R o VL TSI S L SR {700 Sy T Jpagree L e v g oy 2 ST R
FOr o A P T G A R A TRL A N A o F L VRS, DD I AR RN
sty a L d - N SN PRy e <

R PR NP o O DRI SR M

David T. Craig

O0-1113

i
i
I
i
i
|
i EX LIBRIS
i
|
1
I
1
i

Chapter 1:

Chapter 2:

Chapter 3:
Chapter 6:

Chepter 7:

Chapter 9:
Chapter 10:

Chapter 12:

Appendix E:

Appendix F:

CHANGES/ADDIT/0N 5

PASCAL REFERENCE MANUAL
Summary:
Release 3.0 Notes

Constant expressions can now be used any place that a single constant
can be used.

The order of label, const, type, var, procedure and function
declerations has been relaxed, so you can group them with related
sections of code.

Type-conversion can ke done with the syntax type-id(x).

Ranges can be used in case-tag lists, using the format
{constant)..<constant>.

The perameter list for a forwewrd declared procedure or function can be
repeated when the procedure or function is defined.

The inline attribute for procedures and functions lets you write
explicit hex code.

Using the word univ before the forrnsl type identifier in a parameter
list lets the perameter be any type that is the same size as the
formal type.

You can now write your own intrinsic units.

The way in which an infinity or a NaN is output in a write with a real
value has changed.
There are five new Compiler commands.

There are now options you can specify when invoking the Compiler or
Code Generstor.

The Code Generastor now allocates machine registers differently, and it
miay run out of registers.

The (*...*) Compiler comment delimiters shouldn't be used for the $I
construct if there is an asterisk in the name of an include file.

You now link QuickDraw programs Lo I0SPasLib, QD/Support, and
Sysilib.

You need the files Font.LIB and Font. HEUR on your prefix volume to
draw text using QuickDraw.

Programns using the Hardware unit should now be linked to SysiLib.

Contents
Preface-
Chapter 1
Tokens and Constants
1.1 Character Set and Special Symbolsccceeeiiimennieninnnnnns

1.2 Identifiers
16 Quoted String Constants

Chapter 2
Blocks, Locality, and Scope

2.1 Definition 0F 8BIOCKo.ouemeeeeeoeeeceeseeeeeneaeeeena
22 RUIESOF SCOPE «.ueeecececeececeeececeeesememsesesesesensassnsasenns

Chapter 3
Data Types

3.1 Simple-Types(and Ordinal-Types).......cceeeeereeraeaaeeaaaaannne

3.2 Structured-Types
3.3 Pointer-Types

Chapter 4
Variables

4.1 Variable-Detclarations

Chapter 5
Expressions

5.1 OPEIatOTS..c.cciiiiemnirtiecitieiiteeetteateresssersssssnassssassncns
5.2 FUNCHON-CallS .ot e creeeececencenesrsesasansesesensen
5.3 Set-ConstIUCIOrS cairceneecevscecsecscasseracasennnn

..
..

1.7 Constant Declarationsccooiieeiimiicrcicerecrecrecanneneee
18 Commentsand Compiler Commands..........cccecrecrecncncennes

..

...

3.4 ldentical and Compatible Types........cceeeiieeiierrceciennnnaes
3.5 The Type-Declaration-Part.........coooioiimiiiiiiiainenenes

.....................

4.2 Variable—ReferBnCeS...... ..o iireenccriecnencescncacecseesannese
B3 QUANEIBIS .o et eeceeeeeeecencmeaesensancssannsens

.....................

Pascal Refererce Marxsal Conitents

Chapter 6

Statements
6.1 Simple SLatements ... 6-1
6.2 StIUCIUTEO- S Al MBS ..o cieiiecienietctneeececeeseeeeceseesecesnsnssasnesnsvssances 6-4

Chapter 7

Procedures and Functions
7.1 Procedure-DeClar8tiONSccccceieciieieeieieeeeeciaresreenrsnseesseessesecasennnsesens 7-1
7.2 FUuncCtion-Declarationsot eiicecececeeeeeeeaseenscaesesecsasesennnns 7-4
A T 22 €= 11 =1 ¢ S PR 7-5

Chapter 8

Programs
£ N) L€ P 8-1
82 Program-Paraimelers. ..ttt e eaa e e e s s naas 8-1
8.3 Segmenmtation ...t e 8-1

Chapter 9

Units
9.1 REQUIAI-UNILS ...ttt tac e s oo ca st ae s e e sansanes 9-1
= I 20 (149104 (ol W, o) 1 &30 9-4
93 Unitsthat Use Other UNItS ..o ieciiceeeectteceeeaccsenancnnsncnannes 9-4

Chepter 10

Input/Output
10.1 INtroductionto I/0.o it eeccetet e e e eenemserenncmaeossa e m e nanan 10-1
10.2 ReCOTA-Orientet I/D ... e eteteteeieeceteeeesecmeunnacesensesnsnnsasesann 10-8
10.3 TexXt-—Orented 1/D. .. e ctecteaceeearensacscestestsnmancsasasnssnssssnens i0-9
10.8 UntypedFile I/0...... .ottt cer e er et e e e mc e e e e e e eenenen 10-18

Chapter 11

Standard Procedures and Functions
11.1 EXAt A HAIL PTOCROUTES ... c.ooeeeeeeeeeceireeiceceacereceeesnseraneacasessssnnnnnse 11-1
11.2 Dynamic AIIOCAtION PTOCEOUTIESc.cccieeuieececesesmsanssessssssassossassnses 11-1
11.3 Transfer FUNCHIONSot cee e ceneeensaneensanernennnansansns 11-4
11.8 AHTMELIC FUNCHIONS ..o ece i ceciecceeee s raeeetsneereraracanensnnans 11-5
11,5 Ordinal FUNC U O oot eeecacee e sicecectasecren et caaetessemnsnannsans 11-8
11.6 StringProcedures and FUNCHIONS ..ottt e ceneane 11-9
11.7 Byte-Oriented Procedures and Functions............ccociiiiimmniiimniininanens 11-11
11.8 Packed Array of Char Procedures and FunctionsS...........cceeeeeereeececneennn. 11-12

Fascal Reference Manual Contents
Chapter 12
The Compiler
12.1 Compiler ComMmManiso e ceea e 12-1
12.2 Conditional Compilation i 12-2
12.3 Optimization of If-Statements s 12-5
12.4 Optimization of While-Statements and Repeat-Staternents _........ 12-6
12.5 Efficiency of Cese-Staternents i 12-6
Appendixes
A Cornparisonto Applelland ApplelllPascal A-1
B Known Anomaliesinthe Compiler i e B-1
C Syntaxof the Languageot e e C-1
D Floating-Point Arithmetic o e D-1
(S TF) [t A0, - P N E-1
F.o o Herdware InbeITace ... o e F-1
G LisaExtendedCharacter Set i G-1
L I ¢) gl (T Lo H-1
I Pascal Workshop Files ..o i it it e e cineeeaianaas 1-1
J Listing Formals i J-1
TIndex
Tables
3-1 Precedence of Operationsot e 5-1
5-2 Binary Arithmetic Operations i 5-4
5-3 Unary Arithretic Operations (Signs) i i 5-4
5-4 Boolean Operations i 5-6
-0 Sel OperationS .. s 5-6
5-6 Relsational Operations i, 5-7
5-7 Pointer Operation e 53-8
10-1 Combinsations of File Yariable Types with External File

Species and Categorieso i e 10
-1 Predefined Identifiers inthe Lisa Pascal Compiler A-
-1 Results of Addition and Subtraction on Infinities D
-2 Results of Multiplication and Division on Infinities D

oo>

......................

Syntax Diagrams

A, B
BCUUBL-PATAMEBLETcoceiiiiiiiiciietiemitieei it teesstemnsssrnssarnnensasanssesnassnnsnnnns 5-10
actual-parameter-lst 5-10
AITAY-LYPRieeieeiiiiiiee e cieeteereuiieiestne s asenesnserssinnssnemsaanasaeransssasnsnanns 3-8
BSSIGNMENT=SLALBIMENL ... ieeecrrecireriee e cee e cee i nee s n s sscanenes 6-1
(a2 B o 3-13
] [0, o S 2-1
C

522 3 <SOSR PPN 6-6
CASE-SLALBITIBNL <. cieeecireeecer e ceca o accsaaremeenntonaocanessonannasnnsns 6-5

SEALEMBNL ... et s sas s e 6-4
conditional-statementcoe i 6-4
oTu g0 £ o | AU ON 1-5
CONStANt-0CIAIAUIONceeeee e eee e et iecerce s rne e eceam s arncseenann 1-5
constant-declaration-part ... 2-2
(01w 018 (a1 BVE=) 0) [2D 6-8
o 1o LT 1 g T OO UON 1-2
ENUMETALEO-TYPE ...ceeieeeiiieiiiceerimiraeceeiin st s et erea s eare s rn e ssa e naressaneas 3-6
1235 0] (333 L o T T 5-3
1= +1173) SRR 5-1
1315310 Bv 5103 21 £ 1 (00 OO P PPN 3-10
13123 1o 0 A3 0. 972 11 o) ORI 4-4
1323 (o B V] OO PTOP 3-9
AU CT1E 75 @Y1 <) SRR 4-4
FHIE=LYP ..o 3-12
FINAI-VAIUB...... ettt ceee e re e e nasnssestsanassscsrennnanasannns 6-8
13505 v o o o RS 3-9
{0 G F=172 01 < | OO ROPPN 6-8
fOrmal-paramELer-1iStccou et e e 7-6
FUNCHION=D0GYneeereneieceiieeeceece et ceieieesecneeeraennnancassnaenesasecssmnmasnsnanse 7-4
FUNCUON=CAIL ... et ccsceeccrcec st cac et secorannaanmensssnsnnnnnes 5-10
fUNCUON-0ECIAIAtIONot cr e e e re e rr e e ccseeem e nees 7-4
fUNCHION-NEAAINGoerimeeireeiiteeee et e 7-4

Pascal Reference Marval Contents
G HI
QOLO-SLALEIMENL ...eeiererreicieicitrr s st rees st s se s nsan s ssssrannssraannas 6-3
PEX-0IgIt-SEQUENCE ..ot en e e 1-2
D0 = a1 3T S 1-2
Do =LA U5 T3 e B P 3-6
BE-SEAtEMENL ..o ettt e e e e e 6-5
implementation-part ... 9-2
(g0 > RN 4-2
100 2> ol 4T, o PP PRPRPR 3-8
INIBI-VAIUB.........ccerereeiirreirce et 6-8
INMErFace—Part ... e 9-2
LLMO
o= P 2-1,6~1
label-declaration-part ..o tra e reenaan 2-1
MEMDEBI—IOUDeeeueiiieeiireiientreiireesraenrtrirastcsssneesaereassesnsssssssssssessenns 5-11
o) (o1 Tat=) Bl 4 o= PO 3-2
ONEIWISECLAUSEoeeeiieiceiiiriaiierieerreeirraresneittanrsrsessenssssrasssssssssssnsssnsnnes 6-6
P
parameter-declara8lioncccoiiiiiiiiii it rrre s s e se e as 7-6
(0,81 (a1723 gl 1= o R0 £ o) 4-4
80 L1723 el o N 3-13
procedure-and-function-declaration-partco oo e eeccreeeeeaaee 2-2
(83 g0 oo B €2 ¢ v o 3 USRS 7-1
Procedure-declaralion oo ccecereeereeeeeen e s e e e enanans 7-1
[$) 0 oo V) (g == s L o [7-1
procedure-statement e e 6-2
86,0 €= 2 TP 8-1
PIOgram-headingc..oeeerrimeeniiciimiiiiiee e ceeee e e e s 8-1
PrOGram-pParamBeLScccuiiieeiiiiieeiieuietiiiieeierieieraeestsaroenareasasssersnssssasns 8-1
QR
010) | 5 =3 N 4-2
quoted-character-constant ...t 1-4
quoted-String-Constant ...t 1-4
TEAL-LYPE ... et te e e ae e e e 3-2
TECOTU-LYPE ..ccuunieniimniitirtitiessrennsteasttrsntesratsstasssessessassassassessassssnnsesnnen 3-9
(o0 F1EC) Gl g LN 9-1
TEPEAt-StAtBMEBNT ..ttt tae et e ettt e e n s s s et aenaanane 6-7
Tepetitive-StatemeBNt recerereeeee e s sesaresen e e s e e e naan 66
TESUIL-LYPR ...ttt ccrrcerreaa et set et ee et sean s tesas sanesaenessssnsnsssanss 7-4

Pascal Refererice Manual Contents
S
101) (-0 To] () GOSN 1-3
SBUL-CONSLIUCTONceeciiieiicreietettcntacncancancaasecesessnssnessassansacarasassvassrsne 5-11
11 R 0 1 USSP 3-11
11 2 T N 1-3
SIQNEU-TIIMDBT ..o ittt et ce e te e e e e s en e e e s anas s anann s e naans 1-3
L1110) (=7 (1) (201 0o S5-3
simple-statementot aeas 6-1
SIMPIE—YP ...ttt ettt e e ce s e et et sa s s s aa sa s e s nan e 3-2
1R TR R o L T SO TROOPUI 25
102101 1= o | USSR 6-1
AF=10C 10 gL o - P 2-2
L1010 0l 0-2) £ 03 () U U 1-4
109 g ot 8 ¢ UL EU RN 3-5
StIUCtUTEd-SEateMBNL ... ettt cta s ettt e ra s s s ae s eaesnanns 6-4
SUTUCIUTEO-LYPR ...t ceet e ce s an et s e e s r s e sese s nan s anens 3-7
SUDTEINGELYPR ... eiceinniaiettiterieentectotiotasesmm e tetesassesessssasassossesnsmsannassasanne 3-7
T
1 e LT U 3-10
L= 11 1 T OOt 5-2
Y -enerieereeeeaneeranreastaaanteastare s naaannseeasaeeassaanaanatean et eeearar st neaaanneennanes 3-1
1870, 2s =0 21 €214 [o TR0 OO O ON 3-1
type-declaration-part ...t 2-2
U
UNI-hBAOING ...t cretr e e r s et ce e et e an e s e e nan e nanaans 9-1
UNSIgNEO-CONSLANE ...t s e e e s e e 5-2
UNSIGNEO-INtBOET .. e eea e e 1-3
UNSIGNEO-TIIMDEYoeeeeecciiciitetintanee e cie s ee e s e e asaen e s s s e ne s e rennas 1-3
UNSIQNEO-TEALceveiiieneiiiieeieer e ertma e eeansereca e arane e nmneesearannssanssssnmnssssanes 1-3
USES=ClAUSE .. iiiieicoieniosmereacacnraareemasetnatessssesatesnnsnseesnrenmnnesreasensmensan 8~-1
V, W
vartable-geclarationc.cccciieriienianiereact ettt et eae st e s e s enaenns -1
variable-declaration-part ... 2-2
V221 g L= e 1= T o 1A 0 () TR 4-1
VATADIE-TEfBIBMCE ... e iiiicitcriiericteaseanarreamactasannsenettessnssansnassansenssannannnn 4-1
Y= 3 T 1| 3-10
AV1:1 9=) T o< | 7 PR 3-10
WHhIE-SLateMBN L. iitieeceet e et aennsresenst e naraessasasnasamnsannse 6-7
VY LE g b d #2110 3L O SO OO 6-10

Preface

This manual is intendeqa for Pascal programmers. It describes an Implemen- ;
tation of Pascal for the Lisa computer. The compiler and code generator ;
translate Pascal source text to MC68000 object code. !

The language is reasonably compatible with Apple 1I and Apple 1ll Pascal. See
Appenaix A for a discussion of the differences between these forms of Pascal.

In adaition to providing nearly all the features of standard Pascal, as described
in the Pascal Liser Manual and Report (Jensen and wirth), this Pascal provides
a varlety of extensions. These are summarized in Appendix A. They Include
32-bit integers, an otherwise clause In case statements, procedural and
functional parameters with type-checked parameter lists, and the @ operator
for obtaining a pointer to an object. The real arithmetic conforms to many
aspects of the proposed IEEE standard for single-precision arlthmetic.

Operating Environment
The compller will operate In any standard Lisa hardware configuration; this
manual assumes the Workshop software environment.

Related Documents
Pascal User Manual and Report Jensen and Wirth, Springer-Verlag 19765.

Workshop Users Gulae for the LIs§ Apple Computer, Inc. 1983,
Other Lisa documentation.

Definitions
For the purposes of this manual the following definitions are used:

s frior: Either a run-time error or a compller error.

* Scape: The body of text for which the declaration of an ldentifier or
label Is valid.

* (moeffned: The value of a varlable or function when the varlable does not
necessarily have a meaningful value of its type assigned to it.

= Unspeciffed: A value or action or effect that, although possibly
well-defined, 1s not specified and may not be the same in all cases or for
all verslons or configurations of the system. Any programming construct
that leads to an unspecified result or effect Is not supported.

Notation and Syntax Diagrams

All numbers in this manual are in decimal notation, except where hexadecimal
notation Is specificaily Indlcated.

Throughout this manual, bold-face type Is used to distinguish Pascal text from
English text. For example, sgr(n div 16) represents a fragment of a Pascal
program. Sometimes the same word appears both in plain text and in

Pascal Reference Markial Freface

bold-face; for example, "The declaration of a Pascal procedure begins with
the word procedure.”

Itallcs are used when technical terms are Introduced.

Pascal syntax Is specified by dlagrams. For example, the following diagram
glves the syntax for an identifier:

identifier

| letter

Start at the left and follow the arrows through the dlagram. Numerous paths
are possible. Every path that begins at the left and ends at the arrow-head on
the right is valld, and represents a valld way to construct an identifier. The
boxes traversed by a path through the dlagram represent the elements that can
be used to construct an ldentifier. Thus the diagram embodies the following
rules:

¢ An identifier must begin with a Jetter since the first arrow goes directly to
a box containing the name “letter."

* An identifier might consist of nothing but a single letter, since there Is a
path from this box to the arrow-head on the right, without going through
any more boxes.

* The Initlal letter may be followed by another letter, a o/g/¢ or an
unerscoreg since there are branches of the path that lead to these boxes.

* The Initial letter may be followed by any number of letters, digits, or
underscores, since there Is a loop In the path.

A word contained In a rectangular box may be a name for an atomic element
like "letter” or "digit,” or it may be a name for some other syntactic
construction that Is specified by another diagram. The name in a rectangular
box is to be replaced by an actual instance of the atom or construction that it
represents, e.g. “3" for "digit” or "counter” for “varlable-reference”.

Pascal spmbols such as reserved words, operators, and punctuation, are
bold-face and are enclosed In circles or ovals, as in the following diagram for
the construction of a compound-statement:

Cmmm-.f[&[&’ﬂ?&’ﬂ[
(=)

Pascal Reference Marna! Preface

Text in a circle or oval represents itself, and Is to be written as shown (except
that capitalization of letters is not significant) In the dlagram above, the
semicolon and the words begin and end are symbols. The word "statement”
refers to a construction that has its own syntax diagram.

A compound-statement consists of the reserved word begin, followed by any
number of statements separated by semlcolons, followed by the reserved word
end (As will be seen In Chapter 6, a statcment may be null; thus begin end is
a valld compound-statement.)

11

13
14
15
16

Chapter 1
Tokens and Constants

Character Set and Special SYImbolsoooiiiiimiirareareenaccannenees 1-1
(s - 18 1) o O 1-2
(911 (= 18 1. 1-2
[T 11 @ =) o S 1-2
Labels emeeeeceeeseeseesseeEsessssstsssecessesteseeeisesatnntesanstesanansanstenttastanas 1-4
Quoted StINgCONStANts ...ttt e e eaas 1-a
1.6.1 Quoted Character Constants.ccocieiriiiciierccmerereceecer e raranenes 1-4
Constant Declarationscc. o oocimmiiieicenacraneceeceeaaceessenneeecanaen 1-5
Comments and Complier Commands.......c..cooceaommaeeeaeemmanaeomcceammnanen 1-5

Fascal Relerence 3.0 Noles

CHANGES/ADb1Tr0ms

Tokens and Conslants

Chapter 1
Tokens and Constants

19 Constant Expressions

Constant expressions may now be used wherever a single constant is allowed
in the Pascal language. This means that constant expressions are allowed in
const declarations, subranges, and case tags. (Const declarstions are

described in Section 2.1, subranges in Section 3.1.3, and case statements in
Section 6.2.2.2.) Constant expressions are evaluated at compile time.

Constant expressions follow the same rules as expressions. Operands must
be compatible with their operators (+, —, *, div, /, in, and, ar, not, and
relations). Set operations are permitted; constant sets may be defined within
the const section.
The following functions are permitted in constant expressions:

Aks, Sqgr, Odd, Ord, Ord4, Chr, Trunc, Round, SizeOf

The constant expression SizeOf function is somewhat more restrictive than
its arithmetic expression counterpert in that only a single type or variable
identifier is allowed (the arithmetic version allows field specifications).

all integer arithrnetic is perforrmed using long integers. Overflows sre not
detected.

