
I
I
I
I
'I
"1
I
I
I
· / .. -_ \

\,~

I
I
I
I
I
I
I
I
I

Lisa Pascal 3.0 Systems Software

EX LIBRIS
David T. Craig

I
I
I"
I
I
I
I
I
I
I
I
I
I
I
I
I
I
IL

I

The Standard
Apple Numeric Environment

Contents

1 ~(Nj~iCMl••••• _. __ .. ___ .•• _ __ . ___ ._ •.. _. __ •. _._._._ ••.. __ 1-1
2 Data Types _____________ . ____ __ . ______ . ____ .. ________ ._ 1-2

2.1 Choosing a Data Type .. 1-2
2.2 Values Represented... 1-3
2.3 Range and Precision of SANE Types 1-3
2.4 Formats ... 1-5

J ffittvnetic ()perations _ ___ _ _ . __ . . 1-8
3.1 Remainder .. 1-8
3.2 Round to Integral Value .. 1-9

4 <:CKJVersi(N1S ... _. __ _. __ .. ______ .. 1-1()
4.1 Conversions Between Extended and Single or Double 1-10
4.2 Conversions to Comp and other Integral Formats 1-10
4.3 Conversions Between Binary and Decimal 1-11

4.3.1 Conversions from Decimal Strings to SANE Types 1-11
4.3.2 Decform Records and Conversions from SANE Types

to Decimal Strings ... 1-12
4.3.3 The Decimal Record Type .. 1-13
4.3.4 Conversions from Decimal Records to SANE Types 1-13
4.3.5 Conversions from SANE Types to Decimal Records 1-14

4.4 Conversions between Decimal Formats .. __ 1-14
4.4.1 Conversion from Decimal Strings to Decimal Records 1-14
4.4.2 Conversion from Decimal Records to Decimal Records 1-1'

5 Expression Evaluation ___________ .. ___ _ _ ... _ 1-16
5.1 Using Extended Temporaries ... 1-16
5.2 Extended-Precision Expression Evaluation 1-16
5.3 Extended-Precision Expression Evaluation and the IEEE Standard .. 1-17

6 c:~~ .. _ 1-18

7 Infinities, NaNs, and Denormolized Nwnbe:rs •••••.••....•.••..•.......•••.•• 1-19
7.1 Infinities ... 1-19
7.2 NaNs ... 1-19
7.3 Denormalized Numbers .. 1-20

7.3.1 Why Denormalized Numbers? 1-21
7.4 Inquiries: Class and Sign .. 1-21

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

8 Envirorl'nelltal Control . .o •• 1-22
8.1 Rounding Direction .. 1-22
8.2 Rounding Precision ... 1-22
8.3 Exception Flags and Halts .. 1-23

8.3.1 Exceptions ... 1-23
8.4 Managing Environmental Settings.. 1-24

9 AilIxilimy Procedures ••••• , .•••.•••••••.••••••••••• '.'" •••••••••••••••.•••••••. ,. 1-27
9.1 Sign Manipulation .. 1-27
9.2 Next-After Functions .. 1-27

9.2.1 Special Cases for Next.-Aft.er Functions 1-27
9.3 Binary Scale and Log Functions .. 1-26

9.3.1 Special Cases for Logb 0 0" 0 ••••• 0 0 0 0 0 0 •••••• 0 ••••••••••• 1-28

10 EJementary F..-.ctions. __ . ___ .. __ . _______ . __ . __ . ,_ _ ,. 1-29
10.1 Logarithm Functions 0" 0 0 ••• 1-29

10.1.1 Special Cases for Logarithm Functions oo 1-29
10.2 Exponential Functions 00 •• 0 •••••••••••••••• 0 ••••••••••••••••••••••••••••••• 1-29

10.2.1 Special Cases for 2x, eX, exp(l)x oo 1-30
10.2.2 Special Cases for xi ... 1-30
10.2.3 Special Cases for xY ... 1-30

10.3 Financial Functions oo ••••• oo •••••••••••••••• 1-30
10.3.1 Compound 0 oo 1-30
10.3.2 Special Cases for Compounc(r,n) 1-31
10.3.3 Annuity .. '" 1-31
10.3.4 Special Cases for Annuity(r,n) ,. 1-32

lOA Trigonometric Functions .. 1-32
10.4.1 Special Cases for sir(x), cos(x) oo.oo •••••••••••••••••••• oo 1-32
1004.2 Special Ca'Ses for tar(x) oo 1-32
10.4.3 Special Cases for arctar(x) oo 1-32

10.5 Random Number Generator ... 1-33

Appendixes

A Bibliography .. A-l
6 Glossary 0 ••••••••• 0 • • • • • • • •• • • • • • • • • • • • • • • • • • • •• 6-1
C other Elementary Functions oo •••• oo oo C-l

I
1
I' ,
1
I
1
1
1
I
I,
1
I
I
I
1
1
1/
1
~;

1

1

The Standard
Apple ~ric Envirorment

Irtloduction
This manual describes the Standard Apple Numeric Environment (SANE).
Apple supports SANE on several current products and plans to support SANE
on future products. SANE gives you access to numeric facilities unavailable
on almost 8N:I computer of the early 1980s--from microcomputers to
extremely fast .. extremely expensive supercomputers. The core features of
SANE are not exclusive to Apple; rather they are taken from Draft 10.0 of
Standard 754 for Binary Floating-Point Arithmetic [10] as proposed to the
Institute of Electrical and Electronics Engineers (IEEE). Thus SANE 1s one of
the first widely available products with the arithmetic capabilities destined
to be found on the computers of the mid-1980s and beyond.

The IEEE Standard specifies standardized data types, arithmettc, and
conversions, along with tools for handling limitations and exceptions, that are
sufficient for numeric applications. SANE supports all requirements of the
IEEE Stenderd. SANE goes beyond the specifications of th!l Stenderd by
including a data type designed for accounting applications and by including
several high-quality library functions for financial and scientific calculations.

IEEE arithmetic was specifically designed to provide advanced features for
numerical analysts without imposing extra burden on casual users. (This is
an admirable but rarely attainable goal: text editors and word processors, for
eX8JTlple, typically suffer increased complexity with added features, meaning
more hurdles for the novice to clear before completing even the simplest
tasks.) The independence of elementary and advanced features of the IEEE
arithmetic was carried over to SANE.

1-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Sttmd8Td Apple Numeric Environment SANE

2 Data Types
SANE provides three application data types (single, double, and comp) and
the 8Tithmetic type (extended). Single, double, and extended store
floating-pOint values and comp stores integral values.

The extended type is called the arithmetic type because, to make expression
evaluation simpler and more accurate, SANE performs all arithmetic
operations in extended precision and delivers arithmetic results to the
extended type. Singl~ doubl~ and comp can be thought of as space-saving
storage types for the extended-precision arithmetic. (In this manual, we
shall use the term extended precision to denote both the extended precision
and the extended range of the extended type.)

All values representable in single, double, and comp (as well as H)-bit and
32-bit integers) can be represented exactly in extended. Thus values can be
moved from any of these types to the extended type and back without any
loss of information.

2.1 O1oostng a Data Type
Typically, picking a data type requires that you determine the trade-offs
between

• Fixed- or floating-point form,
• Precision,
• Range,
• Memory usage, and
• Speed.

The precision, range, and memory usage for each SANE data type are shown
in Table 2-1. Effects of the data types on performance (speed) very among
the implementations of SANE. (See Section 4 for information on conversion
problems relating to precision.)

Most accounting applications require a counting type that counts things
(pennies, dollars, widgets) exactly. Accounting applications can be
implemented by representing money values as integral numbers of cents or
mils, which can be stored exactly in the storage format of the comp (for
computational) type. The sum~ difference~ or product of any two camp values
is exact if the magnitude of the result does not exceed 263 - 1 (that is,
9~223,372,036/854/775/B07). This number is larger than the U.S. national debt
expressed in Argentine pesos. In addition, camp values (such as the results
of accounting computations) can be mixed with extended values in
floating-paint computations (such as compound interest).

Arithmetic with camp-type variables, like all SANE arithmetic, is done
internally using extended-precision arithmetic. There is no loss of precision,
es conversion from camp to extended is always exact. Space can be saved

1-2

I

I
I
I
I
I
1
I·:
I
I
I
I
I

:1 :

:1 ,
i
i I '-~/

I

The stsnd8Td ~ppJe Numeric Environment

by storing numbers in the comp type~ which is 20 percent shorter than
extended. Nonaccounting applications will normally be better served by the
floating-point data formats.

2..2 Values R8JB'eserted
The floating-point storage formats (single, double, and extended) provide
binary encodings of a sign (+ or -), an I!lxponl!lnt~ and a significsnd. A
represented number has the value

tsignificand * ;2tlq)Ol"lE!l'lt

where the significand has a single bit to the left of the binery point (that is,
o i significand (2).

23 Range and Precision of SME Types
This table describes the range and precision of the numeric data types
supported by SANE. Decimal ranges are expressed 8S chopped two-digit
decimal representations of the exact binary values.

1-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The st8l7d8rd Apple Numeric Environment SANE

Type class

Type identifier

Size (bytes:b1ts)

B1n8IV exponent
range

N1nimlJ1l

Table 2-1
SANE Types

Application

Single Double

4:32 8:64

-126 -1022

Arithmetic

Coop Extended

8:64 10:ro

-16383

S1 gn1 fi cand
precision
Bits
Decimal digits

Decimal range
(approximate)
Min negative
Max neg norm
Max neg denorm*

Min pas denorm*
Min pas norm
Max posi t1 ve

Infinities·

HeNs·

24
7-8

-3.4E+38
-1.2E-38
-1.5E-45

1.5E-45
1.2E-38
3.4E+38

Yes

Yes

53
15-16

-1. 7E+308
-2.3E-308
-5.CE-324

5.CE-324
2.3E-308
1.7E+308

Yes

63
18-19

=-9.2E1B

::: 9.2E18

No

64
19-20

-1.1E+4932
-1. 7E-4932
-1.9E-4951

1.9E-4951
1. 7E-4932
LIE+4932

Yes
._-------- ----------

Yes Yes Yes

... DenorfT/$ (denormsJized numberS" NaNs (Not-s-NlJ~, and infinities are
defined in Section 7.

Usually numbers are stored in a normalized form, to afford maximum
precision for a given significand width. Maximum precision is achieved if
the high order bit In the slgnlflcand is 1 (that ts, 1 i signiflcand < 2).

1-4

1
1
1
I
1
I
1
1
1
1
I
1
I
1
,I
:1

1 ~
..• /(2 ••

11

The standard Apple Numeric Environment SANE

ExsmpJe

In Single" the largest representable number h~

sf gni fi cand = 2 - 2-23

exponent

value

~ 1.111111111111111111111112

=
..

127

(2 - 2-23) • 2127
3 .403 • 1()38

the smallest representable positive normalized number has

significand = 1
.. l.~OCO~~~~~~

exponent = -126

value = 1 • 2-126

1. 175 * 10-38

and the smallest representable positive denormalized number (see Section 7)
has

significand = 2-23

'" o .()()()()()(x)()lz

exponent = -126

value .. 2-23 * 2-126
N 1.401 • 1()-45 ...

2--4 Formats

1

lsi

This section shows the formats of the four SANE numeric data types. These
are pictorial representations and may not reflect the actual byte order in any
particular implementation.

Single
A 32-bit single format number is divided into three fields as shown below.

8 23 widths

e f

msb lsb msb lsb order

1-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Stand8l'd Apple Numeric Environment SANE

1

lsi

1

lsi

The value v of the number is determined by these fields as follows:

if 0 < e < 255J then v :: (-1)5 * 2(e-127) * (1. f);

if e = o and r ., OJ then v :: (-1)5 * 2(-126) * (O.f);

1f e :: o and f == O~ then v II: (-1)5 * OJ

if e = 255 and r = 0, then v = (-1)5 * ei

j r e :: 255 and r ., 0., then v is 8 NaN.

See Section 7 for information on the contents of the f field for NsNs.

Double
A 64-bit double format number is divided into three fields as shown below.

11 52 widths

e f

msb Isb msb Isb order

The value v of the number is determined by these fields as follows:

if 0 < e < 2047 .. then v = (-1)5 * 2(e-1023) * (1.f)i

if e = o and f ., 0, then v = (-1)5 • 2(-1022) • (O.f);

if e .. o and f .. 0, then v .. (_1)5 * 0;

if e :: 2047 and f = 0, then v .. (-1)5 • ei

if e = 2047 and f , 0, then v is a NeN.

Camp
A 64-bit comp format number is divided into two fields as shown below.

63 widths

d

msb Isb order

1-6

I
1
1<
1
1
I
1
1
I
I
1
I
1
I
I
I
I

I

I
",,-.

I

The Stsnd8l'd Apple Numeric Environment SANE

1

lsi

The value v of the number is determined by these fields 8S follows:

if s '" 1 and d '" 0, then v is the unique comp NaN;

otherwise, v is the two's-complement value of the 64-bit representation.

Extended
An BO-bit extended format number is divided into four fields as shown below.

15 1 63 widths

e I i I f

msb Isb msb Isb order

The value v of the number is determined by these fields 8S follows:

if 0 <== e < 32767, then v == (-1)5 '" 2(e-16383) '" (Lf);

if e '" 32767 and f '" 0, then v == (-1)5 '" ., regardless of i;

if e '" 32767 and f - 0, then v is a NaN, regardless of i.

1-7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The stand8l'd ~ppJe Numeric Environment S~NE

3 Arittmetic Openll.iOJlii
SANE provides the basic arithmetic operations for the SANE data types:

• Add.
• subtract.
• Multiply.
• Divide.
• Square root.
• Remainder.
• Round to integral value.

All the basic arithmetic operations produce the best possible result: The
mathematically exact result coerced to the precision and range of the
extended type. The coe.rcions honor the user-selectable rounding direction
and handle all exceptions according to the requirements of the IEEE Standard
(see Section 8). See Sections 9 and 10 for auxiliary operations and
higher-level functions supported by SANE.

3_1 Remainder
Generally, remainder (and mod) functions are defined by the expression

x rem y = x - y • n

where n is some integral approximation to the quotient x/yo This expression
can be found even in the conventional integer-division algorithm:

n
(divisor) y) x

y • n

(integral quotient approximation)
(dividend)

x - y • n (remainder)

SANE supports the remainder function specified in the IEEE St8rJderd:

When y II 0, the remainder r = x rem y is defined regardless of the rounding
direction by the mathematical relation r = x - Y • n, where n is the integral
value nearest the exact value X/Yi whenever In - x/yl = 112, n Is even. The
remainder is always exact. If r = 0, its sign is that of x.

1-8

1
1
1
1
1
1
1
I
I
I,
I
I
1
1

;1
:1
).
I '

I.~··
I
!

11

The stsndard Apple Numeric Environment SANE

Ex8lTtple 1

Find 5 rem 3. Here x = 5 and y = 3. Since 1 < 5/3 < 2 and since 5/3 =
1.66666... 1s closer t.o 2 t.han to 1, n is taken to be 2, so

5 rem 3 = r = 5 - 3 • 2 = -1

Exampls 2

Find 7.0 rem 0.4. Since 17 < 7.0/0.4 < 18 and since 7.0/0.4 • 17.5 is equally
close to both 17 and 18, n is taken to be the even quotient, 18. Hence,

7.0 rem 0.4 = r = 7.0 - 0.4 • 18 = -0.2

The IEEE remainder function differs from other commonly used remainder
and mod functions. It returns a remainder of the smallest possible
magnitude, and it always returns an exact remainder. All the other
remainder functions can be constructed from the IEEE remainder.

3..2 Rm.nt to Imw,aI Value
An input argument is rounded according to the current rounding direction to
an integral value and delivered to the extended format. For exemple"
1234'678.87' rounds to 12345678.0 or 12345679.0. (The rounding direction,
which can be set by the user, is explained fully in Section 8.)

Note that, in each floating-point format, all values of sufficiently great
magnitude are integral. For example, in single, numbers whose magnitudes
ere at le8St 223 ere integral.

1-9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The st8lld81d ~pJe Numeric EnvirDnment S~NE

4 Conversions
SANE provides conversions between the extended type and each of the other
SANE types (single, double, and comp). A particular SANE implementation
will provide conversions between extended and those numeric types supported
in its perticuler larger environment. For example, a Pascal implementation
will have conversions between extended and the Pascal integer type.

lsi ng1 e 1 ___ --------- I syst em-specifi c I
Idoublel extendedl---' integral
I comp I --------- I types I

SANE implementations also provide either conversions between decimal
strings and SANE types, or conversions between a decimal record type and
SANE types, or both. Conversions between decimal records and decimal
strings may be included too.

--------_________ Idecimal stringl
Is1ngle
Idouble I
I ~~~nded 1 ________ ----------------

I decimal record I

4.1 COBIer'sions between Extended and Single m Double
A conversion to extended is always exact. A conversion from extended to
single or double moves a value to a storage type with less range and
precision, and sets the overflow, underflow, and inexact exception flags as
appropriate. (See Section 8 for a discussion of exception flags.)

4.2 CorM:nions to Comp and other Integral Fmfll8l:s
Conversions to integral formats are done by first rounding to an integral
value (honoring the current rounding direction) and then, if possible,
delivering this value to the destination format. If the source operand of a
conversion from extended to comp is a NaN, an infinity, or out-of-range for
the comp format, then the result is the comp NaN and for infinities and
values out.-of-range, the invalid exception is signaled. If the source operand
of a conversion to a system-specific integer type is a NaN, infinity, or
out-of-range for that format, then invalid is signaled (unless the type has an
appropriate representation for the exceptional result). NaNs, infinities, and

1-10

"

/

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

f

1"-"'

I

The standl!J1'd Apple Numeric Environment SANE

out-of -range values are stored in a two's-complement integer format as the
extreme negative value (for example, in the H)-bit integer format, as
-32768).

Note that IEEE rounding into integral formats differs from most common
rounding functions on halfway c~es. With the default rounding direction (to
nearest), conversions to comp or to a system-specific integer type will round
0.5 to 0, 1.5 to 2, 2.5 to 2, and 3.5 to 4, rounding to even on halfway cases.
(Rounding is discussed in detail in Section 8.)

4..3 Conversions between Binary and Decimel
The IEEE Standard for binary floating-point arithmetic specifies the set of
numerical values representable within each floating-point format. It is
important to recognize that binary storage formats can exactly represent the
fractional part of decimal numbers in only a few cases; in all other cases,
the representation will be approximate. For example, O.~o, or 11210, can be
represented exactly as 0.12. On the other hand, 0.110, or 1I1Oto, is a
repeating fraction in binary: 0.00011001100 2. Its closest representation in
single is 0.0001100110011001100110011012,. which is closer to 0.10000000149.s.o
than to 0.1(XXXXXXXXX)10.

As binary storage formats generally provide only close apprOXimations to
decimal values, it is important that conversions between the two types be as
accurate as possible. Given a rounding direction, for every decimal value
there is a best (correctly rounded) binary value for each binary format.
Conversely, for any rounding direction, each binary value has a corresponding
best decimal representation for a given decimal format. Ideally,
binary-decimal conversions should obtain this best value to reduce
accumulated errors. Conversion routines 1n SANE implementations meet or
exceed t.he st.ringent. error bounds specified by t.he JEEE St.ander-d. This
means that although in extreme CBSes the conversions do not deliver the
correctly rounded result, the result delivered is very nearly as good as the
correctly rounded resulL (See the IEEE Sta.ndard [10] for a more deta.iled
description of error bounds.)

4..3.1 Conversions trem Decimal strings to SAN: Types
Routines may be provided to convert numeric decimal strings to the SANE
data types. These routines are provided for the convenience of those who do
not wish to write their own parsers and scanners. Examples of acceptable
input are

123 123.4E-12 -123. .456 3e9 -0

-INF Inr NAN(12) -NaN() nan
The 12 in NAN)2) is a NaN code (see Section a).

The accepted syntax is formally defined, using Backus-Naur form, in Table
3-1:

1-11

The stsnd8Td /q)pJe Numeric En1lironment

Table .04-1.
SyrUx r~ string Conversions

<decimal number> ::=
<left decimal> ::=

[{space 1 tab}] <left decimal>
[+1-] <unsigned decimal>

SANE

<unsigned decimal> ::=
<finite number> ::=

<finite number> I <infinity> I <NAN>
<significand> [<exponent>]

<significand> ::=
<integer> ::=
<digits> ::~
<mixed> ::=

<exponent> ::=
<infinity> ::=
<NAN> ::=

<integer> I <mixed>
<digits> [.]
{O I 1 I 2 I 3 I 4 I 5 1 6 1 7 1 8 I 9}
[<digits>] . <digits>
E [+1-] <digits>
INf
NAN[([<digits>])]

Note: Square brackets enclose optional items, curly brackets enclose
elements to be repeated at least once, and vertical bars sepsrate
alternative elements; letters that appeer literally, like the E marking the
exponent field, may be either upper or lower csse .

.043_2 Dectmm Recm"ds and Conversions from SAllE types to Decimal strings
Each conversion to a decimal string is controlled by a decform record, which
contains two fields:

style -- 16-bit integer (0 or 1)
digits -- 16-bit integer

Style equals 0 for floating and 1 for fixed. Digits gives the number of
significant digits for the floating style and the number of digits to the right
of the decimal point for the fixed style (digits may be negative if the style
is fixed). Decimal strings resulting from these conversions ere always
acceptable input for conversions from decimal strings to SANE types.
Further formatting details are implementation dependent.

1-12

--.-

I
I
I ~. -"

I
I
I
I
I
I
I.
I
I
I
I
I
I
I

('

I
'-.,..,

I

The stllnd81'd Apple Numeric Environment SANE

433 The Decimal Recm'd Type
The decimal record type provides an intermediate unpacked form for
programmers who wish to do their own parsing of numeric input or
form8tting of numeric output. The decimal record format has tlvee fields:

sgn -- 16-bit integer (0 or 1)
exp -- 16-bit integer
sig -- string (maximum length is implementation-dependent)

The value represented is

(-1)sgn * s1 g * 1()t)CP

when the length of sig is 18 or less. (Some implementations allow additional
information in characters past the eighteenth.) Sig contains the integral
decimal significand: the initial byte of sig (sig:OD is the length byte, which
gives the length ot the ASCII string that is left-justified in the remaining
bytes. Sgn is 0 for + and 1 for -. For example, if sgn .. 1, exp .. -3, and
sig .. '85' (sic;tO] I: 2, not shown), then the number represented is -0.085.

.....3 eonv.-slons from DecImal Recmds to SAI'oE Types
Conversions from the decimal record type handle any slg digit-string of
length 18 or less (with an implicit decimal point at the right end). The
following special cases apply:

• If si~)] = '0' (zerot the decimal record is converted to zero. For
example, a decimal record with sig .. '0913' is converted to zero.

• If sil;(1] = 'N', the decimal record is converted to a NaN. Except when
the destination is of type comp (which has a unique NaN)" the
succeeding characters of s1g are interpreted as a hex representation of
the result significand; if fewer than 4 characters follow N then they are
right justified In the high-order 15 bits of the field f illustrated under
Formats in Section 2; if 4 or more cheracters follow N then they are
left justified in the result's significand; if no characters, or only O's,
follow N, then the result NaN code is set to nanzero • 15 (hex).

• If si!!l] == 'I' and the destination is not of comp type, the decimal
record is converted to an infinity. If the destination is: of comp type;
the decimal record is converted to a NaN and invalid is signaled.

• other special cases produce undefined results.

1-13

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The stlu'ldard Apple Numeric Environment SANE

43.5 Conversions from SANE Types to Decimal Records
Each conversion to a decimal record is controlled by a decform record (see
above). All implementations allow at least 18 digits to be returned in sig.
The implied decimal point is at the right end of sig, with exp set
accordingly.

Zeroes, infinities, and NaNs are converted to decimal records with sig parts
o (zerot I, and strings beginning with N, while exp is undefined. For NaNs,
N may be followed by a hex representation of the input significsnd. The
third and forth hex digits following N give the NaN code. For example,
'NOO2100Q(X)()()()()Q' has NaN code 21 (hex).

When the number of digits specified in a decform record ex ceeds an
implementation maximum (which is at least 18t the result is undefined.

A number may be too large to represent in a chosen fixed style. For
instance, if the implementation's maximum length for sig is 18, then l0i5
(which requires 16 digits to the left of the point in fixed-style
representations) is too large for a fixed-style representation specifying more
than 2 digits to the right of the point. If a number is too large for s chosen
fixed style, then (depending on the SANE implementation) one of two results
is returned: an implementation may return the most significant digits of the
number in sig and set exp so that the decimal record contains a valid
floating-style representation of the number; alternatively, an implementation
may simply set the string s1g to '?'. In any implementation, the test

(-exp <> decfana digits) or (sig[l] = '?')

determines whether a nonzero finite number is too large for the chosen fixed
style.

4.4 Conver'Sions between Decimal FCX11l8ts
SANE implementations may provide conversions between decimal strings and
decimal records.

4.4.1 CorMlIrsion from Decimal strings to Decimal Reccrds
This conversion routine is intended as an aid to programmers doing their own
scanning. The routine is designed for use either with fixed strings or with
strings being received (interactively) character by character. An integer
argument on input gives the starting index into the string and on output is
one greater than the index Of the last character 1n the numeric substring just
persed. The longest possible numeric substring is parsed; if no numeric
substring is recognized, then the index remains unchanged. Also, a Boolean
argument is returned indicating 'that the input string, beginning at the input
index, Is a valid numeric string or a valid prefix Of a numeric string. The
accepted input for this conversion is the same as for conversions from
decimal strings to SANE types (see above). Output 1s the same as for
conversions from SANE types to decimal records (also above).

1-14

I
I
1 .. ,--

I
I
I
I
I
I
I
I
I
I
I
I
I
I "

1"-···

I

The standard Apple Numeric Environment

Exsmples

Input String Index Output Value Valid Prefix
in out

12 1 3 12 TRl£
12E 1 3 12 TRLE
12E- 1 3 12 TRl£
12E-3 1 6 12E-3 TRlE
12E-x 1 3 12 fALSE
12E-3x 1 6 12E-3 FALSE
x 12E-3 2 7 12E-3 TRl£
IN 1 1 lK)fFII'£D TRlE
INF 1 4 INF TRLE

4_42 ConIersion from Decimal Records to Decimal ~
This conversion is controlled by the style field of a decform record (the
digits field is ignored). Input is the same as for conversions from decime1
records to SANE types, end output formatting is the same as for conversions
from SANE types to decimal strings. This conversion, actue11y a formatting
operation, is exact and signals no exception.

1-15

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The standl1rd Apple Numtiric Environmt1nt SANE

, EXJW'fJSSion EvaI....s.ion
SANE arithmetic is extended-based. Arithmetic operations produce results
with extended precision and extended range. For minimal loss of accuracy in
more complicated computations, you should use extended temporary variables
to store intermediate results.

'_1 l..IIIng Extended T empcrarles
A programmer may use extended temporaries deliberately to reduce the
effects of round-off error .. overflow, and underflow on the final result.

ExsmpJe 1

To compute the single-precision sum

S • X[l]*Y[l] + X[2]*Y[2] + ... + X[N]*Y[N]

where X and Y ere arrays of type single, declare an extended variable XS
and compute

x:s := 0.;
FtR I := 1 10 H 00

XS ;- XS + X[I)*Y[I);
s :"" XS;

{extended-precision arit~tic J
(deliver final result to single_

Even when input and output values have only single preCision, it may be very
difficult to prove that single-precision arithmetic is sufficient for a given
calculation. Using extended-precision arithmetic for intermediate values will
often improve the accuracy of single-precision results more than virtuoso
algorithms WOUld. Likewise~ using the extra range of the extended type for
intermediate results may yield correct final results in the single type in
cases when using the single type for intermediate results would cause an
overflow or a catastrophiC underflow. Extended-precision arithmetic is also
useful for calculations: involving double or comp variables: see Example 2.

,..2 Extended-Precislon Ex esslon Evaluetlon
High-level languages that support SANE evaluate all non-integer numeric
expressions to extended precision~ regardless of the types of the operands.

1-16

E

•
I -
-I
I
I,
I
I
I
I
I
I
I,
I L;

I

The Stsndard Apple Numeric Environment SANE

5..3

Example 2

If C is of type comp and MAXCOMP is the largest comp value, then the
right-hand side of

C := (MAXC()1J + MAXaJ1l) / 2

would be evaluated in extended to the exact result C =- MAXCOMP, even
though the intermediate result MAXCOMP + MAXCOMP exceeds the largest
possible comp value.

Extended-Precision ExS-ess1on Evaluation and the IEEE stander"d
The IEEE Standard encourages extended-precision expression evaluation.
Extended evaluation will on rare occasions produce results slightly different
from those produced by other IEEE implementations that lack extended
evaluation. Thus in a single-only IEEE implementation,

Z := X -+ Y

with x, y, and z all single, is evaluated in one single-precision operation,
with at most one rounding error. Under extended evaluation, however, the
addition x + y is performed in extended; then the result is coerced to the
single precision of z, with at most two rounding errors. Both
implementations conform to the standard.

The effect of a single- or double-only IEEE implementation can be obtained
under SANE with rounding precision control, as described in Section 8.

1-17

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The St8/UJlJId AppJe Numeric Environment SANE

6 Compsisons
SANE supports the usual numeric comparisons; less, less-or-equal, greater,
greater-or-equal, equal, and not-equal. For real numbers, these comparisons
behave according to the familiar ordering of real numbers.

SANE comparisons handle NaNs and infinities as well as rco.1 numbers. The
usual trichotomy for real numbers is extended so that, for any SANE values 8.
and b, exactly one of the following 151 true:

a < b
a) b
a = b
e end b ere unordered

Determination is made by the fule:

If x or y is a NaN, then x and y are unordered; otherwise, x and y are less,
equal, or greater according to the ordering of the real numbers, with the
understanding that +0 = -0 = real 0, and -(I) < each real number < +(1).

(Note that a NaN always compares unordered--even with itself.)

The meaning of high-level language relational operators is 8. natural
extension of their old meaning based on trichotomy. For example, the Pascal
or BASIC expression x (= y is true if x is less than y or if x equal y, and is
false if x is greater than y or if x and y are unordered. Note that the SANE
not-equal relation means less, greater, or unordered--even if not-equal is
written 0, as in Pascal and BASIC. High-level languages supporting SANE
supplement the usual comparison operators with a function that takes two
numeric arguments and returns the appropriate relation (less, equal, greater,
or unordered). This function can be used to determine whether two numeric
representations satisfy any combination of less, equal, greater, and unordered.

A high-level language comparison that involves a relational operator
containing less or greater, but not unordered, signals invalid if the operands
ere unordered (that is, if either operand is a NaN). For example, in Pascal or
BASIC if x or y is a quiet NaN then x < y, x <. y, x >. y, and x > y signal
invalid, but x • y and x <) y (reCall that <) contains unordered) do not. If a
comparison operand is a signaling NaN, then invalid 151 always Signaled, just
as in arithmetic operations.

1-18

)

I
I
I\,~

I
I
I
I
I
I
I
I
I
I
I
I
I
I ('

I'"~

I
~

I

The st8l7d61'd IfppJe Numeric Environment S~NE

7 I,..inities, NaNs, end DerDuJDlized NUlllbms
In addition to the normalized numbers supported by most floating-point
packages, IEEE floating-point arithmetic also supports infinities, NaNs, and
denormalized numbers.

