you must understand how to
extend a Clascal program by creating a subclass, overriding existing methods,
and creating new methods. This section assumes you are comfortable with
these bagic Clascal concepts. If you don't understand Clascal, contact
Macintosh Technical Support for a copy of Am introduction to
Clascal before reading this section.

To write a terminal emulator, you create a subclass of TStdTexrm.
TStdTerm is the standard terminal provided by QuickkPort. The subclass
you create defines the terminal emulator you went. This appendix discusses
TStdTerm, the methods you rmust override in your subclass, and the methods
used by TStdTerm. You can also add your own methods in your subclass.

B2 TStdlerm
TStdTerm is the standard terminal that is used by QuickPort applications
unless the YT100, Soroc, or any other terminal emulator is specified. The
TStdTerm fields and methods are discussed in this section.

B.2.1 TStdTerm Fields
The fields you need to know about in TStdTerm are listed helow. These
fields explain how the stendard terminal behaves. You may want to change
some or all of this behavior in your terminal emulator.

maxLines The maximum number of lines in the window.

maxColumns The maximum number of columns in the window.

cursorshape The shape of the cursor. The standard terminal uses
a box cursor.

saveBuffer To save lines as they scroll off the top of the screen
into the buffer.

wraparound BOOLEAN, whether wraparound is on or off.

stopOutputKey Used to stop output.
startOutputKey Used to start output.
You can only chage these fileds in your CREATE method.

B-1

QuickFort Frogremmer's Guids Writing & Terminel Emulsior

B.22 TStdTerm Methods You Must Override
You must override three of these four methods in your subcless. You may
want to override CtrKeyWrite.
B2.2.1 CREATE
CREATE crestes an object of class TStdTexrm. You must override the
CREATE method in your subclass.
FUNCTION {TStdTerm}CREATE (object: TObject; heap :
Theap) : TSTdTerm;

You must use object and heap as arguments in your CREATE method.

B222 VWrite
YWrite is cslled by QuickPort when the program calls a write. You must
override the YWrite method in your subclass to handle escape sequences that
apply to your terminal.

PROCEDURE {TStdTerm}VWrite (VAR str : Tstr233);

B2.23 VYread

VYread is called by QuickPort when the program calls a read. ‘You must
gverride the vyread method in your subclass to return any escape sequences
generated from your terminal.

PROCEDURE {TStdTerm}Vread (VAR ach: char; VAR
keycap : Byte; YAR applekey,
shiftkey, optionkey ; BOOLEAN);
B224 CtxKeylWrite
CtrKkeyWrite handles the control keys for the terminal emulator. You

should override this method in your subcless if you want to handle different
control keys.

PROCEDURE {TStdTerm}CtrKeyWrite (ctrch: CHAR);

The control keys handled in the standard terminal are CR (no LF), LF, Bell,
Backspace, Horizontal Tab.

B3 Procedures Terminal Emulators Can Call
The procedures listed in this section can be called by any terminasl
emulators. Note that these are not methods and do not need to be
overridden in your subclass.

B3.1 Screen Control Procedures
These procedures use escape sequences.

B-2

QuickFort Frogramirner's Guide Writing & Terminal Emuistor

B3.1.1 Manipulating Lines —— VGetLine and VYPutlLine
VGetLine deletes the specified line. YPutLine inserts the line at the
specified line number.

PROCEDURE VGetLine (l1ineNo : INTEGER; VAR line :
Tstr255; delete : BOOLEAN);

PROCEDURE VPutLine (lineNo : INTEGER; VAR line -
Tstr255; insert : BOOLEAN);
B3.12 Redrawing — RedrawScreen and RedrawlLine
RedrawScreen and Redrawline are used after VGetLine and YPutLine.

RedrawScreen repaints the entire screen after a change to the lines or a

screen size change. Redrawline repaints a line after its attributes have
been changed.

PROCEDURE RedrawScreen;
PROCEDURE VPutLine (1ineNo : INTEGER);

B.3.1.3 Scrolling -- ¥ScrolllLines
¥YScrolllLines scrolls output on the screen without changing the data
structure.

PROCEDURE VScrolllLines (topRegion, bottomRegion :

INTEGER; scrollhowmanylines :
INTEGER);

A positive value for scrollhowmanylines scrolls down.

B.3.14 Changing the number of columns -—— ChangeMaxColumns
ChangeMaxColumns changes the maximum number of columns per line to the
specified number. When ChangeMaxColumns is called, the corresponding
character font is used. If the columns per line is 80 or less, QuickPort uses
a 12-pitch font, otherwise a 20-pitch font is used.

PROCEDURE ChangeMaxColumns (newColumns : INTEGER);

B3.15 Changing Fonts — Changefont
ChangeFont changes to the specified font. Because of cursor positioning,
QuickPort supports only fixed pitch fonts.
PROCEDURE ChangeFont (newFont - INTEGER);

B.24 VStxwrite
VStrwrite writes the string from the cursor position. This call is the one
that does the actual display of output. Terminal emulators should call this
after determining there is no escape sequence in the string. This call
actually displays the output. No control functions are allowed in the string.
This call handles wraparound.

PROCEDURE VStrWrite (VAR str - Tstr255);

B-3 Q\Q\L)