Some examples of constant expressions are as follows:

type

Color = (Blue, Cyan, Green, Yellow, Red, Magenta);
const

PageSize = 1024;

NbxOfBlks = PageSize div 512;

WhiteColor = [Blue, Green, Red];

BlackColor = [Cyan, Yellow, Magental;
var

InputBufr: packed sxray [0..PageSize — 1] of char;

Notes 1-1

Fascal Keference 3.8 Noles Tokens &nd Constamnts
begin
l;lééd(lnput, Ch);
case Ch of

'0'..'9"': Digits;

'a"..'z', 'A'..'2Z': Letters;
Cl’l!'(13) : EndDfLine;

Chr(03) : EndDfFile;
otherwise Special;

end. {case}

end.

Note that these examples also use other language enhancements: types hefore
the constants (to declare some set constants) and case tag ranges (for letters
and digits).

The introduction of constant expressions into the Pascal language causes a
possible gyntax ambiguity between subrange and enumerated types which you
should be aware of:

type
range = expressionl._expression?;
color = {black, brown, red, orange, yellow, green);

The Compiler distinguishes subrange types from enumerated types by the
first symbol after the equal sign: a left parenthesis in that position signifies

an enumerated type. If a subrange specification is of such complexity as to
require parentheses, precede it with "0+".

Noles 1-2

B

Tokens and Constants

Tokens are the smallest meaningful units of text in a Pascal program;
structurally, they correspond to the words in an English sentence. The tokens

of Pascal are classified into special symbols iaentiflers mumbers labels and
quoted string constarts

The text of a Pascal program consists of tokens and sepasators:a separator 1s
either a o/ank or a comment Two adjacent tokens must be separated by one
or more separators, if both tokens are identifiers, numbers, or reserved words.

No separators can be embedded within tokens, except In quoted string
constants.

1.1 Character Set and Special Symbols

The character set used by Pascal on the Lisa Is 8-bit extended ASCII, with
characters represented by numeric codes in the range from 0 to 255.

Letters, digits, hex-digits, and blanks are subsets of the character set:

* The ZJetters are those of the English alphabet, A through Z and a through z.

* The a/g/ts are the Arabic numerals O through 9; the fex-algits are the

Arablc numerals 0 through 9, the letters A through F, and the letters a
through f.

* The tlanks are the space character (ASCII 32), the horizontal tab character
(ASCI1I 9), and the CR character (ASCII 13).

Special symbols and reserved worods are tokens having one or more fixed
meanings. The following single characters are special symbols:

s-m /= <> 1. () s T @ ()s
The following character palrs are special sympols:

<> <= >= = . (ﬂ ﬂ)

The following are the reserved words:

and end label program until
array file methods* record uses
begin for mod repeat var
case function nil set while
const goto not string with
creation* if of subclass*
div implementation or then
downto in otherwise to
do interface packed type
else intrinsic* procedure unit

1-1

Pascal Reference Manual Tokens & Constants

The reserved words marked with asterisks are reserved for future use.
Corresponding upper and lower case letters are equlvalent In reserved words.
Only the first 8 characters of a reserved word are significant.

1.2 Identifiers
ldentifiers serve to denote constants, types, varlables, procedures, functions,
units and programs, and flelds In records. Identiflers can be of any length, but
only the first 8 characters are significant. Corresponaing upper and lower case
letters are equivalent in ldentifiers.

loentirier @

underscore

NOTE

The first 8 characters of an identifier must not match the first 8 char-
acters of a reserved word.

£xanples or loentirlers:
X Rome gcd SuH get_byte
13 Directives

Directives are words that have speclal meanings In particular contexts. They
are not reserved and can be used as identiflers in other contexts. For
example, the word forward is interpreted as a directive if it occurs
Immediately after a procedure-heading or function-heading, but in any other
position it Is interpreted as an ldentifler.

1.4 Numbers
The usual decimal notation Is used for numbers that are constants of the data
types integer, longint, and real (see Section 3.1.1). Also, a hexadecimal integer
constant uses the $ character as a prefix (1-4 digits for integer, 5-8 digits for

longint).

digit-sequernce : ! >

hex-aigit-seqerce hex-digit

1-2

2 Pascal Reference Manual Tokens & Constants

Dl digit-sequence } —»
L@——&{ hex-digit-sequence I—f

unsigned-inteqger

O
wnsigriea-real

dlglt-sequew digit-sequence AN >
»{ scate-faotor|-~

scale-ractor

- ’@ *l diglt—sequencﬂ———-b
LS

unsignea-number .{ unsigned-integer ’—\
\bi unsigned-real || >
signea-number ® unsigned-number |——

The letter E or e preceding the scale In an unsigned-real means "times ten to
the power of".

Examples of numbers:
1 +100 -0.1 SE-3 87.35e+8 $ADSD

Note that S5E-3 means 5x107>, and 87.35e+8 means 87.25x108.

1-3

et
Pascal Reference Manual Tokens & Constants Y
~

15 Labels
A label Is a digit-sequence in the range from O through 9999.

16 Quoted String Constants
A quoted-string-constant s a sequence of zero or more characters, all on one
line of the program source text and enclosed by apostrophes. Currently, the
maximurm number of characters Is 255. A quoted-string-constant with nothing
between the apostrophes denotes the null string.

If the quoted-string-constant is to contain an apostrophe, this apostrophe must
be written twice.

qQuoted-string-constart

. .() »
ﬁr @ (-{ string-character ’4—)

string-character

~——Wany char except @ orCR j——-v

Examples of quoteq-string-constants:
'Pascal’ "THIS IS A STRING' ‘Don’ 't worry!’

IAI l;l [] s

All string values have a Jengt/? attribute (see Section 3.1.1.6). In the case of a
string constant value the length is fixed; it is equal to the actual number of
characters in the string value.

1.6.1 Quoted Character Constants
Syntactically, a quoted-character-constant is simply a guoted-string-constant
whose length is exactly 1.

quotea-character-Constant__y(™._ [iring-cnaracter (")

A quoted-character-constant is compatible with any char-type or string-type:
that s, it can be used either as a character value or as a string value.

1-4

Pascal Reference Manua! Tokens & Corstants

1.7 Constant Declaratlons

A constant-declaration defines an identifier to denote a constant, within the
block that contalns the declaration. The scope of a constant-identifier (see
Chapter 2) does not include its own declaration.

constant-declaration (=) ()

canstant ~ > P{ constant-identifier h
\b(signed-number Il ™
N-{ quoted-string |)
\bl quoted-char } > >
NAOTE

A constant-identifler is an identifier that has already been declared to
denote a constant.

A constant-ldentifier following a sign must denote a value of type integer,
longint, or real.

1.8 Comments and Compller Commands
The constructs:

{ any text not contalning right-brace }
(» any text not containing star-right-paren #)

are called commernts

A compller command Is a cornment that contains a $ character immediately
after the { or (» that begins the comment. The $ character is followed by the
mnemonic of the compller command (see Chapter 12).

Apart from the effects of compller commands, the substitution of a blank for a
comment does not alter the meaning of a program.

A comment cannot be nested within another comment formed with the same
kind of delimiters. However, a comment formed with {..} delimiters can be
nested within a comment formed with (*...#) delimiters, and vice versa.

1-5

Chapter 2
Blocks, Locality, and Scope

21 Definitionof BLOCK ... aeecaecceteecarerenectesasiamsssaasssssnsnsanan 2-1
22 RUIES Of SCOPB ...cieimnieieenneentinanesaonnnnssmmrteaacensaeamnnnsammnescaamnasmasennssensass 2-3
2.2.1 Scopeof @aDeClaration.c.ou i ern e ana e 2-3
2.2.2 Redeclaration in an Enclosed BIOCK e aaeeacaeemamecanan 2-3
2.2.3 Position of Declaration within ItsBlock i iiaiaiaenens 2-3
2.2.4 Redeclaration WithinaBlooKceieii et ceeee et e snnnans 2-3
2.2.5 ldentifiersof Standard OBJECtScciiiiiiiriiireeere e et eneenaaas 2-4

CHANGES/ADOITION S

Fascal Relsrence F.0 Notes locks, Locality. &hd Scope

Chapter 2
Blocks, Locality, and Scope

Relaxed Order of Declarstions (See Section 2.1)
The order of declarations hes been relaxed so that label, const, type, ver,
procedure, snd function declarations may be mixed freely to group related
parts of the code together. The only restrictions ere that all data must be
defined before they are referenced in a8 declaration, and forward-referenced
pointer declarations must be satisfied in the group of declarations in which
they occur.

Notes 2-1

Blocks, Locality, and Scope

2.1 Definition of a Block

A block consists of declarations and a statement-part. Every block is part of
a procedure-declaration, a function-declaration, a program, or a unit. All

ldentifiers and labels that are declared In a particular block are /oca/ to that
block.

Lok [|apel-declaration-part]—)
-
M constant-declaration-part J—?

-
\ﬁ{ type-declaration-part |——)

-

\0{ variable-declaration-part h

|~

procedure-and-function-declaration-part

(’
\b[statement-part lr —p

The Jave/-ceciaration-part declares all labels that mark statements in the
corresponding statement-part. Each label must mark exactly one statement In
the statement-part.

label-adeclaration-part

label lavel »(>) >
(D

jiv/—b{ aigit-sequence ——

Z2-1

Pascal Reference Marnual

The constant-ceclaration-part contains all constant-declarations local to the
block.

constant-geclaration-part

constant-declaration ’T—’

The Ype-aeclaration-psrt contains all type-declarations local to the block.

Ype-declaration-part

type-declaration }—)——b

The wvariable-ceclarstion-part contains all variable-declarations local to the
block.

variable-declaration-part
——@T{ variable-declaration I—T)———b

The proceaure-and-function-declaration-part contains all procedure and
function declarations local to the block.

procedure-and-rnction-aeclaration-part
procedure-declaration
functlon-declaration

The statement-part specifies the algorithmic actions to be executed upon an
activation of the block.

statement part b{ compound-statement }—-—-—-’

Blocks, Locallty, & Scgqoe

Pascal Reference Maal Blocks, Locallty, & Scope

NOTE

At run time, all variables declared within a particular block have
unspeclfled values each time the statement-part of tne block Is entered.

22 Rules of Scope
This chapter aiscusses the scope of objects w/&in the program or unft in which
they are adefined See Chapter 9 for the scope of objects defined in the
Interface-part of a unit and referenced in a host program or unit.

221 Scope of a Declaration
The appearance of an identifier or label in a declaration defines the identifier
or label. All corresponding occurrences of the identifier or label must be
within the scgoe of this declaration.

This scope Is the block that contains the declaration, and all blocks enclosed
by that block except as explained in Section 2.2.2 below.

2.2.2 Redeclaration in an Enclosed Block
Suppose that outer is a block, and inner Is another block that is enclosed
within outer. If an identifier declared in block outer has a further declaration
in block inner, then block inner and all blocks enclosed by inner are excluded
from the scope of the declaration in block outer. (See Appendix B for some
odd cases.)

2.2.3 Position of Declaration within Its Block
The declaration of an identifier or label must precede all corresponding
occurrences of that identifler or label in the program text--i.e., ldentifiers and
labels cannot be used until after they are declared.

There is one exception to this rule: The base-type of a polnter-type (see
Section 3.3) can be an identifier that has not yet been declared. In this case,
the identifier must be declared somewhere in the same type-declaration-part
in which the polnter-type occurs. (See Appendix B for some odd cases.)

224 Redeclaration within a Block
An identifier or label cannot be declared more than once in the outer level of
a partlcular block, except for record fleld identifiers.

A record field identifier (see Sections 3.2.2, 4.3, and 4.3.2) is declared within a
record-type. It is meaningful only in combination with a reference to a
variable of that record-type. Therefore a fleld identifier can be declared
again within the same block, as long as it is not declared again at the same
level within the same record-type. Also, an identifier that has been declared

to denote a constant, a type, or a variable can be declared again as a record
field identifler In the same block.

2-3

rascal Rererence Manal Blocks, Locality, & Scope

225 Ildentifiers of Standard Objects
Pascal on the Lisa provides a set of standard (predeclared) constants, types,
procedures, and functions. The ldentifiers of these objects benave as if they
were declared in an outermaost block enclosing the entire program; thus their
scope includes the entire program.

\
|
|
|
|

3.1

32

33
34

35

Chapter 3
Data Types
Simple-Types (8nd Ordinal-TYPes)........ccccorecovreceimeineenenecrecssnnssannnnnnes 3-2
3.1.1 Standard Simple-Types and String-Types.......ccooeriiiinniinicennenan. 3-3
3111 Thelnteger Type . irimcicecnrnrnanas 3-3
3.1.1.2 The Lomgint TYPE ...t eeane e 3-3
3113 The Real TYPE ... e 3-4
3.1.1.4 The BoOE@N TYPEc.iiimmniiiiiciniinn e rrnte e nene e 3-4
3.1.15 The Char TYPEoueiiiriiiee e e et e ee e 3-4
3.1.16 SUNG-TYPES.cuii et en e e anees 3-5
3.1.2 Enumerated-TYPEeSooiiiieiiiiieeeiei ettt e e e 3-6
RN o) -1 v -l Y/ v - U 3-7
SUUCTUTEO-TYPES ... rrricr i tntree st cei e e nr s s s easns e e s ensanessananans 3-7
3,21 ATTBY TYPES tiuiciruiiartermiatccarensasetastetestessrtssastnmnsannasinasmasnssnes 3-8
3.2.2 RECOTA-TYPBS ...ttt e tran e rraasee s n s s s esta s s vann e e enanes 3-9
T T Y = O 3-11
- ¥ T Y o PO 3-12
[) TE172) ol)Y o 2 313
Identical and Compatible Types e 3-13
381 Typeldentity ..ottt e eee e s 3-14
3.4.2 Compatibility Of TYPEScooiieiiii e, 3-15
3.4.3 Assignment-Compatibility 3-15
The Type-Declaration—Part...............ccccooiiimniiirrirncctrecnenenesssnsase 3-16

CHANGES/ADDITION'S

Fascal Rerference X0 Noles Date Types

Chapter 3
Data Types

3.6 Type-Conversion with Functional Syntax

Type-conversion has been added with the syntax type-idx). X may be a
variable or variable-select (field) or an expression, whichever is legal in the
local context. Type-id is any user or predeclared type identifier. X is
treated as an instance of type type-id, provided that the storage size of x is
not changed (for conversion between scalars--excluding reals--even this is
relaxed).

For example:

type

R = recard

x, y: Integer;

var

Rr: X;

L: LongInt;

I: Integer;
Rr := R(L);
Rr := R(34 + 65536*180);
I := integer(L);

The last line shows a conversion from a 4-byte quantity to a two-byte
quantity, which is allowed for scalars. In this case the conversion is checked
for overflow according to the usual compiler conventions in effect.

Restriction: Do mo¢ use the type-conversion feature in conjunction with set
expressions such as the following:

s = set of 0..3]1;

var
a b, c: longint;

a .= longint(s(a) + (b));

The sbove capability is currently unimplemented and will no! be reported as
an error from the Compiler. Conversion of set variables is okay, however.

Notes 3-1

Data Types

A Ype 1s used In declaring variables; it determines the set of values which
those varlables can assume, and the operations that can be performed upon
them. A Ype-oeciarat/on associates an identifier with a type.

bpe-ceciaration O O

simple-type

structured-type

pointer-type

The occurrence of an identifier on the left-hand side of a type-declaration

declares it as a type-identifier for the block in which the type-declaration

occurs. The scope of a type-identifier does not include its own declaration,
except for polnter-types (see Sectlons 2.2.3 and 3.3).

To help clarify the syntax description with some semantic hints, the following

terms are used to distinguish identifiers according to what they denote.
Syntactically, all of them mean simply an identifier:

simple-type-identifier
structured-type-identifier
pointer-type-identifier
ordinal-type-lgentifier
real-type-identifier
string-type-identifier

In other words, a simple-type-identifier is any identifier that is declared to
denote a simple type, a structured-type-identifier is any identifier that is
declared to denote a structured type, and so forth. A simple-type-identifier

can be the predeclared identifier of a standard type such as integer, boolean,
etc.

3-1

Pascal Reference Manual Data Types

3.1 Simple-Types (and Ordinal-Types)
All the simple-types define ordered sets of values.

simole-tye

ordinal-type

string-type

Eél‘%_,{' real-type-identifier |——

ordinal-type 1

subrange-type |

enumerated-type

ordinal-type-identifier

The standard real-type-identifier is real.
String-types are discussed In Section 3.1.1.6 below.

aralnal-types are a subset of the simple-types, with the following special
characteristics:

* Within a given ordinal-type, the possible values are an ordered set and each
possible value Is assoclated with an arainal/ty, which Is an Integer value.
The first value of the ordinal-type has ordinality 0, the next has ordinality
1, etc. Each possible value except the first has a pregecessor based on
this ordering, and each possible value except the last has a swecessor based
on this ordering.

* The standard function ord (see Section 11.5.1) can be applied to any value
of ordinal-type, and returns the ordinality of the value.

* The standard function pred (see Section 11.5.4) can be applied to any value
of ordinal-type, and retums the predecessor of the value. (For the first
value in the ordinal-type, the result is unspecified.)

* The standard function succ (see Section 11.5.3) can be applied to any value
of ordinal-type, and returns the successor of the value. (For the first value
in the ordinal-type, the result is unspecified.)

3-2

Pascal Reference Marnsal Data Types

All simple-types except real and the string-types are ordinal-types. The
standard ordinal-type-identifiers are:

integer
longint
char
boolean

Note that In addition to these standard types, the enumerated-types and
subrange-types are ordinal-types.

3.1.1 Standard Simple-Types and String-Types
A standard type is denoted by a predefined type-identifier. The simple-types
integer, longint, real, char, and boolean are standard. The string-types are
user-oefined simple-types.

3.1.11 The Integer Type

The values are a subset of the whole numbers. (As constants, these values can

be denoted as specified in Section 1.4.) The predefined integer constant maxint
is deflned to be 32767. ™Maxnt deflnes the range of the type integer as the
set of values:

-maxint-1, -maxint, ... -1, 0, 1, ... maxint-1, maxint
These are 16-bit, 2's-complement integers.

3.1.1.2 The Longint Type
The values are a subset of the whole numbers. (As constants, these values can

be denoted as specified in Section 1.4.) The range is the set of values from
-@31-1) to 231-1, 1., -2147483618 to 2147483647,
These are 32-bit integers.

Arithmetic on integer and longint operands is done in both 16-bit and 32-bit
precision. An expression with mixed operand sizes Is evaluated in a manner
similar to the FORTRAN single/double precision floating-point arithmetic rules:

* All "integer” constants In the range of type Integer are considered to be of
type integer. All "integer” constants in the range of type longint, but not
in the range of type integer, are considered to be of type longint

* When both operands of an operator (or the single operand of a unary
operator) are of type integer, 16-bit operations are always performed and
the result is of type Integer (truncated to 16 bits if necessary).

* when one or both operands are of type longint, all operands are first
converted to type longint, 32-bit operations are performed, and the result is
of type longint. However, If this value is assigned to a variable of type
integer, it Is truncated (see next rule).

2-3

Pascal Reference Marnual Data Types

* The expression on the right of an assignment statement is evaluated
Independently of the size of the varlaple on the left. 1f necessary, the
result of the expression is truncated or extended to match the size of the
variable on the left.

The ordd function (see Section 11.3.3) can be used to convert an integer value
to a longint value.

IMPLEMENTATION NOTE

There Is a performance penalty for the use of longint values. The
penalty is essentlally a factor of 2 for operations other than division
and multiplication; for division and muitiplication, the penalty is much
worse than a factor of 2.

3113 The Real Type
For detalls of IEEE standard floating-point arithmetic, see Appendix D. The
possible real values are

* Finite values (a subset of the mathematical real numbers). As constants,
these values can be denoted as specified in Section 1.4.

The largest absolute numeric real value Is approximately 3.402823466E38 in
Pascal notation.

The smallest absolute numeric non-zero real value is approximately
1.401298464E-45 in Pascal notation.

The real zero value has a sign, like other numbers. However, the sign of a
zero value is disregarded except in division of a finite number by zero and
in textual output.

* Infinite values, += and -«. These arise either as the result of an operation
that overflows the maximum absolute finite value, or as the result of
dividing a finite value by zero. Appendix D gives the rules for arithmetic
operations using these values.

* NaNs (the word “NaN" stands for "Not a Number"”). These are values of
type real that convey diagnostic information. For example, the result of
multiplying « by 0 is a NaN.

3.1.1.84 The Boolean Type
The values are truth values denoted by the predefined constant identifiers false
and true. These values are ordered so that false is "less than" true. The
function-call ord(false) returns 0, and ord(true) returns 1 (see Section 11.5.1)

31.15 The Char Type
The values are extended 8-bit ASCII, represented by numeric codes in the
range 0..255. The ordering of the char values Is defined by the ordering of
these numeric codes. The function-call ordc), where c Is a char value, returns
the numeric code of c (see Section 11.5.1).