7.1 I~inities
An infinity is a special bit pattern that can arise in one of two Wf1olS:

• When a SANE operation should produce an exact mathematical infinity
(such as llOt the result is an infinity bit pattern.

• When a SANE operation attempts to prOduce a number with magnitude
too great for the number's intended floating-point storage format, the
result may (depending on the current rounding direction) be an infinity
bit pattern.

These bit patterns (acs well acs NaNs, introduced next) are recognized in
subsequent operations and produce predictable results. The infinities, one
positive (+ INF) and one negative (- INF) I generally behave 8S suggested by
the theory of limits. for example, 1 added to +INf yields +INF; -1 divided
by +0 yields -INF; and 1 divided by -INF yields -0.

Each of the storage types Single, double, and extended provides unique
representations for +INF and -INF. The camp type has no representations for
infinities. (An infinity moved to the comp type becomes the comp NaN.)

7.2 NaNs
When a SANE operation cannot produce a meaningful result, the operation
delivers a special bit pattern called a NsN (Not-a-Number). For example, 0
divided by 0, +INF added to -INF, and sqrt(-l) yield NaNs. A NaN can occur
in any of the SANE storage types (single, double, extended, and camp); but,
generally" system-specific integer types have no representation for NaNs.
NaNs propagate through arithmetic operations. Thus, the result of 3.0 added
to a NaN is the same NaN (that is, has the serne NaN COde). If two
operands of an operation are NaNs" the result is one of the NaNs. NaNs are
of two kinds: quiet NaNs, the usual kind produced by floating-point
operations; and signaling NsNs. When a signaling NaN is encountered 8S an
operand of an arithmetic operation, the invalid-operation exception is
signaled and, if no halt occurs, a quiet NaN is the delivered result. Signaling
NaNs could be used for uninitialized variables. They are not created by any
SANE operations. The most significant bit of the field f illustrated under
Formats in Section 2 is clear for quiet NeJo.Js and set for signaling NaNs.
The unique comp NaN generally behaves like a quiet NaN.

A NaN in a floating-point format has an associated NaN code that indicates
the NaN's origin. (These are listed in Table 7-1). The NaN code is the 8th
through 15th most significant bits of the field f illustrated in Section 2. The
comp NaN is unique and has no NaN code.

1-19

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The St8J"tdl!JJ"d I*ppJe Numeric Environment SI*NE

Table 7-1.
SANE NaN Codes

Name Dec Hex

N~T 1 $01
N~fD) 2 $02
HANDlV 4 $04
NfNtJL 8 $08
NANREH 9 $09
N~ASCBIN 17 $11
NAf'tlXtP 20 $14
NfH2ERO 21 $15
NANTRlG 33 $21
NANINVTRIG 34 $22
NANLOO 36 $24
NfN'OtER 37 $25
NFt4FIN~ 38 $26
NANINIT 255 $FF

7.3 Del iildlized tonbers

Meaning

Invalid square root~ such as sqrt(-l)
Invalid additio~ such as (+INf) - (+INf)
Invalid division, such as 0/0
Invalid multiplication, such as 0 • INf
Invalid remainder or mod such as x rem 0
Attempt to convert invalid ASCII string
Result of converting camp NeN to floating
Attempt to create a NeN with a zero code
Invalid argument to trig routine
Invalid arglJ1lent to inverse trig routine
Invalid argument to log routine
Invalid ergument to xi or xy routine
Invalid argument to financial function
Uninitialized storage (signaling NoH)

Whenever possible" floating-point numbers are normlllizlld to keep the
leading slgniticend bit 1: this maximizes the resolution of the storage type.
When 8. number is too small for a. norma.lized representation, leading zeros
are placed in the signiricand to produce a dllnormslized representation. A
denormalized number is a nonzero number that is not normalized and whose
exponent is the minimum exponent tor the storage type.

Example

The sequence below shows how a. Single-precision value becomes
progressively denormelized as it is repeatedly divided by 2~ with rounding to
neerest. This process is called grsdusl tInfif!lrflow.

.. 1. 100 1100 1100 1100 1100 1101 • 2-12& ::: O. 110 • 2-122

~ III ~ III 0.110 0110 0110 0110 0110 0110 • 2-116 (underflCM)

~ .. ~/2 1: 0.011 0011 0011 0011 0011 0011 • 2-116

A;, ... A:t/2 .. 0.001 1001 1001 1001 1001 1010 • 2-126 (underflCM)

1-20

I
I
I
I
I
I
I
I
I
I:
I
I
I
I
I
I
I" /

1"->

I

The stand8.Td AppJe Numeric Environment

An = Az1/2 :: 0.000 0000 0000 0000 0000 0011 • 2-126

An := ~/2 = 0.000 0000 0000 0000 0000 0010 * ?-U6 (underflow)

A:z4 = AzsI2 = 0.000 0000 0000 0000 0000 0001 • ?-126

SANE

A:zs = At4/2 I:: 0.0 (underrlow)

~".~4 are denormalized; ~4 is the smallest positive denormalized number
in single type.

7.3.1 wtr" Oentwmalized 1\kInben?
The use of denormalized numbers makes statements I1ke the following true
for all real numbers:

x - y • 0 if and only if x. y

This statement is not true for most older systems or computer arithmetic,
because they exclude denormalized numbers. For these systems, the smallest
nonzero number is 8. normalized number with the minimum exponent; when
the result of an operation is smaller than this smallest normalized number,
the system delivers zero 8S the result. For such fJush-to-ZI!Jt'O systems, if x
., Y but x - Y is smaller than the smallest normalized number, then x - y =
O. IEEE systems do not have this defect, 8S x - y, although denormalized, is
not zero.

(A few old programs that rely on premature flushing to zero may require
modification to work properly under IEEE arithmetic. For example, some
programs may t.est x - y • 0 to determine whether x is very netu' y.)

7A Inquiries: Class end Sign
Each valid representation in a SANE data type (sinale, double, comp, or
extended) belongs to exactly one of these classes:

• Signaling NaN.
• Quiet NaN.
• Infinite.
• Zero.
• Normalized.
• Denormalized.

SANE implementations provide the user with the facility to determine easily
the class and sign ot arry valid representation.

Environmental controls include the rounding direction, rounding precision,
exception flags, and halt settings.

1-21

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

8 ErMrollmetltal CorUol

8.1 Rtulding Direction
The available rounding directions are:

• To-nearest.
• Upward.
• Downward.
• Toward-zero.

The rounding direction affects all conversions and arithmetic operations
except comperison and remainder. Except for conversions between binary
and decimal (described in Section 4t all operations are computed as if with
infinite precision and range and then rounded to the destination format
according to the current rounding direction. The rounding direction may be
interrogated and set by the user.

The default rounding direction is to-nearest. In this direction the
representable value nearest to the infinitely precise result is delivered; if the
two nearest representable values are equally near, the one with least
significant bit zero is delivered. Hence, halfway cases round to even when
the destination is the comp or a system-specific integer type, and when the
round-to-integer operation is used. If the magnitude of the infinitely preCise
result exceeds the format's largest value (by at least one half unit 1n the
last place), then the corresponding signed infinity is delivered.

The other rounding directions are upward, downw8l'd, and tow8I'd-zero. When
rounding upward, the result is the format's value (possibly INF) closest to and
no less than the infinitely precise result. When rounding downw8l'd, the
result is the format's value (possibly -INF) closest to and no greater than the
infinitely precise result. When rounding toward zero, the result is the
format's value closest to and no greater in magnitude than the infinitely
preCise result.. To t.runcate a number to an integral value, use toward-zero
rounding either with conversion into an integer format or with the
round-to-integer operation.

8..2 Rc:uld1ng Pceclsioo
Normally, SANE arithmetic computations produce results to extended
precis10n and range. To facilitate simulations of arithmetic systems that are
not extended-based, the IEEE Standard requires that the user be able to set
the rounding precision to single or double. If the SANE user sets rounding
precision to single (or double) then all arithmetic operations produce results
that are correctly rounded and that overflow or underflow as if the
destination were single (or double), even though results are typically delivered
to extended formats. Conversions to double and extended formats are

1-22

I
I

I
I
I
I

I
I
I
I
I
I,.

l

1'---'

I

The Stand8Id ~pple Numeric Ern/ironment SANE

affected if rounding precision is set to single, and conversions to extended
formats are affected if rounding precision is set to double; conversions to
decimal, camp.. and system-specific integer types are not affected by the
rounding precision. Rounding precision can be interrogated es well as set.

Setting rounding precision to single or double does not significantly enhance
performance .. and in some SANE implementations may hinder performance.

83 Exception Flags and HaIb
SANE supports five exception flags with corresponding halt settings:

• Invalid-operation (or invalid, for short).
• Underflow_
• Overflow.
• Divide-by-zero.
• Inexact.

These exceptions are signaled when detected; and, if the corresponding halt
is enabled, the SANE engine will jump to a user-specitied location. (A
high-level language need not pass on to its user the facility to set this
location .. but may halt the user's program). The user's program can examine
or set individual exception flags and halts, and can save and get the entire
environment (rounding direction, rounding precision, exception flags, and halt
settings). Further details of the holt (trap) mechanism ere SANE
implementation specific.

8.3.1 Exceptions
The invalid-operation exception is signaled if an operand is invalid for the
operation to be performed. The result is a quiet NaN, provided the
destination format is Single, double, extended, or compo The invalid
conditions are these:

• (addition or subtraction) magnitude subtraction of infinities .. for example,
(+ INF) + (-INF).

• (multiplication) 0 * INF.

• (division) 010 or INF/INF.
• (remainder) x rem y, where y is zero or x is infinite.

• (square root) if the operand is less than zero.

• (conversion) to the comp format or to a system-specific integer format
when excessive magnitude, infinity~ or NaN precludes a faithful
representation in that format (see Section 4 for details).

• (comparison) via predicates involving < or >, but not "unordered/' when
at least one operand is a NaN.

• Any operation on a signaling NaN except sign manipulations (negate,
absolute-value, and copy-sign) and class and sign inQuiries.

1-23

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The st8rtdsrd Apple NLItn8t'ic Environment

The underflow exception is signaled when a floating-point result is both tiny
and inexact (and therefore, perhaps significantly less accurate than it would
be if the exponent range were unbounded). A result is considered tiny it..
before rounding, its magnitude is smaller than its format's smallest positive
normalized number.

The dillide-b}.,-zfJI'o exception is signaled when a finite nonzero number is
divided by zero. It Is also Signaled, In the more general ces8, when an
operation em fintte operands produces an exact infinite result: for example,
10gb (0) returns -INF and signals divlde-by-zero. (OVerflow, rather than
divide-by-zero, flags the production of an inexact infinite result.)

The ()llfJl'flow exception is signaled when a floating-point destination
format"s largest finite number is exceeded in magnitude by what would have
been the rounded floating-point result were the exponent range unbounded.
(Invalid, rather than overflow, flags the production of an out-or-range value
for an integral destination format.)

The inexact exception is signaled if the rounded result of an operatton is
not identical to the mathematical (exact) result. Thus, inexact is always
signaled In conjunction with overflow or underflow.

Valid operations on infinities are always exact and therefore signal no
exceptions. Invalid operatiOns on infinities are described above.

8.4 Manag1ng ErMrot1l1lel'Ul Settings
The environmental settings in SANE are global and can be explicitly changed
by the user. Thus all routines inherit these settings and are capable of
changing them. Often special precautions must be taken because a routine
requires certain environment settings, or because a routine's settings are not
intended to propagate outside the routine.

Example 1

The subroutine below uses to-nearest rounding while not affecting its caller's
rounding direction. (Examples in this section use Pascal syntax. SANE
implementations in other languages have operations with equivalent
functionality.)

var r: Round>1ri { local starage tar rotnHng d1recUmt }

begin
r :... GetRou'wt;
SetRotn:t (llIEHST)i

{ S8II8 callari It rCMftting directimt }
{ set to-nearest rOlWMHng }

SetRound (r)
end· 'I

{ restore C8l.1er" s rOt.hting direction }

1-24

I
I'
I
I
I
I
I
I
I
I
I
I
I
I
I
I,
IL

I

The St8J"tdsrd Apple Numeric Ern"ironment SANE

Note that, if the subroutine is to be reentrant, then storage for the caller's
environment must be local.
SANE implementations may provide two efficient functions tor managing the
environment 8S a whole: procedure-entry and procedure-exit.

The procedure-entry function returns the current environment (for saving In
local storage) and set.$ the default environment: rounding direction to-neerest,
rounding precision extended" and exception flags and halts clear.

EXBlTlple 2

The following subroutine runs under the default environment while not
affecting its caller's environment.

YfIl" e: El"IU'irOl"llf!lnt;

beGtn
Prtx£ntry (e);

Setf:nv1rOl'lleflt (e)
end;

(10C8l storage tor erM.roIwent)

{ save callar' a envirno.emt and }
{ set deraul t envirOllleftt }

{ restore call .. ' s envirOl'lleflt }

The procedure-exit function facilitates writing subroutines which appear to
their callers to be atomic operations (such as addition" sept, and others).
Atomic operations pass extra information back to their callers by signaling
exceptions; however, they hide internal exceptions:, which may be irrelevant
or misleading. Procedure-exit, which takes a saved environment 8$

arguments, does the following:
1. It temporarily saves the exception flags (raised by the subroutine).

2. It restores the environment received 8$ argument.

3. It Signals the temporarily saved exceptions. (It enabled, halts could
occur at this step.)

Thus exceptions signaled between procedure-entry and procedure-exit are
hidden from the calling program unless the exceptions remain raised when
the procedure-exit function is called.

1-2'

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The St8ndsrd Apple NumtJt'ic Environment SANE

Exsmple .:i{

The following function signals underflow if its result is denormal~ and
overflow if its result is infinite, but hides spurious exceptions occurring from
internal computations.

function C(IIpres: double;

var e: Enviroraent;
c: HlIIClass;

begin {COIprcs}
ProcEntry (e);

cc:ap:res : = result;
C := ClassO (result);
ClearXCps; {

{ local storage for environaent }
{ for class inquiry }

{ save callerls envirOflleflt and }
{{ set default environ.ent - }

now halts disabled }

{ result to be returned }
{ class inquiry }

clear possibly spurious exceptions }

{ now raise specified exception flags: }
if c ::: IHfIHIlE then SetException (CNERfl..(ll, lRE)
else if c = I:ENRtAUUt then SetException (lNERflot, TA.E);
Proc£xit (e) { restore caller-Is envirOl'llel1t, }

{ including 8DJ halt enables, and}
{ then signal exceptions f':n. }
{ subroutine }

end {ctIIIPI"es} ;

1-26

I
I
I
I
I
I
I
I
I
I:,:.,.

,.,' /

I
I
I
I
I
I
I

.,-.L.~.';

The stsnd8Td Apple Numeric Environment SANE

9 Auxiliary Procedl.res
SANE includes a set of special routines--

negate,
absolute value,
copy-sign,
next-after,
scalb,
10gb,

--which are recommended in an appendix to the IEEE Standard as aids to
programming.

9_1 Sign Manipulation
The sign manipulation operations change only the sign of their argument.
Negate reverses the sign of its argument. Absolute-value makes the sign of
its argument positive. Copy-Sign takes two arguments and copies the sign of
one of its arguments onto the sign of its other argument.

These operetions are treated as nonarithmetic in the sense that they raise no
exceptions: even Signaling NaNs do not signal the invalid-operation exception.

9.2 Next-Mer Fooctions
The floating-point values representable in single, double, and extended
formats constitute a finite set of real numbers. The next-after functions
(one for each of these formats) generate the next representable neighbor in
the proper format, given an initial value x and another value y indicating a
direction from the initial value.

Each of the next-after functions takes two arguments, x and y:

nextsingle(x,Y) (x and y are single)
nextdouble(x,y) (x and y are double)
nextextendec(x,y) (x and y are extended)

As elsewhere, the names of the functions may vary with the implementation.

9..2.1 Special Cases fm Next-Mer FWlCtions
If the initial value and the direction value are equal, then the result is the
initial value.

If the initial value is finite but the next representable number is infinite,
then overflow and inexact are signa.led.

If the next representable number lies strictly between -M and + M, where M
is the smallest posItive normalized number for that format, and if the
arguments are not equal, then underflow and inexact are signaled.

1-27

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ThII Slllnd.ttrd Apple Numeric Environment StWE

9.3 Binsy Scale and log FWlCtions
The scalb and 10gb functions ere provided for manipulating binary exponents.

Scalb efficiently scales a given number (x) by 8 given integer power (n) of 2,
returning x * :zn.
Logb returns; the binary exponent of its input 81"gument 8S 8. signed integral
value. When the input argument is denormalized, the exponent is determined
8S if the input 81"gument had first been normalized.

9.3.1 Special Cases fer Logb
If x is infinite, Jogt:(x) retlO'flS + INF.

If x = 0, logb(x) returns -lNF and signals divide-by-zero.

1-28

I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I"-~

I

The standard Apple Numeric Ern·ironment SANE

10 The EIBl'1lef'ltery FW1Ctions
SANE provides a number of basic mathematical functions, including
logarithms, exponentials, two important financial functions, trigonometric
functions, and a random number generator. These functions are computed
using the basic SANE 8I'ithmetic heretofore described.

All of the elementary functions, except the random number generator" handle
NaNs~ overflow, and underflow appropriately. All signal inexact
appropriately, except that the general exponential and the financial functions
may conservatively signal inexact when determining exactness would be too
costly.

10.1 Loge.-ithm Funct.i.0r8
SANE provides tlTee log8l'ithm functions.

- base-2 logarithm

- base-e or natural
logarithm

- base-e logari thn of
1 plus argllJlent

locn(x)

In(x)

lnl(x)

Lnl(x) accurately computes 1r(1 + x). If the input argument x is small, such
as an interest rate, the computation of lnl(x) is more accurate than the
straightforward computation of In(l + x) by adding x to 1 and taking the
natural logarithm of the result.

10.1.1 Special Cases tm Logarithm Functions

10.2

If x = tINF, then log;z(x), In(x), and In1(x) return tINF. No exception is
signaled.

If x = 0, then lo~x) and lr(x) return -INF and signal divide-by-zero.
Similarly, if x = -1, then In1(x) returns -INF and signals divide-by-zero.

If x < 0, then logix) and lr(x) return 6 NaN and signal invalid.
x < -1, then lnl(x) returns a NaN and signals invalid.

Exponential Functions
SANE provides five exponential functions.

- base-2 exponential

- base-e or natural
exponential

- base-e exponential

1-29

Similarly; if

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The stl!ll'ld8rd Apple Numeric Environment SANE

minus 1 expl(x)

- integer exponential xi (i of integer type)

- general exponential xY

Expl(x) accurately computes eX - 1. If the input argument x Is smalt such
as an interest rate, then the computation of expl(x) is more accurate than
the stralght.rorward computation of eX - 1 by exponentiation and subtraction.

10.2.1 Special Cases fer zx., eX, expl(x)
If x = +INF, then 2x, eX, and expl(x) return +INF. No exception is signaled.

If x .. -INF, then 2x and eX return OJ and expl(x) returns -1. No exception is
signaled.

10.2..2 Special Cases fer xi
If the integer exponent i equals 0 and x is not a NaN, then xi returns 1.
Note thst with the integer exponential, xO ... 1 even if x is zero or infinite.

If x is +0 and i is negative, then xi returns + INF and signals divide-by-zero.

If x is -0 and i is negative, then xi returns + INF if i is even, or -INF if j is
odd: both cases signal divide-by-zero.

10.23 Special Cases ror xY
If x is +0 and y is negative, then the general exponential xy returns +INF and
signals divide-by-zero.

If x is -0 and y is integral and negative, then xY returns + INF if Y is even,
or -INF if y is odd; both cases signal divide-by-zero.

The general exponential xY returns a NaN and signals invalid if

both x and y equal 0;

x is infinite and y equals 0;

x = 1 and y is infinite; or

x 1s -0 or less than 0 and y is nonintegral.

103 Financial Functions
SANE provides two functions, compound and annuity, that can be used to
solve various: finanCial, or time-value-of-money, problems.

103_1 Compound
The compound function computes

compound(r,n) = (1 + r)n

1-30

I
I
I '

I
I
I
I
I
I
I
I
I
I
I
I
I
I .. ,.,

. ~ r

I~/

I

The StlVtdard Apple Numeric Environment SANE

where r is the interest rate and n is the number (perhaps nonintegral) of
periods. When the rate r is sm8.11~ compound gives a more accurate
computation than does the straightforward computation of (1 + rJ'l by addition
and exponentiation.

Compound is directly applicable to computation of present and future values:

PV
PV = FV. (1 + r) (-n) =

FV = pv. (1 + r)n

compound(r~ n)

= PV * compound(r~n)

10.3.2 Special Cases for Cornpounc(r)l)
If r :0; 0 and n is infinite, or if r = -1, then compounc(r,n) returns a NaN and
signals invalid.

If r = -1 and n < O~ then compounc(r,n) returns +INF and signals
divide-by-zero.

10.3.3 Arn.dty
The annuity function computes

1 - (1 r)(-n)

annuity(r~n) = ---------------
r

where r 1s the interest rate and n is the number of periods. Annuity is more
accurate than the straightforward computation of the expression above using
baste arIthmetIc operations and ex ponentiation. The annuity function is
directly applicable to the computation of present and future values of
ordinary annuities:

1 - (1 + r)(-n)
PV = PMT· ---------------

r

= PMT· annuity(r,n)

(1 + r)n - 1
fV • PMT· ------------

r

= PHT. (1 + r)n
1 - (1 + r)(-n) . ----------

r
= PHT· compound(r,n) • annuity(r~n)

where PMT is the amount of one periodic payment .

1-31

The StMdlJl'd AppJIt NtJmltfic Environmtmt SANE

10.304 Special Cases rm Annuity(r,n)
If r = 0, then annuity(r,n) computes the sum of 1 + 1 + .•• + 1 CNer n periods,
and therefore returns the value n and signals no exceptions (the value n
corresponds to the limit as r approaches 0).

If r < -1, then annuity(r,n) returns a NaN and signals invalid.

If r = -1 and n > 0, then annuity(r,n) returns -INF and signals divide-by-zero.

10.4 TrigoilOlTIetric Ft.n::tions
SANE prCNides the basic trigonometric functions:

cosine

sine

tangent

arctangent

cos(x)

sin(x)

tan(x)

arctan(x)

The arguments for cosine, sine; and tangent and the results of arctangent are
expressed in radians. The cosine, sine, and tangent functions use an
argument reduction based on the remainder function (see Section 3) and the
nearest extended-precision approximation of pil2. Thus the cosine, sine, and
tangent functions have periods slightly different from their mathematical
counterparts and diverge from their counterparts when their arguments
become large. Number results from arctangent lie between -pi/2 and pil2.

The remaining trigonometric functions can be easily and efficiently computed
from these four (see Appendix C).

10.".1 Special Cases t ... sir(x), cos(x):
If x is infinite, then cos(x) and sin(x) return a NaN and signal invalid.

10.".2 Special Cases rm tar(x):
If x is the nearest extended approximation to :!:pil2, then tar(x) returns :tINF.

If x Is infinite, then tar(x) returns a NaN and signals invalid.

10043 Special Case tm ..-ctar(x):
If x = :tINF, then arctan(x) returns the nearest extended approximation to
:tpil2.

1-32

The standard f1"pple Numeric El'lIlironment SftNE

10.5 ReI Idom tbnber Generatcr
SANE provides a pseudorandom number generator, random. Random has one
argument, passed by address. A sequence of (pseudo)random integral values r
in the range

1 i r i 231 - 2

can be generated by initializing an extended variable r to an integral value
(the seed) in the above range and making repeeted calls random (r)i each call
delivers in r the next random number in the sequence.

If seed values of r are nonintegral or outside the range

1 i r i 231 - 2

then results are unspecified.

A pseudorandom rectangular distribution on the interval (0,1) can be obtained
by dividing the results from random by

231 - 1 = scalb (31,1) - 1 .

1-33

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1/
I\.....-

I

The stllnd8J"d Apple Numeric Environment

Appendix A
Bibliography

8ibJiogrsph}"

1. Apple Computer, Inc. "Appendix A: The Transcend and Realmodes
Units" and "Appendix E; Floating-Point. Arithmetic," Apple III Pascal
Programmer's Msnu8l, Volume 2, pp. 2-9, 56-85.

These appendixes describe the implementation of single-precision
arit.hmetic in Apple III Pascal, which was based upon Draft 8.0 of the
proposed Standard.

2. Apple Computer, Inc. Apple III Pasc81 Numerics ft.1anu8}: A Guide to
Lising the tipple III Pasct:.tl Sf'#VE f!tf1d Elems Units.

This manual describes the Apple III Pascal implementation of the
Standard Apple Numeric Environment (SANE) through procedure calls to
the SANE and Elems units. This was Apple's first full implementation
of IEEE arithmetic.

3. Apple Computer, Inc. Apple III Pasc81 Numerics A1anuaJ: A Guide to
(.ising the Apple III Pssc81 SANE 8nd EJems Units.

This manual, generalized from the Apple III manual (number 2 above),
describes the Apple II and Apple III Pascal implementation of the
Standard Apple Numeric Environment (SANE) through procedure calls to
the SANE and Elems units.

4. Cody, W. J. "Analysis of Proposals for the Floating-Point Standard."
IEEE Computer, Vol. 14, No.3, March 1981; pp. 63-68.

This paper compares the several contending proposals presented to the
Working Group_

5. Coonen, Jerome T. "An Implementation Guide to a Proposed Standard
for Floating-Point Arithmetic." IEEE Computer; Vol. 13, No. 1 January
1980.

This paper is a forerunner to the work on the draft Standard.

6. Coonen, Jerome T. "Underflow and the Denormalized Numbers." IEEE
Computer, Vol. 14, No.3; March 1981; pp. 75-87.

7. Coonen, Jerome T. "Accurate, Yet Economical Binary-Decimal
Conversions." To appear in ~CAf Tr8J'1S8ctions on A1athem8tical
Software.

A-I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The st8l?dl!trd ~ppJe Numeric Environment

8. Demme}, James. "The Effects of Underflow on Numerical
Computation." To appear in SIAM Journ41 on Scientific and statistic-ill
Computing..

These papers examine one of the major features of the proposed
Standard, gradual underflow, and show how problems of bounded
exponent range can be handled through the use of denormalized values.

9. ~ateman, Richard J. "High-Level Language Implications of the
Proposed IEEE Floating-Point Standard." ~CM TrBnSBctions on
Programming Languages and Systef7"l5; Vol. 4, No.2, April 1982, PPM
239-257.

This paper describes the significance to high-level languages,
espeCially FORTRAN, of various features of the IEEE proposed
Standard.

10. Floating-Point Working Group 754 of the Microprocessor Standards
Committee, IEEE Computer Society. "A Standard for Binary
Floating-Point Arithmetic." Proposed to IEEE, 345 East 47th Street,
New York, NY 10017.

The implementation of SANE is based upon Draft 10.0 of this Standard.

11. Floating-Point Working Group 754 of the Microprocessor Standards
Committee, IEEE Computer Society. IIA Proposed Standard for Binary
Floating-Point Arithmetic." IEEE Computer, Vol. 14, No.3, March 1981,
PPM 51-62.

This is Draft 8.0 of the proposed Standsrd, which was offered for
public comment. The current Draft 10.0 is substantially simpler than
this draft; for instance, warning mode and projective mode have been
eliminated, and the definition of underflow has changed. However, the
intent of the Standard is basically the same, and this paper includes
some excellent int.roductory comments by David Stevenson, Chairman
of the Floating-Point Working Group.

12. Hough, o. "Applications of the Proposed IEEE 754 Standard for
Floating-Point Arithmetic." IEEE Computer, VoL 14, No.3, Msrch 1981,
PPM 70-74.

This paper is an excellent introduction to the floating-point
environment provided by the proposed Standard, showing how it
facilitat.es the implementation of robust numerical computations.

13. Kahan, W. "Interval Arithmetic Options in the Proposed IEEE
Floating-Point Arithmetic Standard;' Inten·'l!ti f!.1athematies 1980 (ed.
KE.L. Nickel). New York: Academic Press, New York, 1900, pp.
99-128.

This paper shows how the proposed Standsrd facilitates interval
arithmetic.

A-2

I

I
I
I
I
I
I
I \
I
I
I
I
I
I
I",
L/

I
I

The sttmdard Apple NiJrneric EnvironrMnt

Appendix B
GlOSsary

appUC8l1on type: A data type used to store data for applications.

mttmetJ.c type: A data type used to hold results of calculations inside the
computer. The SANE arithmetic type, extended, has greater range and
precision then the application types, in order to improve the mathematical
propertics of the application typcs.

bltay floettng-polnt runbeI': A string of bits representing a sign, an
exponent, and a significand. Its numerical value, if etry, is the signed
product of the slgn1f1cand and two raised to the power of tts exponent.

cc:mp type: A 64-bit application data type for storing integral values of up
to 18- or 19-decimal-digit precision. It is used for accounting applications,
among others.

denm'malized runber, or denmm: A nonzero binl!llY floating-paint number
that is not normalized (that is, whose significand has a leading bit of zero)
and whose exponent is the minimum exponent tor the number's storage type.

double type: A 64-bit application data type for storing floating-paint values
of up to 15- or 16-decimal-digit precision. It is used for statistical and
financial applications .. among others.

er'Mronmental settings: The rounding direction and rounding precision, plus
the exception flags and their respective halts.

exceptions: Special cases, specified by the IEEE Standerd, in arithmetic
operations. The exceptions ere invalid, underflow, overflow, divide-by-zero,
and inexact.

exception flag: Each exception has a flag that can be set, cleared and
tested. It is set when its respective exception occurs and stays set until
explicitly cleared.

exponert: The part of a binary floating-point number that indicates the
power to which two is raised in determining the value of the number. The
wider the exponent field in a numeric type, the greater range it will handle.

extended type: An SO-bit arithmetic data type for storing floating-paint
values of up to 19- or 2O-declmal-digit preciSion. SANE uses it to hold the
results of arithmetic operations.

B-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The standard /WpJe Nurneric Environment

halt: Each exception has a halt-enable that can be set or cleared. When an
exception is signaled and the corresponding halt is enabled, the SANE engine
will transfer control to the address in a halt vector. A high-level language
need not pass on to its user the facility to get the halt vector, but may halt
the user's program. Halts remain set until explicitly cleared.

infinity: A special bit pattern produced when a floating-pOint operation
attempts to produce a number greater in magnitude than the largest
representable number in a given format. Infinities are signed.