Pascal Referernce Mamual Data Types

3.1.1.6 String-Types

A string value Is a sequence of characters that has a dynamic /engt~? attri-
bute. The length is the actual number of characters in the sequence at any
time during program execution.

A string type has a static s/ze attribute. The size Is the maximum limit on
the length of any value of this type. The current value of the length attribute
Is returned by the standard function length (see Section 11.6); the size attribute
of a string type is determined when the string type is defined.

string-type

string o size-attribute }—*@7———.
string-type-identifier l

|

size-attrivute

unsigned-integer

where the size attribute is an unsigned-integer.
IMPLEMENTATION NOTE

In the current implementation, the size-attribute must be in the range
from 1 to 255. %

The ordering relationship between any two string values is determined by
lexical comparison based on the ordering relatonship between character values
in corresponding positions in the two strings. (when the two strings are of
unequal lengths, each character in the longer string that does not correspond to
a character in the shorter one compares "higher”; thus the string ‘attribute’ is
ordered higher than ‘at')

Do not confuse the size with the length.
% The size-aftribute can eq_ua\ P. Tn this case the Q“l’r:‘nj ‘ENJ% en
be chanﬁec‘ as in:
VAR ohv:oTmal255) Onexit of Ahis r‘U"?M’
v

N the lehjﬂt of otr is 3: '
BE?)W = 'Pasaal’; b the value of steis Pas .
Arrel = CAR0Y); !
END;

|

Il N N BN A N BN BN EE

Pascal Reference Maal LData Types

NOTES

The size attribute of a string constarat 1s equal to the length of the
string constant value, namely the number of characters actually in the
string.

Although string-types are simple-types by definition, they have some
characteristics of structured-types. As explained in Section 4.3.1,
individual characters In a string can be accessed as if they were
components of an array. Also, all string-types are implicitly packed
types and all restrictions on packed types apply to strings (see Sectlons
7.3.2, 5.1.6.1, and 11.7).

Do not make any assumptions about the Internal storage format of strings, as
this format may not be the same in all implementations.

Operators applicable to strings are specified in Sectlon 5.1.5. Standard
procedures and functions for manipulating strings are described in Sectlon 11.6.

3.1.2 Enumerated-Types

An enumerated-type defines an ordered set of values by listing the identifiers
that denote these values. The ordering of these values is determined by the
sequence In which the identifiers are listed.

emErstes- e y(()| igentitier-list |—w())—»

lgentifier-list

lgentifler) >

O

The occurrence of an ldentifier within the identifier-1ist of an
enumerated-type declares it as a constant for the block in which the
enumerated-type Is declared. The type of this constant is the enumerated-type
belng declared. '

Examples of enumerated-types:

color = (red, yellow, green,blue)
suit = (club, dlamond, heart, spade)
maritalStatus = (marrieg, divorced, vldowed, single)

Given these declarations, yellow is a constant of type color, diamond is a
constant of type sult, and so forth.

when the ord function (see Section 11.5.1) is applied to a value of an
enumerated-type, it returns an integer representing the ordering of the value

3-6

Fascal Reference Marnagl Data Types

with respect to the other values of the enumerated-type. For example, glven
the declarations above, ord(red) retums 0, ord(yellow) retums 1, and ordblue)
rewrns 3,

3.1.3 Subrange-Types
A subrange-type provides for range-checking of values within some

ordinal-type. The syntax for a subrange-type is

subrange-type

constant - constant

Both constants must be of ordinal-type. Both constants must either be of the
samne ordinal-type, or one must be of type integer and the other of type
longint, If both are of the same orainal-type, this type Is called the /10s(-Lpe
If one is of type Integer and the other of type longint, the host-type 1s longint
Note that no range-checking is done if the host-type is longint.

EXSMPIES OF SUDIaNge-types:

1..100
-10..+10
red. .green

A A varlable of subrange-type possesses all the properties of variables of the
L host type, with the restriction that its run~-time value must be in the specified
- closed interval.

IMPLEMENTATION NOTE

Range-checking 1s enabled and disabled by the compller commands $R+
and $R~- (see Chapter 12). The default is $R+ (range-checking enabled).

3.2 Suuctured-Types
A structured-type Is characterized by its structuring method and by the type(s)
of 1ts components. If the component type Is itself structureq, the resulting
structured-type exnibits more than one level of structuring. There is no
specified limit on the number of levels to which data-types can be structured.

:»‘m/pgurm-mv %{W —
flle-type

record-type

\~>| structured-type-identifier ~

3-7

Pascal Reference Manual Data Types

The use of the word packed in the declaration of a structured-type indicates
to the compller that data storage should be economized, even if this causes an
access to a component of a variable of this type to be less efficient.

The word packed only affects Lhe representation of one level of the
structured-type In wnich it occurs. If a component is itseif structured, the
component's representation Is packed only If the word packed also occurs In
the declaration of its type.)

For restrictions on the use of components of packed variables, see Sections
7.3.2, 5.1.6.1, and 11.7.

The Implementation of packing is complex, and detalls of the allocation of
storage to components of a packed variable are wispec/fied

IMPLEMENTATION NOTE

In the current implementation, the word packed has no effect on types
other than array and record.

3.2.1 Array-Types

An array-type consists of a filxed number of components that are all of one
type, called the component-type The number of elements Is determined by
one or more Jadex-types one for each dimension of the array. There is no
specified limit on the number of dimensions. In each dimension, the array can
be indexed by every possible value of the corresponding index-type, so the
number of elements Is the product of the cardinalities of all the Index-types.

array-type

array 0 index-type o o type —»
(e

ingex-t ordinal-type }—-b

The type following the word of is the component-type of the array.
IMPLEMENTATION NOTE

In the current implementation, the index-type should not be longint or a
subrange of longint, and arrays should not contain more than 32767 bytes.

3-8

AT

Pascal Reference Manual Data Types

Examples of array-types:

array{1..100] of real
array[boolean] of color

If the component~type of an array-type is also an array-type, the result can be
regarded as a single muiti-dimensional array. The declaration of such an array

Is equivalent to the declaration of a multi-dimensional array, as illustrated by
the following examples:

array[boolean] of array[1..10] of array[size] of real
is equivalent to:

array[boolean,1..10, size] of real
Likewise,

packed array[1..10] of packed array[1..8] of boolean
is equivalent to:

packed array[1..10,1..8] of boolean

"Equivalent” means that the compiler does the same thing with the two
constructions.

A component of an array can be accessed by referencing the array and
applying one or more indexes (see Section 4.3.1),

3.22 Record-Types

A record-type consists of a fixed number of components called #/&/as possibly
of different types. For each component, the record-type declaration specifies
the type of the field and an identifier that denotes fit.

recorg-type ’ @eoom

rtela-1ist

fixed-part -+
\\%ﬂ varlant-part \——j \’@—f
fixed-part (b{ field-declaration }"j—————’

3-9

Pascal Rerference Manual Data Types

HelI-GeClaratn ol oo tiriertist (2

The fixed-part of a record-type specifies a list of "fixed" fields, glving an
identifier and a type for each field. Each of these fields contains data that is
always accessed in the same way (see Section 4.3.2).

Example of a recara-type:

record
year: Integer;
month: 1..12;
day: 1..31
end

A varlant-part allocates memory space with more than one list of flelds, thus
permitting the data in this space to be accessed in more than one way. Each
list of fields Is called a vaz7ant The varlants “overlay" each other in memory,

and all fields of all variants are accessible at all times.

varient part
@ b[tag-field-type @
o e

varfant

corsant |~ "D+
O

tag-riela-type »| ordinal-type-identifier |

IMPLEMENTATION NOTE

In the current implementation, the type longint should not be used as a
tag-type as it will not work correctly.

3-10

Pascal Rererence Mantal Data Types

Each variant is introduced by one or more constants. All the constants must
be distinct and must be of an ordinal-type that is compatible with the
tag-type (see Section 3.4),

The varlant-part allows for an optional ldentifier, called the (ag-rfelq |
loentiffer 1f a tag-field identifier is present, it is autormatically declared as é’
the identifier of an additional fixed field of the record, called the (gg-fiela

The value of the tag-flela may be used by the program to indicate which
variant should be used at a given time. If there Is no tag-field, then the
program must select a variant on some other criterion.

Examples of recorg-types with varlants:

record
name, firstName: string[80];
age: 0..99;

case married: boolean of
true: (spousesName: string[80]);

false: ()
end
record
X, y: real;
area: real;
case s: shape of
triangle: (side: real; inclination, anglel, anglez:
angle);
rectangle: (sidel, side2 : real; skew, angle3: angle);
circle: (diameter: real);
end

NATE

The constants that introduce a variant are not used for referring to
fields of the variant; however, they can be used as optional arguments
of the new procedure (see Section 11.2), Varlant fields are accessed in
exactly the same way as fixed flelds (see Section 4.3.2).

323 Set-Types
A set-type defines a range of values that Is the powerset of some ordinal-type,
called the tase-¢ype In other words, each possible value of a set-type is some
subset of the possible values of the base-type.

SELUPe g set)-o(of)-{ ordinal-type }—»

3-11

Pascal Reference Marnal Data Types

IMPLEMENTATION NOTE

In the present implementation the base-type must not be longint. The *
base-type must not have more than 4088 possible values. If the base-
Lype 15 a subrange of Integer, it must be within the 1imits 0..4087.

Operators applicable to sets are specified in Section 5.1.4. Section 5.3 shows
how set values are denoted In Pascal.

Sets with less than 32 possible values In the base-type can be held in a
register and offer the best performance. For sets larger than this, there is a
performance penalty that is essentially a linear function of the size of the
base-type.

The empty set (see Section 5.1.4) is a possible value of every set-type.

324 Flle-Types
A file-type is a structured-type consisting of a sequence of components that
are all of one type, the cormporent-{ype The component-type ray be any

type.

The component data is not in program-addressable memory but is accessed via
a peripheral dgevice. The number of components (l.e. the length of the flige) Is
not fixed by the file-type declaration.

rile-type . (m\ >
(of -] type

The type file (without the “of type" construct) represents a so-called "untyped
file" type for use with the blockread and blockwrite functions (see Section
10.4).

NOTE

Although the symbol file can be used as if it were a type-identifier, it
cannot be redeclared since it is a reserved word.

The standard flle-type text cenotes a file of text organized into lines. The
file may be stored on a file-structured device, or it may be a stream of
characters from a character cevice such as the Lisa keyboard. Files of type
text are supported by the specialized 1/0 procedures discussed in Section 10.3.

In Pascal on the Lisa, the type text is distinct from the type file of char
(unlike standard Pascal). The type flle of char Is a file whose records are of

3-12

Pascal Reference Manual Data Types

type char, containing char values that are not interpreted or converted In any
way during 1/0 operations.

In a stored file of type text or flle of ~128..127, the component values are
packed Into bytes on the storage medium. However, this does not apply to the
type flle of char; the component values of this type are stored in 16-bit words.

In Pascal on the Lisa, files can be passed to procedures and functions as
variable parameters, as explained in Section 7.3.2.

Sections 4.3.3, 10.2, 10.3, and 10.4 discuss methods of accessing file components
and data.

3.3 Pointer-Types
A pointer-type defines an unbounded set of values that point to variables of a
specified type called the base-{ype

Pointer values are created by the standard procedure new (see Section 11.2.1),
by the @ operator (See Section 5.1.6), and by the standard procedure pointer
(see Section 11.3.4).

pointer-type base-type
\bl pointer-type-identifier

g@—&a’gﬁ—ﬂ type-identifier }A-~>

NOTE

The base-type may be an identifier that has not yet been declared. In
this case, it must be declared somewhere in the same block as the
pointer-type.

The special symbol nil represents a standard pointer-valued constant that is a
possible value of every pointer type. Conceptually, nil is a pointer that does
not point to anything.

Section 4.3.4 discusses the syntax for referencing the object pointed to by a
pointer variable.

3.4 Identical and Compatible Types
As explained below, this Pascal has stronger typing than standard Pascal. In
Pascal on the Lisa, two types may or may not be Joentical and identity is
required in some contexts but not in others.

3-13

rascal Refrerence Maal Data Types

Even if not identical, two types may still be corpativ/e and this is sufficient
in contexts where identity is not required--except for assignment, where
assigrment-compativillty is required.

3.4.1 Type lgentity
Identical types are required or/y in the following contexts:

* Varlable parameters (see Section 7.3.2).
* Result types of functional parameters (see Section 7.3.4).

* Value and variable parameters within parameter-lists of procedural or
functional parameters (see Section 7.3.5).

* One-dimensional packed arrays of char being compared via a relational
operator (see Section 5.1.5).

Two types, t1 and 2, are Joentical if either of the following Is true:
* The same (ype fdent/fler s used to declare both t1 and t2, as in
foo = " integer;

tl = foo;
t2 = foo;
* t1 is declared to be equivalent to tZ as In
t1 = t2;
Note that the declarations
t1 = t2;
t3 = t1;

do not make t3 and t2 identical, even though they make t1 identical to t2 and
t3 ldentical to t1!

Also note that the declarations

ta = integer;
t5 = Integer;

v make W4 and 5 identical, since both are defined by the same type
igentifier. In general, the declarations

t6 = t7;
18 = t7;

oo make t6 and t8 identical if t7 Is a type-identifier.
However, the declarations
t9 “integer:
t10 integer;
do not make t9 and t10 identical since ~Integer is not a type identifier but a
user-defined type consisting of the special symbol ~ and a type identifier.

3-14

)

¥
s

k.

Pascal Referernce Marual Data Types

Finally, note that two variables declared in the same geclaration, as in
varl, var2: ~integer;

are of identical type. However, if the declarations are separate then the
definitions above apply.

The declaratlons

vari: integer;
var2: Integer;
var3: integer;
var4: integer.

make var3 and vard ldentical in type, but not varl and varz.

3.4.2 Compatibility of Types
Compatibility is required in the majority of contexts where two or more

entities are used together, e.g. In expressions. Speclific instances where type
compatibility is required are noted elsewhere In this manual.

Two types are compatible If any of the followlng are true:
* They are identical.
* One Is a supbrange of the other.
* Both are subranges of the same type.
* Both are string-types (the lengths and stzes may differ).
* Both are set-types, and thelr base-types are compatible.

3.4.3 Assignment-Compatlibllity
Assignment-compatibility is required whenever a value Is assigned to

something, either explicitly (as in an assignment-statement) or implicitly (as in
passing value parameters).

The value of an expression expval of type exptyp Is assignment-compatible
with a variable, parameter, or function-igentifier of type vtyp if any of the
following Is true.

* vtyp and exptyp are ldentical and neither Is a flle-type, or a structured-
type with a file component. !

= vtyp is real and exptyp Is integer or‘ longint (expval is coerced to type
real).

* vtyp and exptyp are compatible ordinal-types, and expval Is within the
range of possible values of vtyp.

» vtyp and exptyp are compatible set-types, and all the members of expval
are within the range of possible values of the base-type of vtyp.

* Viyp ana exptyp are suing types, and the current lengtn of expval is equal
to or less than the size-attribute of viyp.

3-15

Pascal Rerference Manual Oata Types

* vtyp is a string type or a char type and expval is a quoted-character-
constant.

* viyp is a packed array{1...7] of char and expval is a string constant
contalning exactly /7 characters.

If the index-type of the packed array of char is not 1., but the array
does have exactly /7 elements, no error will occur, However, the results
are unspecified.

wWhenever assignment-compatibility is required and none of the above is tiue,
elther a compiler error or a run-time error occurs.

3.5 The Type-Declaration-Part

Any program, procedure, or function that declares types contains a type-
declaration-part, as shown in Chapter 2.

Example of a Lype-aecl/aration-part:

type count = integer:
range = integer;
color = (red, yellow, green, blue);
sex = (male, female);
year = 1900..1999;
shape = (triangle, rectangle, circle);
card = array[1..80] of char;
str = string[80];
polar = record r: real; theta: angle end;
person = ~personDetails;
personDetails = record
name, firstName: str;
: integer;
married: boolean;

father, chlld, sibling: person;

case s: sex of

male: (enlisted, bearded: boolean);
female: (pregnant: boolean)

end;
people = file of personDetails;
intfile = file of integer:

In the above example count, range, and Integer denote identical types. The
type year is compatible with, but not identical to, the types range, count, and
integer.

3-16

Chapter 4

Variables
4.1 Variable-DeClarationscccoecimiciniaiaiiiienioctccri i rar e e e naen -1
82 Variale-RefEIBNCES .. oo iiiccaocrccmccmtmmcancanconeeaasnanamnrnasnanses 4-1
AN 0221 55 1= o 4-2
4.3.1 Arrays, Strings, and INOEXESccoooiimiiiiiiiiere e enas 4-2
4.3.2 Records and Field-Designatorscccoiiiiimiiiieiininnneceenecaenee 4-4
B33 File-BUF RIS .enieiiieeoieceie e iece e mee e meeincmeme et s e ememmememnmmennes a-4
4.3.4 Pointers and Their ObJects ..o e 4-a

Variables

4.1 Vvariable-Declarations

A variable-declaration consists of a list of identifiers denoting new variables,
followed by thelr type.

varigole deciaralion o gentifier-list |-))

The occurrence of an ldentifier within the identifier-list of a variable-
declaration declares it as a variable-identifier for the block in which the
declaration occurs. The variable can then be referenced throughout the
remalning lexical extent of that block, except as specified in Section 2.2.2.

Exarmples or varigole-oeclarations:

X, y.Z: real;
i,): integer;
K: 0..9;

p.q, r: boolean;

operator: (plus, minus, times);

a: array[0..63] of real;

C: color;

f: file of char;

huel, hue2: set of color;

pl,p2: person;

m ml,m2: array[1..10,1..10] of real;
coord: polar;

pooltape: array[1..4] of tape;

4.2 Variable-References

A variable-reference denotes the value of a varlable of simple-type or
pointer-type, or the collection of values represented by a variable of
structured-type.

variable-reference

———b{ variable-identifier | »

]
qualifier

variable-identifier

Pascal Rerference Manual variables

Syntax for the varlous kinds of qualifiers is given below.

43 Qualifiers

As shown above, a varlable-reference is a variable-identifier followed by zero
or more qualiffers Each qualifier modifies the meaning of the variable-
reference.

qalifier @

fleld-designator

flle-buffer-symbol

pointer-object-symbol

An array ldentlfler with no gualifier is a reference to the entire array:
XResults

If the array identifier is followed by an index, this denotes a specific
component of the array:

xResults[current+1]

If the array component is a record, the index may be followed by a field-
designator; in this case the variable-reference denotes a specific field within a
specific array cormponent.

XResults[current+1].11nk

If the fleld is a pointer, the field-designator may be followed by the pointer-
object-symbol, to denote the object pointed to by the polnter:

xResults[current+1].11ink ~

If the object of the pointer Is an array, another index can be added to denote
a component of this array (and so forthk

xResults[current+1].1ink "[1]

431 Arrays, Strings, and Indexes

A specific component of an array varlable is denoted by a variable-reference
that refers to the array varlable, followed by an index that specifies the
component.

A specific character within a string varlable is denoted by a variable-reference
that refers to the string variable, followed by an index that specifies the
character position.

Index [expression —?@——»

Pascal Reference Marnual Variavles

Examples of Ingexed arrays:

m[1, 3]
af1+]3]

Each expression in the index selects a component In the corresponding
dimension of the array. The number of expressions must not exceed the
number of index-types in the array declaration, and the type of each
expression must be assignment-compatible with the corresponding index-type.

In indexing a multi-dimensional array, you can use either multiple indexes or
multiple expressions within an Index. The two forms are completely equivalent.
For example,

m{110J]

is equivalent to
m[1, 3]

For array variables, each index expression must be assigryment-compatible with
the corresponding index-type specified in the declaration of the array-type.

A string value can be indexed by only one index expression, whose value must
be in the range 1.7, where »2 is the current length of the string value. The
effect is to access one character of the string value.

WARNING

when a string value is manipulated by assigning values to indlvidual
character positions, the dynamic length of the string Is not maintained.
For example, suppose that strval is declared as follows:

strval: string[10];

The memory space allocated for strval includes space for 10 char values
and a number that will represent the current length of the string--i.e.,
the number of char values currently in the string. Initially, all of this
space contalns unspecified values. The assignment

strval[1]:="F*

may or may not work, depending on what the unspecified length happens
to be. If this assignment works, it stores the char value F* in character
position 1, but the length of strval remains unspecified. In other words,
the value of strvall1] is now F', but the value of strval is unspecified.
Therefore, the effect of a statement such as writeln(strval) is
unspecified.

Therefore, this kind of string manipulation i{s not recommended. Instead,
use the standard procedures described in Section 11.6. These procedures
properly maintain the lengths of the string values they modify.