Reger types: System types for integral values. Integer types typically use
16- or 32-bit two's complement integers. Integer types are not SANE types
but ere available to SANE users.

integral value: A value in a SANE type that is exactly equal to a
mathematical integer: ... , -2, -1, 0, 1, 2,

NaN (Not a Number): A special bit pattern produced when a floating-point
operation cannot produce a meaningful result (for example, 0/0 produces a
NaN). NaNs can also be used for uninitialized storage. NaNs propagate
through arithmetic operations.

rumalized runbel': A binary floating-point number in which all significand
bits are significant: that is, the leading bit of the signif1cand is 1.
quiet NaN: A NaN that propagates through arithmetic operations without
signaling an exception (and hence without halting a program).

rounding direction: When the result of an arithmetic operatJon cannot be
represented exactly in a SANE type, the computer must decide how to round
the result. Under SANE, the computer resolves rounding decisions In one of
four directions, chosen by the user: to-nearest (the default), upward,
downward, and toward-zero.

s~ bit: The bit of a single, double, comp, or extended number that
indicates the number's sign: 0 indicates a positive number; 1, a negative
number.

si."aing NaN: A NaN that signals an invalid exception when the NaN is an
operand of an arithmetic operation. If no ha1t occurs, a quiet NaN is
produced for the result. No SANE operation creates signaling Naf\Is.

si~ian:i: The part of a binary floating-point number that indicates where
the number falls between two successive powers of two. The wider the
significand field in a numeric type, the more resolution it will have.

single type: A 32-bit application data type for storing floating-pOint values
of up to 7- or a-decimal-digit precision. It is used for engineering
applications, among others.

B-2

I
I
I
I
I
I
I
I
I
I,
I
I
I
I
I
I
I

,Y

I~

I

The StantiBr'd Apple Numeric Environment EJementBr}/ Functions

Appendix C
Other Elementary FlIlCtions

High quality transcendental functions which are not part of the Standard
Apple Numeric Environment (SANE) can be constructed from the functions
which SANE provides. Some common functions are provided below In
pseudo-code. It should be relatively easy to adapt them tor your use.

These functions are bosed on algorithms developed by Professor Williem
Kahan, University of California at Berkeley. They are robust and accurate.
The const.ant C is Z-33 = scalb (-33,1). It is chosen to be nearly the largest
value for which (1 - eZ) rounds to 1. All variables are extended.

Exception Handling
Unlike the SANE elementary functions, these functions do not provide
complete handling of special-cases and exceptions. The most troublesome
exceptions can be correctly handled if you:

• Begin each function with a call to procedure-entry.

• Clear the spurious exceptions indicated.

• End each function with a call to procedure-exit (see Section 8).

Functions
Secant

sec(x) (--- 1 / cos(x)

CoSecant

csc(x) <--- 1 / sin(x)

CoTangent

cot(x) (--- 1 / tan(x)

C-l

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The st8l'ldlird Apple Numeric Environment ElementN}" Functions

ArcSine

y (--- Ixl
If y 1 0.3 then begin

y (--- Atan (x/sqrt ((l-x)*(l+x»)
spurious divide-by-zero may arise

end
else if y 1 C then y (--- Atan (x I (sqrt (1 - xA2»

else y (-- x
8I'csin(x) (- y

ArcCosine

Sinh

Cosh

arccos(x) (- 2 * Atan (sqrt ((I-x)/(1+x»)
spurious divide-by-zero may arise

y (-- Ixl
If y 1 C then begin

y (-- expI(y)
y <--- 0.5 * (y + y/(l+y»

end
copy the sign of x onto y
sinh(x) (--- y

y (-- exp(l x 11
cosh(x) (- 0.5 * Y + 0.25 / (0.5 • y)

Tanh

y (-- Ixl
If y 1 C then begin

y (--- expl(-2*y)
y (-- -y/(2 + y)

end
copy the sign of x onto y
tanh(x) (- y

C-2

I
I
1\<

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I~

I

TM sttJJ?d6rd AppJ6 Numeric Environmtmt

ArcSinh

y (-- Ixl
If y i C then begin

y (-- 1n1 (y + y / (1/y + sqrt(1 + (1/y)A2) »
spurious underflow may arise

end
copy the sign of x onto y
asinh(x) (-- y

ArcCosh

y (-- Ixl
acosh(x) (--- In1 ((sqrt (y-1» • (sqrt (y-l) + sqrt (y+1»)

ArcTanh

y (- Ixl
If y 1 C then y <--- 1n1 (2*y/(1 - y» / 2
copy the sign of x onto y
atanh(x) (- y

C-3

I
I
I - -

I
I
I
I
I
I
I
I
1
I
1
I
1
1

\ 1'-.-

I

The 68000
Assembly-Language SAt£ Engine

Contents

1 1ntr~iCl1 ..•................•.......•..••..••.•.•.....•.•.........•.•••.•.••..••. 1-1

2 Basics•......•.....•.....•.........•..•..••........• 1-2
2.1 Operation Forms .. 1-2

2.1.1 Arithmetic and Auxiliary Operations 1-2
2.1.2 Conversions. .. 1-3
2.1.3 Comparisons ... 1-3
2.1.4 other Operations .. 1-3

2.2 External Access ... 1-3
2.3 Calling Sequence .. 1-4

2.3.1 The Opword .. 1-4
2.3.2 Assembly-Language Macros 1-4

2.4 Arithmetic Abuse ... 1-5

3 Data Types... 1-6
'" Arittmetic Operations and Auxiliary Routines•...•................ 1-7

4.1 Add, Subtract, Multiply, and Divide 1-7
4.2 Square Root .. 1-7
4.3 Round-to-Integer, Truncate-to-Integer 1-7
4.4 Remainder .. 1-8
4.5 Logb, Scalb... 1-8
4.6 Negate, Absolute Value, Copy-Sign 1-8
4.7 Next-After ... 1-9

5 C:o~ear.siCllS •••.••.......................•••••••..••••••••••.••••••.. , ••••••••••••• 1-1()
5.1 Conversions Between Binary Formats 1-10

5.1.1 Conversions to Extended .. 1-10
5.1.2 Conversions from Extended 1-10

5.2 Binary-Decimal Conversions .. 1-11
5.2.1 Binary to Decimal ... 1-11
5.2.2 Decimal to Binary ... 1-11

6 COf1lP8£isons and lrx:JDries .••.•.•.••.••••.•..•.••• __ ••• _ • • • • • • • • • • • •• • • • • • • • • . •• 1-13
6.1 Comparisons .. 1-13
6.2 Inquiries ... 1-14

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1 E~~ ()Dntrol. ___ . __ .. ___ .. __ . ____________ . __ .. _________________ . _______ 1-15
7.1 The Environment Word .. 1-15
7.2 Get-Environment and Set-Environment 1-16
7.3 Test-Exception and Set-Exception 1-16
7.4 Procedure-Entry and Procedure-Exit 1-16

8 tiBlbI ._ •• _ ••• ___ •.•••••• __ •••••• ____ •.•• __ • _______ • _________ • ___ • __ •• _ ••• _ ••• _._ •.• _ 1-18
B.l Conditions for a Halt.. l-1B
8.2 The Halt Mechanism ... 1-18
B.3 Using the Halt Mechanism ... 1-19

9 Elementary Fta'lCtiOl'llB _. _______________________ •• ____ ••••••• ____________ • ___ •• ____ 1-21
9.1 One-Argument Functions .. 1-21
9.2 Two-Argument Functions ... 1-21
9.3 Three-Argument Functions .. 1-22

Appendixes

A 680()() SANE Access ..•...•..••.......•. A-l
B 68000 SANE Macros , .. 8-1
C 68000 SANE Quick Reference Guide C-1

I
I
I" . " -'

I
I
I
I
I
I
II
I
I
I
I
I
I
I
L I '

I

1

The 68000
Asserrtlly-Language SANE Engioo

Introduction
The purpose of the software package described in this manual is to provide
the features of the Standard Apple Numeric Environment (SANE) to
assembly-language programmers on Apple's 68(X)()-based systems.
SANE--described in detail in The standard Apple Numeric Environment in
this binder--fully supports the IEEE Standard (754) for Binary Floating-Point
Arithmetic; it augments the Standard to provide greater utility for
applications in accounting, finance, science, and engineering. The IEEE
Standard and SANE offer a combination of quality, predictability, and
portability heretofore unknown for numerical software.

A functionally equivalent 6502 assembly-language SANE engine is available
for Apple's 6502-based systems. Thus numerical algorithms coded in
assembly language for an Apple 68000-based system can be readily recoded
for an Apple 6502-based system. Suggested macros for accessing the 6502
and 66<XX> engines have been chosen to flB"ther fac1l1tate algorithm
portability.

This manual describes the use of the 68000 Assembly-Language SANE engine,
but does not describe SANE itself. For example, this manual explains how to
call the SANE remainder function from 68000 assembly language but does not
discuss what this function does. See The Stsndsrd ftppJe Numeric
Environment T for information about the semantics of SANE.

See Appendix A for information about accessing the 68(X)() SANE engine from
the Apple 68000-based systems.

1-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The 6EhXI(I S~NE Engine The 6&'t't1 SANE Engine

2 Basics
The following code illustrates a typical invocation of the SANE engine,
FP68K

F£A
F£A
fSlBS

; Push address of A (single ftll1l8t)
; Push address of B (extended fOIll8.t)
; fl osting-poi nt SlBtract Single: B <- B - A

FSUBS is an ~embly-Ianguage macro taken from the file listed in Appendix
B. The form of the operation in the example (8 (-- B - A, where A is a
numeric type and B is extended) is similar to the forms for most FP68K
operations. Also, this example is typical of SANE engine calls because
operands are passed to FP68K by pushing the addresses of the operands onto
the stack prior to the call. Details of SANE engine access are given later in
this section.

The SANE elementary functions are provided in Elems68K. Access to
Elems68K is similar to access to FP86Ki details are given in Section 9.

2.1 OpenJtion Farms
The example above illustrates the form of an FP68K binary operation. Forms
for other FP68K operations are described in this section. Examples and
further details are given in subsequent sections.

2.1.1 fYithmetic and Auxiliary Operations
Most numeric operations are either unary (one operand), like square root and
negation, or binary (two operandst like addition end multiplication.

The 68000 assembly-language SANE engine, FP68K, provides unary operatiOns
in a one-address form:

O5T (-- <op> DST ... for example, B <-- sqrt(B)
The operation <op> is applied to (or operates on) the operand DST and the
result is returned to OST, overwriting the previous value. DST is called the
destination operand.

FP66K provides binary operations in a two-address form:

05T (-- DST <op> SRC ... for exempl~ B <-- B / A
The operation <op> is applied to the operands DST and SRC and the result is
returned to DST, overwriting the previous value. SRC is called the source
operand.

In order to store the result of an operation (unary or binary), the location of
the operand OST must be known to FP68K, so OST is passed by address to
FP68K. In general all operands, source and destination, are passed by
address to FP68K.

1-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I " {_/

I

The 6&'\,'\,1 SfWE Engine The 6&'\,'\,') SfWE Engint!1

F or most operations the storage format for a source operand (SRC) can be
one of the SANE numeric formats (singleJ doubleJ extendedJ or camp). To
support the extended-b~ed SANE arithmetic, a destination operand (DST)
must be in the extended format.

The forms for the copy-sign next-after functions are unusual and wm be
discussed in Section 4.

2.12 Conversions
FP68K provides conversions between the extended format and other SANE
formats, between extended and 16- or 32-bit integers, and between extended
and decimal records. Conversions between binary formats (single ... double,
extended, comp, and integer) and conversions from decimal to binery have
the form

DST <-- SRC

Conversions from binary to decimal have the form

DST <-- SRC according to SRC2

where SRC2 is a DecF arm record specifying the decimal format for the
conversion of SRC to DST.

2..13 Comparisons
Comparisons have the form

<relation> <-- SRC, DST

where DST is extended and SRC is Single, double, camp, or extended, and
where <relation> is less, equat greater, or unordered according $

DST <relation> SRC

Here the result <relation> is indicated by setting the 60cx)() CCR flags.

2..1.4 other Operations
FP68K provides inquiries for determining the cle.ss and sign of an operand
and operations for accessing the floating-paint environment word and the halt
address. Forms for these operat.ions Vf!11Y and will be given as the operations
ere introduced.

22 External Access
The SANE engine, FP68K, is reentrant ... position-independent code, which may
be shared in multi-process environments. It is accessed through one entry
point, labeled FP68K. Each user process has a static state area consisting of
one word of mode bits and error flags, and a two-word halt vector. The
package allows for different access to the state word in single and
multi-process environments.

The package preserves all 68000 registers across invocations, except that
REMAINDER modifies DO. The package modifies the 68000 CCR flags.
Except for binary-decimal converSiOns, it uses little more stack area than is
required to save the sixteen 32-bit 68OC() registers. Since the binary-decimal

1-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The 68..'U.,"'J S~NE Engine The 6a.'t"t"'J SIWE Engine

conversions themselves call the package (to perform multiplies and divides),
they use about twice the stack space of the regul81 operations.

The access constraints described in this section also apply to Elems68K.

2..3 Calling Sequence
A typical invocation of the engine consists of a sequence of PEA's to push
operand addresses followed by one of the Appendix B macros:

PEA <source address)
PEA <destination address>
<FOPNOCRO>

PE A's for source operands always precede those for destination operands.

<FOPMACRO> represents a typical operation macro defined as
tIlYE.W <opward>I-(SP) ; Push op code.
.ERfP

The macro JSRFP in turn generates a call to FP6BK; for Macintosh ... it
expands to an A-line trap, while for Lisa it expands to an intrinsic unit
subroutine call

.ER fP68{

2..3.1 The Opword
The opword is the logical OR of a operand format code and an operation
code.

The operand format code specifies the format (extended, double, Single,
integer, or comp) of one of the operands. The operand format code typically
gives the format for the source operand (SRC). At most one operand format
need be specified, since other operands' formats are implied.

The operation code specifies the operation to be performed by FP6BK.

Opwords are listed in Appendix Cj operand format codes and operation codes
are listed in Appendix B.

EXllmpJe

The format code for single is 0200 (hex). The operation code for divide is
(x)()6 (hex). Hence the opword 0206 (hex) indicates divide by a value of type
Single.

2..3.2 Assembly-LanguBge Macros
The macro file in Appendix B provides macros for

MDVE.W <opword>,-(SP)
JSRfP

for most common <opword> calls to FP68K.

1-4

1
I
1
I
1
I
1
I
I
I:
I
I
I
I

The 6&'t'"t? SANE Engine The 6&"t"t? SANE Engine

EXBlnpJe 1

To add a single-format operand A to an extended-format operand B
J

simply
write:

; Push address of A
; Push address of B

PEA
F£A
ffIDS ; floating-point fD) Single: B (- B + A

EXBlnpJe 2

Compute B (-- sqrt(At where A and B are extended.
be preserved.

F£A A IlR ; Push address of A
F£A B=:IlR; Push address of B

The value of A should

FXZX ; floating-point eXtended to eXtended: B (- A
F£A B_flR; Push address of B
fSlRTX ; floating SQuare RooT eXtended: B (- sqrt(B)

Example ..,l

Compute C (-- A - B, where A, B, and C are in the double format. Since
destinations are extended, a temporary extended variable T is required.

flEA A fIR ; Push address of A
PEA "CfIR; Push address of lo-b!lte tf!llPOl"ary variable
FDZX ; fl-pt COI1\Im't Double to eXtended: T (- A
PEA B fIR ; Push address of B
PEA T=:fIR; Push address of temporary
fSlB) ; fl-pt SlBtract Double: T (- T - B
F£A T fIR ; Push address of temporary
PEA ()D~; Push address of C
FX2D ; fl-pt convert eXtended to Double: C (-

2-4 Arlttmetic Abuse
FP68K is designed to be as robust as possible, but it is not bulletproof.
Passing the wrong number of operands to the engine will damage the stack.
Using UNDEFINED opword parameters or passing incorrect addresses will
produce undefined results.

1-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The 66l"t"t') SANE Engine

3 Date. Types
FP6BK fully supports the SANE data types

single -- 32-bit floating-paint
double -- 64-bit floating-point
comp -- 64-bit integer
extended -- BO-bit floating-point

and the 6BOOO-specific types

integer -- 16-bit two's complement integer
longint -- 32-bit two's complement integer

The 68000 engine uses the convention that least';'slgnlflcant bytes are stored
in high memory. For example .. let us take a variable of type single with bits

s -- sign
eO ... e7 -- exponent (msb ... lsb)
fO ... f22 -- significand fraction (msb ... lsb)

The logical structure of this four-byte variable Is shown below:

msb 1 sb msb 1 sb order
------------1 I

Islel I I I I I lelfl I 1 I I I I I I I I I I I I I I I I I I If I
I 101 I I I I I 10101 , III , I I I I I' I I I I I 1 I I 1 121

I 01 1 1 1 I 1 17101 I 1 I I 1 1 1 I I 1 I I 1 I I I 1 121
- I 1 1-----

1(x)() 1001 1002 1003

If this vBriable is assigned the address 1000, then its bits Bre distributed to
the locations 1000 to 1003 a<s: shown. The other SANE formats (see Section
2 in The standard Apple Numeric Environment) Bre represented in memory in
similar fa<s:hion.

1-6

,
/

I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I~··

I

The 6&'\.'\.') SANE Engine The 6&"t"t') SANE Engine

... Arittvnetic Operations and Auxiliary Roltines
The operatIons covered in this section follow the access schemes described
in Section 2.

unary operations: OST <-- <op> OST (one-address form)

PEA <OST address>
<FOPM~>

bin8l'Y operations: OST <-- OST <op> SRC (two-address form)

PEA <SRI: address>
PEA <OST address>
<fCPNOCRO>

The destination operand (OST) for these operations is p~ed by address and
is generally in the extended format. The source operand (SRC) is also passed
by address and may be single, double, comp, or extended. Some operations
ere distinguished by requiring some specific type for SRC, by using a
nonextended destination, or by returning auxiliary information in the DO
register and in the processor CCR status bits. In this section, operations so
distinguished ere noted. The examples employ the macros in Appendix B.

-4.1 Add, SUbtract, Multiply, and Divide
These are binary operations and follow the two-address form.

ExsmpJe

B <-- B / A , where A is double and B is extended:

FER AjIR; push address ot A
PEA B_flR; push address ot B
FDI'YD ; divide with soorce operand ot type double

... .2 Sqta"e Root
This is a unary operation and follows the one-address form.

ExsmpJe

B <-- sqrt(B) , where B is extended.

FEA B_flR; push address ot B
rsam< ; square root (operand is alwavs extended)

... .3 Rtutd-to-Irteger, Trt.I'lC8te-to-Integer
These are unary operations and follow the one-address form.

Round-to-integer rounds (according to the current rounding direction) to 8n
integral value in the extended format. Truncate-to-integer rounds toward
zero (reg8l"dless of the current rounding direction) to an integral value in the
extended format. The calling sequence is the usual one for unary operators,
illustrated above for square root.

1-7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The 6&'l'l"'l SANE Engine The 68l.'l'l'l SIWE Engine

4.4 Remainder
This is a binary operation and follows the two-address form.

Remainder returns auxiliary information: the low-order integer quotient
(between -127 and + 127) in 00. W. The high half of OO.L is undefined. This
intrusion into the register file is extremely valuable in argument
reduction--the principal use of the remainder function. The state of DO
after an invalid remainder is undefined.

ExampJe

B <-- B rem A J where A is single and B is extended.

PEA A fIR i push address of A
F£A B:fIR; push address of B
mEJ6 i r.m.nder wi th source operand of type single

4~ Logb, Sc8Ib
Logb is a unary operation and follows the one-address form.

Scalb is a binary operation and follows the two-address form. Its source
operand is a 16-bit integer.

Example

B <-- B * 21, where B is extended.

PEA I_fIR i push address of I
PEA B fIR ; push address of 8
FSCAl.BX ; sc61 b

4.6 Negate, Absolw Value, Copy-Sign
Negate and absolute value are unary operations and follow the one-address
form.

Copy-sign uses the calling sequence

PEA <SRC address>
PEA <061 address>
FCPYSGNX

to copy the sign of OST onto the sign of SRC. Note that copy-sign differs
from most two-address operations in that it changes the SRC ve1ue rather
than the DST value. The formats of the operands for FCPYSGNX can be
single, dOUble, or extended. (For efficiency, the 68000 assembly-language
programmer should copy signs directly rather than call FP68K.)

1-8

I
I
1\·
I
I
I
I
I
I
I
I
I
I
I
I
I
I
~

I
I

The 68t."t'l') SANE Engine ThtJ 68t.'l'l"l SfWE Engintt

Example

Copy the sign of B (single, double, or extended) into the sign of A (single,
double, or extended).

FER ~m; push address or R
FER B_~; push address or B
A:PY'S{B(; copJ-sign

4_7 Next-Alter"
The next-after operations use the calling sequence

PEA <SRC address)
PEA <DST address>
<next-after macro)

to effect SRC <-- next value, in the format indicated by the macro, after
SRC in the dirction of DST. Next-after operations differ from most
two-address operations in that they change SRC values rather then DST
values. Both source and destination operands must be of the same
floating-point type (single, double, or extended).

Example

A <-- next-after(A) In the direction of B, where A and B are double (so
next-lifter means next-dQubJe-lIfter).

PEA A_fIR; push Idtress or A
PEA B_flR; push address or B
ftEXTD i next-after 1n double fCll1lf1t

1-9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The 681Xt' SftNE Engine The 6&:>(:\.' SANE Engine

5 Conversions
This section discllsses conversions between binary formats and conversions
between binary and decimal formats.

'.1 Ct:nIersions Between Biray Forrmts
FP68K provides conversions between the extended type ond the SANE types
single, double, and comp, as well as the 16- and 32-b1t integer types.

5.1.1 Conversions to Extended
FP60K provides conversions of 6 source, of type single, double, camp,
extended, or integer, to an extended destination.

single
double

extended {-- cornp
extended
integer

All operands,. even integer ones, are pBSSed by address. The following
example illustrates the calling sequence.

Example

Convert A to B, where A is of type comp and B is extended.

PEA A fIR ; push address or A
FER B::::~; push address or B
FC2'X ; convert COIP to extended

5.12 Ct:nn:r-sions from Extended
FP68K provides conversions of an extended source to a destination of type
single, double, comp, extended, or integer.

single
double
comp
extended
integer

{-- extended

(Conversion to a narrower format may alter values.) Contrary to the usual
scheme the destination for these conversions need not be of type extended.
All operands are passed by address. The following example illustrates the
calling sequence.

1-10

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

f, . • "-/
I

The 68000 SANE Engine The 68t'\.'\.1 SfWE Engine

Example

Convert A to B where A is extended and B is double.

PEA A ~ i push address of A
PEA B::::~ i push address of B
fX2J) ; convert ex tended to doubl e

5.2 Binary-Decimal C(OIersions
FP6BK provides conversions between the binary types (single~ double~ comp,
extended, and integer) and t.he decimal record type.

Decimal records and decform records (used to specify the form of decimal
representations) ore described in Section 4 of Tht: st(jJ1d«d ~pplt: Numt::ric
Environment. For FP68K, the maximum length of the sig digits field of a
decimal record is 20. (The value 20 is specific to this implementation:
algorithms intended to POlt to other SANE implementations should use no
more than 18 digits in sig.)

5.2.1 Biray to Decimal
The calling sequence for a conversion from a binary format to a decimal
record passes the address of a decfarm record, the address of a binary
source operand~ and the address of a decimal-record destination. The
maximum number of significant digits that will be returned is 19.

EXBmple

Convert a camp-format value A to a decimal record 0 according to the
decform record F.

PEA
PEA
PEA
fC2IE

; push address of F
i push address of A
; push address or D
; convert clDp to deci.al

Fixed-Format "Overflow"

If a number is too large for a chosen fixed style, then FP68K returns the
string '?' in the sig field of the decimal record.

5.2.2 Decimal to Binary
The calling sequence for a conversion from decimal to binary passes the
address of a deCimal-record source operand and the address of a binary
destination operand.

The maximum number of digits in sig is 19. If the length of sig is 20~ then
sig represents its first 19 digits plus one or more additional nonzero digits
after the 19th. The exponent corresponds to the 19-digit integer represented
by the first 19 digits of sig.

1-11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The 6&"t~' S~NE Engine The 6&'\,'\,1 SANE Engint1

Example

Convert the decimal record 0 to a double-format value B.

F£A 0 ~ ; push address of 0
PEA B=~; push addres:s: of B
f"II.C2D i convert decill8l to doubl e

Techniques for Extreme Accuracy

The follow1ng techniques apply to FP68Ki other SANE implementations
require other techniques.

For maximum accuracy, insert or delete trailing zeros for the sig field of a
decimal record in order to minimize the magnitude of the exp field. For
example, for 1.0E60 set sig to '1 ' (17 zeros) and
exp to 43, and for 3OOE-43 set sig to '3' and exp to -41.

If you are writing a parser and must handle a number with more than 19
significant digits, follow these rules:

• Place the implicit decimal point to the right of the 19 most significant
digits.

• If any of the discarded digits to the right of the implicit decimal point
are nonzero, then concatenate the digit '1' to sig.

1-12

I
I
I
I
I
I
I
I
I
I
I
I
I

The 6&"t'\,1 SANE Engine

6 Comparisons and Inquiries

6..1 Compel isorlS

The 6&'\,'\,1 SANE Engine

FP68K offers two comparison operations: FCPX (which signals invalid if its
operands compare unordered) and FCMP (which does not). Each compares a
source operand (which may be single, double, extended, or comp) with a
destination operand (which must be extended). The result of a comparison is
the relation (less, greater, equal, or unordered) for which

OST <relation) SAC
is true. The result is delivered in the X, N, Z, V, and C status bits:

<relation> Status bits
X N 2 V C

greater 0 0 0 0 0
less 1 1 0 0 1
equal 0 0 1 0 0
unordered 0 0 0 1 0

These status bit encodings reflect that floating-point comparisons have four
possible results, unlike the more familiar integer comparisons with three
possible results. It's not necessary to learn these encodings, however; simply
use the FBxxx series of macros for branching after FCMP and FCPX.

FCMP and FCPX are both provided to facilitate implementation of relational
operators defined by higher level languages that do not contemplate
unordered comparisons. The IEEE standard specifies that the invalid
exception shall be signalled whenever necessary to alert users of such
languages that an unordered comparison may have adversely affected their
program's logic.

E:rl!Jtnple 1

Test B (= A, where A is single and B is extended;
signal if unordered.

PEA A flJR i push address Dr A
PEA B=:IIR; push address of B

if TRUE branch to LOC;

fCPXS i CCDp8I"B using source of type single,
i signal. invalid ir unordered

FBL£ LOC i branch if B <= A

Example 2

Test B not-equal A, where A is double and B is extended; if TRUE branch to
LOC. (Note that not-equal is equivalent to less, greater, or unordered, so
invalid should not be signaled on unordered.)

1-13

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The 6bt't't') SANE Engine The 6&'(,10 SANE Engine

6.2

PEA A fIR i push address of A
f£A a=f'm ; push ttddress of B
fOR) ; cc:npare using source of type double,

; do not si gnal i nval i d if unordered
FEtE lOC ; branch if B not-equal A

Inquiries
The cl~ify ope.ration provides both class and sign inquiries. This operation
takes one source operand (single, double, or extended), which is passed by
address, and places the result 1n a 16-bit integer destination.

The sign of the result is the sign of the source; the magnitude of the result
is

1 signaling NaN
2 qui et NaN
3 infinite
4 zero
5 normal
6 denormal

Example

Set C to sign and class of A.

PEA A_fIR; push address of A
PEA C_flR; push address of result
fCLASSS ; classity single

1-14

.. • -
I
I
I
I
I
I .L
I

The 6&"(' ... ", S.4NE Engine

7 EnvirormentaJ. Cortrol

7.1 The Environment Wcrd
The floating-point. environment is encoded in t.he l6-bit integer format as
shown below in hexadecimal:

msb Isb
1-------------------------------1-------------------------------1
I - 1 r I r 1 x I d I 0 I u I i I - I R I R I X I 0 I 0 I U I I I
1-------------------------------1-------------------------------1
rounding exception rounding halt
direction flags precision enables

rounding direction, bits 6000
0000 -- to-nearest
2000 -- upward
4000 -- downward
6000 -- toward-zero

exception flags, bits lFOO
0100 -- invalid
0200 -- underflow
0400 -- overflQlt'/
0800 -- division-by-zero
1000 -- inexact

rounding precision, bits 0060
0000 -- extended
0020 -- double
0040 -- single
0060 -- lffiEFINED

halt enabled, bits OOlf
0001 -- invalid
0002 -- underflow
0004 -- overflow
0008 -- division-by-zero
0010 -- inexact

Bits 8O(X) and 0080 are undefined.

rr

i
u
o
d
x

RR

I
U
o
o
X

Note that the default environment is represented by the integer value zero.

1-15

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The 68X(J SANE Engine The 68t't"t1 SfWE Engine

Exsmple

With rounding toward-zero, inexact and underflow exception flags raised,
extended rounding precision, and halt on invalid, overflow, and
division-by-zero, the most significant byte of the environment is 72 and the
le~t significant byte is 00.

Access to the environment is via the operations get-environment,
set-environment, test-exception, set-exception, procedure-entry, and
procedure-ex it.

7.2 Get-ErMrOOll'lEri. and Set-ErNironment
Get-EnVironment takes one input operand: the address of a 16-bit integer
destination. The environment word is returned in the destination.

Set-Environment has one input operand: t.he address of a 16-bit integer,
which is to be interpreted as an environment word.

Exsmple

Set rounding direction to toward-zero.
PEA A fIR
flE"DN -
tINE." (00),00
(R.W 1$6000,00
tINE.'" 00, (00)
PEA A fIR
fSE1ENV -

; 00 get s envirOf1lent
; set rounding toward-zero
; rest are A

7.3 Test-Exception and Set-Exception
Test-exception has one integer dest.ination operand, which contains the hex

values

01 -- invalid
02 -- underfl ow
04 -- overflow
08 -- divide-by-zero
10 -- inexact

If the exception flag is set for the corresponding bit in the operand .. then
test-exception sets the destination to $100 .. otherwise, to zero.

Set-exception takes one integer source operand, which encodes an exception
in the manner described above for test-exception. Set-exception stimulates
the exception indicated in the operand.

7 A Procedta'e-Eray and ProcecUe-Exit
Procedure-entry saves the current floating-point environment (16-bit integer)
at the address pes:sed as the sole operand .. and sets the operative
environment to the default state.

1-16

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I~/

I

The 6&.'l'" SANE Engine ThIt 6a.W SANE EngifIIJ

Procedure-exit saves (tempoferily) the exception tlags, sets the environment
passed 8S the sole operand, and then stimulates the saved exceptions.

EX8Jnple

Here is a procedure that appears to its callers as an atomic operation.

A11l'IICAD:
FEA E_~ i push address to store tnt1ror-.t
f'PAXBfIRY ; procedure entry

••• body of routine ...

F£A E ~ ; push address of erM.rOfllent
FHUJ:XIT- i procedure ex1t

RTS

1-17

I

I
I
I
I

8 Halts
FP68K provides the facility to transfer program control when selected
floating-point ex ceptions occur. Since this facility will be used to
implement halts in high-level languages, we refer to it as a halting
mechanism. The assembly-language programmer can write a 'halt handler'
routine to cause special actions for floating-point exceptions. The FP68K
halting mechanism differs from the traps that are an optional part of the
IEEE Standard.

8.1 Conditions t... a Halt
Any floating-paint exception can, under the appropriate conditions, trigger a
halt. The halt for a particular exception is enabled when the user has set
the halt-enable bit corresponding to that exception.

8..2 The Halt Mechanism
If the halt for a given exception is enabled, FP68K does these things when
that ex ception occurs:

L FP68K returns the same result to the destination address that it would
return if the halt were not enabled.

2. It sets up the following stack frame:

tOP-Of-st8ck --) c::J A word containing the opcode.

A long word containing DST address.

A long word containing SRC address.

A long word containing SRC2 address.

A long word pointing to MISC.

MIse is a record consisting of:

rfISC: c::J A word containing halt exceptions.

c::J A word containing pending CCR.

A long word containing pending 00.

The first word of MISe contains in its five low-order bits the AND of the
halt-enable bits with the exceptions that occurred in the operation just
completing. If halts were not enabled, then (upon return from FP68K) eCR
and DO would have the values given in MISC.

1-18

!

I
I

The 680(1(,"1 SftNE Engine The 68t~"t"l SANE Enr,rine

3. It passes control by JSR through the halt vector previously set by
FSETHY, pushing another long word containing a return address in
FP68K. If execution is to continue, the halt procedure must clear
eighteen bytes from the stack to remove the opword and the OST,
SRC, SRC2, and MISC addresses.

Set-halt-vector has one input operand: the address of a 32-bit integer"
which is int.erpreted as the halt vect.or (that is" the address to jump to in
case a halt occurs).

Get-h81t-~"ector ha'S one input operand: the address of a 32-bit integer,
which receives the halt vector.

83 Using the Halt Mechanism
This example illustrates the use of the halting mechanism. The user must
set the halt vector to the starting address of a halt handler routine. This
particular halt handler returns control to FP68K which will continue a'S if no
halt. had occurred, returning to the next instruction in t.he user's program.

LEA tRlJTlt£ .. 00 ; 00 gets address of hal t routine
ttlVE. L 00, H_FDl ; H_FDl gets S8Ie

PEA H FIR ;
FSEnN - ; set halt vector to tRlJTIt£

PEA
<fllJt1IlH»

HUJTlt£
ttlVE. L (SP)+,OO
fID.L '18, SP
.w (AO)

; floating-point operand here
; a floating-point call here

; called by FP68<
; 00 saves return address in FP68<
; i ncrell8nt st ack past 6I'gulent s
; return to FP6f1<.

The FP68K halt machanism is designed so that a halt procedure may be
written in Lisa Pascal. This is the form of a Pascal equivalent to
HROUTlNE:

1-19

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The o:Bt't't' S~NE Engine

type .iscrec == record
h8lterrars : integer ;
ccrpending : integer ;
DOpending : longint ;

end {record} ;

procedure hal troutine
(var .isc : lIisaec ;

src2, src, dst : longint ;
opcode : i nt eger) ;

begin {hal troutine}
end {haltroutine} ;

The O:ll't't1 SfWE Engine

Like HROUTlNE, haltroutine merely continues execution as if no halt had
occurred.

1-20

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The 6&'l'"t1 SIWE Engine The 68t't't1 SfWE Engine

9.3

Example

B < -- 8'< ... where the type of B is extended.

FER K_fIR i push address of K
FER B AIR ; push address of B
FXAIU - i integer exponentiatioo

TtTee-Argooleflt FlO:tions
Compound and annuity use the calling sequence

FER SRC2 address
FER SA:: address
F£A DST address
<EIJIttf(H»

to effect

DST <-- <op> (SRC2... SRC)

i push address of rate first
i push address of ntnber of periods second
; push address of destination third

where <op> is compound or annuity, SRC2 is the rate, and SRC is the number
of periods. All arguments SRC2, SRC, and DST must be of the extended
type.

Example

C <-- (1 + R)", where C, R, and N are of type extended.

FER R fIR ; push address of R
FER N -fIR i push address of N
fER C::::fIR; push address of C
f1ll'RlH) i cl:JIPCU'd

1-22

I
I
I'
I
I
I
I
I
I
I,

I
I
I
I
I
I

If;'.,
I~'

I

6lt"t"t') SftNE Engine

Appendix A
68()(x) SANE Access

In your assemblies include the file TLASM/SANEMACS.TEXT, which contains
the macros mentioned in this manual. The standard version is for Macintosh.
For programs that will run on Lisa, redefine the symbol FPBYTRAP as
follows:

FPBYTRAP .EQJ 0

On Macintosh, the object code for FP68K and ELEMS68K is automatically
loaded as needed by the Package Manager. On Lisa, it suffices to link your
assembled code with the intrinsic unit file IOSFPLIB.OBJ.

A-l

1
1
1\--···

I
I
1
I
I
I
I
I
I
I
I
I
I
I , .
• L

I

68t'"l"t' SANE Engine

Appendix B
68(x)() SJ\I\E Macros

6a:t~ S~NE MSCTOS

i---
;
; fILE: SANEMACS.TEXT

These macros and equates give assembly language access to
; the 68K floating-point arithmetic routines.
--I

I

; WARNII'G: set FPBYTRAP for your system.
;---
FPBYTRAP .EOU 1 ;0 for Lis~ 1 for Macintosh

.MACRO JSRFP
. If fPBYTRAP

.ELsE
fP68K ; defined in TOOlNACS

.REF FP68K
JSR FP61!<.

.EI'OC
.ENDM

.MACRO JSRELEMS
. IF FPBYTRAP

ELEMS68K idefined in TOOLMACS
.ELsE

.REF ELEMS68K
JSR ELEMS68K

.ENX
.ENDM

;---
; Operation code masks.
;---
FOAOD . ECU $0000 add
F0SU3 .E4lU $0002 subtract
f01JL .EOU $0004 multiply
FCDlY .EQU $0006 ; divide
fOCMP .EOU $0008 compare, no exception rrom unordered
FOCPX .EQU $000 A compare, signal invalid if unordered

8-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

6&'".\:,'".\:,'"1 SI1NE Engine 6&'t't' SANE M«ros

FrnEN .EOU $OOOC remainder
FOZ2X .EQU $OOOE convert to extended
FOX2Z .EOU $0010 convert from extended
FOSORT .EQU $0012 ; square root
FrnTI .Eoo $0014 round to integral value
FOTTI .ECU $0016 truncate to integral value
FOSCAlB .EOU $0018 binary scale
fOlOGB .ECU $OOlA binary log
fOCLASS .Et)J $OO1C classify
; LtVEFIt£O .EOU $OOlE

FOSETENV .EOU $O<X>1 set environment
FffiETENV .EOU $0003 get environment
FOSETHV .ECU $(X)05 set halt vector
FffiETHV .EClJ $0007 get halt vector
fOO28 .EQU $0009 convert decimal to binary
fOO2D .EQU $OOOB convert binary to decimal
fCt£G .EQU $0000 negate
FOABS .EQU $OOOF absolute
FOCPYSGNX .EOU $0011 copy sign
Fct£XT .EOU $0013 next-after
FOSETXCP .EOU $0015 set exception
FCPROCENTRY .EClJ $0017 procedure entry
fCFRCCEXIT .EQJ $0019 procedure exit
FOTESTXCP .ECU $0018 test exception
; l.H)EF It£D .EOU $OOlD
; It[)EFIt-ED .ECU $00 iF

.---~

; Operand format masks .
. _---~

ffEXT
ffDBl
fFSGL
fFINT
fFlNG
fFCO'P

.EQU

.EQJ

.ECU

.Et)J

.EOU

.ECU

$0000
$0800
$1000
$2000
$2800
$3000

extended -- 8O-bit
; doubl e -- 64-bi t

single -- 32-bit
integer -- 16-bit
long int -- 32-bit
camp -- 64-bit

float
float
float
integer
integer
integer

--
; Precision code masks: forces a floating point output
; value to be coerced to the range and preCision specified.
;---
fCEXT .ECU $0000 extended
FCDBL .ECU $4000 ; double
FCSGL .ECU $8000 ; single

B-2

I

I
I
I
I
I
I
I,

I
I
I
I
I
I
I

(
1'-/

I

68t.'t't') SANE Engine 6&.,\:\.' SANE "'''BeTas

~---..
Operation macros: operand addresses should already be on
the stack .. with the destination address on top. The
suffix XJ 0, S, CJ I, or L determines the format of the

; source operand -- extended, double, single, camp,
integer, or long integer.. respective1Yi the destination
operand is always extended.

--/

;---
; Addition.
~---..

. MACRO FADDX
t1JVE.W #FFEXT+FOADD,-(SP)
JSRfP
.Et{)M

.MOCRO ffl)()()
t1JVE.W #FfDBL+fOADD,-(SP)
JSRfP
.ENDN

• MACRO fADDS
t1JVE.W #FFSGL+FOADD,-(SP)
JSRFP
.8'DM

.NACRO FADDC
ttJVE.W #FfCONP+FOADD,-(SP)
JSRFP
.Eto1

. MACRO FADDI
t1JVE.W #fFINT+FOADD,-(SP)
JSRFP
.EN)M

. MACRO FAODL
t1JVE.W #FFLNG+fOADD,-(SP)
JSRfP
.Et01

;---
; Subtract i on.
--it

.MOCRO FSl...EX

8-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

68t:~'\') SfWE Engintl

t1NE.W 'FFEXT+FOSUB,-(SP)
JSRFP
.ENDM

• MACRO fSlEO
t1JVE .W 'FFDBL+FOSUB,-(SP)
JSRfP
.EI'01
.MACRO FSLeS
t1NE.W 'FFSGL+FOSUB,-(SP)
.JSRFP
.EI'DN

. MACRO FSlOC
t1JVE.W 'fFCONP+FOSUB,-(SP)
JSRFP
.El'Q1

.MfCRO FSlfH
t1JVE.W 'FFINT+FOSUB,-(SP)
.JSRfP
. HUM

. MACRO FSU3L
t1NE.W 'FFUNG+FOSUB,-(SP)
JSRFP
.El'Q1

;---
; Multiplication.
---,

. MACRO Ft1JLX
t1NE.W 'FFEXT+FOMUL,-(SP)
JSRFP
.rn:>M

.MOCRO Ft1JLO
t1JVE.W 'FFDBL+FOMUL,-(SP)
.JSRFP
.EI'01

.MOCRO ft1JLS
t1JVE.W 'ffSGL+FONUL,-(SP)
JSRFP
.B'VM

.NOCRO ft1JLC

8-4

I
I
1
I
I
I
I
I
I
1\
I
I
1
I

i I
il
II
I (
\ I ~_/
j

II

6~ SANE Engine

MDVE.W #FFCOMP+FOMUL,-(SP)
JSRFP
.EN)M

.MACRO Ft1JLI
NOVE.W #FFINT+FOMUL,-(SP)
JSRFP
.Etm

.M~ FttJLL
NDVE.W #FFLNG+FOMUL,-(SP)
JSRFP
.Et{)M

6&.'l~ SANE Macros

.---,
; Division.
;---

• MACRO FDIVX
NOVE.W #FFEXT+FOOIV,-(SP)
JSRFP
.EN)H

. MACRO FOIVD
t1JVE.W #FFDBL+FOOIV,-(SP)
JSRfP
.Et01

. MACRO FOIVS
NOVE.W #FFSGL+FOOIV,-(SP)
JSRFP
.ENDM

• MACRO FDIVC
MOVE.W #fFCOMP+fOOIV,-(SP)
JSRFP
.EI'OM

. MACRO FDIVI
NOVE.W DFFINT+FOOIV,-(SP)
JSRfP
.ENDM

. MACRO FOIVL
t1JVE.W #FFLNG+FOOIV,-(SP)
JSRFP
.EN)M

8-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

6&."l'\,') SANE Engine 6&.'\,'\,1 SfiNE MilerOS'

---­.'
; Square root.
;---

.MACRO F~TX
MDVE.W #FOSORT;-(SP)
JSRFP
.Et{)M

;---
; Round to integer; according to the current rounding mode.
;----...--...---...---------

.MACRO FRINTX
NDVE.W #FORTI;-(SP)
JSRFP
.EK>M

;---
; Truncate to integer; using round toward zero .
. _---­.'

.MACRO FTINTX
MDVE.W #FOTTI,-(SP)
JSRFP
.Et01

._--,
; Remai nder .
. _--,

.MACRO FREMX
MDVE.W #FFEXT+FOREH,-(SP)
JSRFP
.ENON

. MACRO FREHD
NDVE.W #FFDBL+FOREH;-(SP)
JSRFP
.ENDH

.MOCRO fREHS
MDVE.W #FFSGL+FOREH;-(SP)
JSRfP
.Et01

.MACRO FREI1:
NDVE.W #FfCOMP+fOREH,-(SP)
JSRFP
.ENDH

8-6

I
I
I
I
I
I
I
I
1
I:
I
I
I
I
I
I

'.

I .L
I

.MACRO FREMI
MDVE.W hFfINT+fDREM,-(SP)
JSRFP
.EN)M

.MACRO FREML
NDVE.W hFFLNG+FOREM,-(SP)
JSRFP
.ENDM

._---------------------------------------,
; Logb.
--,

.MOCRO FL0G8X
MDVE.W hFOLOGB/-(SP)
JSRFP
.801

._--,
; Scalb. a __ _

I

,

.MACRO FSCALBX
NOVE.W nFfINT+FOSCALB,-(SP)
JSRFP
.ENDM

; Copy-sign.
---­.'

.MACRO FCPYSGNX
MOVE.W #FOCPYSGN/-(SP)
JSRFP
.EtD1

---­.'
; Negate.
---­.'

.MACRO Ft£GX
NDVE.W #fONEG,-(SP)
JSRFP
.ENDM

B-7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

6&.,\,\') SANE Engine 6&'t,\1 SflNE Macros

--I

; Absolute value_
;---

.M,:coo F~
MDVE.W #FOABSJ-(SP)
JSRFP
.EN)N

;---
; Next-after. NOTE; both operands are of the same
; format, as specified by the usual suffix.
;---

.M~ Ft£XTS
MDVE.W #FFSGL+FONEXT,-(SP)
JSRFP
.EN)M

.MOCRO Ff'EXTO
NDYE.W #FFDBL+FDNEXT,-(SP)
JSRFP
_EtD1

.MACRO Ft£XTX
NDYE.W #FFEXT+FONEXT,-(SP)
JSRFP
.EN)N

;---
; Conversion to extended.
;---

.MfCRO FX2X
MDVE.W #FFEXT+FOZ2X,-(SP)
JSRfP
.EN:lM

.MACRO FD2X
NDVE.W #ffDBL+fOZ2X,-(SP)
JSRFP
.EN)N

.MACRO fS2X
MDVE.W #ffSGL+fOZ2X,-(SP)
JSRFP
.EI'01

8-8

I
I
I
I
I
I
If
1'--···

I

6&'t':t1 SIWE Engine

.MACRO FI2X
MDVE.W #FFINT+F022X, -(SP)
JSRFP
.ENDN

.MACRO FL2X
MDVE.W #FfLNG+f022X,-(SP)
JSRfP
.ENOM

.MACRO FC2X
MDVE.W #FFOOMP+F022X,-(SP)
JSRFP
.ENDH

;---
; Conversion from extended.
;---

. MACRO FX20
ttJVE.W #FfDBL+FOX22,-(SP)
JSRFP
.ENOH

. MACRO FX2S
t1JVE.W #FFSGL+FOX22,-(SP)
JSRfP
.Et{)M

• MACRO FX21
I'1JVE.W #FFINT+FOX2Z,-(SP)
JSRfP
_EI'D'1

. MACRO FX2L
t1JVE.W #FfLNG+FOX22/ -(SP)
JSRFP
.Et-{)M

. MACRO FX2C
t1JVE.W #FFCOMP+FOX22/ -(SP)
JSRfP
.Et{)M

8-9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

68Ct't1 SANE Engine

;---
; Binary to decimal conversion.
;---

• MACRO FX20EC
MOVE.W HFFEXT+FOB2D~-(SP)
JSRFP
.EN:>M

.MOCRO FD20EC
t1JVE.W HFFDBL+FOB2D$-(SP)
JSRFP
.Et'()H

. MACRO fS2DEC
t1lVE.W #FFSGL+FOB2D,-(SP)
JSRFP
.EN)M

• MACRO FC2DEC
I1JVE.W HFFCOMP+FOB2D,-(SP)
JSRFP
.Eto1

• MACRO FI20EC
t1lVE.W HFFINT+FOB2D~-(SP)
JSRFP
.EN)M

• MACRO FL20EC
I1JVE.W #FFLNG+FOB2D~-(SP)
JSRFP
.ENJM

--------------------------------------~

; Decimal to binary conversion.
--
" .MACRO FDEC2X

I1JVE.W #FFEXT+FOD2B,-(SP)
JSRFP
.EN)M

.MACRO FDEC2D
MDVE.W HFFDBL+FOD2B~-(SP)
JSRFP
.Eto1

B-10

1
1
1\

I
I
I
I
I
I
I
I
I
I
I
I
I
I
L· I

\1

6&'t"t1 SANE Engine

.MOCRO FDEC2S
MDVE.W 'FFSGL+FOD2B~-(SP)
JSRFP
.EN:>t1

.MFCRO FDEC2C
NDVE.W #FFCOMP+FOO2B;-(SP)
JSRFP
.EN:X1

.MOCRO FDEC2I
MDVE.W 'FFINT+FOD2B~-(SP)
JSRFP
.Et'01

.MfCRO FDEC2L
MDVE.W #FFLNG+fOD2B,-(SP)
JSRFP
.801

;---
; Compare, not signaling invalid on unordered.
--,

. MACRO FCl'PX
NOVE.W #fFEXT+fOOMP,-(SP)
JSRfP
.EI'{)N

.MOCRO FCK'lD
MDVE.W 'FFDBL+fOCNP,-(SP)
JSRfP
.Et£Jt1

. MACRO fOPS
t1JVE .W #FfSGL+FOCMP,-(SP)
JSRfP
.Et01

. MACRO FCt1'C
t1JVE.W #FFCOMP+FOCHP,-(SP)
JSRFP
.Et01

• MACRO FC't'PI
MOVE.W #fFINT+FOCMP,-(SP)
JSRfP
.ENJM

8-11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

6&'"t'"t? SANE Engine

.MACRO Fct'PL
NOVE.W #FFLNG+FOCNP/-(SP)
JSRFP
.8'DM

;---
; CompareJ signaling invalid on unordered.
;---

. MACRO FCPXX
NOVE.W #ffEXT+FOCPX,-(SP)
JSRFP
.Et{)M

• MACRO FCPXD
NOVE.W 'FfDBl+fOCPX,-(SP)
JSRfP
.Et'D1

.Mf"CRO FCPXS
NOVE.W #fFSGL+fOCPX,-(SP)
JSRFP
.. Et01

.M~RO FCPXC
NOVE.W #FFCOMP+FOCPX,-(SP)
JSRFP
.EI'DN

.Mf"CRO FCPXI
NOVE.W #ffINT+FOCPX/-(SP)
JSRFP
.ENDM

. MACRO FCPXL
t1JYE .W DfflNG+FOCPX/-(SP)
JSRFP
.Ef'[)M

~-Th;-f~ll~i~~-;~~;~;-d;fi~;-~-;;t-~f-;~:~~ll;d-fl~~ti~~---
.; branches. They preSrnlB that the appropriate COOlpare
; operat i on, macro F01'z or FCPXz, precedes.
--I

.MACRO FBEO
EEQ %1
.Ef'()N

8-12

I
I
I(c. 6&'\.'\.') SANE Engine

6&W SIMIE MllCTOS

1 .MOCRO FBlT
B:S %1

I
.ENl'1

.NOCRO FBLE
BlS %1

1 _EtO'1

.MOCRO FB:JT

1
ElGT %1
.Ef'VM

.MOCRO FEG::

I EIGE %1
.EI'01

I . MACRO FElJlT
BlT %1
.8{)N

I, • MACRO FElULE
BlE %1
.Et01

I _MACRO FEUlT
EtlI %1
.Et01

I .NOCRO FEUiE
ax: %1

I .EH:>t1

. MACRO FaJ
BVS %1

I .ENDN

. MACRO FBO

I BYe Xl
.Et01

. MACRO Ff.t£

I EtE %1
.EI'01

I" l-

lL
B-13

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

.HOCRO FBtE
BEO %1
BVS %1
.EN)M

• MACRO FBLG
EN:: %1
eve %1
.EN)M

--" ; Short branch versions.
--" .MOCRO FBEOS

EEO.S %1
.Et{)N

.HOCRO FBLTS
BCS.S %1
.EH:)M

. MACRO FBlES
BLS.S %1
.Et01

. MACRO FOOTS
EliT .S %1
.EN)M

. MACRO fEG:S
EIiE.S %1
.Eto1

.MOCRO fElJLTS
BLT.S %1
.EN)M

.MOCRO FBUlES
BLE.S %1
.EN:>M

.MOCRO fEl.GTS
B-tI.S %1
.EtD1

8-14

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

\"-...

I
IL

I

6&'"t'"t1 SANE Engine

. MACRO FBt.J:iES
EO:.S %1
.Et01

• MACRO fEllS
BVS.S %1
.EN)M

• MACRO FBOS
BVC.S %1
.EI'DM

• MACRO FBt£S
M.S %1
.EI'{)M

• MACRO FBlES
BEQ.S %1
BVS.S %1
.EtD1

• MACRO F6LGS
EH:.S %1
BVC.S %1
.EN)M

--~

; Class and sign inquiries.
--~

FCSNAN
FCONAN
FCINF
FCZERO
Fctm1
FCOEt-mN

.EQJ

.EOU

.EQJ

.EOU

.EC;U

.EQJ

.MACRO FCLASSS

1
2
3
4
5
6

signaling NAN
quiet NAN
infinity
zero
normal m.rnber
denormal nllllber

NDVE.W #fFSGL+FOCLASS,-(SP)
JSRfP
.Ef'DM

.MACRO FCLASSD
MDVE.W #FFDBL+FOCLASS,-(SP)
JSRFP
.EI'()t1

8-15

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

&8t.'"t'"t1 SftNE Engine

.MOCRO FClASSX
MDVE.W #FFEXT+FOClASS,-(SP)
JSRFP
.Ef'I)M

.---~

; Bit indexes for bytes of floating point environment word.
--,
FBINVALID
FEUFlOO
FBOFLOW
FOO I YZER
FBlt£XOCT
FElRt{)lO
fER{)HI
f8LSTRN:>
FEDBl
FBSGl

.EI)J

.EI)J

.EI)J

.EQJ

.EI)J

.EI)J

.ECU

.EI)J

.EOU

.EI)J

o
1
2
3
4
5
6
7
5
6

invalid operation
underflow
overflow
division by zero
inexact
low bit of rounding mode
high bit of rounding mode
last round result bit
double precision control
single precision control

; Get and set environment.
;---.MOCRO FGETENV

NDVE.W #FOGETENV,-(SP)
JSRfP
.Et01

.MACRO FSETENV
NDVE.W #fOSETENV,-(SP)
JSRFP
.Et'01

;---
; Test and set exception.
; --

.MACRO FTESTXCP
NDVE.W #FOTESTXCP;-(SP)
JSRFP
.El'{)M

.MOCRO FSETXCP
NDVE.W #fOSETXCP,-(SP)
JSRFP
.Et01

8-16

\,

1
1
I:

1
1
1
1
I
1
I
1
I
I
I
I
I
I,
."-
I

6lJt'll) SANE Engine

;--
; Procedure entry and exit.
; --

.MACRO fPRO:ENTRY
MDVE.W 'FOPROOENTRY/-(SP)
JSRfP
.801

.MACRO FPRO:EXIT
NDVE.W 'fOPROCEXIT/-(SP)
JSRfP
.Et01

;--
; Get and set halt vector.
;------------------------------------~----------------------

.MACRO FGETHV
NDVE.W 'fOGETHV,-(SP)
JSRFP
.Et01

.MOCRO FSETHV
NDVE.W 'FOSETHV,-(SP)
JSRFP
.B01

---" ; Elementary function operation code masks.
--I

FOLNX .E(JJ $0000 base-e log
FOLOO2X .ECU $0002 base-2 log
FOLN1X .EUJ $0004 In (1 + x)
FOUXi21X .EQU $0006 10g2 (1 + x)

FOEXPX .EUJ $0008 base-e exponential
FCEXP2X .EUJ $000 A base-2 exponential
fCEXP1X .E(JJ $(XXlC exp (x) - 1
FCEXP21X .EQU $OOOE exp2 (x) 1

F~I .EOO $8010 integer exponentiation
f~Y .E(JJ $8012 general exponentiation
FOCO'f::ICU{)X .EUJ $Co 14 compound
FOAf'tUITYX .EUJ $(:016 annuity

FOSINX .ECU $0018 sine
fOCOSX .EClJ $001A cosine

8-17

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

6ll"''''') SANE Engine

FOTANX
FOATANX
Frn~

.EQ..J

.EQU

.EOU

$OOlC
$OOlE
$0020

tangent
arctangent
random

;---
; Elementary function macros.
.--~-------------­.'

.MACRO FLNX
MDVE.W #FOLNX,-(SP)
.JSRELEMS
.ENDN

; base-e log

.MACRO fLOG2X base-2 log
MDVE.W #FOLOG2X,-(SP)
JSRELEMS
.OOM

.MACRO FLN1X In (1 + x)
MDVE.W #FOLN1X,-(SP)
JSRELEMS
.ENDM

.MACRO FLOG21X 10g2 (1 + x)
NDVE.W #FOLOG21X,-(SP)
JSRELEMS
.am
.MACRO FEXPX base-e exponential

MDVE.W #FOEXPX,-(SP)
JSRELEMS
.ENDN

.MACRO FEXP2X base-2 exponential
MDVE.W #FOEXP2X,-(SP)
JSRELEHS
.E1'01

.MACRO FEXP1X exp (x) - 1
MDVE.W #FOEXP1X,-(SP)
JSRELEMS
.ENOM

.MACRO FEXP21X exp2 (x) - 1
NOVE.W #FOEXP21X,-(SP)
JSRELEMS
.ENOM

8-18

6&':t"t? S~NE Engine

.MACRO F~I
MDVE.W nFOXPWRI,-(SP)
JSRELEMS
.EN)N

.MACRO FXPWRY
NOVE.W nfOXPWRY,-(SP)
JSRELEMS
.ENDN

integer exponential

general exponential

.MACRO FCCtAl....N)X ; compound
MDVE.W nfOCOMPOUNDX,-(SP)
JSRELEMS
.Etf)M

.MACRO FAN'lJITYX ; annuity
NDVE.W nFOANNUITYX,-(SP)
JSRELEHS
.ENDM

.HOCRO FSINX
MDVE.W nFOSINX,-(SP)
JSRELEMS
.Et'{)M

.MACRO FCOSX
NDVE.W nFOCOSX,-(SP)
JSRELEMS
.Et01

.MACRO FTftIX
MDVE.W nFOTANX,-(SP)
JSRELENS
.Et{)N

.MACRO FATANX
NDVE.W nFOATANX,-(SP)
JSRELEMS
.ENDN

sine

cosine

tangent

arctangent

.MACRO FRFtOO1X ; randOOl ntlllber generator
NOVE.W nFORANDONX,-(SP)
JSRELENS
.ENDM

8-19

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

6.6l'"t'(.') SANE EngiM

--~

; NaN codes.
--~

N~T .E4U 1
NAN~ .ECO 2
NIH>IV .E4U 4
NANt1JL .EOU 8
NAtR:M . EOU 9
NANASCBIN .E~ 17
NAf'iXW .ECU 20
NfV'QERO . ECU 21
NANTRIG .EQU 33
NANINVTRIG .ECU 34
NANLOO . ECU 36
N~ .ECU 37
NANFINAN .EQU 38
NANINIT .EOU 255

Invalid square root such as sqrt(-l).
Invalid addition such as +INF - +INF.
Invalid division such as 0/0.
Invalid multiply such as 0 • INF.
Invalid remainder or mod such as x REM O.
Attempt to convert invalid ASCII string.
Result of converting camp NeN to floating.
Attempt to create a NeN with a zero code.
Invalid argument to trig routine.
Invalid argument to inverse trig routine.
Invalid argument to log routine.
Invalid argument to xAi or xAy routine.
Invalid argument to financial function.
Uninitialized storage.

--~

8-20

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

t;luick. Rtfftfutnctf Guidtf

68000 SANE
Quick Reference Guide

This Guide cont.ains diagrams of t.he SANE dat.a formats and t.he 68K SANE
operations and environment word.

C.I Data Formats

Each of the diagrams below is followed by the rules for evaluating the number
v.

In each field of each diagram, the leftmost bit is the msb and the rightmost is
the lsb.

fOI1l8t Diagnn Symbols

v value of number
s sign bit
e biased exponent
i explicit one's-bit (extended type only)
f fraction

Single: 32 Bits

1 8 23

lsi e f

if 0 < e < 255, then v = (-l)s * 2(e-127) * (l.f);
if e = 0 and f =~/ 0/ then v = (-1)s * 2(-126) * (O.f);
if e - 0 and r = 0, then v = (-1)s * 0;
if e = 255 and f = 0, then v = (-1)s * 00;
if e = 255 and f ~/ 0/ then v is a NaN.

C-l

widths

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

6f£t'"/t'"l SANE Engine tiluick. Reference Guide

Double: 64 Bits

1

lsi

11 52 widths

e f

if 0 < e < 2047, then v = (-l)s .. 2(e-1023) .. (1.f);
if e = 0 and f =~/ 0, then v = (-l)s .. 2(-1022) .. (O.f);
if e = 0 and f = 0, t hen v = (-1) s • 0;
if e :::: 2047 and f = 0, then v = (-1)8 .. 00;
if e = 2047 and f =~/ 0, then v is a NBN.

Ccnp= 64 Bits

1

lsi

63 widths

d

if s = 1 and d = 0, then v is the unique comp HeN;
otherwise, v is the two's-complement value of the
64-bit representation.

Extended: 80 Bits

1

lsi

15 1 63 widths

e I i I f

if 0 <= e < 32767, then v = (-l)s • 2(e-16383) • (i.f)i
if e = 32767 and f = 0, then v = (-1)8 • 00, regardless of i;
if e = 32767 and f =~/ 0, then v is a NBN, regardless of i.

C-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

6&'t't1 SANE Engine t;>uick Rttference Guide

Co2 Operations

In the operations below~ the operation's mnemonic is followed by the opword in
parentheses: the first byte Is the operation cOde; the second is the operand
format code. For some operations, the first byte of the opword (xx) is ignored.

Co2.1 AbtI'eviations and symbols

The symbols and abbreviations in this section closely parallel those in the text,
although some are shortened. In some cases, the same symbol has various
meanings, depending on context.

Operands

DST destination operand (passed by address)
SAC source operand (passed by address), pushed before 05T
SRC2 second source operand (passed by address), pushed before SRC

Dats Types

X extended (80 bits)
o double (64 bits)
S single (32 bits)
I integer (16 bits)
L longint (32 bits)
C comp (64 bits)
Dec decimal Record
Oecform decform Record

6~~ Processor Registers

DO data register 0
X extend bit of processor status register
N negative bit of processor status register
Z zero bit of processor status register
V overflow bit of processor status register
C carry bit of processor status register

Exceptions

I invalid operation
U underflow
o overflow
o divide-by-zero
X inexact
For each operation, an exception marked with x indicates that the operation will
signal the exception for some input.