4-3

Pascal Rererence Marnal variables

4.3.2 Records and Field-Designators
A specific fleld of a record variable is denoted by a variable-reference that

refers to the record variable, followed by a field-designator that specifies the
field.

rrela-aesionator . identifier

Examples of flela-aesignators:

p2 .pregnant
coord. theta
433 Flle-Buffers

Although a file variable may have any number of components, only one
component is accessible at any time. The position of the current component in
the file is called the current Ale position See Sectlons 10.2 and 10.3 for
standard procedures that move the current flle position. Program access to the
current component is via a speclal variable associated with the file, called a
rile-burrer.

The file-buffer is implicitly declared when the file variable is declared. If F
Is a file variable with components of type T, the associated file-buffer is a
variable of type T.

The file-buffer associated with a file variable is denoted by a variable-
reference that refers to the file variable, followed by a qualifier called the
file-buffer-symbol.

file-tuffer-symbo! .@ >

Thus the file-buffer of file F is referenced by F".

Sections 10.2 and 10.3 describe standard procedures that are used to move the
current file position within the file and to transfer data between the flie-
buffer and the current file component.

434 Pointers and Their Objects
The value of a pointer variable is either nil, or a value that identifies some
other variable, called the atifect of the pointer

The object pointed to by a pointer variable is denoted by a variable-reference
that refers to the pointer variable, followed by a qualifier called the pointer-
object-symbol.

pointer-object-symbol ’O -

4-4

Fascal Reference Man/al varlables

NOTE

Pointer values are created by the standard procedure new (see Section
11.2.1), by the ® operator (see Section 5.1.6), and by the standard
procedure pointer (see Sectlon 11.3.4).

The constant nil (see Section 3.3) does not point to a varfable. If you access
memory via a nil pointer reference, the results are unspecified; there may not
be any error Indication.

Examples of references to obfects of pointers:

Pl .
p1 .sibling

Chapter 5
Expressions

5.1 OPBIAUOTS ... ettt et tree et ean e eennsssasssansstenensemnessasnsssnesssassanase 5-4
5.1.1 Binary Operators: Order of Evaluation of Operands.......c.....cceeceesieneee S5-4

5.1.2 Arithmetic Operators. ccciiiiiiiiiiiaiir ittt e e e e es s sanaens 5-a

5.1.3 B0OIEAN DPETALOTS .. et iiccccicce ittt c st sa s e secan s n s ansas 5-6

5.1.8 SELOPETIAtOrS ... oottt et e e s e e mm e e e 5-6
5.1.4.1 Result TypeinSet Operations.........cciiiiciiriiioccia i eecnenes 5-7

5.1.5 Relational Operators ...ttt se sttt s e e e e 5-7
5.15.1 Comparing NUMDETS.......coiiiiiieniiri et eraea s aaens 5-7

5.1.5.2 ComparingBooleans.cooueiiiiiiiiiiin s 5-8

5.1.5.3 Comparing Stringscc.cieiiiiiiiiiniiiiniiiiicticssransaseesacnanas 5-8

5.1.5.4 Comparing Setscoirimiiiiiii e 5-8

5.15.5 Testing Set Membershipcccoviiiiiiiiinniiinniincneieneneens 5-8

5.1.5.6 Comparing Packed ArTays Of Charc.cccceciinncerencemanananns 5-8

5.1.6 @-0PBIBLOTN ...t iiitrettratretastta ettt ea s s aan s sansanannansn 5-8
5.1.6.1 @-OperatorwithaVariable...............occiiiiiiiiiciiimnnnnnne. 5-9

5.1.6.2 @-DOperator withaValue Parameter........cccocvviiicnianncennennns 5-9

5.1.6.3 @-0Operator witha variable Parameter...............c..coooeeeenes 5-9

5.1.6.4 @-Operator withaProcedure or Function ..., 5-9

52 Function-Calls.. ... e S5-10
5.3 Set-ComstIUCtOrS ...ttt e e et an e e se e e nn e e nas 5-11

Expressions

Expressions consist of operators and operands, i.e. variables, constants, set-
constructors, and function calls. Table 5-1 shows the operator precedence:

Table 5-1
Precedence of Operators

lperators Precederce | Cateqoiies
@, not highest unary operators
=, /, div, " "
s 1o Y, second rmultiplyi rators
mod, and plylng" ope
+, -, 00 third “adding” operatars & signs
S 22, lowest relational operators
<=, >=, in

The following rules specify the way in which operands are bound to operators:

* When an operand is written between two operators of different precedence,
it is bound to the operator with the higher precedence.

* When an operand is written between two operators of the same precedence,
it is bound to the operator an the left.

Note that the order in which operations are performed is not specified.

These rules are implicit in the syntax for expressions, which are bullt up from
factors, terms, and simple-expressions.

The syntax for a /actorallows the unary operators @ and not to be applied to
a value:

factor

~ ~ > >| variable-reference]————————\

~—=| unsigned-constant |
—! function-call |
—=s{ set-constructor }
O >
L.

R S S

5-1

, # \;
Pascal Rererence Marnual E. xpressions : #

A function-call actlvates a function, and denotes the value retumed by the
function (see Section 5.2). A set-constructor denotes a value of a set-type (see
Section 5.3). AN wisignea-constant has the following syntax:

unsignea-constant

>l unsigned-number

quoted-string-constant

constant-identifier

»
Examples of factors:
X {variable-reference}
ax {pointer to a variable}
15 {unsigned-constant}
(x+y+2) {sub-expression}
sin(x/2) {function-call}
[IAI.-IF" lal-.lfC] {wt_w]stnmtor}
not p {negation of a boolean} .
The syntax for a fern allows the “multiplying” operators to be applied to o
factors:
Qe
\ 7 A

Examples or tenms:
Xry
i7(1-1)
pandq
(x <= y) and (y < 2)

Pascal Reference Manual Expressions

The syntax for a simple-expression allows the "adding” operators and signs to

be applled to terms:
term
Oy

simole-expression

Examples or simple-expressions:

X+y

-X

huel + hue2

i) « 1
The syntax for an express/on allows the relational operators to be applled to
simple-expressions:

expression

——o{ simple-expression IF ~ »
simple-expression J—-f

SIS

Examples of expressions:

~

J<k)

W

55—

Pascal Rerference Maral Expressions

5.1 Operators
5.1.1 Binary Operators: Order of Evaluation of Operands
The order of evaluation of the operands of a binary operator is unspecified.

5.1.2 Arithmetic Operators

The types of operands and results for arithmetic binary and unary operations
are shown In Tables 5-2 and 5-3 respectively.

Tahle 5-2
Binary Arithmetic Operations
(peratar | Operation (perard Types Type of Result
+ addition
T subtractlon lntege- I, real, or lntege_ 1, Teal, or
- multiplication
/ division Integer, real, or real
longint
div division with integer or longint | Integer or longint
integer result
mod modulo integer or longint integer
Nopte: The symbols +, —, and * are also used as set operators (see
Section 5.1.4).
Table 5-3
Unary Arithmetic Operations (Signs)
Qoergtor| Qoeration perard Types e of Result
+ identity
.................................... mtegeb real, or same as Operand
- sign-negation longint

Any operand whose type Is subr, where subr is a subrange of some ordinal-type
ordtyp, is treated as if it were of type ordtyp. Consequently an expression
that consists of a single operand of type subr is itseli of type ordtyp.

Pascal Rererence Marsal Expressiors

If both the operands of the addition, subtraction, or multiplication operators
are of type Integer or longint, the result is of type integer or longint as
described in Section 3.1.1.2; otherwise, the result is of type real

NOTE

See Appendix D for more Information on all arithmetic operations with
operands or results of type real.

The result of the identity or sign-negation operator is of the same type as the
operand.

The value of | dlv j is the mathematical quotient of 1/j rounded toward zero
to an integer or longint value. An error occurs if j=0.

The value of 1 mod j is equal to the value of
i- (1div =)

The sign of the result of mod is always the same as the sign of 1. An error
occurs If §=0.

The predefined constant maxint is of type integer. Its value is 32767, This
value satisfles the following conditions:

s All whole numbers in the closed interval from -maxint-1 to +maxint are
representable in the type integer.

* Any unary operation performed on a whole number in this Interval will be
correctly performed according to the mathematical rules for whole-number
arithmetic.

* Any binary integer operation on two whole numbers In this same interval
will be correctly performed according to the mathematical rules for
whole-number arithmetic, provided that the result is also in this interval.
If the mathematical result Is not in this interval, then the actual result is
the low-order 16 bits of the mathematical result.

* Any relational operation on two whole numbers In this same interval will be

correctly performed according to the mathematical rules for whole-number
arithmetic.

i

Pascal Reference Mam/al Expressions

5.1.3 Boolean Operators
The types of operands and results for Boolean operations are shown in Table
5-4.

Table 5-4
Boolean Operations
querator| qperaiion qoerana Types Type or Result
or disjunction
and | conjunction boolean boolean
........... notnegatlon

whether a Boolean expression is completely or partially evaluated if {ts value

can be determined by partial evaluation is unspecified. For example, consider
the expression

true or boolTst(x)

where boolTst is a function that returns a boolean value. This expression will
always have the value true, regardless of the result of boolTst(x} The language
definition does not specify whether the boolTst function is called when this
expression is evaluated. This could be Important if boolTst has side-effects.

5.1.4 Set Operators
The types of operands and results for set operations are shown in Table 5-5.

Table 5-5
Set Operations
perator| Queration perand Types Type of Result
+ union
............ cnraaans rerenas Compauble
- difference set-types (see 5.1.4.1)
d intersection
5-6

r/ 4:

Pascal Rererence Marél! Expresslons

5.1.0.1 Result Type in Set Operations
The following rules govern the type of the result of a set operation where one
(or both) of the operands is a set of subr, where ordtyp represents any
ordinal-type and subr represents a subrange of ordtyp

* If ordtyp is not the type integer, then the type of the result is set of
ordtyp.

* If ordtyp is the type integer, then the type of the result is set of 0.4087 in
the current implementation (0..32767 in a future implementation). This rule
results from the limitations on set-types (see Section 3.2.3).
5.15 Relational Operators

The types Of operands and results for relational operations are shown in Table
5-6, and discussed further below.

Table 5-6
Relational Operations

perstor | (peration Qperand Types Tyoe of Result
- equal c_ompatlble set-,
..................... .| SIMPIE=, O
< not equal pointer-types
(& see below)
< less
> greater compatible
RSN S 3 |1 1'¢) (=28 4V ¢, =14
<= less/equal (&nz;e Dg,‘fw) boolean
> greater/equal
<= subset of compatible
>= superset of set-types
lert gperand-
in member of _any ordinal-type T
rignt goerana:
set of T

5.1.5.1 Comparing Numbers

when the operands of <, >, >=, or <= are numeric, they need not be of
compatible type /# one operand is real and the other is integer or longint.

NOTE

See Appendix D for more information on relational operations with
operands of type real.

5-7

5.1.6 @-Operator B

Pascal Reference Manual Expressions oA

5.1.5.2 Comparing Booleans
If p and q are boolean operands, then p-q denotes thelr equivalence and p<=-q

denotes the lmpllcatlon of q by p (because false<true). Similarly, p<>q denotes
logical “exclusive-or.’

5.15.3 Comparing

when the relational operators = , <> , <, > , and > are used to compare
strings (see Sectlon 3.1.1.6), they denote lexlcographic ordering according to the
ordering of the ASCII character set. Note that any two string values can be
compared since all string values are compatible.

5.154 Comparing Sets

If u and v are set operands, then u<=v denotes the inclusion of u In v, and
w=v denotes the inclusion of v in w

5.155 Testing Set Membership
The in operator yields the value true if the value of the ordinal-type operand
Is a member of the set-type operand; otherwise it ylelds the value false.

5.156 Comparing Packed Arrays of Char
In addition to the operand types shown in the table, the = and <> operators can
also be used to compare a packed array{1..N] of char with a string constant
containing exactly N characters, or to corpare two one-dimensional packed
arrays of char of Jaentical type.

A pointer to a variable can be computed with the @-operator. The operand
and result types are shown in Table 5-7.

Table 5-7
Pointer Operation

Qerglor | Gperstion Gerand Type of Result
inter variable, parameter,
® ?grmaum procedure, or same as nil
function

@ is a unary operator taking a single variable, parameter, procedure, or
function as its operand and computing the value of its pointer. The type of
the value Is equivalent to the type of nil, and consequently can be assigned to
any pointer variable.

5-8

Pascal Reference Marnal Expresslons

5.1.6.1 @-Operator With a Variable

For an ordinary variable (not a parameter), the use of @ Is stralghtforward. For
example, If we have the declarations

type twochar = packed array(0..1] of char;
var int: integer;
twocharptr: ~twochar;

then the statement
twocharptr := aint

causes twocharptr to point to int Now twocharptr ™ is a reinterpretation of
the bit value of int as though it were a packed array{0.1] of char.

The operand of @ cannot be a component of a packed varlable.

5.1.6.2 @-(Operator with a Value Parameter
when @ is applied to a formal value parameter, the result is a pointer to the
stack location containing the actual value. Suppose that foo is a formal value

parameter in a procedure and fooptr is a pointer variable. If the procedure
executes the statement

fooptr := &foo

then fooptr~ is a reference to the value of foo. Note that if the actual-
parameter is a variable-reference, fooptr is not a reference to the variable
itself; it is a reference to the value taken from the variable and stored on the
stack.

5.1.6.3 @-Operator with a Variable Parameter
when @ is applied to a formal variable parameter, the resuit is a pointer to
the actual-parameter (the pointer Is taken from the stack). Suppose that fum
Is a formal varlable parameter of a procedure, fle Is a variable passed to the
procedure as the actual-parameter for fum, and fumptr is a pointer variable.

If the procedure executes the statement
fumptr := afum
then fumptr is a pointer to fie. fumptr” is a reference to fie itself.

5.1.64 @-Operator With a Procedure or Function
It is possible to apply @ to a procedure or a function, ylelding a pointer to the
entry-point. Note that Pascal provides no mechanism for using such a pointer.
Currently the only use for a procedure pointer Is to pass it to an assembly-
language routine, which can then JSR to that address.

If the procedure pointed to is In the local segment, @ retums the current
address of the procedure's entry point. If the procedure is in some other

segment, however, ® returns the address of the jump table entry for the
procedure.

Pascal Reference Marnial Expressions

In logical memory mapping (see workshop User'’s Guide for the Lisg), the
procedure pointer is always valid.

In physical memory mapping, code swapping may change a local-segment
procedure address without warning, and the procedure pointer can become
invalid. If the procedure is not in the local segment, the jump-table entry
address will remain valld despite swapping because the jumnp table is not
moved.

5.2 Function-Calis

A function-call specifies the activation of the function denoted by the
function-identifier. If the corresponding function-declaration contains a list of
formal-parameters, then the function-call must contain a corresponding list of
actual-parameters. Each actual-parameter is substituted for the corresponding
formal-parameter. The correspondence s established by the positions of the
parameters in the lists of actual and formal parameters respectively. The
number of actual-parameters must be equal to the number of formal
parameters.

The order of evaluation and binding of the actual-parameters is unspecified.

nretlon-call

——-b{ function—identifierJ >
\f{ actual—parameter—listj—j

aclialoarameter-1fst > @ 'l actual-parameter l > C) »

aclual-paramelter

expression

variable-reference

procedure-identifier

function-identifier

A function-identifier iIs any identifier that has been declared to denote a
function.

5-10

Pascal Rererence Marnal Expressions

Examples of raction-calls:

sum(a, 63)
gcd(147,k)
sin(x+y)
eof (f)
ord(f)
5.3 Set-Constructors
A set-constructor denotes a value of a set-type, and is formed by writing
expressions within [brackets] Each expression denotes a value of the set.

set-constructor b@ ’®__’
\(—ﬁ mernber-group }—‘7/
(Ve

mener- QP b‘ expression IL —

The notation [] denotes the empty set, which belongs to every set-type. Any
member-group X..y denotes as set members the range of all values of the base-
type In the closed Interval x to y.

If x Is greater than y, then x.y denotes no members and [x.y] denotes the
empty set

All values designated in member-groups in a particular set-constructor must be
of the same ordinal-type. This ordinal-type Is the base-type of the resulting
set. If an Integer value designated as a set member is outside the limits given

in Section 3.2.3 (0..4087 in the current implementation), the results are
unspecified.

Examoles of set-constnetors:

[red, c, green]
[1, 5, 10..k mod 12, 23]

[*A*..'Z', *a'..'z', chr(xcode)]

5-11

Chapter 6

Statements
6.1 SIMEle S Al BmMENtS i iie ettt r et ot m e n e m e aan 61
6.1.1 Assignment-Statements .. 6-1
6.1.2 PrOCROUIE- St A MBS e ce et vaean e v neenan 6-2
B.1.3 GOoto-StatBmMENES ... e rraie et te e neann s 6-3
SUIUCHUTEO-SEAtEMBITLYS ... oot eeietete e tit e ee e seee e tne e aneaenrnnnns 6-a
6.2.1 Compound-Statements . . e 6-4
6.2.2 Conditional-Statements et e raaaees -4
6.2.2.1 =S atBmEntS .o i a et aa e ean 6-S
6.2.2.2 Case-Statement ... i ittt e vaans 6-5
6.2.3 Repetitive-Statements.. ...t e 6-6
6.2.3.1 Repeat-Statements ... 6-7
6.2.3.2 While-Statements ..ottt eereecesren e cennannas 6-7
6.2.3.3 FOI-Statement S, oo iiiiiiiiiticii i ereeaaeetaesernsnerestansnstanan 6-8
6.2.8 WIth-Stat BNt S . it iiieicrtcreaeeteanenecrsen e aenanennans 6-10

CHANGESS /ADD/rMA/!

Fascal Reference 3.0 Notes Statements

Chapter 6
Statements

Extended Case Statement (See Section 6.2.2.2)
Case-tag lists may range over a number of constants--you don't have to list
each constant. The extended range is dencted by <constant>..<constant),
where each constant can be & constant expression. (See the Releasse Notes
to Chapter 1 for a discussion of constant expressions.)

The second case-statement example in Section £.2.2.2 can now be written as

follows:
case i of
i- X == sin(x);
2: x := cos{x);
3..5:-x -= exp(x); { you no longer have to enumerate 3,4,5 }
othexwise x -= 1n(x

Notes 5-1

Statements

Statements denote aigorithmic actions, and are executaple. Tnhey can be
prefixed by labels; a labeled statement can be referenced by a goto-statement.

statenent

>
h simple-statement

structured-statement

@gj—ﬂ digit—sequencej——b

A digit-sequence used as a label must be in the range 0..9999, and must first
be declared as described In Sectlon 2.1.

6.1 Simple Statements
A simple-statement Is a statement that does not contaln any other statement.

sirmple-statemernt

+| assignment-statement

procedure-statement

goto-statement J‘ »>

6.1.1 Assighment-Statements
The syntax for an assignment-statement is as follows:

assignment -statenent
variable-reference
function-identifler e

The assignment-statement can be used in two ways:

* To replace the current value of a variable by a new value specified as an
expression

* To specify an expression whose value IS t0 be returnea by a function.

Pascal Reference Mamual Statements T

Tne expression must be assignment-compatible with the type of the variable or
the result-type of the function.

NOTE

If the selection of the variable involves indexing an array or taking the
object of a pointer, it {s not specified whether these actions precede or
follow the evaluation of the expression.

Examples or assigrment-statements:
X y+z;

p := (1<=1) and (1<100);
1 := sgr(k) - (1*]).
huel := [blue, succ(c)];

6.1.2 Procedure-Statements

A procedure-statement serves to execute the procedure denoted by the
procedure-igentifier.

procegue-statement

——»| procedure-identifier | \’{ >

actual-parameter-list

(A procedure-identifier is simply an identifier that has been used to declare a
procedure.)

If the procedure has formal-parameters (see Section 7.3), the procedure-
statement must contain a list of actual-parameters that are bound to the
corresponding formal-parameters. The number of actual-parameters must be
equal to the number of formal parameters. The correspondence }s established

by the positions of the parameters in the lists of actual and formal parameters
respectively.

The rules for an actual-parameter AP depend on the corresponding formai-
parameter FP:

* If FP is a value parameter, AP must be an expression. The type of the
value of AP must be asslgnment-compatible with the type of FP.

* If FP is a varlable parameter, AP must be a variable-reference. The type
of AP must be identical to the type of FP.

* If FP Is a procedural parameter, AP must be a procedure-identifier. The
type of each formal-parameter of AP must be identical to the type of the
corresponding formal-parameter of FP.

6-2

Pascal Rererence Manua! Statements

* If FP is a functional parameter, AP must be a function-identifier. The type
of each formal-parameter of AP must be identical to the type of the

corresponding formal-parameter of FP, and the result-type of AP must be
ldentical to the result-type of FP.

NOTE

The order of evaluation and binding of the actual parameters is
unspecified.

Examples of procedire-staterments:

printheading;

transpose(a,n, m);

bisect(fct,-1.0,+1.0,x);
6.1.3 Goto-Statements

A goto-statement causes a jump to another statement in the program, namely
the statement prefixed by the label that is referenced In the goto-statement.