C-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

6bl.:'l'"t? SI1NE Engine t;Juick Reference Guide

Em·'ironment and Halts

ErMrd SANE environment word (16-bit integer)
HltVctr SANE halt vector (32-bit longint)

C.2.2 ""ithmetic Operations and Auxiliary Routines (Entry Point. FP6BK)

OQeratiQO Or;!erands and Data T~l2es Exce(;!tions
Kl) DST {-- DST + SOC I U 0 D X
FADDX (0000) X X X x - x - x
FAOOD (0800) X X 0 x - x - x
F PDDS (1 ()()()) X X S x - x - x
F ADOC (3000) X X C x - x - x
FADDI (2000) X X I x - x - x
FADDL (2800) X X L x - x - x

Sl8TRJl:T DST {-- 05T - SRC I U 0 0 X
FSlEX (0002) X X X x - x - x
FSUBO (0002) X X D x - x - x
FSUBS (1002) X X S x - x - x
FSUBC (3002) X X C x - x - x
FSUBI (2002) X X I x - x - x
FSUBL (2802) X X L x - x - x

tu..TIPLY DST <-- DST " SRC I U 0 D X
FI'1JLX (0004) X X X x x x - x
Ft1JLD (0804) X X 0 x x x - x
Ft1ULS (1004) X X S x x x - x
Ft1JLC (3004) X X C x - x - x
ft1JLI (2004) X X I x - x - x
FNULL (2804) X X L x - x - x

DIVIOC DST {-- DST / SRC I U 0 0 X
FOlVX (0006) X X X x x x x x
FDlVO (0806) X X 0 x x x x x
FOrVS (1006) X X S x x x x x
FDIVC (3006) X X C x x - x x
FDIVI (2006) X X I x x - x x
FOIVL (2806) X X L x x - x x

C-4

I
I 6&'t't') SANE Engine ~uick. RefeTence Guide

I
SJJfI£ lUll DST (-- sqrt(DST) I U 0 0 X

I
FSORTX (0012) X X x - - - x

A1JI) m INT DST (-- rnd(DST) I U 0 0 X

I
FRINTX (0014) X X x - - - x

llU£ m INT DST (-- chop(DST) I U 0 0 X

I
FTINTX (0016) X X x - - - x

A:J1AltftR DST (-- OST REM SRC I U 0 0 X

I
FREMX (OOOC) X X X x - - - -
FREMD (06OC) X X D x - - - -
FREMS (1 OOC) X X S x - - - -
FREMC (3OOC) X X C x - - - -

I FREM I (200c) X X I x - - - -
FREML (28OC) X X L x - - - -

I
00 (-- integer quotient OST/SRC~

between -127 and +127

l..CC BINfRY DST (-- logb(DST) I U 0 0 X

I FL(X;8X (OOIA) X X x - - x -

&::AlE BIHfRY OST (-- OST • 2"SRC I U 0 0 X

I FSCALBX (0018) X X I x x x - x

rt:GAlE OST (-- -OST I U 0 0 X

I Ft-EGX (0000) X X - - - - -

t13SOWTE VAUE OST (-- IOSTI I U 0 0 X

I F FffiX (OO;)F) X X - - - - -

aFY-SIGN SRC (-- SRC with OST's sign I U 0 0 X

I fCP'rSGNX (00 11) XOorS XDorS XOorS - - - - -

I
tEXf-AfTfR SRC <-- next after SRC toward DST I U 0 0 X
FI'£XTX (0013) X X X x x x - x
Ft£XTD (0813) D D D x x x - x
FI'£XTS (1013) S S S x x x - x

I
I
I C-5

I
~ ~-- .. ---" ---

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

C.23 CorM:nions (Entry Point FP68K)

OQeration

a:tIYERT

Bin to Bin
FX2X (0010)
FX2D (0810)
FX2S (1010)
FX2C (3010)
FX21 (2010)
FX2L (2810)

FD2X (OBOE)
FS2X (l00E)
FC2X (3OOE)
FI2X (2OOE)
FL2X (28OE)

Bin to Dec
FX2DEC (0008)
FD2DEC (0808)
FS2DEC (1008)
FC2DEC (3008)
FI2DEC (2008)
FL2DEC (2808)

OQerands and Data T~Qes

O5T <-- SRC
X X
D X
S X
C X
I X
L X

X D
X S
X C
X I
X L

O5T (-- SRC according to SRC2
Dec X Decform
Dec D Decform
Dec S Decform
Dec C Decform
Dec I Decform
Dec L Decform

(First SRC2 is pushed, then SRC, then OST.)

Dec to Bin
FDEC2X (0009)
fDEC2D (0809)
FDEC2S (1009)
fDEC2C (3009)
fDEC21 (2009)
fDEC2L (2809)

OST (-- SRC
X Dec
D Dec
S Dec
C Dec
I Dec
L Dec

C-6

9uick Reference GUide

ExceQtions

I U 0 D X
x - - - -
x x x - x
x x x - x
x - - - x
X - - - x
x - - - x

x - - - -
x - - - -

1 U 0 D X
x - - - x
x - - - x
x - - - x
- - - - x
- - - - x
- - - - x

I U 0 D X
- x x - x
- x x - x
- x x - x
X - - - x
x - - - x
x - - - x

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

6&:t'"t'"l SIWE Engine

C.2A compare and Classify (Entry Point FP68K)

O~eration Ogerands and Data T~r;;!es

a:JPmE

No invalid Status Bits <--
fm- unm-dered where DST
FCMPX (0008) X
F01PD (0808) X
FCMPS (1008) X
fCMPC (3008) X
Fct'flI (2008) X
fD1PL (2808) X

(invalid only for signaling NaN inputs)

Signal invali d Status Bits <--
if unordered
FCPXX (000 A)
FCPXO (080A)
FCPXS (100A)
FCPXC (300A)
FCPXI (200A)
fCPXL (280A)

<relation>

O5T > SRC
ooT < SRC
O5T = SRC
O5T & SRC unordered

CU6SIfY <class>
<sign>

FCLASSX (OOlC)
FCLASSD (08lC)
FCLASSS (lOlC)

DST

I
I
I

where DST
X
X
X
X
X
X

Status Bits
X N 2 V C
0 0 0 0 0
1 1 0 0 1
0 0 1 0 0
0 0 0 1 0

(-- class of SRC
(-- sign of SRC
<-- (-l)A<sign> *

X
o
S

C-7

<relation>
<relation> SRC

X
D
S
C
I
L

<relation>
<relation> SRI:

X
0
S
C
I
L

<class>

ri'ufck Reference GuIde

E2'jcegtions

I U 0 0 X

x - - - -
x - - - -
x - - - -
x - - - -
x - - - -
x - - - -

I U 0 0 X

x - - - -
x - - - -
x - - - -
x
x - - - -
x - - - -

I U 0 D X

I
I
I
I
I
I

SRC

si gnal i ng NaN
quiet NaN
infinite
zero
normalized
denormal i zed

(class>

1
2
3
4
5
6

t;'uick. Reference Guide

I SRC <sign>

I
I positive 0
I negative 1
I
I
I
I

I C2_5 Environmental Control (&try Point FP68f<)

I
I
I
I
I
I
I
I
I
I
I
I

Operation

o::r ElNIIDtENT
FGETENV (000 3)

9:T ElNIIDtENT
FSETENV (()()() 1)

Operands and Data Types

DST <-- EnvWrd
I

EnvWrd <-- SRC
I

Exceptions

I U 0 D X

I U 0 D X
x x x x x

(exceptions set by set-environment cannot cause halts)

lEST E)([fpfI£If
FTESTXCP (00 18)

SET fJCIH7Tlrn
FSETXCP (00 15)

AU:ED..I£ EH1R'f
FPROCENTRY (00 17)

AU:ED..I£ EXIT
FPRO:EXIT (0019)

2bit <-- SRC Xcps clear
I

EnvWrd < -- EnvWrd fH) SRC
I

I U 0 D X

I U 0 D X
x x X X X

DST (-- EnvWrd, EnvWrd (-- 0 I U 0 D X
I xxxxx

EnvWrd (-- SRC AND current Xcps I U 0 D X
I x x x x x

C-8

I
I 6~ SANE Engine t;'uick ReftfTtmCtf Guid8

I
C.2..6 Halt Control (Entry Point FP68K)

I SET HAlT VECTtR HltVctr <-- SRC I U 0 0 X
FSETHV (xxO,) l - - - - -

I (£f HAL. T 'VEC1tR 05T (- HltVctr I U 0 0 X
FCETHV (0007) L - - - - -

I
I

C.2.7 Elementsy FWlCtiDr'B (Entry Point ELEMS66K)

Operation QJ2m:§l)ds and Dat§ T~I2~ ExceJ2tions

~-£ UGIUlHt 05T <-- In(DST) I U 0 0 X

I
FLNX (0000) X X x - - x x

8&:-2 UlifIUT.., DST <- log2(DST) I U 0 0 X

I fLOO2X (0002) X X x - - x x

I
Bfl!i£-£ Lffil (LN1) 05T <- In(l+OST) I U 0 0 X
FLN lX (<XX).4) X X x x - x x

I B'f'f:iE -2 Lffi 1 DST (-- log2(1+DST) I U 0 0 X
FLOO21X (0006) X X x x - x x

I 8&:-£ EJ<Il(JENTJAL DST <-- e"DST I U 0 0 X
FEXPX (OOOB) X X x x x - x

I B'f'f:iE -2 f)Cp(J£Jfl'I AI.. DST (-- 2"DST I U 0 0 X
FEXP 2X (OOOA) X X x x x - x

I EW&:-E EXPl DST <-- e"DST - 1 I U 0 0 X

I
FEXP 1X ((X)X) X X x x x - x

8&:-2 EXPl DST <-- 2"DST - 1 I U 0 0 X

I fEXP21X (OOOE) X X x x x - x

I
I C-9

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ga't't'l SANE Engine

INTE.1D E>t.P£HNTIATI(Jf DST (-- DSTASRC
fXPWRI (6010) X x I

(BERAl.. E>t.P£HNTIATI()II DST <-- DST"SRC
f~Y (8012) x X X

mm.m IN IEhfS I DST compound(SRC2,SRC) (--

fOOHPOUND (C014) X X X

(SRC2 is the ratej SAC is the number of periods.)

flKJIlY ffCItR DST <-- annuity(SRC2,SRC)
ffV'HJITY (C016) X X X

(SRC2 is the rate; SAC is the number of periods.)

SD£: DST (-- sin(DST)
FSINX (0018) X X

c:mIt£ DST (-- cos(DST)
fCOSX (OOlA) X X

TMLHT DST <-- tan(DST)
fT~ (OOle) X X

IR:TlIaNT DST (-- atan(DST)
fATANX (OOlE) X X

Rf1tXI1 DST (-- random(DST)
FRANDX (0020) X X

C-I0

t;luick ReffJTence Guide

I U 0 0 X
x x x x x

I U 0 0 X
x x x x x

I U 0 0 X
x x x x x

I U 0 0 X
x x x x x

I U 0 0 X
x x - - x

I U 0 0 X
x x - - x

I U 0 0 X
x x - x x

I U 0 0 X
x x - - x

I U 0 0 X
x x x - x

I
I
I
I
I
I
I

I
I
I

['
\

(

6&"l"l1 SANE Engine t;'uick Reference Guide

C.3 Environment Word
The floating-point environment is encoded in the i6-bit integer format as shown
below in hexadecimal:

msb lsb
\-------------------------------\-------------------------------1 I - I r 1 r I x I d 1 0 lui il - 1 R 1 R 1 X I DI 0 I U II I
1-------------------------------1-------------------------------1
rounding exception rounding halt
direction flags precision enables

rounding direction, bits 6000
0000 -- to-nearest
2000 -- upward
4000 -- downward
6000 -- toward-zero

exception flags, bits lFOO
0100 -- invalid
0200 -- underflow
0400 -- overflow
0800 -- division-by-zero
1000 -- inexact

rounding precision, bits 0060
0000 -- extended
0020 -- doubl e
0040 -- single
0060 -- IN)EfIt£D

halt enabled, bits OOlF
000 1 -- i nvali d
0002 -- underflow
0004 -- overfl ow
0008 -- division-by-zero
0010 -- inexact

Bits 8000 and 0080 are undefined.

rr

i
u
o
d
x

RR

I
U
a
D
x

Note that the default environment is represented by the integer value zero.

C-ll

I)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(,

The StdUnit

Contents

1 ~i~ ••••••.•••••••••••••••••••••••.•••••••••••••••••••••••.•••.•••••• 1

2 f=UIlCti~ ~ ••••••••.•••.•••.••••••..•••.•••.. __ • __ •. _ ••..••.••.••••.•• 1
2.1 Initialization. 1
2.2 String and Character Manipulation 1
2.3 File Name Manipulation ... 1
2.4 Prompting ... 2
2.5 Error Text Retreival ... 2
2.6 Workshop Support .. 2
2.7 Conversions. 0 •••••••••••••••••••• 0 ••• 0 •••••••••••••••••••••••••••••••• 3

3 ~~l~ .. _ _•...........•. _._ .•.•.. _ 3

4 ~~ •. __ ••.•. _ •....••......• _ ..••...... _•......•.•......•..•••.....•• 5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Stcl.Jnit Unit

1 Introduction
StdUnit is the "Standard Unit," an intrinsic unit that provIdes a number of
standard functions. It contains functions dealing with:

• Character and string manipulartion.
• File narne manipulatIon.
• Prompting.
• Error messages:.
• Special Workshop fee.tures.
• Conversions.

Workshop tools should use the unit wherever possible, especially for
prompting and Operating System error reporting" to make the Workshop
interface consistent.

Note: All names in StdUnit begin with the letters SUo This avoids name
conflicts when incorporating the unit into your code and identifies where
things come from.

2 Functionol Areas

2..1 Initialization
StdUnit needs to be initialized before it can be used. Using the unit without
initializing it will often result in an address or bus error.

2.2 string and Character Manipulation
stdUnit provides a standard string type, SUStr; a type for sets of characters;
definitions for several standard characters (such as CR and 8S); and
procedures for case conversion, trimming blanks, and appending strings and
characters.

2.3 File Name Manipulation
File name functions let you determine if a psthname is a volume or device
name only; add extensions (such as .TEXT) to the file names (the procedure
knows the conventions about when extensions should and should not be
added); splitting a pathname into its three basic components--the device,
volume, or catalog component, the file name component, and the extension
component; putting the components back together into a file name; and
modifying a file name given optional defaults for missing volume, file or
extension components.

Note: Several of the procedures return overflow flags for identifying when 8
file name component has exceeded its character limit. You may choose to

1-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

LisB System Softw8J"e Stand8J"d Unit

ignore the overflow condition, particularly if you think it likely to occur only
in perverse circ;umst.ances.

Not.e: The string paramet.ers t.o these procedures are typed differently,
sometimes SUStr's, or VAR SUSt.r's, or SUSt.rP's (pointers to SUStr's). This is
to avoid problems with Pascal string typing when using the procedures with
st.rings that are not SUStr's (e.g., PathName's), and to take into account the
cases in which the parameters are likely to be string const.ant.s.

2.4 Prompting
StdUnit provides a number of procedures to get characters, strings, file
names, integers, yeslno responses, etc., from the console, providing for
default values where appropriate.

Most of the prompting procedures return a PrompState indicating whether an
escape [CLE AR] was typed, whet.her the default was taken. or whether there
was a request for e.ptions with? The states returned are given for each
procedure. You can ignore the prompt stat.es you are not interested in. For
example, if ':,'ou don't want to treat ? as an option request you can ignore
the SUOptions state and not treat the? returned as a special character.

2..5 Error Text Retrieval
StdUnit provides a mechanism to retrieve single-line error messages from
specially formatted error files. Error messages can be looked up by number
in one or more error files.

You can use the as error file OSErrs.ERR to return a real message when an
as error occurs (see Example 2, below). Not.e that OS errors are also
l"eturned via Pa.'Scal's IORESUL T.

The ErrTool program lets you make yOLO" own compacted message files.
Using this error mechanism, you can add and modify messages without
recompiling your program. ErrTool is described in the plarkshop Llser's
Guidtt Chapter 11, The utilities.

A call to retrieve a message opens the error file, searches the directory for
the error number, finds location of the message, and returns the text.

A program can use StdUnit to access more than one error file
simultaneously. For example, your program can access different files for OS
error messages and your own messages.

2.6 W4rtshop Support
Special Workshop functions let you:

• Stop the execution of an EXEC file in progress.
• Find out the name of the boot and current prefix volumes (SysVols) .
• Use a super-RESET that will try to open a file first on the prefix

volume, then on the boot VOlume, then on the current process volume.

1-2

1
1
I:
1
1
I
I
1
I
I
I
I
I
I
I
I'
1
I;

I

(

Lisa SJ,lS'tem Software StlJl1dtlTd linit

2..7 CcirM!nions
Conversion procedures let you convert from integers and longints to strings;
and from strings to integers and longints.

3 Ex8l11p1es

EXBmpJe 1

Assume we are going to prompt for an output file name (OutFName) and that
we already have the input file name (InFName). We will use SUSplitFN to
split the input file name into its various components. Then we will prompt
for the output file name (with SUGetFN) using the volume and tile name
components of the input file name as defaults but with a .ERR extension.
We then do a CASE on the prompt state (PState) returned by SUGetFN. The
will terminate if the file specification is an escape [CLEAR]; say that no
option are available it ? is typed as en option request; prompt again if no
fUe is specified; since we want to require an output file; and fall through if
the default is accepted or some other file is specified. Note that we only
have to check for the prompt states we are interested in for special
handling.

9999:
tllRITE ('Hale of Error output file ');
9Bpl1tfH (IInfHfIIe, lVolN, IFN, IExth
SlIietfH (..... tfNale, PState, VoIN, fH, '.~');
c&: PState Of

SlEscape: EXIT (EIrfileP); {exit rr .. progr-l
SDptions: IEGIN

..ulELH ('No options are available. ');
OOTO 9999;

EM>;
Slflone: OOTO 9999;

EM>; {CI&::}

1-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Lise. SJlStem Softwsre ste.nd8.rd Unit

ExsmpJe 2

Suppose we have just made a Pascal 110 call and want to report an error
(along with the OS message text) if we receive a nonzero IORESUL T. Note
that we copy IORESUL T into our IOStatus variable so that the subsequent
WRITELN will not reset the value of IORESUIL T before we get a chance to
use it. (EMsg should be a SUStr.)

IF ImESlJL T () 0 1lEN
EEIiIH

IOStatus :"" I£RSlLT;
NUTELN (I Error opening input rile. I);
&E:rrText ('OSE:rrs.EHl', lOSt at us, IBtsg);
~ITELN (EJ1sg);

EN>;

1-4

1
I

(

1
1
I,

I
I:

I
I
I

(

I
1
I'
I
I
I
I
.

I
I

Lisa Sjlstttm Software standard Unit

.04 Interface

t Copyright 1983, 19;:-AP;le-c~p~~;:ttt~~~ ---------- -------)

I This unit provides a number of standard type definitions and a collection I
{ of procedures which perform a variety of common functions. The areas }
{ covered are: }
{ (1) String and Character manipulation l}
{ (2) file Name Manipulation
{ (3) Prompting }
{ (4) Retrieval of messages from disk }
{ (5) Develo~ent System Support }
{ (6) Conversi ons }

t Fred Forsman 4-25-84 l
{---}
{$SETC ForOSllorHigher := TRUE}

{$R-} { make it fast, no range checking}
{$S SULib }

lI'4IT StcUni t;
INTRINSIC;

INTERFOCE

USES
{$U libOSlSysCall.obj } SysCall, { for definition of PatHName, etc. }
{$U libPl/PasLitCall.obj } PasLitcall;
{$U li bPLlPPasLi tc. obj } PPasLi tc;

cmsT
SUMaxStrLeng = 255;
SlI'4ullStr =' , ,
SUSpace = ' ';
SlDrdCR = 13;
SUMaxPNLeng = 66;
SlI1axVNLeng = 33;
SlI1axFNLeng • 32-, " SUVolSuffix = -;

TYPE

{ max length of path neme }
{ max length of volume name, includes leading · ·
{ maximum length of file name }
{ suffix or end of device or volume name }

SUSetOfChar • SET Of Oi~­
SUStrP = "SUStr- I ,

1-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Lisa System Softwere Standsrd Unit

SUStrP = ASUStr·
SUStr = STRING'[2jj];
SlNolNarne = STRING [SlJ1axVNLeng);
SUFile = FILE·
SUFileP '" ASUFile;
PromptState = (SUOefault,

SlIEscape,
~one,
SUJptions,
SUValid,
SUInvalid
);

the default (if any) was chosen) }
the "Clear" key was pressed }
nothing specified in response to prompt
"?" was entered--ie, an option query}
valid reponse }
invalid repnnse--eg, non-number to SUGetlnt}

ErrTextRet = (SUOk,
SlEadEFOpen,
SUBadEFRead,
SUErr~otFound
);

successful }
could not open error file }
error reading error file }
error number not found }

ConvNState = (SUYalictt
SUNoN,
SUBactt
SUNOverFl ow
);

YFf?

{ valid number }
{ no number -- nothing specified
{ invalid number }
{ overflow -- number too big }

SUOsBootV SUVa INarne; {The volume the OS was booted from }
SUMyProcV : SUVolNarne; {The volume MyProcess was started from
Mell, SUBackSpace, SUCr, SUTab, SlEsc,

SUDle, SUNul : CHAR; {predefined ch vars } {ff 1/23/84}
SUNullS ; SUStr; { predefined str var }
SUKeyBoard : INTERACTIVE; { non-echoing console, used by SUGetCh }

{ff 2/29/B4}

{============================== INIT AND DONE =================:::=:====:====}
PRO:E~ SUlnit;

{ Should be called before using rest of unit. On the OS this opens
"-KeyBoard". It also initializes the standard character variables.

PRCCE~ SlDone;
{ Can be called when done using unit (although this is not strictly

necessary. On the OS this closes "-KeyBoard". }

{=c========================== STRINGS AND CHARS ==:=========c=====:=====::===}
F"l.KTION SUUpCh (Ch : CHAR) ; CHAR;

t SUUpCh returns the ch that was passed, uppercased if it was lower
case. }

1-6

I
I
1·,··-­

I
I
I
I
I
I
I·~- ..
I
I
I
I
I
II
: I ,~_,O,
I L ,

'I

Lisa System Software Standard Unit

Ft...N:TI~ SULowCh (Ch : a-t~) : Oi~;
{ SULowCh returns the ch that was passed, lowercased if it was upper

case. }

PROCEDl..R:: SUJpStr (S: SUStrP);
{ SUUpStr uppercases the string that is passed. }

PROCEDL.R: SULowStr (S: SUStrP);
{ SULowStr lowercases the string that is passed. }

Fl.J'[;TH1~ Sl£qStr (Sl: SUStrP; S2: SUStrP) : BOOLE~; {ff 2/29/84}
{ SUEqStr returns TRUE if the two strings are equal (ignoring case). }

Fl..N:TI(}I SlEq2Str (Sl: SUStrP; S2: SUStr) : BOOLEfV'f; {ff 3fl/84}
{ SUEq2Str returns TRUE if the two strings ere equal (ignoring case).

This variant of SLEqStr allows the second parameter to be a constant.}

PROCEDURE SUTrimLeading (s: SUStrP); {ff 2/29/84}
{ SUTrirnLeading removes the leading blanks and tabs in the passed

string. }

PROCEDURE SUTrimTrailing (S: SUStrP); {ff 2/29/84}
{ SUTrirnTrailing removes the trailing blanks and tabs in the passed

string. }

PROCEIX.R:: SUTrimBl anks (S: SUStrP);
{ SUTrinfHanks removes leading and trailing blanks and tabs in the

passed string. }

PROCE£X.R:: SUAdC£h (S: SUStrP; Ch : CHM; MaxStrLeng : INTEGER;
VM Overflow : BOOLEAN);

{ SUAddCh appends the passed ch to the end of the passed string.
OVerFlow is set to TRUE if adding the ch will cause the string to be
longer than MaxStrLeng. }

PROC:EDURE SLConcat (Sl: SUStrP; S2: SUStrP);
{ SUConcat appends the second passed str to the end of the first passed

string. It is assumed that the target string is of sufficient size to
accornodate the new value. }

PROCEIX.R:: SUAddStr (Sl: SUStrP; S2: SUStrP; MaxStrleng : INTEGER;
VM OVerflow : BOOLEAN);

{ SUAddStr appends the second passed str to the end of the first passed
string. OVerFlow is set to TRUE if adding the second string will
cause the resulting string to be longer than MaxStrLeng. }

1-7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Lisa System Software Standard i.init

PROCEDURE SUSetStr (Oest: SUStrP; Src: SUStrP);
{ SUSetStr sets the target string (Oest) to the given value (Src) by

copying the value onto the target. It is assumed that the target
string is of sufficient size to accomodate the new value. }

PROCEDURE SUCopyStr (Dest: SUStrP; Src: SUStrP; Start, Count: INTEGER);
{ SUCopyStr sets the destination string (Oest) to the specified

substring of the source string (Src) by copying the appropriate part
of the source to the destination. It is assumed that the destination
string is of sufficient size to accomodate the new value, and that the
Start and Count values are reasonable. }

{================================ FILE NAMES ================================}
FlJCTION SUIsVolNerne (FN: SUStrP): EOJLE~;

{ SUlsVolName returns a boolean indicating whether the passed file name;
FN, is a volume or device nerne (i.e., not a full file nerne) }

PROCEDURE SUValPart (PathN: SUStrP; VaIN: SUStrP); {ff 2/29/84}
{ SUVolPart extracts the volume name part of a pathname (or catalog

specification). }

PROCEDURE SUAddExtension (FN: SUStrP; DefExt: SUStr;
NaxStrLeng: INTEGER; V~ OVerflow: BOOLE~);

SUAddExtension will add the default extension, OefExt, to the end of
the file nome, S, if the extension is not already present. If the
file name ends with a dot, the dot will be removed and no extension
will be added. If the pathname is a device or volume nerne only no
extension will be added. OVerflow is set true if adding the extension
will overflow the string (determined using NaxStrLeng). }

PROCEDURE SUSplitfN (PathN: SUStrP; CatN: SUStrP; fN: SUStrP;
Ext: SUStrP);

{ SUSplitFN splits a PathName into its catalog, file name, and file
narne extension components. }

PROCEDURE SUNakefN (PathN: SUStrP; CatN: SUStrP; FN: SUStrP; Ext: SUStr;
V~ OVerflow: EOJLE~);

SUMakefN constructs a PathName from its catalog, file name, and
file name extension components. The OS CatN's are assumed to hsve a
leading "_". OVerflow is set if any of the file name components are
too long. This procedure will not create a file narne over SUMaxPNLeng
chars long.}

PROCEDURE SUChkFN (FN: SUStrP; VAR PState: PromptState; DefVol: SUStr;
DeffN: sustr; DefExt: SUStr);

{ SUChkFN checks a file name specification, putting result type in

1-8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

USB: System SoftwNe standNd i..init

PState. If no file name is given, then DefFN is used. If FN does not
have DefEx tin it" then t he ex t ensi on is appended. If no vol urne i 8
specifed then the DefVol is used. PState is set appropriately:

PState = SUJptions if '7 I is hit to a81< for options
PState = SUDefault if nothing specified ~I/hen a default is present
PState = SUNone if default overriden with '\' or if CR with no

default
PState = SUInvalid if one or more clf the file name components

overflowed
PState = SUValid otherwise}

{================================ PROMPTING =================================}
PROCEDURE SlXietCh (VAR Ch: CHAR);

{ SUGetCh reads a character from the console without echoing it and }
{ without interpreting <cr> as <sp>,. as Read (Ch) does. }

PROCEDURE SLGetLine (S: SUStrPi VAR PState: PromptState);
{ SUGetLine reads a line from the console a character at a time,

performing its own line editing. PState is set appropriately;
PState = SUEscape if <clear> was hit,
PState = SUValid otherwise.}

PROCEDURE SUGetStr (S: SlStrPi VAR PState: PromptState; DefVal: SUStr)i
SUGetStr reads a string from the console; it is lil<e SUGetLine with
the addition of defaults. PState is set appropriately:

PState = SUOefault if <cr) only was hit; S is set to DefYal.
PState = SUEscape if <clear> was the first character hit.
PState = SUValid otherwise,}

PROCEDURE SUGetFN (FN: SUStrP,; VAR PState: PromptState,; DefVol: SUStr;
DeffN: SUStri OefExt: SUStr);

{ SUGetFN reads a file name from the console, with result type in
PState. SUGetfN will print out any defaults in brackets (such as
[fOOl [,TEXT)) before prompting for the file name. If no file name
is given, then OeffN is used. If fN does not have DefExt in it,
then the extension is appended, If no volume is specifed then the
DefVol is used. PState is set appropriately:

PState = SUEscape if <clear> hit
PState = SUOptions if '7' is hit to ask for options
PState = SUDefault if nothing specified when a default is present
PState = SUNone if default overriden with '\1 or if CR with no

default
PState .. SUlnvalid if one or more of the file neroe components

overflowed
PState = SUValid otherwise}

1-9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Lis8 System Software

PROCE[)lJiE st...GetInt (VAR I: INTEGER; VAR PState: PromptState;
DefVaI: INTEGER);

Stand81'd l.,1nit

{ SUGetInt reads an INTEGER from the consoleJ with PState set as in
SUGetStrJ except that PState = SUlnvalid when a non-numeric is input.}

PROCE[)I.J£ SUAai tEscOrSp (VAR PState: PromptState);
{ SUWaitEscOrSp prints a message 'Type <space> to continueJ <clear> to

exit.' & waits for the user to hit a {sp> or <clear>, setting PState
appropriately;

PState = SUEscape if <clear> was hit
PState = SUValid if <sp> was hit}

PROCEOLR:: SlMai tSp;
{ SUWaitSp prints a message ('Type <space> to continue. ') and waits for

the user to hit a <sp>. }

PROCEDURE stJ:ietChI nSet (VAR Ch: CHAR; Chars: SUSetOfChar);
{ SUGetChInSet reads characters from the console (without echoing) until

a character from the given set is typed. The accepted character is
echoed and an end-of-line is written. The character matching ignores
case. }

FlJ'CTICl't st...GetYesNo : 8O)LE~i
{ st...GetYesNo prints the message "(Y or N)" and reads characters from the

console (without echoing) until a 'y', 'y', 'n', or 'N' is typed. If
a 'y' is typed "Yes" will be printed followed by an end-of-line; if
'n' is typed "No" will be printed. The appropriate boolean value is
returned. }

fl.tCTICtf SUGetBool (Defaul t: BOJLEAN): BOJLEAN;
SLGetBool prints the message "(Y or N) «default>]" and reads
characters from the console (without echoing) until a 'y', 'Y', 'n',
'N' J space or return is typed. If a 'y' is typed "Yes" will be
printed in the place of the default. If 'n' is typed "No" will be
printed. If a space or return is typed the default is used. The
appropriate boolean value is returned. }

{=========================== ERROR TEXT RETRIEVAL ===========================}
PROCEDURE SUGetErrText (ErrFN: SUStr; ErrN: INTEGER; ErrMsg: SUStrP;

VAR ErrRet: ErrTextRet);
SUGetErrText retrieves error message text, given an error number and
and error file to look the error up in. The error file should have
been generated by the error file processor. SUGetErrText use$
SUSysReset to open the error file. }

PROCEDURE SUErrText (ErrFN: SUStr; ErrN: INTEGER; ErrMsg: SUStrP);

1-10

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Lis8 SJ/stem Software standard Unit

SUErrText retrieves error message text~ just as does SUGetErrText;
however~ if the text is not obtainable due to a non-SUOk ErrRet value
from SUErrText l SUErrText will return the string

"Error message text not available." }

{============================ DEV. SYS. SUPPORT =============================}
PRO:ElX.R: SUStoJ£xec (V~ ErrNlIll: INTEGER);

{ Should be called to stop the current exec file if an error occurs in a
program running under an exec. Returns any error conditions
encountered in closing the exec file in the errnllll var parameter.
Informs the shell that the exec file was terminated due to an error.

fJROCEDt.R: Sl.I:loseExec (V~ ErrNLITI: INTEGER); {ff 3/7/84}
{ Should be called to stop the current exec file only if you want to do

so without informing the shell that the exec file was terminated due
to an error. You should probably use SUStoJ£xec unless you have a
good reason to use this alternate version. }

fJROCEDt.R: SUIni tSysVolsi
{ Initializes "SU1yProcV" and "SLOsBootV", the name of the volLlTle on

which my process was created and the nerne of the volLlTle which the OS
was booted off of. A message may be printed if there is trouble
getting this information from the OS. This can be called more than
once; it will only make the OS calls the first time. }

PRO:E~ SUSysReset (f : SUfileP; fN : SUStr; V~ IOStatus : INTEGER);
{ SUSySReset is for opening system files, and will try the prerix~ boot~

and current process volumes (in that order) when trying to access a
file. SUSysReset assumes that the file name FN does not have a volume
nerne. SUSysReset may sometimes have to call SUlnitSysVols. }

{====_ •• _======-= •• _============ CONVERSIONS =====.=========-=====.====.===._}
PROCElX.R: SUIntToStr (N : INTEGER; S : sustrP);

{ SUlntToStr converts an integer into its string form; The string which
S points to should be of length)= 6 (5 digits + sign). }

fJROCEDt.R: SULIntToStr (N : LONG I NT; S : SUStrP);
{ SULlntToStr converts an longint into its string form; The string

which S points to should be of length >- 11 (10 digits + sign). }

fJROCEDt.R: SUStrToInt (NS : SUStrP; vm N : INTEGER;
VAR CState : ConvNState);

SUStrTolnt converts a string to an INTEGER. Leading and trailing
blanks and tabs ere pemitted. A leading sign {'_'~ '+'] is
permitted. The CState variable (conversion state) will be set to

1-11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Liss System Softw81e standard Unit

indicate if the number was valid/ if no number was present/ if an
invalid number was specified, or if the number overflowed. }

PROCEDURE SUStrToLlnt (NS : SUStrPi VAR N : LONGINT;
VAR CState : ConvNState);

SUStrToLlnt converts a string to a lONGINT. It behBVes just like
SUStrTolnt otherwise. }

1-12

The ProgCorrm Unit

Contents

1 lntrO(hJctiCM1 _. __ . __ ____ . ____ .. ____ .. __ ... _ _ ... ___ . __ .. _._ .. _ 1

2 Pr~~ ~~ .• __ •......... _ .. _ .. _•... _ •..••...............••.••••.....• 1
2.1 Initi8.1ization .. _. ____________________ . _ ... _. __________________________ .. __ . _. ____ 1
2.2 Set-Next-Run and the Return String .. ___ 1
2.3 The Communications Buffer _ ... _ _ __ 2
2.4 Reading from and Writing to the Communications Buffer 4
2.' Internal Workshop Function .. __ . _ .. _ ... _ 4

3 Intert~. ___ .. _ .. _••.•••. _ ••.• __ .•. _•..•.....••••.•••.•••••. _ .•.•.....•. 5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(

• -,,- ... >~

The ProgCorrm lklit

1 Introduction
ProgComm is an intrinsic unit in SULlb that allows proQTams to communicate
with the shell and with other programs. Three basic mechanisms are
provided:

• Set-Next-RlJn Command. A program can tell the Workshop shell what
to run next. The specified program will be run after the current
program is done, taking precedence over even an exec file in progress.

• The Program Return string. The return string can be set by your
program and accessed from the exec processor (via the RETSTR
function). This allows exec scripts to be written that make choices
based on program results.

• The Communication Buffer. The communication buffer is a lK byte
buffer global to the Workshop for communication between programs. A
set. of primitives supporting cheract.er- and line-oriented I/O to and
from the buffer is provided.

These mechanisms can be used in conjunction with each other. For example,
s program can write a series of invocation arguments to the communication
buffer and then tell the shell which program to run next. This second
program can check the communication buffer to find its arguments.
Programs can be written so that, by convention, they first check the
communication buffer for their arguments; and then prompt for input from
the console only if the arguments ere not found in the buffer.

2 ProgComm Routines
This section describes the ProgComm unit interface.

2..1 Initialization
The PCInit procedure init.ializes the ProgComm unit so that a program may
use it.

Proceue PClnit;
PCInit should be called before using the ProgComm unit. The program's
return string (RETSTR in the exec language) is initialized to the null string.

2..2 Set-Next-Roo and the Ret " string
The PCSetRunCmd and PCSetRetStr procedures let a program set what
program will run next and pass back a return string to the exec processor.
The SUStr type comes from the Standard Unit (StdUnit in SULib), which
provides a number of string-manipulation routines.

1-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Lisa System Softw8l'e ProgComm

Procedt6e PCSetRunCmd (Re : SUSU);
PCSetRunCmd lets a program tell the shell what program or exec file to run
after the current program terminates" allowing program chaining. RC" the
run command passed to PCSetRunCmd" should be a string with the same
program pathname or exec file invocation you would give to the Workshop
Run command. The run command set in this we:y will take precedence over
any keyboard type-ahead and over 81Y':I pending exec file commands.

If you want to use PCSetRunCmd to run a Workshop tool normally invoked
from the Workshop menu line, set RC to the two-character string consisting
of an escape (CHR(27)) and the appropriate menu command letter. This is
necessary because typing E t.o invoke the Editor is not always the same as
saying Run Editor.OBJ. The Run command looks for Editor.OBJ on the three
prefix volumes, while the E menu command looks on the Workshop boot
volume first and then on the prefix volumes. (Note that only some items in
the WorKshop menu are actually separat.e tools that can be Run.)

Starting to run an exec file while you are already running another exec file
causes the first one to be terminated so the second can run. This means
tllat if exec file A runs program P, and P calls PCSetRunCmd to run exec
file B~ then, when program P terminates" exec file A will also be terminated
so exec file 8 can run. Exec file A will not be resumed when exec file B
has completed.

Procedure PCSetRetstr (RS : SUStr);
PCSetRetStr lets a program set a return string that can be accessed through
the exec processor's RETSTR function. This lets exec files make choices
based on information passed back to the shell by cooperating programs. How
the return st.ring is used and interpreted is up to you, and depends on what
sort of information you want to pass back to the exec processor.

23 The Corrvnunication Buffer
The following procedures and functions operate on the communication butter,
a 1K byte buffer global to the Workshop shell (that is, it stays around
between program invocations). The buffer can hold any type of informationj
a standard set of functions is provided for Pascallike char6cter- or
line-oriented access to the buffer.

Following are some constant, type .. and variable declarations from the
ProgComm interface which relate to t.he communication buffer.

lDIST
{ communication buffer content types }
PCHone = -1; {nothing in buffer }
PCAny = 0; { for PCReset to match any content type }
PCText = ~ { text, as supported by PCGets & PCPuts }
fl(lkJfIt1ax = 1023; {max buffer index, ie, bufr is lK bytes }

1-2

I
I.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

US8 S}'Stem Software

TYPE
Pt:Buf':IP
PCBur.r

VIR
RBuhPtr

ProgComm

= 1PDBufr; { pointer to bufr }
= PfD<EI) .mAY [0 .. PCBuf'It1ax] Of om;

: PCBufrP; { pOints to bufr after successful open }

The communication buffer is given a type when it is opened for writing with
PCReWrite. This type will be used to determine whether a potential reader
trying to open the buffer with PCReset will be successful. The intent is to
prevent reading of the buffer when the contents are not of the type expected
by the reader. Three predefined constants are provided for buffer-typing:
PCNone means that the buffer has no contents; PCT ext means that the buffer
contains standard text with CR line delimiters; and PCAny matches any type,
allowing a reader to override the typing mechanism. Other buffer content
types (such as mouse events) may be defined by users, choosing a number to
identify the new type that doesn't conflict with the predefined types. The
only restriction is that communicating programs must have compatible
conventions. To use the buffer for something other than text, use PCBufrPtr
to access the buffer (using whatever means of interpretation of the buffer is
desired).

The buffer also has an access key; which functions in much the same wf!ttj as
the content type (Le., writers set it and readers must match it to gain access
to the buffer). The intent of the access key is to prevent programs from
reading the buffer when they are not the intended recipient. The access key
should be established by agreement between communicating programs. If a
buffer writer does not care about preventing unintended access to the buffer,
the null string can be used for the access key. Note that the access key is
case sensitive.

Following are t.he routines for opening and closing the communication buffer.

ProcecU-e PCReWrite (writeType: INTEGER; Key: SUStr)i
PCReWrite opens the communication buffer for writing. The content type
and access key are set. PCBufrPtr is set to point to stort of the
communication buffer. A PCReWrite will override any previOUS use of the
buffer; that is, it will flush any previOUS buffer contents. WriteType should
be an integer identifying the type of data. you plan to write to the buffer. If
you are planning to use the text-oriented primitives provided, WriteType
should be PCText; otherwise, WriteType should be some integer established
by agreement between the communicating programs. Key should be a string
also established by agreement between the communicating progra.ms. A
useful form of key is one that identifies the intended reCipient, so that
contents left in the buffer are not read inadvertently by programs for which
they were not intended.

1-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

LisB SJ,.:stem Sortw8l'e ProgComm

flWlCtion PCReset (ReadType: INTEGER; Key: SUstr): BOOLEAN;
PCReset opens the buffer for reading. Tne boolean re.sult will indicat.e
whether the open was successful. The open will fail if ReadType does not
match the type set by the last buffer writer or if Key does not match the
key set by the last ""'liter.

function PCClose (KiIlEkt'r: BOOLEAN; Key: SUS1;r): BOOLEAN;
PCClose will close (or empty) the communication buffer. If KillBufr is true,
the buffer will be emptied. In general, the buffer can be read more than
once (by multiple readers) if desired. If a reader is finished with the buffer
and knows that no one else should read the buffer, PCClose should be called
with KillBufr set to true. The call to PCClose will fail if the access key
does not match. PCClose may be used to flush buffers that were written by
someone else, as long as you know the access key. PCClose mery be called
without calling PCReset or PCReWrite first.

2.4 Reading frc:m and Writing to the Corrmunication Buf'fer
The following functions provide a text-oriented buffer facility with Pascallike
character- and line-oriented reads and writes.

Function PCPutCh (Ch: CHAR): BOOLEAN;
PCPutCh puts a character into the buffer. The boolean result indicates
whether the operation was successfuL It fails if the buffer is full or if the
buffer wes never opened successfully for writing. Note that PCPutCt"(CR) is
equivalent to PCPutLine(").

flAlCtion PCGetCh (V AR Ch: a-tAR): BOOLEAN;
PCGetCh gets 8 character from the buffer. The boolean result indicates
whether the operation was successful. It fails if the buffer is empty or if
the buffer was never opened successfully for reading.

Fmction PCPutLine (L: SUStr)= BOOlEAN;
PCPutLine puts a line into the buffer. A CR is put in the buffer following
the string psssed to PCPutLine. The boolean result indicates whether the
operation was successful. It fails if the buffer is full or if the buffer WeB

never opened successfully for writing.

Function PCGetLine (VAR L: SlJStr): BOOLEAN;
PCGetLine gets a line from the buffer, where a line is the text from the
current buffer pointer to the next CR or the end of file (whichever comes
first). The boolean result indicates whether the operation was successful. It
fails if the buffer is empty or if the buffer was never opened successfully
for reading.

1-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Lisa System SoftwNe ProgComm

25 Internal Wlrkshop Function
You will notice the following function in the ProgComm interface; it is used
for special-purpose communication between the Workshop shell and various
Workshop tools.

Function PCShellCmd (Cmd: INTEGER; P: SUStrP): BOOLEAN;
For internal use by Workshop tools only. Don't use this function.

1-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

USB. System SoftW8l'C

3 Interface

INTERFACE

USES
{$U StdUnit } StdUnit,
{$U ShellComm } ShellComm;

CONST

ProgComm

{ communication buffer content types for use with PCReset and PCReWrite }
PCNone = -1; { nothing in buffer }
PC Any = 0; { for PCReset to match any buffer content type }
PCText = 1; { text; a~ ~upported by PCGet's and POPut's below

PCBufrMax = 1023; { max Bufr index, ie, comm bufr is 1K bytes }

{ command constants for PCShellCmd }
PC_SetReallyStop = 1; {determines i f SUSto~xec really stops exec

PC_GetReallyStop
PC_SetUnSavedEdits

PC_GetUnSavetEdits = 8751;

files} {ff 317/84}

tells if unsaved edits ere left in the
editor } {ff 3/12/84}

TYPE
PCBufrP
PCBufr

= APCBufri { ptr to communication buffer
= POCKED ARRAY [0 .. PC6ufrHax] Of OiAR;

V~
PCBufrPtr , PCBufrP; { will point to PCBufr after successful PCReset or

PCReWrite }

PROCE~ PClniti
{ PClnit should be called before using the ProgComm unit. One effect of

note is that the program's return string (RetStr) is initialized to the null
string. }

PROCEDURE PCSetRunCmd (Re ; SUStr);
{ PCSetRunCmd enables a program to tell the shell what program (or exec

file) to run after the current program terminates, which allows program
"chainingll. The run command set in this WfftY will take precedence over any
keyboard type-ahead and over any pending exec file commands. }

PROCEDURE PCSetRetStr (RS : SUStr);
{ PCSetRetStr allows a program to set a return string which may be

accessed via the Exec Processor's RETSTR funciton. This allows exec files to
make choices based on information passed back to the shell by cooperating

1-6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Lisa S}~em Softwl!JTe ProgComm

programs. How the return string should be used and interpreted is up to you,
end will depend on what sort of information you want to pass back to the exec
processor. (But in order to be a good citizen it is probably best to follow
whatever system-wide conventions emerge and prevail.) }

{ The following procedures and function operate on the COMMUNICATION BUFFER,
which is a lK byte buffer which is global to the Workshop shell. The buffer
can hold essentially any type of information, but a standard set of functions
is provided for Pascal-like character or line-oriented access to the buffer.

The communication buffer is given a TYPE when it is opened for writing
with PCReWrite. This type will be used to determine whether a potential
reader trying to open the buffer with PCReset will be successful. The intent
is to prevent reading of the buffer when the contents are not of the type
expected by the reader. Three predefined constants are provided for buffer
typing (PONone which means the buffer has no contents; PCText which means that
it has standard text with OR line delimiters; and PCAny which will match any
type, allowing a reader to override the typing mechanism). Other buffer
content types (such a mouse events) may be defined by users, choosing some
number to identify the new type which does not conflict with the predefined
types. We make no attempt here to provide a complete set of predefined types;
the issue is simply one of having compatible conventions (agreement) between
communicating programs. To use the buffer for something other than text, the
variable PCBufrPtr may be used to access the buffer (using whatever means of
interpretation is desired).

The buffer also has an ACCESS KEY, which functions in very much the
serne way as the content type (ie, writers set it and readers must match it to
gain access to the buffer). The intent of the access key is to prevent
programs from reading the buffer when they are not the intended recipient. The
access key, again, is something that should be established by agreement
between the communicating programs. If a buffer writer does not care about
preventing unintended access to the buffer, the null string can be used for
the access key. Note that the access key is case sensitive. }

PROCE~ PCReWrite (WriteType ; INTEGER; Key ; SUStr)i
{ PCReWrite opens the buffer for writing. The contents type and access

key are set. PCBufrPtr is set to point to the communication buffer. }
Ft..t£:TI~ PCReset (ReadType : INTEGER; Key : SUStr): BOOLEAN;

{ PCReset opens the buffer for reading. The boolean result will indicate
whether the open succeeded. The open will fail if contents type and access
key do not match the type and key set by the last buffer writer.}

AJNCTION PCClose (KillBufr : BOOLEAN; Key : SUStr): BOOLEAN; {ff 2/2/84}
{ PCClose will close the buffer. If KillBufr is true the buffer will be

emptied. In general, the buffer can be read more than once (by multiple
readers) if desired If a reader is finished with the buffer and knows that
no one else should read the buffer, PCClose should be called with KillBufr set
to true. The call to PCClose will fail if the access key does not match. }

1 .. 7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Lisa S}·'Stem Softw8l'e ProgComm

F1...N::TION PCPutCh (Ch : CHAR) : BOOLE~i
{ PCPutCh will put a character into the buffer. The boolean result will

indicate whether the operation was successful. It will fail if the buffer is
full or if the buffer was never opened successfully for writing. }
FLKTI~ PCGetCh (VAR Ch ; CHAR) ; BOOLEANi

{ PCGetCh will get a character from the buffer. The boolean result will
indicate whether the operation was successful. It will fail if there is
nothing more to read or if the buffer was never opened successfully for
reading. }

FUNCTION PCPutLine (L : SUStr) : BOOLEAN;
{ PCPutline will put a string into the buffer, followed by a CR. The

boolean result will indicate whether the operation was successful. It will
fail if the buffer is full or if the buffer was never opened successfully for
writing. }

FUNCTION PCGetLine (VAR L : SUStr) : BOOLEANj

{ PCGetLine will get a line from the buffer. The boolean result will
indicate whether the operation was successful. It will fail if there is
nothing more to read or if the buffer was never opened successfully for
reading. }

FUNCTHli PCShellCmd (Cmd : INTEGERi P : SUStrP): BOJLEANi {ff 3/7/B4}

1-8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(

(

QuickPort Prograrrrneris Guide

Contents
Pre/Clef.. I

Chapter 1
Introduction

1.1
1.2

What is QuickPort? ... 1-1 I')
Types of QuickPort Applications............................ 1-1 0<...

1.3 Additional Features ... 1-1

Chapter 2
Us1ng QuickPort

2.1 QuickPort Program ReQuirements 2-1
2.2 ChOiC~ for QUickPort. Applic.ations 2-1 5'
2.3 The QUlckPort ExecutlOn Environment 2-2
2.4 The QuickPort User Interface 2-3

Chapter 3
Advanced QuickPmt Featwes

3.1 Introduction to the Features. 3-1
3.2 Text Input and the Input Panel 3-1
3.3 Text Output and the Text Panel 3-1
3.4 Graphic Output, the Graphic Panel, and Mouse Input 3-2
3.5 Required to Change Your Program 3-4 I') J..1
3.6 Procedures for All Applications............................. 3-4 oG'r
3.7 Procedures for Using the Text PaneL...................... 3-7
3.8 Procedures for Using the Graphic Panel 3-10
3.9 Printer Support ... 3-12
3.10 The Terminal Emulator 3-13
3.11 Procedures for the QuickPort Hardware Interrace 3-14

Chapter 4
Bringing Yc:u Application to the Lisa Desktop

4.1 Adding the USES List Elements 4-1
4.2 System Configuration ... 4-2 1_
4.3 Generating Your TooL .. 4-3 If
4.4 Installing Your Tool .. 4-4
4.5 The Icon Editor .. 4-5
4.6 Shipping Your Application 4-5

Appendixes
A
B

The Standard QuickPort Menus A-1 ~
lNriting Your Own Terminal Emulator 8-1 if

----4-"

Preface

About nus Manual
This manual describes QUickPort, B set of private and Intr1nsic units that
facilitate porting Pascal programs to the Lisa desktop. This manual is
written for experienced Lisa Pascal programmers who ere already famUier
with the lise Workshop end the lisa Operating System and who understand
the concepts and conventions used by the Lisa User Interface. In addition,
those who intend to write terminal emulators are assumed to know Clascal.

For material not cOlJered in this manual, refer t.o one of the listed documents
for additional information:

• OperBting S}·'Stem Reference fo.1snu8.1 for the LisB.

• Workshop Us'er'S' Guide for the Lisa

• Lisa Internals Ml!lI1ual.

• Lisa User Interface Guidelines.

• fin Introduction to Clssc8.1.

I
I {
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Chapter 1
Introduction

1~1 \IIJhal is ~ckPort? ~. ~ ~ _ . ~ ..• _ ••.•••. ~ . -• -••••••.•••.. ~ •...••• ___ ~ • _ • • • • 1-1
1.2 Types at QuickPmt Applications _. __ .. ___ .. __ . _. __ _ 1-1
1..3 Additional Features __ ._ _ _ 1-1

1

I
1
I
I
I
I
I
I
I.
I
I

(

(

Introd~tion

1-1 What is QuickPort?
QuickPort is a set of private and intrinsic units that provide a fast and
reliable wwy to run Pascal programs in the Lisa Office System. By using
QUickPort, you can make a few changes in a typical Pascal program, and it
will run on the Lisa desktop. Applications that LIse QuickPort are integrated
so that you can cut and paste to and from other Lisa applications.
QuickPort also provides standard menus for all applications that use it.

1..2 Types: of QuickPort Applications
Before you can use QuickPort to port your application to the Desktop, your
program must

• Run in the Lisa Workshop .
• Use only rea.dlns and wri telns for text input and output.

A Pascal program that runs In the Usa Workshop and uses readins and
wri telns for text input and output is called a "vanilla" Pascal program.
Vanilla Pescal programs can be ported to the desktop with very few changes.

You can also use QuickDraw calls for graphics, use the mouse to get input,
and use a subset of the Lisa Hardware Interface. However, the addition of a
graphic panel and use of the hardware interface involves more coding to
acheive the port than a vanilla Pascal program.

1..3 Additional FeEt.w'es
QuickPort also provides a set of addilonal procedures for configuring the
panels, text output, graphic output, and for appllcations that use the hardwerre
interface. Using these features, you can increase the power of your
application. The additional QuickPort features are described in Chapter 3.

1-1

I
I'
I
I
I
I
I
I
I
I
I
I
I
I
I:
I
I
I
I

l·

Chapter 2
Using QuickPort

2M! Qulct-;pgt Program Requiremerts _________ . _______ .• __________________ 2-1

2.2 Choices tar QuickPort ApplicatiOfB _______________________ M __ • ___ • ___ 2-1

2.3 The QuickPmt Execution ErMronrnert. ____________ . _____________ M. ___ 2-2
2.3.1 Using Operating System Calls 2-2

2.3.1.1 yield_CPU __ 2-2
2.3.1.2 Make""process 2-2
2.3.1.3 LDSNs (Logical Data Segment Numbers) ... _ .. 2-2
2.3.1.4 Terminate_Process, Kill_Process 2-3
2.3.1.5 Terminating the Program Abnormally 2-3

2_4 The QuickPmt User Irterface ___ 2-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Using QuickPort

2.1 QuickPc:lt Program Requirernerts
Vanilla Pascal programs need nothing but the addition of one or two list
elements to the USEs statement in its main program. A vanilla Pascal
program runs in the Lisa Workshop and uses only readlns and wri telns for
input and output. You can use QuickDraw, but there are some minor changes
required. See Section 3.4.1.1, QuickDraw Requirements, in Chapter 3, for
more information. If you use the Lisa Hardware Interface, you must modify
your program and use the QuickPort Hardware Interface. The QuickPort
Hardware Interface is a subset of the lisa Hardware Interface; it is described
in Section 3.11 .. Procedure~ for the QuickPort Hardware Interface, in Chapter
3.

If your program is a vanilla Pascal program, you can either enhance it using
the QuickPort features described in Chapter Three, or port it directly to the
Lisa Desktop. If you wish to port your program to the Lisa Desktop without
using any of the additional QuickPort features,. make sure your program
works in the QuickPort execution environment described in Section 2.3, and
then turn to Chapter Four: Bringing Your Application to the Lisa DeskTop.

2.2 Choices fm QuickPmt Applications
You can produce several different types of applications using QuickPort:

• Applications that produce text output only.

• Applications that use QuickDraw to produce graphic and/or text output.

• Graphic applications that use the QuickPort Hardware Interface to get
mouse input in the graphic panel.

QulckPort provides three panels: the text panel, the input panel, and the
graphic panel. The text panel saves all text output, unless the Don't Save
Buffer command is chosen from the Edit menu. Any application that
produces text output only gets a text panel automatically. The input panel
displays text that has not been read by the program. You can choose to
have the input panel or not; the default is no input paneL Any application
that produces graphic output only gets a graphic paneL Such programs can
use in addition, a text panel, and/or an input panel. The default is one
panel.

The text and graphic panels can both be scrolled vertically and horizontally.
The panels can be enlarged and shrunk to provide different views of the
output. Both panels can be split verticall'y and horizontally, allowing the
user to see different parts of the output at the same time.

2-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

9ilickPort Progrsmmer's Guide Using 9uick.PlJIt

23 The QuickPmt Execution ErMronmert
One of the most important things to remember when using QuickPort is that
the Lisa Desktop is a multiprocessing intergrated environment and you can
affect the state of ot.her applications running on the desktop if you don't
keep this in mind. Be particularly careful about using functions in the
QuickPort Hardware Interface, because t.hese functions change the state of
hardware, thus affecting all applications (including the desktop).

QuickPort programs: can be run in the background (inactive window) when
they are not wait.ing for input. When a program running in the background
needs input, it is suspended. Programs running in the background compete
with the active window for CPU time. Programs with long CPU-bound loops
should use either Yield_CPU or OPYield_CPU to yield the CPU to the
active window.

User actions such as pulling down the menus and clicking the mouse are
processed only when your program calls call screen 1/0 (WRITEs and READs,
etc.). If you have a long CPU-bound loop, be sure to use either Yield_CPU
or OPYield_CPU, so that. your program will be more responsive to the user.
If you have a tight loop, there is no way for the user to break out of the
loop, unless the debugger is loaded and you can hit the NMI key to halt the
process. Be sure to put Yield_CPU, (JJYield_CPU, or PAbortFlag in any
tight loops. Note that you must call OPConfig to pass an II-period to your
program if you need to call PAbortFlag. OPConfig is described in Section
3.6 of Chapter 3.

23.1 Using Opersing System Calls
You can make any operating system calls, but remember that Lisa has a
multiprocessing environment.. Whenever a document is opened, a process
may be created (tools that handle multiple documents create one process
that handles one or more documents). If two documents are opened from the
same tool, you have two processes running separate instances of the same
program. This could result in inconsistent data if Wri te_Datas and
Read_Datas, or Rewri tes and RESETs are performed on the same file. If
this is lIndesirable, you should add additional code to your application to
check whether the file can be opened by more than one process.

2.3.1.1 Yield CPU
Yield_CPU gives the CPU to any other ready process, but does not handle
any user actions, such as pulling down menus .. and moving windows.
QuickPort provides an alternative procedure, CflYield_CPU, that allows the
user to pull down menus and move the windows around.

2.3.1.2 MakeJW"ocess
If you call1lakeJ)rocess in a QuickPort application~ the resulting processes
cannot do any screen input and output.

2.3.13 LDSNs (Logical Data Segment I\kmbers)
You cannot use a logical data segment number less than 5, or larger than 11.
Note that LDSN 5 is, by default, used by the Pascal heap. If you use a

2-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

- ---------

t;)uic.k.Port Programmer's Guide Using 9uic.k.Port

Pascal heap larger than 128K bytes, LDSN 6 and up will be used for the
heap. You can use PLInitHeap to change the Pascal heap to a different
LDSN, but make sure you don't collide with the system LDSNs.

• LDSNs 1-4 -- QuickPort

• LDSN 5 -- Default Pascal heap

• LDSN 11 -- OPEN • -printer', RESET, or REWRITE '-printer'
• LDSNs 12-16 -- LisaLlbrarles

23.1.4 TerlllinS.e_Process" Kill_Process
QuickPort programs should not call Terminele_Process or KUCProcess.
These calls will terminate the program, leaving the user with no chance to
do anything with the output. If you need to terminate program execution,
use halt or drop through to the end statement of your program.
PROGRAM TERMINATED will appear on the screen, and the user will
be able to save and put away, copy, or print.

2.3.1.5 Terminating the Program Abnormally
TnmtExceptionfiandler is the standard QuickPort exception handler for
abnormal termination of a program. You can write your own terminate
exception handler, but you must call TrmntExceptionHandler immediately
in your exception handler. If this call is not made, the system will hang
because QuickPort will not have a chance to clean up and transfer control to
the desktop manager.

2.4 The QuickPc:rt User Imer1ace
QuickPort provides a standard user interface for its applications that is, with
the exception of a few menu commands, t.he same as the standard Lisa user
interface. Manipulating windows and using the mouse follow the standard
Lisa user interface; as do opening and closing documents.

QuickPort provides some menu commands that are different from the
standard Lisa menu commands. These commands allow the user to control
program execution. A standard Lisa application continuously loops to get and
process events. A QuickPort program, however, may run from beginning to
end. When a QuickPort program reaches its end, it will not respond to input
from the keyboard, and its window will remain open to allow the user to
view the output. At this stage; the QuickPort application is idle; waiting for
one of the following menu commands:

• Set Aside -- Places the document (without saving) in its icon on the
desktop. If the document is reopened, the application will still be idle.

• Save & Put AWfrlj -- Saves the document. The process is then
terminated. If this document is opened again, the program will not run

2-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

li'uickPort Progr8lTlmer's Guide Using li'uickPort

immediately -- it is waiting for the Restart command. If the user
wants to browse through the document, it is not necessary to use the
Restart command. Instead, use Save lie Put AWfff/, or Set Aside.

• Restart -- Restarts program execution.

QuickPort applications are started, from the desktop; by tearing off a
document from the stationery pad and opening the document.

The QuickPort menus ere discussed in Appendix A.