GOLo-SLILEmNt_y(oot)| 1ael |+

NOTE

The constants that Introduce cases within a case-statement (see Section
6.2.2.2) are not labels, and cannot be referenced in goto-statements.

The following restrictions apply to goto-statements:

* The effect of a jump Into a structured statement from outside of the
structured statement is unspecified.

* The effect of a jJump between the then part and the else part of an if-
statement s unspecified.

* The effect of a jump between two different cases within a case-statement
Is unspecified.

6-3

Pascal Rererence Marwial Statements

62 Structured-Statements
Structured-statements are constructs composed of other statements that must
be executed either conditionally (conditional-statements), repeatedly
(repetitive-statements), or in sequence (compound-statement or with-statement).

structurea-statemert

b[compound-statement

conditional-statement

repetitive-statement

with-statement } >

62.1 Compound-Statements

The compound-statement specifies that its component statements are to be
executed in the same sequence as they are written.

compound-statement

(Comaim)—+{ Siatzment | (o)

Example or compound-statement:
begin
Zz :
X
y:
end

An important use of the compound-statement s to group more than one
statement into a single statement, in contexts where Pascal syntax only allows

one statement, The symbols begin and end act as “statement brackets.”
Examples of this will be seen in Section 6.2.3.2.

6.2.2 Conditional-Statements

A conditional-statement selects for execution a single one (or none) of its
component statements.

corditional-statement .l if-statement
L&{ case-statement

x;
y:
z

a

Pascal Reference Marnual Statements

6.2.2.1 If-Statements
The syntax for if-statements is as follows:

C’(then)——bl sta’t.ementJl »

The expression must yield a result of type boolean. If the expression yields
the vaiue true, the statement following the then is executed.

If the expression yields false and the else part is present, the statement
following the else is executed; if the else part is not present, nothing is
executed.

The syntactic ambiguity arising from the construct:

i1f el then
if e2 then s1
else s2

is resolved by interpreting the construct as being equivalent to:

if el then begin
if e2 then s1
else s2

end
Examples of if-statements:
if x < 1.5 then 7z := x+y else z := 1.5;
if p1 <> nil then pl := p1 .father;
6222 Case-Statements
The case-statement contalns an expression (the se/ecto) and a list of
statements. Each statement must be prefixed with one or more constants
(called case-constanty, or with the reserved word otherwise, All the case-

constants must be distinct and must be of an ordinal-type that is compatible
with the type of the selector.

case-statement b(CEiSBH expression

case
\{ otherwise-clause }f \—@I

Pascal Reference Manual Staternents

O

othernwise-clase b@-—»(omerwiseH statement }—b

The case-statement specifies execution of the statement prefixed by a case-
constant equal to the current value of the selector. If no such case-constant
exists and an otherwise part is present, the statement following the word
otherwise is executed; if no otherwise part is present, nothing is executed.

Examples of case-statements:

case operator of
plus: X = x+y;

minus: x := x-y;
times: x == xwy

end

case 1 of
1: x := sin(x);
2: X = cos(x);
3,4,5: X := exp(x);
otherwise x := In(x)

end

IMPLEMENTATION NOTE

In the current Implementation, the case-statement will not work
carrectly if any case-constant is of type longint or the value of the
selector is of type longint.

6.2.3 Repetitive-Statements

Repetitive-statements specify that certaln statements are to be executed
repeatedly.

repetitive-statement

>| repeat-statement

while-statement

for-statement | - .

6-6

Pascal Reference Marnal Statements

6.2.3.1 Repeat-Statements

A repeat-statement contains an expression which controls the repeated
execution of a sequence of statements contained within the repeat-statement.

1eneat-statement

—(repeat)—ditw(mUlH expression [—&

The expression must yleld a result of type boolean. The statements between
the symbols repeat and untll are repeatedly executed until the expression
ylelds the value true on completion of the sequence of statements. The
sequence of statements is executed at least once, because the expression is
evaluated arter execution of the sequence.

Examples of repeat-staternents:

process(f ");
get(f)
until eof(f)

6.23.2 Wwnlle-Statements

A while-statement contains an expression which controls the repeated
execution of one statement (possibly a compound-statement) contalned within
the while-statement.

while-statement

——b(wlile)—-bﬁxpression Q

The expression must yield a result of type boolean It is evaluated pefore the
contained statement Is executed. The contalned statement 1S repeatedly
executed as long as the expression yields the value true. If the expression
yields false at the beginning, the statement is not executed.

Pascal Rererernce Manual

The while-statement:
while b do body
is equivalent to:

if b then repeat
body
until not b

Examples of while-statements:
while a[l] o xdo 1 := 121

while 1>0 do begin

if odd(i) then z := z*x;
1 :=1dlv 2
sqr(x)

nn

X
end

while not eof(f) do begin
process(f ");
get(f)

end

6.2.3.3 For-Statements

Statements

The for-statement causes one contained statement (possibly a compound-
statement) to be repeatedly executed while a progression of values is assigned

to a variable called the conliv/~variable

ror-statemenit

—@—b{ control-variable

initial-value

final-value

CONIOIVIIIE [yariaple-lgentifier |—

Initial-value
final-value) M

Pascal Refereyice Manua! Statements

The control-varlable must be a variable-identifier (without any qualifier). It
must be local to the Innermost block contalning the for-statement, and must
not be a variable parameter of that block. The control-variable must be of
ordinal-type, and the initial and final values must be of a type compatible with
this type.

The first value assigned to the control-variable is the initial-value.

If the for-statement is constructed with the reserved word to, each successive
value of the control-variable is the successor (see Section 3.1) of the previous
value, using the inherent ordering of values according to the type of the
control-variable. When each value is assigned to the control-varlable, it is
compared to the final-value; If it Is less than or equal to the final value, the
contained statement is then executed.

If the for-statement is constructed with the reserved word downto, each
successive value of the control-varlable is the predecessor (see Secton 3.1) of
the previous value. when each value is assigned to the control-variable, it is
compared to the final-value; if it Is greater than or equal to the final value,
the contalned statement Is then executed.

If the value of the control-variable is altered by execution of the repeated
statement, the effect Is unspecified. After a for-statement is executed, the
value of the control-varlable Is unspecified, unless the for-statement was
exited by a goto. Apart from these restrictions, the for-statement:

for v := el to e2 do body
is equivalent to:

begin
templ := el;
temp2 := e2;
if templ <= temp2 then begin
v := templ;
body;
while v <> tempZ? do begin
v := succ(v);
body
end
end
end

6-9

Pascal Reference Mamsal Statements

and the for-statement:
for v := el downto e2 do body
is equlvaient to;

begin
templ := el;
temp2 := eZ2;
1f templ >= temp2 then begin
v := templ;
body;
while v <> temp2 do begin
v := pred(v);
body
end
erd
end

where templ and temp2 are auxiliary variables of the host type of the variabie
v that do not occur elsewhere in the program.

Examples of for-statements:
for i := 2 to 63 do if a[i] > max then max := a[i]

for 1 :=1tondo for J :=1tondo
begin
X :=0;
for Kk :=1tondox :=x+ m[ik]m[k, jl;
mi, j] = x
end

for ¢ := red to blue do q(c)

6.2.4 With-Statements
The syntax for a with-statement 1s

with-statement

--D<W‘lth>(5{ record-variable-reference @ statement.

(A record-variable-reference is simply a reference to some record variable.)
The occurrence of a record-variable-reference in a with-statement affects the
way the compiler processes varlable-references within the statement following
the word da. Flelds of the record-variable can be referenced by thelr field-
ldentifiers, without explicit reference to the record-variable.

6-10

Pascal Reference Manual Statements

Example of with-statement:

with date do if month = 12 then begin
month := 1;

year := year + 1
end
else month := month + 1
This Is equivalent to:

if date.month = 12 then begin
date.month := 1;
date.year := date.year + 1
end

else date.month := date.month + 1

within a with-statement, each variable-reference Is checked to see if it can
be interpreted as a field of the record. Suppose that we have the following

declarations:
type recTyp = record
foo: integer;
bar: real
end;

var baz: recTyp,
foo: integer;

The identifier foo can refer both to a field of the record variable baz and to a
variable of type integer. Now consider the statement

with baz do begin
foo := 36; {which foo is this?}

end

The foo in this with-statement is a reference to the field baz.foo, not the
variable foo.

The statement:
with vi,v2, ... wndo s
Is equivalent to the following "nested” with-statements:
with v1 do
with v2 do

with vn do s

6-11

Pascal Rerference Manual Statements

If vn in the above statements is a field of both vl and v2, it is interpreted to
mean v2.vn, not viwn. The list of record-variable-references in the with-
statement is checked from right to left.

If the selection of a variable in the record-variable-list Involves the indexing
of an array or the de-referencing of a pointer, these actions are executed
before the component statement Is executed.

WARNING

If a varlable In the record-variable-list Is a pointer-reference, the value
of the pointer must not be altered within the with-statement. If the
value of the pointer Is altered, the results are unspecified.

Example of wnsafe with-statement using pointer-referesce:
with ppp~ do begin

new(ppp); {Don't do this ...}
;-x-x-):=>oo<; {... or this}

6-12

Chapter 7
Procedures and Functions

7.1 Procedure—DeClarBtionsc.cccccccieeieeiaccceecaiamaasaacacaansnesassnanccssasancnnn 7-1
72 Function-Declarationsccccoeeieiecemieceeeeersecencnesenstesensmesssmnsennnnns 7-4
20 T ' 2 11 =11 =) b U S 7-5
7.3.1 VaIUB PAIAIMELEIS ...euenieinierevienrnrereeeraseresnsmesssrasnssesnsnrnsssesnrasenann 7-7
VA WARY:-) 1= o] (TN o) £ 0 21 ¢ SRR 7-7
7.3.3 ProceduUral Paraimeters .. ceiceec e ecenenaerreenaes 7-7
7.3.8 FUNCLIONGl ParamiEters .ot ceee e e eerseesesaesensenanscnnnas 7-9
7.3.5 Parameter List Compatibilitycoouiiiiiiiiiiiiiiriireceeres 7-9

Fascal Reference 3.0 Noles Froceaures and Funclions

CHANEES/ADLy 7100 S

Chapter 7
Procedures and Functions

Repetition of Forward Procedure and Function Parameters (See Section 7.1) ;

Inline

You may repesat the parameter lists for forward declared or unit Interface
procedures and functions when the actual routine is defined. The repeated
parameter list (and, for functions, the function result type) must be sxactl- ;
the same as the criginal definition or an error will be reported by the

Carnpiler.

Attribute (See Section 7.1)

The new inline facility allows you to write explicit hex code in place of a
procedure body. You can declere a procedure or function inline in & manner
similer to the way you declere external and forward procedures. For
example, the following procedure declaration allows you to trap certain calls
with & single instruction in place of a JSR:

Procedure Trap(Tos: LongInt); inline $A9ED;
The following is now the syntax for a pracedure-body:

Lrocedur s-boal: o bl !

N

The syntax for functions is similar. The constant can be a constant
expression, and any number of them may follow the word inline. Like
farward and external, inline is o a reserved word.

When a procedure is normally called, code is generated that pushes one or
two words of function result (if a function is being called), pushes the
procedure's arguments (it any), and then a JSR is generated to call the
procedure. When you declare a routine inline, the Compiler causes the
constants following the word inline to be generated in place of the JSR.
Each constant (or constant expression) represents exactly one word. They are

Notes 7-1

Fascal Reference IO Noles Frocedures &nd Functions

generated in the order given. As long as you observe the proper rules for
adjusting the stack, saving registers, etc., you can efficiently write small
routines using this facility. This is not a substitute for being able to embed
assembly code in a Pascal program, and it is not intended to ke such.

NOTE

There is no code body other than what is specified for the inline
constants. Remember this when you declare such routines in a unit's
Interface =section. There is no corresponding declaration in the
Implementation section.

Univ in Parameter Lists (See Section 7.3)
The word univ (7ot a reserved word) is now allowed before the type
identifier in formal parameter lists. The univ informs the Compiler that any
parameter type iz acceptable as long 83 it has the same size as the formal
type. The following is now the syntax for a parameter-declaration:

parametler-deciaralion
< ~—+{ identifier-list type-identifier | >
Example:

type ptx = “char;
procedure Realfddr(virt: longint;
TAddr: univ ptr);

Iiéélﬂddr(v, pl); { p1 & p2 can be pointers to types other than chars, }
Realfiddr(v, p2); { or can be any other 4-byte type. }

Notes 7-2

Procedures and Functions

7.1 Procegure-Declarations
A procedure-declaration associates an identifier with part of a program so that
it can be activated by a procedure-statement.

proceaure-oeclaration

—b’ procedure-heading]—#@bi procedure-body ;

procedure—-txady

The procedure-heading specifles the ldentifier for the procedure, and the
formal parameters (if any).

oroceue-resding

—{ procedure | igentifier | \’{ >

formal-parameter-list

The syntax for a formal-parameter-list is given in Section 7.3.

A procedure is activated by a procedure-statement (see Section 6.1.2), which
gives the procedure's identifier and any actual-parameters required by the
procedure. The statements to be executed upon activation of the procedure
are specified by the statement-part of the procedure's block. If the
procedure’s identifier is used in a procedure-statement within the procedure’s
block, the procedure is executed recursively.

7-1

Pascal Rererence Morial Proceoures & Functions

Example of a proceaure-declaration:

procedure readInteger (var f: text; var x: integer);
var value,digitvalue: integer;
begin
while (f~ = * ') and not eof(f) do get(f);
value := 0;
while (f" in ['0°..'9']) and not eof(f) do begin
digitvalue := ord(f) - ord('0");
value := 10*alue + digitvalue;
get(f)
end;
X = value
end;
A procedure-declaration that has forward instead of a block is called a
forward aeclaration Somewhere after the forward declaration (and in the
same block), the procedure is actually defined by a oefining declaration--a
procedure-declaration that uses the same procedure-identifier, omits the
formal-parameter-1ist, and includes a block. The forward declaration and the
defining declaration must be local to the same block, but need not be
contiguous; that is, other procedures or functions can be declared between
them and can call the procedure that has been declared forward. This permits
mutual recursion.

The forward declaration and the deflning declaration constitute a complete
declaration of the procedure. The procedure is considered to be declared at
the place of the forward declaration.

Example of forwsrg geclarat/on:

procedure walter(m, n: integer); {forsard declaration}
forward;

procedure clara(x, y: real);
begin

iéiter(a, 5); {0K because walter is forward declared}
end;
procedure walter; {defining declaration}
begin
clara(8.3, 2.4);

end;

A procedure-declaration that has extemal instead of a block defines the Pascal
interface to a separately assembled or compiled routine (a PROC in the case
of assembly language). The external code must be linked with the compiled

7-2

Pascal Reference Maal

Pascal host program before execution; see the Workshagp Lsers Guice for the
L/sg for detalls.

Example orf an extemal proceadure-adeciaration:

procedure makescreen(index: integer);
external;

This means that makescreen is an external procedure that will be linked to the
host program before execution.

IMPLEMENTATION NOTE

Procequres & Functions

It is the programmer's responsibility to ensure that the external
procedure is compatible with the external declaration in the Pascal
program; the current linker does no checking.

NOTE

This Pascal (unlike Apple II and Apple 111 Pascal) does not allow a
variable parameter of an extemal procedure or function to be declared
without a type. To obtain a similar effect, use a formal-parameter of
pointer-type, as in the following example:

type bigpaoc = packed array[0..32767] of char;
bigpaocptr = bigpaoc;

bi‘écedure whatever (bytearray: bigpaocptr);
external;

The actual-parameter can be any polnter value obtalned via the @
operator (see Section 5.1.6). For example, if dots is a packed array of
boolean, it can be passed to whatever by writing

whatever(adots)

This description of external procedures also applies to external functions.

7-5

rascal Rererence Manual Proceaures & Functions

7.2 Function-Declarations
A function-declaration serves to define a part of the program that computes
and retumns a value of simple-type or pointer-type.

runction-geclaration

——»{ function-heading I-b@b{ function-body]—b@—v
anction-boay

The function-heading specifies the ldentifier for the function, the formal
parameters (if any), and the type of the function result.

function-heading b(ﬂnctim}b{ identifier }——>
(7 o

\~| formal-parameter-list

result-type

r[ordinal-type-identifier

real-type-identifier

pointer-type-identifier |l »>

The syntax for a formal-parameter-list is given in Section 7.3.

A function is activated by the evaluation of a function-call (see Section 5.2),
which gives the function's identifier and any actual-parameters required by the
function. The function-call appears as an operand in an expression. The
expression is evaluated by executing the function, and replacing the function-
call with the value returned by the function.

The statements to be executed upon activation of the function are specified by
the statement-part of the function's block. This block should normally contain
at least one assignment-statement (see Section 6.1.1) that assigns a value to
the function-identifier. The result of the function is the last value assigned.
If no such assignment-statement exists, or if it exists but is not executeg, the
value returned by the function is unspecified.

Pascal Rererence Marxial

Procegures & Functions

If the function's identifier Is used in a function-call within the function's

block, the function is executed recursively.
Examples of runction-geclarations:

function max(a: vector; n: integer): real;
var x: real; i: integer;

begin
x := a[1];
for 1 := 2 ton do if x < a[i] then x
max := X
i aul‘

L function power(x: real; y: integer): real;
’ var »,z: real; 1i: integer;
begin
w:i=x z:=11:=y;
while 1 > 0 do begin
{z#(wm*l) = x »= y }
if odd(i) then z := z*w;

i :=1div 2;
w := sqr(w)
end;
, {z = xmy }
! power := z

end;

:= a[i]

{y>0}

A function can be declared forward in the same manner as a procedure (see

Section 7.1 above). This permits mutual recursion.

, A function-declaration that has external instead of a block defines the Pascal
i interface to a separately compiled or assembled external routine (@ FUNC In
’ the case of assembly language). See the explanation in Section 7.1 above.

7.3 Parameters

A formal-parameter-1ist may be part of a procedure-declaration or
function-declaration, or it may be part of the declaration of a procedural or

functional parameter.

If it is part of a procedure-declaration or function-declaration, it declares the
formal parameters of the procedure or function. Each parameter so declared
Is local to the procedure or function belng declared, and can be referenced by
Its identifier In the block associated with the procedure or function.

If it is part of the declaration of a procedural or functional parameter, it
declares the formal parameters of the procedural or functional parameter. In

Pascal Refererve Marnial Proceainres & Funclions

this case there is no associated block and the identifiers of parameters in the
formal-parameter-list are not significant (see Sections 7.3.3 and 7.3.4 below).

formal-parameler-1ist

(pararneter-declaration

{ procedure-heading

function-heading

e

Awmk?’f""ﬂ”wmjmﬂ jdentifer-list l——b@—b{ type-identifier |-

There are four kinds of parameters: value parameters variable parameters
proceaursl parameters, and functions! parameters They are distinguished as
follows:

* A parameter~group preceded by var Is a list of variable parameters.
* A parameter-group without a preceding var is a list of value parameters.

* A procedure-heading or function-heading denotes a procedural or functional
parameter; see Sections 7.3.3 and 7.3.4 below.

NOTE R

The types of formal-parameters are denoted by type-identifiers. In
other words, only a simple identifier can be used to denote a type in a
formal-parameter-iist. To use a type such as array{ll..255] of char as
the type of a parameter, you must declare a type-identifier for this
type:

type charray = array[0..255] of char;

The identifier charray can then be used in a formal-parameter-list to
denote the type.

Pascal Reference Manal Proceawres & Functions

NOTE

The word flle (for an “untyped™ file) is not allowed as a type-identifier
In a parameter-declaration, since it is a reserved word. To use a
parameter of this type, declare some other identifier for the type flle
—-—for example,

type phyle = file;

The Identifier phyle can then be used in a formal-parameter-list to
denote the type file.

7.3.1 Value Parameters
For a value-parameter, the corresponding actual-parameter in a procedure-
statement or function-call (see Sections 5.2 and 6.1.2) must be an expression,
and its value must not be of flle-type or of any structured-type that contains
a flle-type. The formal value-parameter denotes a varlable local to the
procedure or function. The current value of the expression is assigned to the
formal value-parameter upon activation of the procedure or function. The
actual-parameter must be assignment-compatible with the type of the formal
value-parameter.

7.3.2 Variable Parameters
For a variable-parameter, the corresponding actual-parameter In a procedure-
statement or function-call (see Sections 5.2 and 6.1.2) must be a variable-
reference. The formal variable-parameter denotes this actual variable during
the entire activation of the procedure or function.

within the procedure or function, any reference to the formal variable-
parameter is a reference to the actual-parameter itself. The type of the
actual-parameter must be /oent/cal to that of the formal variable-parameter.

NOTE

If the reference to an actual variable-parameter involves indexing an
array or finding the object of a pointer, these actions are executed
before the activation of the procedure or function.

Components of variables of any packed structured type (including string-types)
cannot be used as actual variable parameters.

733 Procedural Parameters
when the formal-parameter is a procedure-heading. the corresponding actual-
parameter in a procedure-statement or function-call (see Sections 5.2 and 6.1.2)
must be a procedure-identifier. The identifier in the formal procedure-heading
represents the actual procedure during execution of the procedure or function
receiving the procedural parameter.

Pascal Referernce Manual Proceaures & Functions

Example of proceaural parameters:

program passProc;
var i: integer:

procedure a(procedure x) {x is a formal procedural parameter.}
begin
write('About to call x ');
x {call the procedure passed as parameter}
end;

procedure b;
begin
write('In procedure b')

7

function c(procedure x): integer;
begin
x; {call the procedure passed as parameter)
c:=2
end;

in

a(b); {call a, passing b as parameter}

i:= e(b) {call c, passing b as parameter}
end.

If the actual procedure and the formal procedure have formal-parameter-lists,
the formal-parameter-lists must be compatible (see Section 7.3.5). However,
only the ldentifier of the actual procedure is written as an actual parameter;
any formal-parameter-list is omitted.

Example of proceaural parameters with thelr own formal-parameter-1ists:
program test;
procedure xAsPar(y: integer);
in

writeln(‘y=", y)

,

procedure callProc(procedure xAgain(z: integer));
begin
xAgain(1)
end;
begin {body of program}
callProc(xAsPar)
end.

If the procedural parameter, upon activation, accesses any non-local entity (by
varlable-reference, procedure-statement, function-call, or label), the entity

FPascal Rerference Manual Proceaures & Functlons

accessed must be one that was accessible to the procedure when the procedure
was passed as an actual parameter.

To see what this means, consider a procedure pp which is known to another
procedure, flrstPasser, Suppose that the following sequence takes place:

1. firstPasser is executing.

2. firstPasser calls a procedure named firstRecelver, passing pp as an
actual parameter.

3. firstRecelver calls secondReceliver, again passing pp as an actual
parameter.

4. secondRecelver calls pp (first execution of pp).

5. secondRecelver calls thirdRecelver, again passing pp as an actual
parameter.

6. thirdRecelver calls firstPasser (indirect recursion), and passes pp to
firstPasser as an actual parameter.

7. firstPasser (executing recursively) calls pp (second execution of pp).

Thus the procedure pp is called first from secondRecelver, and then from the
second (recursive) execution of firstPasser.

Suppose that pp accesses an entity named xxx, which is not local to pp; and
suppose that each of the other procedures has a local entity named xxx.

Each time pp is called, which »xx does it access? The answer is that In eac?
case, pp accesses the o that is local to the /rs¢ execution of flrstPasser--

that Is, the xxx that was accessible when pp was orlginally passed as an actual
parameter.

734 Functional Parameters
when the formal parameter is a function-heading, the actual-parameter must
be a function-identifier. The identifier in the formal function-heading
represents the actual function during the execution of the procedure or
function recelving the functional parameter.

Functional parameters are exactly like procedural parameters, with the
additional rule that corresponding formal and actual functions must have
loent/eal result-types.

7.3.5 Parameter List Compatibility

Parameter list compatibility Is required of the parameter 1ists of corresponding
formal and actual procedural or functional parameters.

7-9

Pascal Reference Marniigl! Procemures & Functions

Two formal-parameter-lists are compatible if they contain the same number of
parameters and if the parameters In corresponding positions match. Two
parameters match if one of the following is true:

* They are both value parameters of foentical type.
= They are both varlable parameters of /gentical type.
* They are both procedural parameters with compatible parameter lists.

= They are both functional parameters with compatible parameter lists and
Jfoentical result-types.

7-10

5 :

Chapter 8

Programs
- 50 S 7 G 8-1
82 Program-ParamMELerS....... e ea st e e ee e ee s s a e annnnas 8-1
8.3 SegmEeNtatioN ..o et e 8-1

,,,,,,,

Programs

8.1 Syntax

A Pascal program has the form of a procedure declaration except for its
heading and an optional wses-c/ause

yoger e 1)
—>| program-heading]-—b@
M uses-clause H d

Lrogram-eaing

—»{(program }-»] ident!fier }j >
\@#[program-parameters ’-0@—/

2rolam-paaaneters

identifler-list —®

uses=Clause uses identifier-list I—-—b

The occurrence of an ldentifier immediately after the word program declares it
as the program's identifier.

The uses-clause identifies all units required by the program, including units
that it uses directly and other units that are used by those units.

82 Program-Parameters

Currently, any program-parameters are purely decorative and are totally
ignored by the compliler.

8.3 Segmentation

The code of a program's main body is always placed in a run-time segment
whose name is a string of blanks (the "blank segment”) Any other block can
be placed in a different segment by using the $S compiler command (see
Chapter 12 and Appendix A). 1f no $S command Is used in the program, all
code is placed in the blank segment. Code from a program can be placed in
the same segment with code from a regular-unit, but it cannot be mixed with
code from an Intrinsic-unit (see Chapter 9).

92
93

Chapter 9
Units
LR oy T T o 9-1
9.1.1 WritingRegular-Units 9-1
9.1.2 Using Regular—Unitscooooeeeceeeee et 9-3
INtENSICUNILS <. e 9-a
Units that Use Other UNits ... ieeeeee 9-a

CHANGES/ADD/ 710N S

Fascal Reference 3.0 Notes Linits

Chapter 9
Units

writing Regular-Units (See Section 9.1.1)

The example unit on page 9-3 contains a typographical error that leads to a
bus error. For proper syntax in Lisa Pascal, a3 semicolon ought to eppeer
after the second-to-last snd

fAddl:=Incr+1
end;
end.

Intrinsic-Units (See Section 9.2)

921

You can now write yvour own intrinsic-unite; you are no longer limited to the
intrinsic-units provided by Apple.

A shared intrinsic-unit provides for the sharing of common data (i.e., one
copy of the data on the system).

The code of the entire unit, or of blocks within the unit, must be placed in
one or more named segments. Segmentation is controlled by the $S compiler
command (described in Section 12.1), the ChangeSeg utility, and the +M linker
option (both described in the {/orkshop L&er's Guide). Code from an
intrinsic~unit cannot be placed in the same segment with code from a
program or a regular-unit,

Writing Intrinsic-Units

An intrinsic-unit has the same syntax as a regular-unit, except that it has an
intrinsic clause in the heading.

NOTE

For syntactic compatibility with UCSD Pascal, the keywords code and
data may appear in the unit heading of an intrinsic-unit, together with
integer constants. These keywords and constants sre accepted hut are
ignared.

If the keyword shared appears in the intrinsic clause, the system will contain
only & single data area for the unit; the data is shared among all programs
that use the unit. 1If shared does not appesar in the intrinsic clause, each
program that uses the unit has its own data area for the unit.

Noles ¢-1

Fascel Reference 3.0 Nolss Linits

The new syntax for a unit, either regular or intrinsic, is:

unit
=] unit-heading }—»@—j

-~

L—b{ interface-part implementation-part end)—*O—-D

unit-heading

1 "=Qmit identifier
~] f ¥ intrinsic }—
hared

~—+{shered)~

If an intrinsic-unit contains a uses clause, it can only use other
intrinsic-units; an intrinsic-unit cannot use a regular-unit.

In order for a unit to be used by a program (or by another unit), it must be
compiled, and its object file must be accessible to the Compiler.

A single copy of the code of an intrinsic-unit is available to sll programs in
the system; therefore, intrinsic-units must be coordinated as part of system
generation and systemn maintenance activities. Specifically, all intrinsic-units
that have code in the same run-time code segment file must be linked
together into an intrinsic segment file, and the intrinsic segment file must
be referenced in the system intrinsics library, INTRINSIC.LIE.

922 Using Intrinsic-Units
For the host program or unit, there is no syntactic difference between using
a regular-unit and using an intrinsic-unit. The uses clause immedistely
follows the symbol INTERFACE (see Section 8.1 for syntax). There is only
one uses clause in any host program or unit; it must declare all units used
by that program or unit.

923 Compiler Commands Related to Regular- and Intrinsic-Units
The $U Compiler commands control which library directory is seerched for a
unit's interface. In the $U+ mode (the default), the Compiler first searches
for the unit's interface in the system intrinsic library directory,
INTRINSIC.LIB. If the interface isn't found there, the Compiler searches the
file named in the $U filename command. If $U- is specified, the Compiler
does not look in INTRINSIC.LIB, it only searches the file named in the $U
filename command. (See Chapter 12 for & description of $U filename and
other Compiler commands.)

9.24 Building Library Files

L ——

Notes 9-2

Fascal Reference 3.0 Notes Linits

9.24 Building Library Files
To create intrinsic-units and link them irto a likrary file, you must perform
the following steps in order, as shown in the diagram on the next page.

Step 1A Compile and Generate the intrinsic-units.

Step 1B Define the intrinsic-units, code segments, and file names, using
the IUManager utility (described in the Utilities section of the

Works]-hap User's Guide). (Steps 1A and 1B can be done in either
order.

Step 2 Link the intrinsic libraries.

Step 3 Install the library files, using the IUManager utility.

Step 4 Develop the main programs (not shown in detail).

Step 3 Run main programs which use the library files. (The system must
be rebooted before this step.)

PN

Notes -3

Units

A unit 1s a separately compiled, non-executable object flle that can be linked
with other object files to produce complete programs. There are two kinds of
units, called regu/ar-un/ts and Intrinsic-wun/ts In the current implementation of
the workshop, you can use intrinsic-units that are provided, but you cannot
write new ones.

Each unit used by a program (or another unit) must be complled, and its object
file must be accessible to the compller, before the hast program (or unit) can
be compiled.

9.1 Regular-Units
Regular-units can be used as a means of modularlzing large programs, or of

making code avallable for incorporation in various programs, without making
the source avallable.

when a program or unit (called the /ost) uses a regular-unit, the linker inserts
a copy of the complied code from the regular-unit into the host’s object file.

By default, the code copied from the regular-unit is placed in the blank
segment (see Chapter 8). The code of the entire unit, or of biocks within the
unit, can be placed In one or more different segments by using the $S compller
command (see Chapter 12).

911 writing Regular-Units
The syntax for a regular-unit Is:

requiar-unit unit-heading ;)
QD[interface-part [implementation-part Hau}b@—b

nlt-neaaing »(unit)-#{ 1centifier ——»

9-1

Pascal Refererce Marnsa! nits

1. ot
i-‘}

g ithid

interrace-part N @nterface ~

uses-clause

constant-geclaratlon-part]-—>

Lype-declaration-part]—)

_E\ i\ _{\

varlable-declaration-part }—7

procedure-and-function-declaration-part }—-——-\—-b

zmalementatim—part'(impl ation)) <

constant-declaration-part J——)

type~declaration-part }——>

variable-declaration-part]——>

'AFARANS

procedure-and-function-declaration-part }——\——b

The Interface-part declares constants, types, varlables, procedures, and
functions that are "public,” i.e. available to the host.

The host can access these entitles just as If they had been declared in the
host. Procedures and functions declared in the interface-part are abbreviated
to nothing but the procedure or function name, parameter specifications, and
function result-type.

NOTE

Since the interface-part may contaln a uses-clause, a unit can use
another unit (see Section 9.3).

Pascal Reference Maal Lnits

The implementation-part, which follows the last declaration in the interface- |
part, begins by declaring any constants, types, variables, procedures, or !
functions that are “private,” i.e. not available to the host. :

The publlc procedures and functions are re-declared in the implementation-
part. The parameters and function result types are omitted from these '
declarations, since they were declared in the interface-part, and the procedure

and function blocks, omitted in the interface-part, are included in the

implementation-part.

In effect, the procedure and function declarations in the interface are like
forward declarations, although the forward directive is not used. Therefore,
these procedures and functions can be defined and referenced in any sequence
in the implementation.

NOTES

There is no “initialization” section in Pascal units on the Lisa (unlike
Apple 11 and Appile liI Pascal). If a unit requires initlalization of its
data, it should define a public procedure that performs the initialization,
and the host should call this procedure.

Also note that global labels cannot be declared in a unit.

A short example of a unit fis:

unit Simple;
INTERFACE {public objects declared}
const Firstvalue=1; :
procedure AddOne(var Incr:integer); i
function Addi(Incr:integer):integer;
THPLEMENTATION
procedure AddOne; {note lack of parameters...}
begin
Incr:=Incr+1
end;
function Addi; {...and lack of function result type}
begin
Addl:=Incr+1
end;
end.

9.12 Using Regular-Units

The syntax for a uses-clause is given in Section 8.1. Note that in a host
program, the uses-clause (If any) must immediately follow the program-
heading. In a host unit, the uses-clause (if any) immediately follows the
symbol interface. Only one uses-Clause may appear in any host program or
unit; it declares all units used by the host program or unit.

See Section 9.3 for the case where a host uses a unit that uses another unit.

9-3

([]

Pascal rRefererve Marnis! unlts

It Is necessary to specify the flle to be searched for regular units. The $U
compiler command specifies this file. See Chapter 12 for more detalls.

Assume that the example unit Simple (see above) Is compiled to an object file
named APPL:SIMPLE.0OBJ. The foliowing is a short program that uses Simple.

It also uses another unit named Other, which is in file APPL:OTHER.0BJ.

program CallSimple;
uses {$U APPL:SIMPLE.0BJ} {file to search for units}

Simple, {use unit Simple}
{$U APPL:0THER.0BJ} {file to search for units}
Other; {use unit Other}
var i:integer;
begin
i:=Firstvalue; {Firstvalue is from Simple}
write('i+1 is °,Add1(1)); {Addl is defined in Simple}
write(xyz(1i)) {xyz is defined in Other}
end.

9.2 Intrinsic-Units

The only intrinsic-units you can use are the ones provided with the Workshop
software.

Intrinsic-units provide a mechanism for Pascal programs to share common code,
with only one copy of the code in the system. The code is kept on disk, and

when loaded into memory it can be executed by any program that declares the
Intrinsic-unit (via a uses-clause, the same as for regular-units).

By default, the system looks up all intrinsic-units In the system intrinsics
library file, INTRINSIC.LIB. All intrinsic-units are referenced in this library,
so the $U fllename compiler command Is not needed with Intrinsic-units.

9.3 Units that Use Other Units

As explained above, the uses-clause in the host must name all units that are
used by the host. Here "used” means that the host directly references
something In the Interface of the unit. Consider the following diagram:

unitA
interface
uses unitC;
Host Program implementation — interface
uses unitA, unitb;
unitB

unitC

implementation

interface

implementation

Pascal Referernce Maval unlts

The host program directly references the interfaces of unitA and unitB; the
uses-clause names both of these units. The implementation-part of unitA also
references the interface of unitC, but it is not necessary to name unitC in the
host-program’s uses-clause.

In some cases, the uses-clause must also name a unit that is not directly
referenced by the host. The following diagram is exactly like the previous one
except that this time the /nterrace of unitA references the Interface of unitC,
and unitC must be named in the host-program’s uses-clause. Note that unitC
must be named ferore unitA

unitA

interface
uses unitC;

\ unitC
Host Program implementation

interfa
uses Unitc, unitA, ertace

unite; \ unith implementation

interface

implementation

In a case like this, the documentation for unitA should state that unitC must
be named In the uses-clause before unitA

9-5

C e

Chapter 10
Input/Output

101 IntroductioNtDI/D.... ... ceeeeicea e ceec e enesec e aseaaneaannncnamesasasaans 10-1
10,11 DBVICE TP oottt et et e e se e raransanrassanensannes 10-2
10.1.2 External Flle Species.... ..o ese e eneeeens 10-2
10.1.3 The ReSELPIOCEOUTEciiiiiciiieaieieenensaatasnenaneeananamosmemannsnnn 10-3
10.1.0 The Rewrite ProcedUIe ... i ceecreeeaecenameraaanaan 10-5
10.1.5 The ClOSEPTOCEOUTE.........ccciciiieciararaenenamasasereanarasaseemememnrasenn 10-6
10.1.6 Theloresult FUunCtion.... .o ciaicre et e cnaaan 10-7
10.1.7 The Eof FUNCHIon ..o eeeeeeeeeeee e eeme e nas 10-7
102 Record-0riermted /0 ... eeeeeeece e cessasessenaenensuee 10-8
10.2.1 ThEe GetPIOCEUUTEcciieiimeierinerenereratearnaanrasnseesecaanennass 10-8
10.2.2 The PULPTOCBOUTE.c..ciiciaiiiaiacacececaiansasaesesesesarsesacnrasanancasn 10-8
10.2.3 The SeeK PIOCEOUIE e aas 10-9
103 Text-Orented /0. et eeeceseeenenn e ee e nnans 10-9
10.3.1 TheRead PIOCEOUIR e eeeeae s aeeaneanenannn 10-11
10.3.1.1 ReadwithaCharVariablecccocvivieiiiiiiicninnennn. 10-12
10.3.1.2 Read withan Integer or Longint Variable.................... 10-12
10.3.1.3 ReadwithaReal Variable.......ccooiiiieiiiiaiieiiaeas 10-12
10.3.1.4 ReadwithaStringvariablec.ccocoiiiiiiiiiinininnn. 10-13
10.3.1.5 Read withaPacked Array of Char Variable................. 10-13

10.3.2 The ReadINPIOCEAUIEot eea e eenaern e e saanas 10~-14
10.3.3 The WIHtE PIOCEOUTE.ciiiiii ittt re s rme e 10-14
10.3.3.1 OUEPUL=SPECS ... ciiceiic i et iere e reee s s e ae e saerensaes 10-15
10.3.3.2 WritewithaCharValue........c.ccoeuiemiiiiieeeeeeneeee. 10-15
10.3.3.3 write withan Integer or Longint Valuecccccoueeeeet 10-15
10.3.3.4 WritewithaReal Valueccocnmeimimieicieicrerenane. 10-16
10.3.3.5 WritewithaString Value ..o, 10-16
10.3.3.6 Wrlte withaPacked Array of Char Valuecccuueeeee. 10-17
10.3.3.7 WritewithaBooleanValuecooeiciieiiiiiceneeienennns 10-17

10.3.4 The WIHtEINPIOCEOUIE ... ceeiieeeieeereeeencaneenanenesneneaannn 10-17
1035 The EolnFUNCtion ..o ceree e e e anen 10-17
10.3.6 ThePage PTOCEOUIE...........cociiiinciere it aecnaeneaeeacmaseeanserannee 10-18
10.3.7 Keyboard Testing and Screen Cursor Controlc.covevecinneee. 10-18
10.3.7.1 TheKeypress Functioncooiiniaens 10-18
10.3.7.2 The Gotoxy Procedure...............cccooivieveaniirmmnsenennnnns 10-18

Pascal Reference Marwal

1084 UntypedFile1/0........c.cccaeeeeeee
10.4.1 TheBlockread Function .

10.4.2 The Blockwrite Function

Input/Qutput /m\
.. 10-18
.. 10-19
.. 10-20

CHANGES /Ay 71w S

Fascal Reference 3.0 Noles Input-Cutput

Chapter 10
Input/Cutput

Output of Infinite or NaN Yalues when Writing a Real (See Section 10.3.3.4)
If the output expression in a write procedure has an infinite value, it is now
output as the string "INF“ or "-INF". If the output expreszion is a NaN, it is
output[B]S the string "NaN", followed by a parenthesized NaN code such as
“"NaN (7)".

Notes 20-1

Input/Output

This chapter describes the standard ("built-in") 1/0 procedures and functions of
Pascal on the Llsa.

Standard procedures and functions are predeclared. Since all predeclared
entities act as if they were declared in a "block™ surrounding the program, no
conflict arises from a declaration that redefines the same identifier within the
program.

NOTE

Standard procedures and functions cannot be used as actual procedural
and functional parameters.

This chapter and Chapter 11 use a modifled BNF notation, Instead of syntax
diagrams, to Indicate the syntax of actual-parameter-lists for standard
procedures and functions.

Example:
Parameter List: new(p [, t1, ... tn])

This represents the syntax of the actual-parameter-list of the standard
procedure new, as follows:

* p, t1, and t~ stand for actual-parameters. Notes on the types and
interpretations of the parameters accompany the syntax description.

* The notation t1, ... t/» means that any number of actual-parameters can
appear here, separated by commas.

* Square brackets [] Indicate parts of the syntax that can be omitted.

Thus the syntax shown here means that the p parameter is required. Any
number of t parameters may appear, with separating commas, or there may be
no t parameters.

10.1 Introduction to 1/0

This section covers the 1/0 concepts and procedures that apply to all flle types.
This includes the types text (see Sectlon 10.3) and "untyped” flles (see Section
10.4)

To use a Pascal file variable (any variable whose type is a file-type), it must
be associated with an extemal flle. The external file may be a named
collection of informatlon stored on a periptieral device, or (for certain file-
types) it may be the peripheral device itself.

The assoclation of a file varlable with an extemal file is made by goening the
file. An existing file is opened via the reset procedure, and a new file is
created and opened via the rewrlte procedure.

10-1

Pascal Rererence Marnsl Input/tulpunt

NOTE

Pascal on the Lisa does not provide automatic 1/0 checking. To check

the result of any particular 1/0 operation, use the foresult function
described In Section 10.1.6.