2-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1"-·'
I

Chapter 3
Advanced QuickPort Features

3.1 Introc:lJction to the Featl&'6S•...•........•.. _•..••...•...•.... 3-1

3.2 Text Input and the Inptj: Panel•.•.•..•..•.....• 3-1

33 Text OtJ;put 8tld the Text Panel 3-1

3.4 GrBphic OtJ;put, the Gr8phic PBneI, and Mouse 1rpL 3-2
3.4.1 QuickDraw Requirements 3-3

3.5 Required to Change Your Pr04J"am •••••••.•••••••...•.••••••••••••••• 3--4
3.6 Procedures fer All Applicetions .•......•.....•.•... _ .. _ .. __ . ____ . _ 3-4

3.6.1 Configuring the Panels -- QPConfig 3-4

3.7 Procedt..-es reI Using the Text Pfnel._ .. ____ . ________________________ 3-7
3.7.1 Changing the Terminal Parameters -- SetupTermPara .. 3-7
3.7.2 Getting Raw Input from the Console -- Vread 3-6
3.7.3 Clearing the Screen -- ClearScreen 3-8
3.7.4 Controlling the Cursor -- VGotoxy and MoveCursor 3-9

3.7.4.1 VGotoxy .. 3-9
3.7.4.2 MoveCursor .. 3-9

3.7.5 Setting and Clearing Tabs -- SetTab and ClearTab 3-9
3.7.5.1 SetTab .. 3-9
3.7.5.2 Clee:rTab .. 3-9

3.7.6 Controllina Keyboard Input -- stopInput and StartInput 3-10
3.7.6.1 StopInput .. 3-10
3.7.6.2 Start Input .. 3-10

3.7.7 Changing the Character Style -- ChangeCharStyle 3-10

1.8 Procedl8'es fer Using the Graphic Panel•... 3-10
3.8.1 Mouse Routines .. 3-10

3.8.1.1 VGetMouse .. 3-10
3.8.1.2 MouseButton 3-11
3.8.1.3 MouseEvent 3-11
3.8.1.4 WaitMouseEvent 3-12
3.8.1.5 WaitEvent ... 3-12
3.8.1.6 QPGrafPicSize 3-12

__ . ___ _•. _ _ _._ .•• 3-12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3.10 The Tenninel Emulate.- ______________ .. ___________________________ 3-13
3.10.1 The Standard Terminal 3-13
3.10.2 The VT100 Terminal Emulator 3-13
3.10.3 The Sorce Terminal Emulator 3-14

3.11 Procedures ((I' the QuickPort Hardware Interface _________________ 3-14
3.11.1 The Mouse .. 3-14

3.11.1.1 Mouse Update Frequency 3-15
3.11.1.2 Mouse Scaling 3-15

3.11.2 The Screen .. 3-16
3.11.2.1 Screen Size -- ScreenSize 3-16
3.11.2.2 Screen Refresh Counter -- FrameCounter ... 3-16
3.11.2.3 Screen Contrast -- ScreenContrast,

SetContrast,and RampContrast 3-16
3.11.2.4 Automatic Screen Dimming -- DimContrast and

SetDimContrast 3-17
3.11.2.5 Automatic Screen Fading -- FadeDelay and

SetFadeOelay 3-17
3.11.3 The Speaker ... 3-17

3.11.3.1 Speaker Volume -- Volume and SetVolume .. 3-17
3.11.3.2 Using the Speaker --

Noise, Silence, and Beep 3-18
3.11,4 The Keyboard ... 3-18

3.11.4.1 Keyboard Identification -- Keyboard 3-20
3.11.4.2 Keyboard State -- KeyIsDown and KeyMap .. 3-21

3 11.5 The Timers .. 3-21
3.11.5.1 The Microsecond Timer -- MicroTimer 3-21
3.11.5.2 The Millisecond Timer -- Timer 3-21

3.11.6 Date and Time -- DateTime, SetDateTime, and
DateToTime ... 3-21

3.11.7 Time Stamp -- TimeStamp, Set TimeStamp
and DateToTime .. 3-22

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Advanced QuickPort Features

3.1 Introduction to the feat~es
QuickPort prO\lides a set of features that you can use to enhance your
application. The additional procedures and functions are for

• Configuring the text and graphic panels.

• Controlling text output.

• Handling graphic output using the mouse for input.

• Providing printer support.

• Using the QuickPort hardware interface.

• Making use of the terminal emulators.

You can combine any of these procedures and functions within a QuickPort
application.

You can also write your own terminal emulator. To do this you must know
enough Clascal to understand subclasses, methods, and overriding methods.
Read An Introduction to CJascaJ before attempting to write your own
terminal emUlator. See Appendix B, Writing Your Own Terminal Emulator for
more information.

The logical device, '-printer', behaves in much the same wery as it does in
the Workshop~ but also interacts with the Desktop's print manager. A section
on printer support is included in this chapter.

3.2 Text Input and the II1fK,t Panel
QuickPort programs get input in two wfIojS; from the keyboard, and from the
clipboard. The input panel displays the text that has not yet been consumed
by the program. Text in the input panel comes from two sources: "type
ahead" text (text which is entered from the keyboard too quickly to be
echoed immediately by the program), and text from the clipboard that will be
"pasted" into the text window. The 'Read Input from Clipboard' command
places the selected text in the input buffer. When the program does a read;
the text in the input buffer is read flrstd. If the input buffer is empty; the
read waits for input from the keyboard or from a paste command.

3j Text Output and the Text PBnel
The text output panel displays the wri teln output from the program. The
text panel corresponds to the Pascal device output. and the logical device

3-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

9t/ickPort Programmer's Guide ~cA''8nced t;luickPort Features

'-consol e'. The text panel emulates a terminal display. The default size of
the screen area is 24 lines: by 60 columns. The width of the text panel can
be changed either by the program, or by the user from the Setup menu. The
Setup menu is des:cribed in Appendix A.

The text panel has a buffer area that saves text as it is scrolled above the
screen area The size of the buffer area is increased automatically as lines
are saved. The size of the buffer is limited to the amount of memory
available to increase the size of the buffer. When the buffer size reaches
it.s limit, the lines scrolled off the top of the buffer area will not be saved.
The limit is approximately 3500 OO-character lines. The user can choose to
save or not save scrolled output using the Setup menu. The Edit menu is
described in Appendix A.

The screen area has a cursor that is affected by readins and wri teins
from the program. The cursor position is always:

• Inside the screen area.

• Relative to the top left position of the screen area.

The cursor position is the insertion point for input. No menu commands
change the logical cUlsor position; it is controlled solely by the progIsm.
The cursor position is always viSible when there is a rea.d from the program.
In other words; if the panel has been scrolled so that the cursor position is
hidden, QuickPort scrolls back to the cursor position when encountering a
rea.d. The cursor home position is the top left position of the screen area.

JA Graphic (kj,put, the Graphic Panel, lind Mouse ~
Graphics in QuickPort applications are created by QuickDraw. QuickPort
provides an option that allows you to choose two panels, one for text output
and one for graphic output, or one panel for both text and graphic output.
The graphic panel corres:ponds to the Workshop screen. The screen size is
720 pixels wide and 354 pixels high. The entire graphic panel is equal to
the screen area in the text panel. There is no buffer area in the graphic
panel because graphic output will not be scrolled out of the graphic panel.
All graphic objects created by the program are saved in the graphic ponel
using a QuickDraw picture.

In the text panel, the mouse is used to select text. In the graphic panel,
mouse clicks are saved and passed to the program. Whenever the mouse
button is pressed inside the graphic panel, a mouse event, .ouseDown, with
the mouse locat.ion is: saved. When the mouse button is pressed while the
mouse is moved, another mouse event~ with different locations .. is saved.
When the mouse button is released, a lRouseup event is saved. To see if
there are any mouse events in the queue, call MouseEvent. HouseEvent
returns one event at a time, until there are no more mouse events in the
queue. When MouseEvent is called, if the mouse button is down, control
will not be returned to the caller until the button is released. For this

3-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I"···
I

QuickPort Programrner's Guide Advanced QuickPort Features

reason, VGetHouse should not be used after a call to HouseEvent, because
the mouse may be moved. Each mouse event stores a mouse location
indicating where the mouse button was pressed. VGetHouse lets you track
the mOl/se locat.ion when the mouse button is not. down.

For more information on MJuseEvert., Refer to Section 3.8.1.3.

3.4.1 QuickDraw Requirements
Pascal programs t.hat. run in t.he Lisa Workshop and use QuickDraw, call
QDINIT and OpenPort (in the QD/Support unit). To use QuickDraw you must

• Remove the call to QDINIT and OpenPort. QuickPort initializes
QuickDraw and opens a grafPort for drawing to the graphic panel.

• l\Jot open a picture in this grafPort since QuickPort uses a picture to
save the graphic out.put..

• Not customize low-level QuickDraw drawing routines in this grafPort.

If your program needs to use pictures, you can open a picture in another
grafPort. If your program needs to redefine any of the QuickDraw low-level
routines, you can do this in another grafPort. If your application uses
multiple grafPorts, you must switch to t.he QuickPort grarPort whenever you
want to draw to the screen.

If your application calls Dr8WPicture~ you must call another QuickDraw
drawing routine before calling DrawPicture. This is because QuickPort.
opens the picture when the first QuickDraw drawing routine is encountered.
If DrawPicture is the first drawing routine encountered, QuickPort's picture
will be opened incorrectly because QuickPort can handle only one picture at
a t.ime. Here is an example showing how to avoid such collisions:

GetPort (sysportptr); {saves system port}
OpenPort (@myPort); {references alternate port}
myPicture := OpenPicture (thePortA_portRect);

... make your QuickDraw calls here

ClosePicture;
SetPort (sysportptr); {switches to system grafPort}
EraseRect (thePortA_PortRect); {opens system picture

-- any drawing routing can
be used)

DrawPicture (myPicturel thePortA_PortRect);

3-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(luick-Port Programmer~ Guide Advanced !;,uickPort Features

If you call OpenPi ct ure while the QuickPort grafPort is the current port/
the following alert message appears on the screen and the program is
aborted;

Your QuickPort tool has called another OpenPicture inside
the QuickPort grafPort. This tool will be aborted.

The QuickDraw procedure ScrollRect is not supported by QuickPort.
ScrollRect is not supported because QuickPort uses.a picture to save the
graphic output/ and the effect of ScrollRect is not saved in a picture.
This means that if the user scrolls the window, the picture is redrawn to the
window as if ScrollRect had not been called.

The size limit for the QuickPort picture is 32K bytes. When the picture
approaches this size, an alert is displayed. Subsequent graphic output is
displayed on the screen, but is not saved in the picture. As the size of the
picture increases, the redrawing that happens as the picture is scrolled or the
window moved slows. You can find out the current picture size by calling
QPGrafPicSize. Once the picture size reaches 32K bytes, the only way to
save the remaining graphic output is to EraseRect the entire screen
(thePort" .PortRect). The effect of this call is to delete the old picture
and create a new picture.

You can draw bit images in the QuickPort grafPort. The entire graphic panel,
including the bit images, can be printed. You can copy the bit images to a
LisaWrite document, but you cannot copy bit images from a QuickPort
application to a LisaDraw document.

3..5 Required Change to Yow Program
Before you can call any of the additional QuickPort procedures, you must add
UQPortCall to your USES list:

{SO QuickDraw} QuickDraw,

{SU OP/UOPortCall} UQPortCall,

{SO OPlUQuickPort} UQuickPort; (or UOPortGraph, or
UQPortVT1OO, or UQPortSoroc)

3.6 Procecues ftr all Applications
3.6.1 c:c.n"iguring the Panels -- QPConfig

You can choose several different ways to orient the panels in QuickPort
applications. The procedure QPConfig lets you rearrange the panels and
their orientations. Figure 1 shows some of the different layouts.

3-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

'i'uickPort Programmer's Guide Advanced QuickPort Features

input panel input panel

text panel o
text panel graphic panel

~ ,,,.h" 1''''' 0 c= ___ ~
• b_lc J)aI)W.

input panel input ponel

0"""''''''' o 0 0
gr aphic penel text pIIIMI

text panel 0
Figt.e 1-

QuickPlrl Window LaytJUts

Call the (JPConfig procedure from your main program before any screen
input and output is performed. You must set all the fields of a global
variable of type TQPConfi gRec_

PROCEDURE OPConfig (config : TOPConfigRec);
where

TOPConfigRec = RECORD
tosaveBuffer : BOOLEAN; {save lines in

buffer}
passApplePeriod : BOOLEAN; {pass apple • • to

lIain progr .. }
showInputPanel ; BOOLEAN; {display input

panel}
CASE twoPanels : BOOLEAN Of {have both text

and graphic panels}

3-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

t;JuiekPort Progr8lTll7?llf''s Guide !tdl/sneed t;luickPort FeatlJTBS

TRUE : (vhs VHSelect; {vertical or
horizontal split. VHSelect
is defined in QuickOraw}

grPanelSize INTEGER); {initial width or
height in pixels, if < 0,
text panel is below or right
of the graph panel}

Em· ,

If OPConfig is not called~ the default values are used. These defaults are
in effect only if QPConfig is never called. If you call QPConfig you must
set all fields, or else they will be undefined.. The default values are:

tosaveDuffer
passApplePeriod
showlnputPanel
twoPanels

false
falsA
false
false

The graphic and text panels can be oriented in several different ways on the
screen. To use QPConfig to set up the panels, you must first declare a
variable of type TOPConfigRec. For example,

VAR
l1yConfig: TQPConfi gRec;

QPConfig(MyConfig);

To have both a graphic and a text panel, ttfoPanels must be TRUE. You
must initialize the vhs field if you set twoPanels to TRUE. Once you have
two panels, you can choose to split the windows on the screen vertically or
horizontally. Refer to Figure 1 to see what the screen looks like with
vertical and horizontal splits between windows. Then YOll can set the
grPanelSize field to the size you want the graphic panel when the
document is first opened (the text panel will take up the remaining space in
the window).

3-6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~ic-kPort Programmer's Guide f*dVlmctJd ~jckPort FeaturlJS

If OPConfig is not called, the default values are used. Programs that
handle only text output have a default of one text panel. Programs that
handle graphic output have a default of one graphic panel.

3_7 Procedwes fer Using the Text Panel
The procedures for QuickPort applications that produce text output allow you
to:

• Change the terminal parameters.

• Get raw input from the console.

• Clear the screen.

• Control the cursor.

• Set and clear tabs.

• Control keyboard input.

• Change the character style.

3.7.1 Olanging the Tennin81 P8r"tmetss -- SetupTeraIPara
SetupTerliP8l"a sets the terminal parameters for the screen area in the text
panel. You can call SetuplermPara from your terminal emulator or from
your main program, but the call must be made before any screen input or
output is performed. If SetupTerllPara is not called before performing
screen input or output, the default parameters will not be changed. If you
call SetupTerllPara you must set all parameters.

PROCEDURE SetupTennPara (ter.para : TTerllPara);

where

END;

.axPosLines = 50; {_ax possible lines for any
termina! emulator}

.axPosCol,--ns = 132;

Tcursorshape = (blockshapel underscoreshape,
invisibleshape);

TTeraaPara = RECORD
rowsize
colUlDnsize
toWraparound
keytoStopOutput
keytoStartOutput
tllcursorShape

L ... axPosLines;
1. . maxPosColl.ns;
BOOLEAN;
CHAR;
CHAR;
lcursorshape;

3-7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

9uickPorl Programmer's Guide

If SetupTeIWPara is not called, the default values are used:

rowsize
col..-nelza
toWraparound
keytoStopOutput
keytoStartOutput
t.cursorShape

24 lines
80 columns
TRUE
.-s _-0
Block

3.7.2 Getting Raw Input from the Console - Vread
You can use Vread instead of read to get keyboard input and the control
keys. Vread does not echo chMacters es they are read.

PROCEDt.A:: Vread (VAR ch: OU~R; VAR keycap : QPByta;
VAR applekey, shi ftkey,
optionkey= BOOLEAN);

The keycap is useful when you need to distinguish the numeric keypad from
the main keyboard. Refer to Section 3.11..4 for the keycap definition. Note
that the option key is typically used to generate extended Lisa characters.
The extended Lisa characters are those characters in the range above ASCII
127. Try not to use the option key for other purposes to avoid confusing the
users.

3.7.3 Clearing the Screen - Cl earScreen
Cl earScreen provides six different wfJtlS to clear all or part of the screen.
The six Wr!!fo/S are:

• Clear the whole screen.

• Clear from the cursor position to the end of the screen.

• Clear from the beginning of the screen to the cursor position.

• Clear the whole line.

• Clear from the cursor position to the end of line.

• Clear from the beginning of the line to the cursor position.
PROCEDURE ClearScreen (clearkind : INTEGER);

{clearkind definition for ClearScreen procedure}
sclearScreen = 1; {clear the whole screen}
sclearEScreen = 2 {clear to the end of the

screen}

3-8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

f;luickPort ProgrBlTtmer's Guide

sclearBScreen = 3

sclearline = 4
sclearELine = 5;

sclearBLine = 6;

ftdv8nced QuickPort Features

{clear from the beginning
of the screen to the cursor
position}

{clear the whole line}
{clear to end of line}

{clear from the beginning
of the line to the cursor
position}

3.7A Controlling the Ctnu' -- VGotoxy and "oveCursor
3.7A.l VGotoxy

VGotoxy moves the cursor to a specified position in the window.

PROCEDmE VGotoxy (x, y : INTEGER);

VGotoxy is the same 8S the P8Scel gotoxy, but f8Ster.

3.7 A.2 MoveCtnt:l"
HoveCursor moves the cursor to a position in the window reJati ... ·t! to the
current cursor position. MoveCursor allows vertical scrolling only.

PROCEOtR:: "oveCursor (scroll : EDlLEAN; xdistance,
ydistance : INTEGER);

For the xdistance. ydistance parameters:

• A positive value moves the cursor to the right or down.

• A negative value moves the cursor to the left or up_

If the cursor is moved down, and scroll is TRl£, the output will be
scrolled up.

3.7.5 Setting end Oe.ing T8bs -- SetTab and ClearTab

3.7-'.1 SetTab
SetTab sets a tab at a specified column, or at the current cursor position.

PROCEDt.A:: SetT ab (col .. n : INTEGER);
SetTab sets tab at current cursor position jf col .. n <0.

3.7.5.2 O Tab
ClearTab clelSfs a tab at a specified column, or at the current cursor
position.

PROflU£ Clear-Tab (clesrAll : EID.EftI; colu..: ~);

ClearTab clelSfs tab at current cursor position if collan <0.

3-9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~ick.Po[t Progr8mmer's Guide fleA,'snced ~lIick.Port FestlJles

3.1.6 Cortrolling Keyboard ~ - Stoplnput and StartInput

3.1.6.1 Stoplnput
Stoplnput prevents recognition of keyboard input until Startlnput Is
called.

PROCEDURE StopInput;

3.1.6.1 Startlnput
Startlnput allows recognition of keyboard input.

PROCEDURE Startlnputi

3.1.1 ChangIng the Character style - ChangeCharStyle
ChangeCharStyle changes the character attributes to any style combination
defined by QulcKDraw.

PROCEDURE ChangeCharStyle (newstyle : Style);

3.8 Procec:bes fm Using the Graphic Panel
The procedures for QuickPort applications that produce graphic output allow
you to use the mouse to get input. These procedures are:

• Get the current mouse location.

• Test to see if the mouse button is up or down.

• Get a mouse event.

• Get either mouse or keyboard input.

3.0.1 Mouse Routines
The mouse routines listed in this section should be used instead of the ones
in the Lisa Hardware Interface.

HouseEvent is a polling function. Programs may loop on MouseEvent to
wait for mouse input. This unnecessarily takes up CPU time. Also, if the
application is run in the background, HouseEvent will force it to run
periodically, just to find out there is no mouse input, and then control is
returned to the active window. This slows down the execution and user
response in the active window.

Wai tHouseEvent is a blocking procedure. Wai tHouseEvent will not return
to the caller until there's a mouse event, allowing user actions to be
processed immediately when there are no mouse events. When a program
that uses Wai tHouseEvent is in the background, it is suspended and
consequently. does not take CPU lime from the active window.

3.0.1.1 VGetHouse
VGetHouse returns the current mouse location in the coordinates of the
current grafPort.

PROCEDURE VGetHouse (VAR pt : Point);

3-10

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(lui.ckPort Programmer's Guide fut,,Il!J.nced /'i'uickPort Features

Point is a type defined in QuickDraw. Refer to The Lisa Pascal Reference
Manual, Appendix C, QuickDraw for the definition of Point.

3.8.1.2 MouseButton
House6utton returns the current state of the mouse button.

fUNCTION MouseButton : BOOLEAN;

3.8.13 MouseEvent
HouseEvent returns a mouse event if there is one in the queue, and returns
FALSE if there is not a mouse event in t.he queue. A mouse event is:

• A mouse buttondown (when the user presses the mouse button).

• Mouse motion while the button is pressed.

• A mouse buttonup (when the user releases the mouse button).

Moving the mouse without. presSing the mouse button is not a mouse event.
When HouseEvent is called, if the mouse button is down, control will not be
returned to the caller until the button is released.

Fl...I£TION MouseEvent (VAR aNouseEvent : TMouseEvent)
BOOLEAN;

where

ENDi

TMouseEvent = RECORD
aouseLoc : POint;
clicknu. : INTEGERi {max 3 for triple clicks}
aouseDown, meShift, meApple, .eOptlon

BOOLEAN;

For each mouse down event (lIouseOown = TRLlEL several different
aouseLoc events may be returned in subsequent calls. These mouseloc
events are always ended with a mouse up event (lDouseDown == fALSE).

For a double click, MouseEvent returns events of down, up, down, up with
the clickn .. for the second mouse down event equal to two. If the mouse
button is pressed twice, but t.he presses do not constitute a double click, the
same sequence of events is returned, but with the clickn .. for the second
mouse down event equal to one.

For a triple click, MouseEvent returns events of down, up, down, LIP, down,
up, with the click",,,, for the third mouse down event equal to three.

If the mouseDown field is FALSE, all ot.her fields are meaningless.

HeShi ft is TRUE if the mOLlse button and the Shift key are depressed.
HeApple is TRUE if the mOLise button and the. key are depressed.
HeOption is TRUE if the mouse but.ton and the Opt.ion key are depressed.

3-11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(iuickPort Programmer's Guide ~dllanced t;iuickPort Features

3.8.1..5 Wai tMouseEvent
Wai tMouseEvent get.s a mouse event. Wei tMouseEvent blocks the caller
until there is a mouse event in the queue.

You should use this call instead of MouseEvent to avoid polling and wasting
CPU time. "'al tMouseEvent also makes a program more responsive to user
events such as pulling down menus, clicking in other windows, etc., when the
program is waiting for mouse input.

PROCEDURE WaitMouseEvent (VAR aMouseEvent
TMouseEvent);

where

END;

TMouseEvent RECORD

mouseLoc : Point;

clicknum : INTEGER; {max 3 for triple clicks}

mouseDown, .eShift, meApple, meOption
BOOLEAN;

After Wei tHo us eEvent. returns, a call to MouseEvent will get the rest of
the mouse events.

3.8.L6 Wai tEvent
Wai tEvent is a combination of read and Wei tMouseEvent, blocking the
caller until there is either keyboard or mouse input.

You should use this call instead of MouseEvent and kSVfl"eBS if you want
both mouse and keyboard input. WaitEvent does not reurn input. You must
call read, Vread, or MouseEvent depending on the value returned from the
calL

PROCEDmE: Wai tEvent (VAR frollKeyboard : 8(X)LEAH);

3.6.1.7 QPGrafPiCSlze
QPGrafPicSize returns the size of the picture in the system grafPort.

fUNCTION OPGrafPiCSize : INTEGER;

3.9 Printer Suppcrt
The printer is designated -printer by the Workshop. -printer is a logical
device. To open the printer, use reset or rewri te, passing -printer as
the file name. To send output to the printer, use writeln or write. Use
close when you're finished sending information to the printer. Close lets
the printshop manager know that the program is done with the printer and
causes the last page to print out. If you do not call close after printing is
finished, the printer is considered in use, and is unavailable to all other Lisa
applications.

3-12

1
I
I··
I
1
I
1
1
1
1
I
1
1
I
1
I
1
1
\

I

' ..

~ickPort ProgrtJmmtJl''s Guide

The printer is shared by 611 applications in the printshop_ When you send
something from a QuickPort application to the printer from QuickPort, you do
not get immediate output. First the document is spooled to the printer
queue by the printshop manager in the Lisa Office System. If there is
nothing in the queue, the information comes out a page at a time. If there
is something in the queue at the time of reset or retfri te, an error
message is returned.

You can change the font the printer uses by ce.lling PrChangefont. The
default font is 10-point, 10-pitch Century.

Paper size, printing orientation and print resolution can be changed using the
Format for Printing command in the File/Print menu_ Selections made using
the Format for Printing command take effect only after a reset or
rewrite.

The Print and Print As Is commands 1n the File Print menu print all the
output in the selected panel.

3.10 The Terminal Emulators
QuickPort provides three terminal environments: the standard terminal, the
VT100 termine.l emulator, and the SOROC termine.l emulator. This section
summarizes the three emulators. If you went to write your own terminal
emulator, go to Appendix B, lNriting Your Own Termin6l Emulator.

3.10.1 The S't8nd8rd Terminal
The standard termin6l is the termin6l environment QuickPort uses unless you
specify otherwise. The standerd terminal provides a set of screen and cursor
control functions. The standerd termin6l does not use escape sequences, but
does interpret a set of standerd control keys at output: BELL, backspace,
horizonte.l tab, line feed, and c6lTiage return (without line feed). Programs
that use reads and readl ns will have the backspace key processed
automatically, Le., the backspace key will not be passed to your program if
you use reads and readlns. If your program needs to get the backspace
key, use weed instead.

The standard Lisa applications use the .-period combination to terminate
long operations. QuickPort provides an option that suspends the program when
the .-period key combination is detected. The default is to detect the
.-period combination. This option is passed in CJlConfig, which is described
in Section 3.6. When a program is suspended, the user can select the
Resume command to resume program execution, or the Save 8: Put Aw~
command to terminate program execution.

The Setup menu (in all QuickPort applications) lets you select ro or 132
columns per line, turn wraperound on or off, and set the tab pOSitions.

3.10.2 The VT100 Terminal Em..aIBtm
The QuickPort VT100 terminal emulator interprets all VT100 and VT~2 escape
sequences, with the ex ception of escape sequences related to host
communications. When you use the VT100 terminal emulator, the screen area

3-13

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

9uickPort Programmer's Guide ~t:A,'anced ~lJickPort FeatlJles

in the text panel responds to VT100 and VT52 escape sequences from tai tes
and writelns.

The character styles supported by the QuickPort VT100 terminal emulator are
bold, underline, and highlight. Since highlighted text in Lisa applications
traditionally means a selection, highlighted text ,In the VT100 screen area
will be shsdowed. Double-height and double-width characters are not
supported.

To use the VT100 terminal emulator, add

{$lJ QP/lJQPortVT100} UQPortVT100;

to the USES list at the beginning of your main program. For more
information, refer to Section 4.1, Adding the USES List Elements, in Chapter
4.

3_10.3 The Soroe Terminal Emul8t4r
Pascal programs that run in the Lisa Workshop, and on the Apple 11 or Apple
Ill, use Soroc escape sequences for output display. QuickPort provides a
Soroc-compatible terminal emulator to help port these applications to the
Lisa desktop. The QuickPort Soroc terminal emUlator interprets all Soroc
escape sequences, with the exception of those escape sequences related to
display protection.

To use the Soroe terminal emulator, add

{SU OP/UOPortSoroe} UQPortSoroei

to the USES list at the beginning of your main program. For more
information, refer to Section 4.1, Adding the USES List Elements, in Chapter
4.

3_11 Procedures fer the QuickPcrt Hardware Interface
The QuickPort hardware interface is a subset of the Lisa hardware interface.
These procedures are for the mouse, the screen, the speaker, the keyboard,
the timers, and date and time.

To use the QuickPort hardware interface, you must add

{$U QPlHardware} Hardware;

to the list elements in your program's USES statement. Refer to Chapter 4
for more information.

3.1Ll The Motse
The mouse procedures let you

• Set the frequency at which the current mouse location is updated.

• Choose the relationship between physical and logical mouse movements.

• Count mouse movements.

3-14

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I,

I~

I

t;'uickPort Programmer's Guide Advanced ~(JickPort Features

3_11_1.1 Mouse Update FrecJJeflCY
The mouse location is updated periodically, rather than continuously. The
frequency of these updates can be set by calling MouselJpdat.es. The time
between updates can range from 0 milliseconds (continuous updating) to 28
milliseconds, in intervals of 4 milliseconds. The initial setting is 16
milliseconds.

Procedure MouseUpdates (delay: MilliSeconds);
3_11..1..2 Mouse Scaling

MouseSc8ling enables and disables mouse scaling. MouseTta'esh sets the
threshold between fine and coarse movements.

Procedure MouseScaling (scale:Boolean);
Procedure MouseThresh (threshold: Pixels);

The relationship between physical mOllse movements and logical mouse
movements is not necessarily a fixed linear mapping. Three alternatives are
aVailable; unsealed, scaled for fine movement and scaled for coarse
movement. Initially mouse movements are lInsealed.

When mouse movement is unscaJe4 a horizontal mouse movement of x units
yields a change in the mouse X-coordinate of x pixels. Similiarly, a vertical
movement of y units yields a change is the mouse V-coordinate of y pixels.
These rules apply irregardless of the speed of the mouse movement.

When mouse movement is scaled" horizontal movements are magnified by 3/2
relative t.o vertical movements. This is to compensate for the 2/3 aspect
ratio of pixels on the screen. When scaling is in effect~ a distinction is
made between fine (small) movements and coarse (large) movements. Fine
move- ments ere slightly reduced, while coarse movements ere magnified.
For scaled fine movements, a horizontal mouse movement of x units yields a
change in the X-coordinate of x pixels, but a vertical movement of y units
yields a change of (2/3)*y pixels. For scaled coarse movements, a horizontal
movement a)(units yields B change of (312)"'x pixels, while a vertical
movements of y units yields a change of y pixels.

The distinction between fine movements and coarse movements is determined
by the sum of the x and y movements each time the mouse locat.ion is
updated. If this sum is at or below the thresholct the movement is
considered to be a fine movement. Values of the threshold range from 0
(which yields all coarse movements) to 256 (which yields all fine movements).
Given t.he default mOllse updat.ing frequency, a threshold of about e
(thresholds initial setting) gives a comfortable transition between fine and
coerse movements.

3-15

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~uickPort Programmer's Guide fttA~snced QuickPort Features

3.11..13 Mouse Odometer
l'YtouseOdometer returns the sum of the X and Y movements of the mouse
since boot time. The value returned is in (unsealed) pixels. There ere 180
pix els per inch of mouse movement..

Fooction MouseOdometer: MenyPixels;

3.11.2 The Screen
The screen procedures are used to

• Set the size of the display screen.

• Count the number of screen refreshes.

• Set the screen contrast, set automatic screen dimming.

• Set the fade delay.

3.6.2.1 Screen Size -- ScreenSlze
The display screen is a bit mapped dispJsj/. In other words, each pixel on
the screen is controlled by a bit in main memory. The display has 720
pixels horizont.ally and 364 lines vBltically, and therefore requires 32,760
bytes of main memory. The screen size may be determined by calling
ScreenSize.

Procedure ScreenSize (var x: Pixels; VBr y: Pixels);

3.11..2.2 Screen Refresh counter" -- FrameCoooter
The screen display is refreshed about 60 times per second. A !Tame counter
is increment.ed between screen updates, at the vertical retrace interrupt. The
frame counter is an unsigned 32-bit. integer which is reset to 0 each time
the machine is booted. FrameCounter returns this value. To minimize
flickering, an application can synchronize with the vertical retraces by
watching for changes in the value of this counter. The frame counter should
not be used as a timer; use the millisecond and mircosecond timers instead.

Fl.ft:'!tion FrameCounter-: Frames;

3.11..23 Screen Contrast -- ScreenContrast, Set.Contrast. and
RampContrast.