10.1.1 Device Types
For purposes of Pascal 1/0, there are two types of peripheral devices:

* A Ffle-stnetured device s one that stores flles of data, such as a diskette.

* A cnharacter device s one whose input and output are streams of individual
bytes, such as the Lisa screen and keyboard or a printer.

10.1.2 Extemal File Species
There are three "species” of external files that can be used in Pascal 1/0
operations:

* A oagtari/e 1s any flle that {s stored on a flle-structured device and was
not originally created in assoclation with a file variable of type text

* A lextfile is a flle that Is stored on a flle-structured device and was
originally created In assoclation with a file variable of type text [lextfiles
are stored in a specialized format (see Section 10.3).

* A character qevice can be treated as a flle.

Table 10-1 summarizes the effects of all possible combinations of different flle
variable types and external file species. The “ordinary cases” in the table
reflect the basic intent of the varlous flle-types. Other combinations, such as
block-oriented access to a textfile via a variable of type flle, are legal but
may require cautious programming.
”) !
« JYTECAITIE Fre oy o
;ﬂy: 27 7/ J R /7 See g f

s

L’,/l/\tr/.z e e + ,‘}'éh%/ 4 7f Ar oo tor

4

’
’ /. L /
G T e e
’

,’/fﬁ”l . 7/’”4.” .

10-2

rascal Rererence Marwal

InputQuiput

Table 10-1
Combinations of File Variable Types with Extemal Flle Specles
and Categorles
var f: flle of)
SomType’- var f: t.ext,' var f: flle;
Ordinary case. (Textfile format [Qrdinary case.
datafile | After reset, assumed!)_ After | Block access.
f = 1st record reset», f s
file. unspecified.
(Textflle format | Ordinary case. (Textflle format
not assumed!) Textfile format | not assumed!)
After reset», assumed. After | Block access.
textfile | ¢ _ it record | reset, £ is
of flle (as unspecified.
declared).
After reset, Ordinary_case. Block access,
f" = 1st char. After reset, if allowed by
character | from device f" is unspeci- device.
device | (system wailts for | fied (no wait
it!). 1/0 error if for input char).
file record type
not byte-sized.
~ In tese cases. he laresult Arction will retun a "waming”
(i.e, & negative manber) irmmediately after the reset goeration.

10.13 The Reset Procedure
Opens an existing file.

Parameter LIist: teset(f, title)

1. f Is a varlable-reference that refers to a variable of file-type. The flle
must not be open.

2. title is an expression with a string value. The string should be a valid

pathname for a flle on a file-structured device, or a pathname for a
character device.

10-3

Pascal Rerference Marugal Inputuiput

NOTE

Both parameters are required (unlike Apple 11 and Apple 1l Pascal,
where the second parameter is optional)

Reset(f, title) finds an existing external flle with the pathname title, and
assocliates f with this external file. (If there is no existing external flle with
the pathname title, an 1/0 error occurs; see Section 10.1 6?

If title Is the pathname of a character device, then
* Eof{f) becomes false,

* If f Is of type text, the value of f~ is unspecified. The next read or readin
on f will walt untll a character is avallable for Input, and begin reading
with that character.

* If f Is of type flle and the device ls one that allows block access, there is
no file buffer variable f~ and the “current file position” i1s set to the first
block (block 0) of the file. If the device does not allow block access, an
170 error occurs (see Section 10.1.6).

* If f Is not of type text or file, its component-type must be a "byte-size”
type such as the type -128.127. Note that char Is not a byte-size type! If

the component-type of f is not byte-size, an 1/0 error occurs (see Section
10.1.6)

If no 1/0 error occurs, the system walts untll a character s avatlable from
the device and then assigns the character’s 8-bit code to f~

If title is the pathname for an existing file on a file-structured devlce, then

* Eof(f) becomes false If the external file is not empty. If the external file
Is empty, eof{f) becomes true.

 If f is not of type text or file, reset sets the “current file position" to the
first record in the external file, and assigns the value of this record to the
file buffer variable f~. If the external flle is a textfile, the loresult
function will return a negatlve number as a warning (see Section 10.1.6).

« If f is of type text, the value of f is unspecified. If the flle is a textfile,
the next read or readin on f will begin at the first character of f. If the
file is a datafile, it will be treated as if it were a textfile (see Section
10.3) and the loresult function will return a negative number as a warning
(see Section 10.1.6)

* if f is of type file, there Is no file buffer variable f~ and the “current file
position” is set to the first block (block 0) of the file.

10-4

Pascal Reference Mamual InoutQutput

10.1.4 The Rewrlte Procedure
Creates and opens a new flle.

Parameter LIst: rewrite(f, title)
1. f is a variable-reference that refers to a variable of file-type.

2. Ute Is an expression with a string value. The string should be a valid
pathname for a flle on a flle-structurea agevice, or a pathname for a
character device.

If £ 1s already open, an I/0 error occurs (see Section 10.1.6).
If title is the pathname of a character device, then
* Eof{f) becomes false.
* Rewrite(f, title) simply assoclates f with the device and opens f.
* The status of the device Is not affected.
* The value of f* becomes unspecified.
If ttle Is the pathname for a new file on a flle-structured device, then
s Eof{f) becomes true.

* Rewrite(f, title) creates a new external file with the pathname title, and
associates f with the external file, This is the only way to create a new
external file.

* The species of the new external flle Is set according to the type of f--
"textfile” for type text, or “datafile” for any other type.

* The value of f~ becomes unspecified.

* If f is not of type flle, the “current file position” is set to just before the
first record or character position of the new extemal flle.

* If f i5 of type flle, the "current file position™ is set to block 0 (the first
block in the file).

* If f is subsequently closed with any option other than lock or crunch (see
Section 10.1.5), the new external flle is discarded at that time. Closing f
with lock or crunch is the only way to make the new external file
permanent.

* If title Is the pathname of an existing external file, the existing file will be
discarded only when f Is subsequently closed with the lock or crunch option
{(see Section 10.1.5)

Unspecified effects are caused if the current flle position of a file f is altered

while the flle-buffer £ Is an actual varlable parameter, or an element of the
record-variable-reference list of a with-statement, or both,

10-5

Pascal Reference Manual Input/Output

10.1.5 The Close Procegure
Closes a file.

Parameter [Ist: close(f [, option])
1. f Is a variable-reference that refers to a varlable of flle-type.

2. opton (may be omitted) is an ldentifier from the list given below. If
omitted, the effect Is the same as using the identifier normal.

Close(f, option) closes f, if f Is open. The assoclation between f and its
external file is broken and the flle system marks the external file “closed”. If
f Is not open, the close procedure has no effect.

The optlon parameter controls the disposition of the external file, if It is not a
character device. If it is a character device, f is closed and the status of the
device Is unchanged.

The ldentifiers that can be used as actual-parameters for option are as follows:

* normal — If f was opened using rewrite, it Is deleted from the directory.
If f was opened with reset, it remains in the directory. This Is the default
option, in the case where the optlon parameter is omitted.

* lock —- If the external file was opened with rewrite, it is made permanent
in the directory.

If f was opened with rewrite and a title that matches an existing file, the
old file is deleted (unless the safety switch Is "on™). If the old flle has the
safety switch "on,” it remains in the directory and the new file is deleted.

If f was opened with reset, a normal close is done.

* purge -- The extemal file is deleted from the directory (unless the safety
switch Is "on"). In the speclal case of a file that already exists and is
opened with rewrlte, the original file remains in the directory, unchanged.

* crunch -- This is like lock except that it locks the end-of-file to the polnt

of last access; l.e., everything after the last record or character accessed ls
thrown away.

All closes regardiess of the option will cause the flle system to mark the
external flle "closed” and will make the value of f unspecified.

If @ program terminates with a file open (i.e., if close is omitted), the system
automatically closes the file with the normal option.

NOTE

If you open an existing flle with reset and modify the flle with any
write operation, the contents are immediately changed no matter what
close option you specify.

10-6

—_—

Pascal Reference Manual InputQulput

10.1.6 The loresult Function
Pascal on the Lisa does not provide automatic 1/0 checking. To check the
result of any particular 1/0 operation, you must use the loresult function.

Result type: Integer
Pargmeter List: no parameters

loresult returns an integer value which reflects the status of the last com-
pleted 1/0 operatlon. The codes are given In the workshgo Users Guide for the
L/sa. Note that the code 0 indicates successful completion, positive codes
indicate errors, and negative codes are “warnings” (see Table 10-1).

Note that the codes retumed by loresult are not the same as the codes used in
Apple 11 and Apple 11 Pascal.

NOTES

The read, readin, write, and writeln procedures described in Section 10.3
may actually perform multiple 1/0 operations on each call. After one of
these procedures has executed, loresult will return a code for the status

of the /ast of the multiple operations.

Also, beware of the following common error in dlagnostic code:
read(foo);
writeln(ioresult=", ioresult)

The Intention is to write out the status of the read operation, but
Instead the status written out will be that of the write operation on the
string 'loresult=',

10.1.7 The Eof Function
Detects the end of a flle.

Result 7ype: boolean
Parameter List: eof [(f)]
1. f Is a variable-reference that refers to a variable of flle-type.

If the parameter-list is omitted, the function is applied to the standard file
input (see Sectlon 10.3)

After a get or put operation, eof{f) retumns true if the current file position is
beyond the last external file record, or the external file contalns no records;
otherwise, eof(f) returns false. Specifically, this means the following:

* After a get, eof(f) returns true if the get attempted to read beyond the last
file record (or the file is empty)

* After a put, eof(f) returns true If the record written by the put is now the
last flle record.

10-7

Pascal Reference Marual Inout/Qutput

If f Is a character device, eof{f) will always return false,
See Section 10.3 for the behavior of eof{f) after a read or readin operation.
NOTE

Whenever eof(f) Is true, the value of the file buffer varlable £~ is un-
specified.

102 Record-Oriented 1/0
This section covers the get, put, and seek procedures, which perform record-
oriented 1/0; that is, they consider a file to be a sequence of variables of the
type specified In the file-type. These procedures are not allowed with files of
type file.

The effects of get and put are unspecified with flles of type text, and seek has
no effect with flles of type text. The text type Is supported by speciallzed
procedures described In Section 10.3.

10.2.1 The Get Procedure
Reads the next record in a flle.

Parameter List: get(f)

1. f Is a variable-reference that refers to a variable of file-type. The flle
must be open.

If eof{f) Is false, get(f) advances the current file position to the next file
record, and assigns the value of this record to f . If no next component
exists. then eof(f) becomes true, and the value of f~ becomes unspecified.

If eof(f) Is true when get(f) is called, then eof(f) remalns true, and the value of
f~ becomes unspecified.

If the external flle Is a character device, eof{f) Is always false and there Is no
“current file position.” In this case, get(f) waits untll a value is ready for input
and then assigns the value to f

10.2.2 The Put Procedure
wrltes the current record In a file,

Parameter List: put(f)

1. f Is a varlable-reference that refers to a variable of file-type. The file
must be open.

If eof(f) Is false, puy(f) advances the current flle position to the next flle
record and then writes the value of f to f at the new file position. If the
new flle position Is beyond the end of the flle, eof(f) becomes true, and the
value of f becomes unspecified.

If eof(f) is true, put(f) appends the value of f~ to the end of f and eof{f)
remains true.

10-8

Pasca] Reference Marnwial Input/Qutput

If the external file is a character device, eof{f) is always false, there is no
"current file position,” and the value of f {s sent to the device.

NOTE

If put is called immediately after a file is opened with reset, the put
will write the seco record of the file (since the reset sets the
current position to the first record and put advances the position before
wrlting). To get around this and write the flrst record, use the seek
procedure (see Sectlon 10.2.3).

10.2.3 The Seek Procedure
Allows access to an arbitrary record in a flle.

Parameter LIst: seek(f, n)

1. f is a varlable-reference that refers to a varlable of file-type. The file
must be open.

2. n is an expression with an integer value that specifies a record number in
the flle. Note that records in files are numbered from 0.

If the flle is a character device or Is of type text, seek does nothing.
Otherwise, seek(f, n) affects the action of the next get or put from the flle,
forcing It to access flle record n Instead of the “next” record. Seek(f, n) does
not affect the flle-buffer f .

A get or put 7ast be executed between seek calls. The result of two con-
secutive seeks with no intervening get or put Is unspecified. Immediately after
a seek(f, n), eof(f) will return false; a following get or put will cause eof to
return the appropriate value.

NOTE

The record number specified in a seek call is not checked for validity.
If the number is not the number of a record In the file and the program
tries to get the specified record, the value of the flle-buffer becomes
unspecified and eof becomes true.

10.3 Text-Orlented 1/0
This sectlon describes input and output using file variables of the standard type
text Note that in Pascal on the Lisa, the type text is distinct from flle of
char (see Section 3.2.4).

when a text file is opened, the extemnal file Is interpreted in a speclal way. It
Is considered to represent a sequence of characters, usually formatted into
lines by CR characters (ASCII 13).

The Lisa keyboard and the Workshop screen appear to a Pascal program to be
bullt-in flles of type text named Input and output respectively. These files

10-9

Pascal Reference Maral Input/Quiput

need not be declared and need not be opened with reset or rewrite, since they
are always open.

when a program {s taking input from input, typed characters are echoed on the
workshop screen. In addition to the input file, the Lisa keyboard is also

represented as the character device ~-KEYBOARD. To get keyboard input
without echeoing on the screen, you can open a file variable of type text with
-KEYBOARD as the external flle pathname.

Other Interactive devices can also be represented in Pascal programs as files of
type text

when a text file iIs created on a file-structured device, the externa! flle is a
textfile. It contains information other than the actual sequence of characters
represented, as follows:

* The stored flle Is a sequence of 1024-byte pages

* Each page contains some number of complete lines of text and Is padded
with null characters (ASCII 0) after the last line.

* Two 512-byte /feader D/ocks are also present at the beginning of the flle.

* A sequence of spaces in the text may be compressed into a two-byte code,
namely a LLE oharacter (ASCIL 16) followed by a byte contalning 32 plus
the number of spaces represented.

All of this special formatting Is invisible to a Pascal program if the file is
accessed via a flle variable of type text (but visible via a file variable of any
other file-type)

Certaln things that can be done with a record-structured file are impossible
with a file variable of type text:

* The seek procedure does nothing with a file variable of type text.
* The effects of get and put are unspecified with a flle varlable of type text.

* The contents of the file buffer variable are unspecified with a file variable
of Lype text

* A flle varlable of type text that Is opened with reset cannot be used for
output, and one opened with rewrite cannot be used for Input. Results are
unspecified If either of these operations Is attempted.

In place of these capabilities, text-oriented 1/0 provides the following:
* Automatic conversion of each Input CR character into a space.

* The eoln function to detect when the end of an input line has been
reached.

* The read procedure, which can read char values, string values, packed airay
of char values, and numerlc values (from textual representations).

10-10

~—

Pascal Reference Maral Input/utput

* The write procedure, which can write char values, string values, packed
array of char values, numeric values, and boolean values (as textual
representations).

* Line-oriented reading and writing via the readin and writeln procedures.

* The page procedure, which outputs a form-feed character to the extemal
file.

* Automatic conversion of input DLE-codes to the sequences of spaces that
they represent. Note that output sequences of spaces are not converted to
DLE-codes.

= Automatic skipping of header blocks and null characters during input.

* Automatic generation of textfile header blocks, and automatic padding of
textfile pages with null characters on output.

10.3.1 The Read Procedure
Reads one or more values from a text file into one or more program variables.

Parameter LIst: Tead([f,] vi[, v2, ... vn])

The syntax of the parameter-list of read allows an indefinite number of
actual-parameters. Consecutive actual-parameters are separated by commas,
Just as In a normal parameter-list.

1. f (may be omitted) Is a varlable-reference that refers to a variable of
type text. The file must be open. If f Is omitted, the procedure reads
from the standard text file input, which represents the Lisa keyboard.

2. vl .. vn are Jnput variables Each is a varlable parameter, used as a
destination for data read from the file. Each Input variable must be a
varlable-reference that refers to a variable of one of the followlng types:

* char, integer, or longint (or a subrange of one of these)
* real
* a string-type or a packed array of char type.

These are the types of data that can be read (as textual representations)
from a file. At least one input variable must be present.

Read(f,vl,..v7) Is equivalent to:

begin
read(f, vl);

read(f, v/7)

10-11

Pascal Reference Mariual Input/Qutput

NOTE

Read can also be used to read from a file fil that is not a text file. In
this case read(fllx) is equivalent to:

begin .
X := fil1 ;
get(fil)

end

10.3.1.1 Read with a Char Variable
If fis of type text and v is of type char, the following things are true
immediately after read(f,v)

* Eof(f) will retum true if the read attempted to read beyond the last
character In the external file.

* Eoln(f) will return true, and the value of v will be a space, If the character
read was the CR character. Eoln(f) will also retumn true if eof{f) is true.

10.3.1.2 Read with an Integer or Longint Variable
If fis of type text and v is of type Integer, subrange of integer, or longint,
then read(f,v) implies the reading from f of a sequence of characters that form
a signed whole number according to the syntax of Section 1.4 (except that
hexadecimal notation Is not allowed). If the value read Is assignment-
compatible with the type of v, it is assigned to v; otherwise an error occurs.

In reading the sequence of characters, preceding blanks and CRs are skipped.
Reading ceases as soon as a character Is reached that, together with the
characters already read, does not form part of a signed whole number,

An error occurs If a signed whole number s not found after skipping any
preceding blanks and CRs.

If fls of type text, the following things are true Immediately after read(f,v}

* Eof(f) will return true if the last character in the numeric string was the
last character in the external flle,

* Eoln(f) will retumn true if the last character in the numeric string was the

last character on the line (not counting the CR character). EoIn(f) will also
return true if eof(f) Is true.

10.3.1.3 Read with a Real Variable

If fis of type text and v is of type real, then read(f,v) implles the reading
from f of a sequence of characters that represents a real value. The real
value {s assigned to the variable v.

In reading the sequence of characters, preceding blanks and CRs are skipped.
Reading ceases as soon as a character s reached that, together with the

10-12

Pascal Reference Marx/al Input/ Quiput

characters already read, does not form a valid representation. A "valid
representation” is either of the following:

* A finite real, integer, or longint value represented according to the
signed-number syntax of Section 1.4 (except that hexadecimal notation is
not allowed). An integer or longint value is converted to type real

* An infinite value or Nan represented as described in Appendix D.

An error occurs If a valld representation Is not found after skipping any
preceding blanks and CRs.

Immediately after read(f.v) where v is a real variable, the status of eof{f) and
eoln(f) are the same as for an integer variable (see Section 10.3.1.2 above).

103.1.4 Read with a String Varlable
If £ is of type text and v is of string-type, then read(fv) implies the reading
from f of a sequence of characters up to &uwt not Including the next CR or
the end of the flle. The resulting character-string is assigned to v. An error
occurs if the number of characters read exceeds the size attribute of v.

NOTE

Read with a string variable does not skip to the next line after reading,
and the CR is left waliting in the input buffer. For this reason, you
cannot use successive read calls to read a sequence of strings, as they
will never get past the first CR -- after the first read, each subsequent
read will see the CR and will read a zero-length string.

Instead, use readin to read string values (see Section 10.3.2) Readin
skips to the beginning of the next line after reading.

The following things are true immediately after read(f,v}
* Eof(f) will return true if the line read was the last line in the file.
* Eoln(f) will always return true.

10.3.1.5 Read with a Packed Array of Char Varlable
If fi5 of type text and v is a packed array of crar, then reaff,v) implies the
reading from f of a sequence of characters. Characters are read into
successlve character positions in v until all positions have been filled, or until
a CR or the end of the flle is encountered. If a CR or the end-of-file is
encountered, it Is not read into v; the remalning positions in v are filled with
spaces.

10-13

Pascal Reference Manual Inout/Quiput

10.3.2 The Readin Procedure
The readln procedure is an extension of read. Essentially it does the same
thing as read, and then skips to the next line in the input flle.

Parameter LIst: The syntax of the parameter list of readin is the same as that
of read, except as follows:

* A readin call with no input variables Is allowed. Example:
readln(sourcefile)
* The parameter-list can be omitted altogether.

If the first parameter does not specify a flle, or if the parameter-list is
omitted, the procedure reads from the standard flle input, which represents the
Lisa keyboard.

ReadIn(f), with no input-variables, causes a skip to the beginning of the next
line (if there Is one, else to the end-of-flle).

Readin can oy be used on a text file. Except for this restriction,
readin(f,vl,...v77) is equivalent to:

begin
read(f,vl, ...,v2)
readln(f)

end

The following things are true immediately after readin(f,v) regardless of the
type of v

* Eof(f) will retum true if the line read was the last line in the external file.
* EoIn(f) will always return false.

1033 The Write Procedure
writes one or more values to a text flle.

Parameter List: write([f,] p1 [, p2, ... pn))

The syntax of the parameter list of write allows an indefinite number of
actual-parameters.

1. f(may be omitted) is a variable-reference that refers to a varlable of
type text. The flle must be open. If f Is omitted, the procedure writes to
the standard flle output, which represents the workshop screen.