The screen's contrast level is under program control. Contrast values range
from 0 to 255 ($FF). with 0 55 maximum cont.rast and 2'5 as minimum.
ScreenContrest returns the contrast setting; SetContrast sets the screen
contrast. The low order two bits of the contrast value are ignored. The
initial contrast value is 128 ($80)_

Ftn::tion Contrast: ScreenControst.;

Procem--e Set.Contrast (contrast: ScreenContrast);

3-16

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(liJick.Port Programmer's Guide

A sudden change in the contrast level can be jarring to the user. , \
, I

RernpCortr8St gradually changes the contrast to the new setting over a
period of about a second. RampContrast returns immediately~ then ramps
the contrast using interrupt driven processing. \

Procedure R8mpCortr8St (contrast: screencoru8St); 1'(\

3.11.2.4 AlLomatic Screen Dimming -- DimCortrast and ''t
SetDimContrast

The screen contrast level is automatically dimmed if no user activity is
noted over a specified period (usually several minutes). The contrast level la'
dimmed to preserve the screen phospher. DimCortrast returns the contrast
value to which the screen is dimmed; SetOimContrDSt sets this value. The
initial dim contrast setting is 176 ($80).

F...-.ction DimContzast: ScreenCortrest;

Procedure SetDimCortrast (contrast: ScreenContrast);

3.11..2.5 ~omatic Screen Fading -- FadeOelay and SetFadeOelay
The delay between the last lIser activity and dimming of the screen is under
soft.ware cont.rol. F8deDelay returns the fade delay; SetF8deOelay sets it ..
The actual delay will range from the specified delay to twice t.he specified
delay. The initial delay period is five minutes.

F...-.ction FadeDelay: MilliSecond;;

Procedure SetFadeOelay (delay: MilliSeconds);

3.11.3 The Speaker
The speaker routines in this section provide square wave output from the
lisa speaker.

The speaker procedures let you

• Set the speaker volume.

• Use the speaker.

3.11.3.1 Speaker Volume -- Volume and SetVolume
The speaker volume can be set to values in the range 0 (soft) to 7 (loud).
Volume reads the volume setting; SetVolume sets it.. The initial volume
setting is 4.

Fooction Volume: SpeakerVolumei

Procedure SetVolOOle (volume: SpeakerVolwne);

3-17

I
I
I
I
I
I
I
I
I
I
I

(IuickPort Proql'smmfJr's Guide ~dvsnced Quick.Port Features

3_11.32 Using the Speaker -- Noise, Silence and Beep
Noise and Silence are called in pairs to start and stop square wave output.
Beep starts square wave output which will automatically stop after the
specified period of time. The effects of Noise, Silence and Beep are
overridden by subsequent calls.

Proced e Noise (waveLength: MicroSeconds);

Proced e Silence;

Procedure Beep (wavelength: MicroSeconds; dta'"ation:

Noise produces a square wave of approximately the specified wavelength.
Silence shuts off t.he square wave. The minimum wavelength is about 8
microseconds, which corresponds to a frequency of 125,000 cycles per second,
well above t.he audible range. The maximum wavelength is 8,191 micro­
seconds, which corresponds to about 122 cycles per second.

3_11.4 The Keyboard

Three physical keyboard layouts are defined, the Old US Layout (wit.h 73 keys
on the main keyboard and numeric keypad), the Final US Layout (76 keys) and
the European Layout (77 keys). Each key has been assigned a keycod~ which
uniquely identifies the key. Keycode values range from 0 to 127. Figure 2
defines the keycodes for the Final US Layout, Llsing the legends from the US
I{eyboard. The Old US Layout has ttu-ee fewer keys: !\ Alpha Enter, and
Right Option are not on the old keyboard. The European Layout has one
additional key,) (, with 6 key code of $43.

Two keys on the Old US Layout generate keycodes different from the
corresponding keys on the Fina] US Layout. To aid in compatibility, software
changes the keycode for "" from $7C to $68, and the keycode for Right
Option from $68 to $4E.

3-16

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

1\'-···'

I

~ickPort Progrsmmer's Guide ~/snced t;'uickPOlt FesturlJS

figure 2
Keycodes for -Final US layout-

..
I"LflU· 000 001
! -.- 0 1

0100 DISK 2 [}}:;:;:;:;:;:
4 BUTTON V:::::;::::::::::::::

01 01 PARALLEL ~:.;.:-:.:>\
5 PORT

01'0 ttOUSE
6 BUTTON

0111 ItOUSE
7 PLUG

1000 POUER
8 BUTTON

1001
9

1010
A

1011::::::::;
B.:::::::::

1 to O~l~HH:~l~~~~~~ll~ V~~~~\t~)~~~

010
2

8

4

5

6
,

(JJ

011
3

:::::;:::::;:::::::::::

3-19

100
4

?
I

101
5

)
o
u

J

K

)
]

M

L

II

SPACE

<
)

o

110
6

E

6
&
7 ..
8
%
5

A

T

y

F

G

H

v

c

B

N

111
7

A

i

2 ,
3

!
1

Q

s
w
TAB

z
x

o
lEFT

OPTION

CAPS
lOCI(

SHIfT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~iC'k.Port Progr~mmMJs Guide Ao\''!IDced Quick-Port Features

The keyboard procedures allow you to

• Find out the keyboard identification number.

• Find out. the state of keyboard.

3.11A.1 Keytx:&'d ldentific&ion -- Keyboard
The Lisa supports a host of different keyboards. Each keyboard has three
major attributes: manufacturer, physical ls)/out, and legends. The chart below
describes how these three attributes are combined to form a keyboard
identification number. The keyboards self -identify when the machine is
turned on and when a new keyboard is attached. KeyboaI"d returns the
identification number of the keyboard cLll-rently attached.

Function Keyboard: Keybdld;

FWlCtion Legends: Keybdld;

Keyboard identification numbers:

7 654

Madacture.r:
00 -- APD (Le., TKC)
01 --
10 -- Keytronics
Layout:
00 Old US (73 keys)
01
10
11

European (77 keys)
Final US (76 keys)

3 2 1

Layout/Legends
$OF -- Old US

o

$26 -- Swiss-German (proposed)
$27 -- SWl5:s-FrE'lnch (proposed)
$29 -- Portuguese (proposed)
$29 -- Spanish (proposed)
$2A -- Danish (proposed)
$26 -- Swedish
$2C -- Italian
$20 -- French
$2E -- German
$2F -- UK
$3C -- APL (proposed)
$30 -- Canadian (proposed)
$3E -- US-Dvorak
$3F -- Final US

3-20

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

9uickPort Proyratnmet's Guide Advanced QuickPort Features

3_11..4.2 Keyboard state -- KeyIsDown and KeyMap
Low level access to the keyboard is provided through a pollable keyboard
state. This state information is based on the physical keycodes defined
above. KeylsDown returns the position of a single specified key. KeytvIap
returns a 128-bit map, one bit for each key.

Function KeylsOown (key: KeyCap): Boolean;

Procedure KeyMap (var keys: KeyCapSet);

A zero indicates the key is up, a one indicates down. For the mouse plug, a
zero indicates unplugged, a one indicates plugged in. Certain keys are not
pollable; the corresponding bit.s will always be zero. These keys are t.he
diskette insertion switches, parallel port, and power swit.ch. (The parallel
port and mouse plug keys are unreliable across reboots on older hardware.)

31L5 The TiIT'lel"S
The timer procedures let you use eit.her the microsecond timer or t.he
millisecond timer.

3_11_5.1 The Microsecond Timer -- MicroTimar
The MicroTimer function simulates a continuously running 32-bit count.er
which is incremented every microsecond. The timer is reset to 0 each time
the machine is booted. The timer changes sign about once every 35 minutes,
and rolls over about every 70 minutes.

Function MicroTimer: Microseconds;

The microsecond timer is designed for performance measurements. It has a
resolution of 2 microseconds. Calling MicroTime:r from Pascal takes about
135 microseconds:. Note that. int.errupt processing will have a major effect
on microsecond timinos_

3.1152 The Millisecond Timei"' -- Timer
The Timer function simulates a continuously running 32-bit counter which is
incremented every millisecond. The timer is reset to 0 each time the
machine is booted. The timer changes sign about once fNery 25 days, and
rolls wer about every 7 weeks.

Function Timer: Milliseconds;

The millisecond timer is designed for timing user interactions such as mouse
clicks and repeat. keys. It can also be used for performance measurements,
assuming that millisecond resolution is sufficient.

3.11.6 Date and Time -- DateTimel SetDateTime and DateToTime
The date and time procedures let you

• Set the current date and time.

• Find out the date and time.

3-21

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

t;VickPort Programmer's Guide ~a\/anced ~uickPort Features

The current date and time are available as a set of 16-bit integers that
represent the yeM, day, hour, minute and second,. by calling D81eTime and
SetDaleTime. The date and time are based on the hardware clock/calendar.
This restricts dates to the years 1980-1995. The clock/calendar continues to
operate during soft power off, and for brief periods on battery backup if the
machine is unplugged. If the clock/calendar h6Sn't been set since the 16St
loss of battery power,. the date and time will be midnight prior to January 1,
1980. Setting the date and time also sets the time stamp described below.
D8teToTime converts a date and time to a time stamp, defined in the next
section.

Procedure Date Time (ver date: DateArray);

Procedure SetDateTime (dele: DateArray);

Procedw'e DateToTime (date: Dat.ePnay; vsr time: Seconds);

3.1L7 Time stamp -- timeStamp, SetTimestamp and TimeToOate
The current date and time are also available as a 32-bit unsigned integer
which represents the number of seconds since the midnight prior to 1
January 1901, by calling timeStamp and SetTimest~. The time stamp will
roll over once fINery 135 years. Bewere--for dates beyond the mid 1960's,
the sign bit is set. The time stamp is based on the hardware clock/calendar.
This clock continues to operate during soft power off. If the clock/calendar
hasn't been set since the last loss of battery power, the date and time will
be midnight prior to January 1, 1980. Setting the time stamp also sets the
date and time described above. Since the date and time is restricted to
1980-1995, the time stamp is also restricted to this range. TimeTCJIJ8te
converts a time stamp to the date and time format defined above.

The time stamp procedures let you

• Set the time stamp_

• Convert between standard date and time and the time stamp.

Ftn::tion TimeSt8l'J1): Seconds;

Procedwe Set.TimeStamp (time: Seconds);

Procedta"e TimeToOote (time: Seconds; VS" dfJt.e: DeteArrav);

3-22

I
I
I
I
I
I
I
I
I
I.
I
I
I
I
I
I
I
I
I

~ickPort Programmer's Guide Advanced t;luickPort Features

The current date and time are available as a set of 16-bit integers that
represent the year, clay, hour, minute and second, by calling DHteTime and
SetDateTime. The date and time are based on the hardware clock/calendar.
This restricts dates to t.he years 1980-1995. The clock/calendW" continues to
operate during soft power off, and for brief periods on battery backup if the
machine is unplugged. If the clock/calender hasn't been set since the last
loss of battery power, the date and time will be midnight prior to January IJ
1980. Setting the date and time also sets the time stamp described below.
DateToTime converts a date and time to a time stamp, defined in the next
section.

Proced e DateTime (ver dae: DateArray);

Proced e SetDateTime (date: Date Array);

Proced...-e DoteToTime (date: DateAnoy; V8r" time: Seconds);

3.11..7 Time stamp -- TimeStamp, SetTimestamp and TimeToDute
The current date and time are also available as a 32-bit unsigned integer
which represents the number of seconds since the midnight prior to 1
January 19J1, by calling TimeStamp and Set TimeStamp. The time stamp will
roll over once every 135 years. Bewere--for dates beyond the mid 1960's,
the sign bit is set. The time stamp is based on the hardwere clock/calendar.
This clock continues to operate during soft power off. If the clock/calendW"
hasn't been set since the last loss of battery power, the date and time will
be midnight prior t.o January 1, 1980. Setting t.he time stamp also sets the
date and time described above. Since the date and time is restricted to
1980-1995, the time stamp is also restricted to this range. TimeToD8te
converts a time stamp to the date and time format defined above.

The time starnp procedures let you

• Set the time stamp.

• Convert between standard date and time and the time stamp.

Func±ion Timestamp: Seconds;

Procedure SetTimest8i11) (time: Seconds);

Proced e Time ToD8te (time: Secondsi VfII' date: Date Array);

3-23

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I i,,_

I

4.1
42

4.3
4.4
4..5
4.6

Chapter 4
Bringing Your Application

to the Lisa Desktop

Adding the USES List Elemerts _ _ _ .. _ .. 4-1
System Configuration _. ___________ .. ______ .. _______________ . _________ ._ 4-2
4_2_1 The Development Environment 4-2
4.2.2 The Run-Time Environment 4-3
Generating Y 0t6 Tool. __ _.. ••. 4-3
Installing Y our Tool """ . _ ...•.• _ .. _ ... __ . __ . __ .••. _ _ . __ 4--..4
The Icon Editor ... _ 0 ••••••••• 0 •• 4-5
Shipping Your Application 0 •••••••••••••••••••••••••••• _ ••••••••••• 4-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Bringing Your Application
to the Lisa Desktop

4.1 Adding the USES List Elernera
Before bringing your cpplication to the Lisa desktop you must add the
required USES list elements to your MAIN program and any of your units.
Depending on what kind of application you are porting .. you use different
USES list elements.

1. For text output only

(SU OP/UQuickPort) UQuickPort;

2. For graphic (QuickDraw) and/or text output

{SU Oui ckOraw} Qui ckOraw,

{SU OP./lJOPortGraph} UOPortGraph;

3. If you need to use GranO (order of list elements important)

{IU OuickDr~} QuickOrDW,

(SlJ QPIGraf30 . (IU) Graf30,

{SU OP/lJOPortGraph} OOPortGraph;
4. For graphic (QuickDraw) and/or text output .. and the hardware interface

(SU OuickDraw) QuickOraw,

(SU OPl1..QlortGraph) UOPortGraph,

{$U UP /Hardware} Hardware;

5. To use the VT100 terminal emulator

(SU OPAJOPortVT100) lQlortVT1OO;

6. To lise the Soroc terminal emulator

{SU OP/UOPortSoroc} UOPortSoroc;
7. If you are calling the additional QuickPort procedures (order of list

elements important)

($U OuickDraw} QuickOraw,

{SU QP.I1.JQ=»ortCall} UQPortCall,

(SU OPAJQuickPort) UQuickPort; {or UOPortGraph,
UCPortVT 100,
UOPortSoroc}

4-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Bri17gir;g Y{;lll h'PplicatiOt'7 t{; tlls Desktop

UQPortCall, unlike the other units, is only an interface and contains no
code.

42 system Configuration
This section assumes that you are using a two-ProFile system to develop
your QuickPort applications. The ProFile with the office system is called
"office" in this discussion .. and the ProFile with the Workshop is called
"workshop." In the Workshop, set the prefix to the workshop volume. If you
have a Lisa 2/10 you will not need to set the prefixes as described in this
section because all development will be done on one volume.

There are two different environments to consider:

• The development environment.. That is, the environment you use when
developing a QuickPort application. The development environment is the
Workshop.

• "!"he run-time environment. This is the environment that the QuickPort
application runs in. The run-time environment is the Office System.

4.2.1 The Development Erwironment
""'hen developing, you must

• Boot from the Workshop.

• From the Workshop System Manager, set the prefix to the Workshop
volume.

• Place all files listed in the USES statement on the prefix volume.

You must have the following fUes on your prefix volume:

• QPIUQPOItC811

• QPlUQPortGraph

• QP/UQPortSaoc

• QP/L.JqPortVT100

• QPIUQuickPort

• QP/Hm"dware

• QP/Graf3D

• QPLib.Obj

• TKLib.Obj

• TK2Lib.Obj

• QP/Phrse

The QuickPort exec file, qp/make, must be on the workshop ProFile.

4-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I~

I

QuickPort Programmer's Guide Bringing YOur f}ppJicfition to the Desktop

4.2.2 The Rul-Time E~ironment
When running a QuickPort applicat.ion, you must

• Boot from the office system.

• Have all the libraries your application needs on the office system
volume.

• Have TKLib.Obi TK2Ub.Obi and QPLib.Obj on the office system
volume.

43 Generating Your Tool
To generate your toot you must run the QuickPort exec file, qp/make, or
customize qp/make to compile, assemble, and link your tool. Qp/make
assumes all source files ere in Pascal. You can customize Qp/make to
assemble \Iour files. Qp/make forces recompilation of all your application's
units, compiles your application's main program, and then links your
application's units with the QuickPort intrinsic units. Then qplmake assigns
the tool name and creates the phrase file using the tool number in the file
name.

Qp/make renames the object code to a file name of the form:

{Tll}obj

where II is the tool number you specified when qp/make was invoked.
Qp/make copies the phrase file to a file name of the form:

{T II}PHRASE

If your application uses other support files, such as dat.a files, rename the
files using the {TI" tool number as the first part of the file name, e.g.,

{T" I)support

Then, whenever a user select.s t.he tool's icon from t.he desktop, all t.he file-s
with t.he {TI'} will be copied or deleted. QpImake assumes that the source
files and libraries are on the prefix volume. Refer to System Configuration
above for more information.

Qp/make can be invoked in two Wet':/S, depending on how many units your
application has, and depending on whether you need to specifv additional
object files that your application does not generate but needs to link to. If
your application has four or fewer units and does not need to specify
additional object files for linking" qp/make can be invol«:.ed as follows:

Run <qp/make (mainprlg"6Il1, tooll', tool volume, units, unitb, ..ute,
unitd)

where

mainprl:q'8ITI is the filename of 'Your applicat.ion's main program.

tool II is the t.ool number you want. lIsed in your
application's tool name. ""'e recommend you use

4-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(luick.Port Programmer's Guide Bringing 't'our ~pplicl!1tion to the De.s-ktop

your Lisa's serial number plus an offset. Using the
serial number plus an offset will prevent duplication
of tool numbers among different software
developers. For testing you can use any number
greater than 20.

tool volume is the office disk name. The tool will be copied to
the office system.

lIlita,. unitb Up to four units for your application. If you use
'--lite, unitd more than four units, use the alternate wfrt to

invoke qp/make as described below.

If your application has more t.han four units, and/or needs additional units to
link against, qp/make can be invoked as follows;

Run <qpmake (mainprognvn, tool', tool vollM1le, <, UnitList, otherObjList)

where

mainprO!J"am, tool I, and tool volume are the same as above.

UnitList is a file that contains the names of all your units.
When you create your UnitList file, be sure to list
the units in the order they should be compiled.

OtherObjList is a file that lists any object files that your
application links against but you don't generate.

Refer to some QuickPort examples programs (qp sample, note, text, and so
forth) on the release diskette.

4.4 Installing Your Tool
After you run qp/make successfully, you must install the application on the
Lisa desktop. This inst.allation process creates a tool icon and stationery pad
for your tool. To install a tool you run InstallTool from the Workshop. After
InstallTool is finished, when you leave the Workshop and start the Office
S'ystem, your tool and its stationery pad will be on the desktop.

T a install a tool, run InstallTool from the Workshop with the tool number you
specified in qpmske.

Run what. PrOlJ"am? IrstallTool

The InstallTool program will prompt YOll as follows:

Please trier the name of the device yOlK" tool is on. [PARAPORT]
This is the name of your Office System ProFile.

Please ert..er yo...- tool id number
Enter the tool number you specified when you ran qp/make.
Remember, ever)/ tool must /'t8l.,'e 8 unique number.

Does your tool create documents? (Y or N) [YES]
If you answer no, a tool like the Calculator is created. In other

4-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

(iuick.Port Programmer's Guide Bringing)'our ~pp}jcation to the Desk.top

(.... ords, a tool that allows only one instance of itself at a time.

Can your tool handle mme than one document at a time? If you
don't know, press return. (Y ex N) [NO]
Some tools" such as LisaWrite, create one process that cont-rols
multiple documents. You mllst answer no for QlIickPort tools.

The stationezy opening rectangle is defaulted to 10, 40, 640, 290
These values Bre always the same.

Do you wish to specify a different one? (Y C.I' Nj [NO]
If YOll answer yes, you are prompted for the values for the size
of t.he rectangle '""hen a document is opened. This rectangle will
be used whenever a document is opened.

Pleose emer the nBIlle of ytM.X tool.
Every tool has a tool number and a tool name. ~I.)hen you enter a
tool name, the install program places the tool name in the
desktop names of the tool and its stationery.

''Tool name" has been sucesstully installed in the Otfice System
and it will appear in the disk window associated with the device_

After you've finished running t.he InstallTool program, boot the Office System.
Your application's tool and stat.ionery pad should be on the desktop. You
only need to run InstallTool once even if you regenerate your tooL If you do
regenerate it, however, the tool name in the object file will be lost, and
"Tool xx" will be listed in all the alerts. To get the tool name back in the
alerts., you must run lnstallTool again.

-4_5 The Icon Edit«
The icons created by the InstailTool program are blank (without pictures). If
'You want to design an icon for ~/O~ applica~ion, contact Macintosh Technical
Support. (U~<!. prb~(C\rn. cttHeJ 1l.-t-AtlCt il'\ La" .. %.Ik,t)

4_6 Shipping YOla'" Application
Your application's phrase file, as well as the object file, must be shipped.
The phrase file contains the standard QuickPort menus and alerts" and it
must be shipped with your application.

4-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1\'

I

kJorkshop User's Guide st/!Jndard qUick-Pori Mtmus

Appendix A
The Standard QuickPort Menus

A.I FUelPrint Meoo
Set Aside Everything J:?eturns all
wtndows to their Icons without saving
the contents.

Set Aside '\ttU' document- RetLQ"r1S the
current document to its icon without
saving the contents.

Save IS: Put AWmj Saves t.he contents
of the document, closes the window,
terminates the program, and returns the
icon to its original location.

SBVe tr ContinJe Saves the contents of
the document and leaves the window
open.

Revert to Previous Version Always
gray -- not supported by QuickPort.

Prirt. As Is Prints one copy of the
document.

Fm-mat. fm- Printer Sets formats in the
document based on the printer that will
be used.

PriTt. Prints the document using the
settings from the Format for Printer
dialog box. You may choose t.o print.
multiple copies.

Monitu" the Printer- Shows the status
of the document(s) being printed.

A-l

Set Aside Evenj:hing

Set Aside "basic Paper 05/24"

Siwe li N: Away
Siwe li Cortlooe
Revert to Previous Versioo

Print As Is
format far Printer ...
Print ...
Monitor t:he Printer ...

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

'r/orkshop Llser's Guide

A.2 Edit Menu
Copy Copies the current selection
onto the Clipboard. In the text panel
the selection is done as in LisaWrite_
In the graphic panel; the entire panel is
copied. If there is a text panel, and a
graphic panel, you must use Select All
Graph to make the selection.

Read Input From Clipl:Jom"d Places
what is in the Clipboard into the input
buffer.

Erase Erases the current selection.

Save Buffel" Saves the lines that
scroll off the top of the screen area.
A check next to Save Buffer indicates
that t.he lines will be saved.

Don't Save Bttrer Does not save the
lines that scroll off the top of the
screen area. A checl< next to Don't
Save Buffer indicates that. the lines
will not be saved_

Select All Text Selects all the text
in the text panel when there is a text
panel.

Flush Input Clears the input paneL
This command is shown only when the
input. panel is shown_

Select All Graph Selects the ent.ire
graphic panel when there is a graphic
panel.

A.3 Terminal Specifics
Set t4J Allows you to select 80 or
132 characters per line, and line
wraparound.

The following dialog box appears for
you to f ill in:

,.. Desk FilelPrirt Edit Tl!mlinal Specifics Exmtion Page laI,p.t

.80 D 132

.Yrs DNa

A-2

standard t;'uickPort Menus .. ~

(0Wd
Read Inptt From Clipboard

Select All Text

Tel-h1it1al SpetiFits

SetI4l
Show Tab Rulpr

Hide Tab Ruler

,

((I(

([meel)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1\

I

~\JorkS'hop User's Guide

Show Tab Ruler Displays the tab
ruler.

Hide Tab Ruler Hides the tab ruler.

A.4 Execution
Restart Restarts program execution.

Rest.me Starts program execution at
the point where it was suspended by an
.t-period.

A.5 Page Layout
Preview Page Mar"gins Shows the
page margins. Note that the default
page margins are such that the output
in the text panel will not fit in the
width of an 6" by 11" page. Before
printing you should adjust the left and
right margins ao that each vertical
page will fit in one 8" by 11" page.

Preview Page Breaks Shows the page
breaks.

Don't Preview Pages Does not show
the page boundaries.

Set Horizontal Page Break Sets a
horizontal page break at the position of
the last mouse click.

Set Vertical Page Break Sets a
vertical page break at the position of
the last mouse click.

Clear All Manual Breaks Clears all
the page breaks set in the document.

A-3

st8l1dlJId ~ujckPort ,.,tenUS'

lJDr"AVillou page Margins
Preview Page Breaks
Dont Preview Pages

Headings and Mirgins ...

Set Horlzortal Page Break
Set Vertical Page Break
(lear RII Maooal Breaks

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
1
1\-

I

Appendix B
Writing Your Own Tenninal Emulator

B_1 IntrtKkJcti~ __ . ___ . ___ . _______ . ___ . ___ . __ _________________________ . ___ ~1
B.2 TStdTer'm _________________ . _______ . __ . ____ . __________ . ____ . _. _________ . ___ 8-1

B.2.1 TStdTerm Fields ... B-1
8.2.2 TStdTerm Methods You Must OVerride 8-2

B_2.2.1 CREATE _ B-2
8.2_2.2 VWrite .. 8-2
8.2.2.3 Vread .. 8-2
8.2.2.4 CtrKeyWrite 8-2

B3 ProcecU"es Terminal Emulattrs can C811 ______ ... __ . __ ... _ ... __ ... _ B-2
B.3.1 Screen Control Functions B-2

8.3.1.1 Manipulating Lines -- VGetLine and VPutUne 8-3
8.3.1.2 Redrawing -- RedrawScreen and

RedrawLine .. 8-3
B.3.1.3 Scrolling -- VScrollLines B-3
8.3.1.4 Changing the Number of Columns --

ChangeMaxColumns B-3
8.3.1.5 Changing Fonts -- ChangeF ont 8-3

6.2.4 VStrWrite ... 6-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(luickPort Programmer's Guide J.r.Jriting a Terminal Emulator

Writing YOUT Clwn
Terminal Emulator

B.1 Introc:lJction
This appendix briefly discusses how to write your own terminal emulator,
using the standard terminal as a template. To write a terminal emulator,
you must understand Clasca!. Specifically, you must understand how to
extend a Clascal program by creating a subclass, overriding existing methods,
and creating new methods. This section assumes you are comfortable with
these basic Clascal concepts. If you don't understand Clascal, cont act
Macintosh Technical Support for a copy of ,qn Introduction to
Clascal before reading this section.

To write a terminal emulator, you create a subclass of TStdTenl.
TStdTer. is the standard terminal provided by QuickkPort. The subclass
you create defines the terminal emulator you want. This appendix discusses
TStdTer., the methods you must override in your subclass, and the methods
used by TStdTerll. You can also add your own methods in your subclass.

B..2 TstdT arm
TStdTerll is the standard terminal that is used by QuickPort applications
unless the VT100, Soroc, or any other terminal emulator is specified. The
TStdTer. fields and methods are discussed in this section.

8.2.1 TStdTerm Fields:
The fields you need to know about in TStdTerll are listed below. These
fields explain how the standard terminal beha:ves. You may want to change
some or all of this behavior in your terminal emulator.

maxlines
maxColumns
cursor shape

saveBuffer

wraparound
stopOutputKey

startOutputKey

The maximum number of lines in the window.

The maximum number of columns in the window.

The shape of the cursor. The standard terminal uses
a box cursor.

To save lines as they scroll off the top of the screen
into the buffer.

BOOLEAN, whether wraparound is on or off.

Used to stop output.

Used to start output.

You can only chage these fileds in your CREATE met.hod.

8-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~uickPort Progrsmmer~ Guide Writing s TerminsJ Emu/stOt'

B.2.2 TStdTer. Methods You Must Override
You must override three of these four methods in your subclass. You may
want to override CtrKeytlri teo

B.2..2_1 CREATE
CREATE creates an object of class TStdTeI1ll. You must override the
CREATE method in your subclBSS.

FUNCTION (TStdTerm}CREATE (object: TObject; heap:
Theap) : TST dT er_;

You must use object and heap ~ arguments in your CREATE method.

B.2..2.2 VWrl te
VWri te is called by QuickPort when the program calls a wri teo You must
override the VWrl te method in your subclass to handle escape sequences that
apply to your terminal.

PROCEDURE {TStdTm.}VWrite (VAR str : Tstr2");

B.2_2..3 Vread
Vread is called by QuickPort when the program calls a read. You must
overr1de the Vread method In your subclass to return any escape sequences
generated from your terminal.

PROCE:t>lRE {TStdTena}Vread (VAH ach: char; VAH
keycap : Byte; VAR applekey,
shiftkey, optionkey ; BOOLEAN);

8..2.2.4 CtrKeyWri te
CtrKeyWrl te handles the control keys for the terminal emulator. You
should override this method in your subclass if you want to handle different
control keys.

PROCEDURE {TStdTen}CtrKeyWri te (ctrch: CHAR);

The control keys handled in the standard terminal are CR (no LF), LF, Bell,
Backspace, Horizontal Tab.

B..3 Procedtres Tenninai Emulabrs Can can
The procedures listed in this section can be called by any terminal
emulators. Note that these are not methods and do not need to be
overridden in your subclass.

B..3.1 Sa"een CorUol Procedla"es
These procedures use escape sequences.

B-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

9UickPort Progr8lTlmer's Guide Nriting a Terminal Emulator

8..3.1.1 Manipulating Lines -- VGetLine and VPutLine
VGetL1ne deletes the specified Hne. VPutLine inserts the line at U·,e
specified line number.

PROCEDURE VGetLine (lineNo : INTEGER; VAR line
Tstr255; delete: BOOLEAN);

PROCEDURE VPutLine (lineNo : INTEGER; VAR line
Tstr255; insert : BOOLEAN);

B3.1.2 Redrawing - RedrawScreen and RedrawLi ne
RedrawScreen and RedrawL1ne are used after VGetl1ne and VPutline.
RedrawScreen repaints the entire screen after a change to the lines or a
screen size change. RedrawL1ne repaints a line after its at.tributes have
been changed.

PROCEDURE RedrowScreeni

PROCEDURE VPutLine (11neNo : INTEGER);

B3.1.3 Saolling -- VScrolllines
VScrolllines scrolls output on the screen without. changing the dat.a
structure.

PROCEDURE VScrolllines (topRegion, bottomRegion
INTEGER; scrollhowmanylines :
INTEGER);

A positive value for scrollhowllanylines scrolls down.

B.3.1A Changing the numbel" of colurrms -- ChangetiaxColllllns
Changet1axColLnns changes t.he maximum number of columns per Hne to t.he
specified number. When ChangeMaxColllllns is called, the corresponding
character font is used. If the columns per line is BO or less, QuickPort uses
a 12-pitch font, otherwise a 2O-pitch font is used.

PROCEDURE ChangeMaxColumns (newColullns : INTEGER);

83.1-' Changing fonts - Changefont
Changefont changes t.o the specified font. Because of cursor pOSitioning,
QuickPort supports only fixed pitch fonts.

PROCEDURE Changefont (newfont : INTEGER);

B.2..4 VStrWri te
VStrWri te "'"ites the string from the cursor position. This call is the one
that does the actual display of output. Terminal emulators should call this
after determining t.here is no escape sequence in the string. This call
actually displ~ys the output. No control functions are allowed in the string.
This call handles wraparound.

PROCEDURE VStrWrite (VAR str : Tstr255);

B-3