2. pl .. pnare output-specs Each output-spec Includes an owiput
expressiong whose value Is to be written to the flle. As explalned below,
an output-spec may also contain specifications of field-width and number
of decimal places. Each output expression must have a result of type
integer, longint, real, boolean, char, a string-type, or a packed array of
char type. These are the types of data that can be written (as textual
representations) to a flle. At least one output-spec must be present.

10-14

Pascal Reference Manal Input/uput

write(f,pl,..p77) Is equivalent to:
begin
write(f,pl);

write(f, ps)
end

Immediately after write(f), both eof(f) and eoln(f) will return true.
NOTE

write can also be used to write onto a flle fil that is not a text file,
In this case write(filx) is equivalent to:

begin
- = x
put(fi1)
end

10331 Output-Specs
Each output-spec has the form

OUtExpr [: Minwidth [: DecPlaces]]

where OQUtEXpr is an output expression. Minwidth and DecPlaces are
expressions with integer or longint values.

Minwidth specifies the m/2/mun field width, with a default value that
depends on the type of the value of OUEXpr (see below). Minwidth should be
greater than zero; otherwise, the results are unspecified. Exactly Minwidth
characters are written (using leading spaces if necessary), except when OutExpr
has a /munerlc value that requires more than Minwidth characters; in this
case, enough characters are written to represent the value of OUtEXpI.

DecPlaces specifies the number of decimal places In a fixed-point repre-
sentation of a real value. It can be specified only if OUtExpr has a real vaiue,
and if Minwidth is also specified. If DecPlaces Is not specified, a floating-
point representation Is written.

10.3.3.2 write with a Char Value
If OUtExpr has a char value, the character is written on the flle f. The default
value for Minwidth is one.

10.3.3.3 write with an Integer or Longint Value
If OUtEXPr has an Integer or longint value, its decimal representation is written
on the file f. The default value for Minwidth is 8. The representation consists
of the digits representing the value, prefixed by a minus sign if the value is
negative, and any leading spaces that may be required to satisfy Minwidth. If
1the representation requires more than Minwidth characters, Minwidth is
gnored.

10-15

Pascal Reference Marnusgl InputQuiput

10.33.4 write with a Real Value
If OutExpr has a real value, the default value for Minwidth is 12.

If QutExpr has an Infinite value, it is output as a string of at least two "+
characters or at least two “-" characters. If QUtExpr 1Is a NaN, it Is output as
the character string “NaN", possibly followed by a string of characters enclosed
by single-quotes. See Sectlon 10.3.3.5 for detalls on string output.

If DUtExpr has a zero value, it Is represented as “0" or “-D".

If DUtExpr has a finite value, its decimal representation Is written on the file
f. This representation is the nearest possible declmal representation, depending
on Minwidth and DecPlaces. If the unrounded value s exactly halfway
between two possible representations, the representation whose least significant
digit is even is written out.

If DecPlaces Is not specifled, a /Zoating-point representation Is written as
follows:

* If Minwidth Is less than 6, then Its value is set to 6 (Intermally). This Is the
minimum usable width for writing a floating-polnt representation.

= If the sign of the value of OUtEXpr Is negative, a minus sign is written;
otherwise, a space is written.

* If Minwidth > 8, the significant digits are written with one digit to the left
of the decimal point and (Minwidth - 7) digits to the right of the decimal

point.

= If Minwidth < 8, the most significant digit is written and the decimal point
is omitted.

* The exponent is written as the letter “E", an explicit "+ or "-" sign, and
two digits.

If DecPlaces Is specified, a /xeo-po/nt representation is written as follows:
* Enough leading spaces are written to satisfy Minwidth.

= If the value is negative, the minus sign “-" is written; if it Is not negatlve,
a space Is written.

* If DecPlaces > 0, the significant digits are written with the integer part of
the value to the left of the decimal point. The next DecPlaces digits are
written to the right of the decimal point.

* If DecPlaces < 0, only the Integer part of the value Is written and no
decimal point is written.

10.3.35 Wwrite with a String Value

If the value of OUtExpr Is of string type with length L, the default value for
Minwidth is L. If MinwidUw=L, the value Is written on the flle f preceded by
(Minwidth-L) spaces. If Minwidth<L, the first Minwidth characters of the
string are written.

10-16

Pascal Reference Meanal InputQuiput

10.3.3.6 Wwrite with a Packed Array of Char Value

If E Is of type packed array of char, the effect Is the same as writing a strlng
whose length Is the number of elements in the array.

10.3.3.7 Wwrite with a Boolean Value
If the value of OUtExpr Is of type boolean, the string * TRUE" (with a leading
space) or the string "FALSE™ is written on the file f. The default value of
Minwidth is 5. If Minwldthe5, leading spaces are added; If Minwldth<5, the
first Minwidth characters of the string are written. This Is equivalent to:

write(f, " TRUE':Minwidth)

or
write(f, ‘FALSE' :Minwidth)

10.3.4 The Writeln Procedure
The wilteln procedure Is an extension of write. Essentlally it does the same

thing as write, and then writes a CR character to the output file (ending the
line).

rarameter List: The syntax of the parameter list of writeln is the same as
that of write, except as follows:

* A writeln call with no output-specs Is allowed. Example:
writeln(outputfile)
* The parameter-list can be omitted altogether.

If the flrst parameter does not specify a file, or if the parameter-list is
omitted, the procedure writes to the standard flle output, which represents the
workshop screen.

writeln(f) writes a CR character to the flle f.

writeln can on/ybe used on a text flle. Except for this restriction,
writeln(f p1..p~) is equivalent to:

begin
write(f,pl, ...,pn);
writeln(f)

end

Immediately after writeln(f), both eof{f) and eoin(f) will retum true.

10.3.5 The Eoln Function
Result Type: boolean

Parameter List: eoln[(f))

1. f is a varlable-reference that refers to a variable of type text. The file
must be open.

The actual-parameter-list can be omitted entirely. In this case, the function is
applied to the standard flle input (the Lisa keyboard)

10-17

Pascal Reference Marnsgl InputQutput

Eoln(f) returns true "if the end of a line has been reached in f." The meaning
of this depends on whether the external file is a character device, on which 1/0
procedure was executed last, and on what type of variable was used to receive
an Input value. For getalis, see Sections 10.3.1 through 10.3.4.

The end of the flle is considered to be the end of a line; therefore eoln(f) will
return true whenever eof(f) is true.

10.3.6 The Page Procedure
Parameter List: page(f)

1. f is a variable-reference that refers to a variable of type text. The file
must be open.

The actual-parameter f cannot be omitted. Page(f) outputs a form-feed
character to the flle f. Tnis will cause a skip to the top of a new page when
f is printeg.

Note that page(output) sends a form-feed to the workshop screen, but in
general this will not clear the screen. For methods of clearing the screen, see
the Workshop Users Guice ror the Lisa .

10.3.7 Keyboard Testing and Screen Cursor Control
10.3.7.1 The Keypress Function
Tests the Lisa keyboard to see if it has a character awaiting input.

Parameter L/st: no parameters.
Result Type: boolean.

Keypress returns true if a character has been typed on the Lisa keyboard but
has not yet been read, or false otherwise. This Is done Dy testing the
typeahead queue; if the queue Is empty, keypress is false, otherwise it is true.

10.3.7.2 The Gotoxy Procedure
Moves the workshop screen cursor to a specified location on the screen.

Parameter List: gotoxy(x, y)

1. x Is an expression with an integer value. If x < 0, the value 0 will be
used; If x > 79, the value 79 will be used.

2. y Is an expression with an Integer value. If y < 0, the value D will be
used; If y > 31, the value 31 will be used.

Gotoxy(x, y) moves the cursor to the point (xy) on the screen. Note that the
point (0,0) is the upper left comer of the screen.

10.4 Untyped File 1/0
Untyped file 170 operates on an “untyped file," i.e., a variable of type file (no
component type). An untyped flle is treated as a sequence of S12-byte b/ocks;
the bytes are not type-checked but considered as raw data. This can be useful
for applications where the data need not be interpreted at all during 1/0
operations.

10-18

Pascagl Rererernce Marwal Inout/Qutout

The blocks In an untypead flle are consigered to be numbered sequentially
starting with 0. The system keeps track of the cwrrent block number: this Is
block 0 immediately after the file is opened. Each time a block is read, the
current block number s incremented. By default, each I/0 operation begins at
the current block number; however, an arbitrary block number can be specified.

An untyped file has no file-buffer, and it cannot be used with get, put, or any
of the text-oriented 1/0 procedures. It can only be used with reset, rewrite,
close, eof, and the blockread and blockwrite functions described below.

To use untyped flle 1/0, an untyped file is opened with reset or rewrite, and
the blockread and blockwrite functions are used for input and output.

10.4.1 The Blockread Function

Reads one or more 512-byte blocks of data from an untyped flle to a program
variable, and returns the number of blocks read.

Result Type: integer
Parameter [/st: blockread(f, databuf, count [, blocknum])

1. f is a variable-reference that refers to a variable of type flle. The file
must be open.

2. databuf {5 a varlable-reference that refers to the varlable into which the
blocks of data will be read. The slze and type of this variable are not
checked; if it is not large enough to hold the data, other program data
may be overwritten and the results are unpredictable.

3. count is an expression with an Integer value. It specifies the maximum
number of blocks to be transferred. Blockread will read as many blocks
as it can, up to this limit.

4. blocknum (may be omitted) Is an expression with an integer vaive. It
specifies the starting block number for the transfer. If it is omitted, the
transfer begins with the current block. Thus the transfers are sequential
if the blocknumber parameter is never used; if a blocknumber parameter
is used, it provides random access to blocks.

Blockread(f, databuf, count, blocknum) reads blocks from f into databuf, starting
at block blocknum. Count is the maximum number of blocks read; If the
end-of-file Is encountered before count blocks are read, the transfer ends at
that point. The value returmned Is the number of blocks actually read.

If the last block in the file was read, the current block number is unspecified
and eof(f) Is true. Otherwise, eof(f) Is false and the current block number is
advanced to the block after the last block that was read.

10-19

Pascal Reference Marnusl Inputoutput e Jj
o " .

10.4.2 The Blockwrite Function
writes one or more 512-byte blocks of data from a program variable to an
untyped flle, and retums the number of blocks written.

Result Type: Integer
Parameter L/st: blockerite(f, databuf, count [, blocknum])

1.

2.

f is a variable-reference that refers to a variable of type file. The file
must be open.

databuf {s a variable-reference that refers to the varlable from which the
blocks of data will be written. The size and type of this variable are not
checked.

count is an expression with an integer value. It specifies the maximum
number of blocks to be transferred. Blockwrite will write as many blocks
as it can, up to this limit.

blocknum (may be omitted) is an expression with an integer value. It
specifles the starting block number for the transfer. 1f it is omitted, the
transfer begins with the current block. Thus the transfers are sequentlal
if the blocknumber parameter is never used; if a blocknumber parameter
Is used, It provides random access to blocks.

Blockwrite(f, databuf, count, blocknum) writes blocks into f from databuf,
starting at block blocknum. Count Is the maximum number of blocks written;
If disk space runs out before count blocks are written, the transfer ends at
that point. The value returned is the number of blocks actually written.

If disk space ran out. the current block number is unspecified. Otherwise, the
current block number is advanced to the block after the last block that was
written.

NOTE

Unlike Apple 11 and Apple Il Pascal, this Pascal does not allow
blockwrite to write a block at a position beyond the first position after
the current end of the file. In other words, you cannot create a block
file with gaps in it.

10-20

11.1

11.2

113

114

Chapter 11
Standard Procedures and
Functions

EXit andHAIL PTOCROUTES ot eecereseneecesesessseasenemsecsosmestssanmmnsnenns 11-1
1111 TRe EXAt PIOCEOUTE .. .ot e e e e eea e mnn 11-1
11.1.2 ThEeHAAIL PTOCEOUTE ... it ceienecincancveansensssacoeaaannarannn 11-1
Dynamic AlIOCAtION PTOCEOUTESccociumimmiaaaaereannocsaesseesanansssnsssssas 11-1
11.2.1 ThENEW PTOCEOUIE .ot iiiaeciareeecaseereesassaeiesrsnsannnas 11-2
11.2.2 The HeapResult FUunCtion i reeene e e naen 11-3
11.2.3 ThEMATK PIOCEOUIEo.oniiieieieeecameeeesemneanssesenn e e eenrnnnnnenns 11-3
11.2.4 The Release PIOCEOUIEcccveiirieeeereeeieeaeneacncasesenenaararessssssrenn 11-3
11.2.5 TheMemavail FUNCHION .o it tcr vt rsesecensssnsanancnsn 11-3
TN el FUNCHIONS ...oeee et recicmce e e e cen s reenesasnannsaenees 11-4
11.3.1 The TTUNC FUNCLION ..o eier e e eecrice s ettt s e eanacasssnsennss 11-4
11.3.2 The ROUND FUNCLION .. . ittt ceicceiceicnsennsensensasanven 11-4
11.3.3 The OO FUNCHION L ittt ieiteentansentensensanseaaseesansonans 11-4
11.3.4 The POIMtBT FUMCHION ... o iiiieeeiirieeirnee i racae v caeaaee e ensncanas 11-5
ANMEC FUNCUONS ... cteevecreeeeneecenesasaceaansanseranne 11-5
11.4.1 The OddFUNCLIONcoieeeeieeee e cteeeeeee e et caeenne e e snesesnns 11-5
1142 The ADS FUNMCEION ..o e e e manaas 11-S
11.4.3 The SQrFUNCHION ..o it e e mr e e e e 11-6
1140 The SINFUNCHION ...t tete e eeecee e e cee e s eenanan 11-

6
11.45 The Cos Function 11-6
1146 The EXPFUNCHION cooi et eeetcceeeeeemareene e seneneanens 11-6
1147 ThE LN FUNCHION ..ottt s et rat e e e e e e e e e manaen 11-7

11-7
11-7
11-7

..

...
..

..

Ordinal FUNCHIONS ..o iierieererereecieamacemimeeemmsmrassassnseansssesanessesnscn 11-8
1151 The OTO R UNCEION e ieien e er it tr ettt teeer e e ensesesaaeeennesanaacnsase 11-8
11.5.2 The Chr UG ON ittt e e e v e an e 11-8
1153 The SUCCFUNCHION ... ettt et ce e ane e mas 11-8
1158 The Pregd FUNC IO ..ottt e e te e e e 11-9

Pascal Reference Manusl! Stendard Proceaures & Furnictiors
116 StringProcedures and FUNCHONSo 11-9
11.6.1 TheLength FUnCHION. ittt e e e 11-9
11.6.2 ThePOS FUNCLION ciuiir e iieeee e v te e reee e van e s en e e sran s snmamnns 11-9
1163 The Concat FUNCLION ...ttt e e e e enans 11-10
11.6.4 The Copy FUNCLIONee e 11-10
11.6.5 ThE DEIELE PTOCEOUTE niieeieimcereeieineninceenerarecnracnnmeneacaeenens 11-10
11.6.6 TheINSETt PIOCBOUTEcivieiieien et ceeeenineacesanenraneaennnen 11-10
11.7 Byte-Oriented Procedures and Functions.................o 11-11
11.7.1 TheMOVEIEFt PTOCEOUIE ...t e et e e reenacseanannnns 11-11
11.7.2 The Moveright PTOCBOUTEcooiiiiiiiiiiiiiicccervnecennenas 11-12
11.7.3 The Sizeof FunClion ..ot ecreeeee e ceeneeeen 11-12
11.8 Packed Array of Char Procedures and Functions..............cocccvenenene 11-12
11.8.1 The Scarreq FuiGlion ... i iircaiaa e carte e maaraannen 11-12
1182 The Scanne FUNCLION ...ttt ereeeceeee e e e eaeanans 11-13
11.8.3 TheFillchar PTOCBAUTEcccioiiiiiiieiieieeeeenceranensanenssens 11-13

Standard Procedures and
Functions

This chapter describes all the standard ("built-1n") procedures and functions in
Pascal on the Lisa, except for the 1/0 procedures and functions described in
Chapter 10.

Standard procedures and functions are predeclared. Since all predeclared
entities act as If they were declared in a block surrounding the program, no
conflict arises from a declaration that redefines the same ldentifier within the
program.

NOTE

Standard procedures and functions cannot be used as actual procedural
and functional parameters.

This chapter uses a modified BNF notation, instead of syntax dlagrams, to
indicate the syntax of actual-parameter-lists for standard procedures and
functions. The notation {s explalned at the beginning of Chapter 10.

11.1 Exit and Halt Procedures
11.1.1 The Exit Procedure
Exits immediately from a specified procedure or function, or from the main
program.

Parameter Lfst: exit(id)

1. 1d Is the identifier of a procedure or function, or of the main program. If
id is an ldentifier defined in the program, it must be in the scope of the
exit call. Note that this is more restricted than UCSD Pascal.

Exit(id) causes an immediate exit from id. Essentially, it causes a jump to the
end of id.

NOTE

The halt procedure (see below) can be used to exit the maln program
from a unit without knowing the maln program'‘s identifier.

11.1.2 The Halt Procedure
Exits immediately from the main program.

Parameter Lfst: no parameters
Halt causes an immediate exit from the main program.

11.2 Dynamic Allocation Procedures
These procedures are used to manage the /egg a memory area that is
unallocated when the program starts running. The procedure new is used for

11-1

Pascal Reference Marwial Standard Proceaures & Functions /“'f)

all allocation of heap space by the program. The mark and release procedures
are used together to deallocate heap space, and the heapresult function is used
to retun the status of the last preceding dynamic allocation operation..

1121 The New Procedure
Allocates a new dynamic variable and sets a pointer variable to point to it

Parameter List: new(p [, t1. ... tn])

1. p is a variable-reference that refers to a variable of any pointer-type.
This is a variable parameter.

2. 11, .. tpare constants, used only when allocating a variable of
record-type with variants (see below).

New(p) allocates a new varlable of the base-type of p, and makes p point to it.
The variable can be referenced as p . Successive calls to new allocate
contiguous areas.

If the heap does not contain enough free space to allocate the new variable, p
Is set to nil and a subsequent call to the heapresult function will retum a
non-zero result.

If the base-type of p Is a record-type with variants, new(p) allocates enough
space to aliow for the largest variant. The form

new(p, t1, ...tn)

allocates a variable with space for the variants specified by the tag values 1,
.. tn7 (Instead of enough space for the largest variants). The tag values must
be constants. They must be listed contiguously and in the order of their
declaration. The tag values are not assigned to the tag-flelds by this
procedure.

Tralling tag values can be omitted. The space allocated allows for the largest
varlants for all tag-values that are not specified,

WARNING

when a record variable Is dynamically allocated with explicit tag values
as shown above, you should not make assignments to any flelds of
variants that are not selected by the tag values. Also, you should not
assign an entire record to this record. If you do either of these things,
other data can be overwritten without any error being detected at
compile time.

11-2

Pascal Rerererce Marral Stardard Procedires & Functions

1122 The Heapresult Function
Returns the status of the most recent dynamic allocation operation.

Result Type: integer
Farameter L/st: no parameters

Heapresult returns an integer code that reflects the status of the most recent
call on new, mark, release, or memavail. The codes are given in the worksioo
Users Guioe, note that the code for a successful operation is 0.

1123 The Mark Procedure
Sets a pointer to a heap area.

Parameter List: mark(p)

1. p is a varlable-reference that refers to a variable of any pointer-type.
This is a variable parameter.

Mark(p) causes the pointer p to point to the lowest free area in the heap. The
next call to new will allocate space beginning at the bottom of this area, and
then p will be a pointer o this space. The pointer p Is also placed on a
stack-like list for subsequent use with the release procedure (see below).

11.24 The Release Procedure
Deallocates all variables In a marked heap area.

i | Parameter List: Telease(p)

1. p is a variable-reference that refers to a pointer variable. It must be a
- pointer that was previously set with the mark procedure. The pointer p
must be on the list created by the mark procedure; otherwise an error
oCCurs.

Release(p) removes pointers from the list, back to and including the pointer p.
The heap areas pointed to by these pointers are deallocated. In other words,

release(p) deallocates all areas allocated since the the pointer p was passed to
the mark procedure.

11.25 The Memavail Function
Returns the maximum possible amount of avallable memory.

Result Type: longint

Parameter List: no parameters

Memavall returns the maximum number of words (not bytes) of heap and stack
space that could ever be available to the program, allowing for possible
automatic expansion of the program's data segment. Note that the result of
memavall can change over time even if the program does not allocate any

- heap space, because of actlvities by the operating system or other processes in
the system.

11-3

Pascal Reference Marnsal Standard Procegures & Functions

113 Tramsfer Functions
The procedures pack and unpack, described by Jensen and Wirth, are not
supported.

113.1 The Trunc Funcuon
Converts a real value to a longint value.

Result Type: longint
Parameter List: trunc(x)
1. x is an expression with a value of type real.

Trunc(x) returns a longint result that is the value of x rounded to the largest
whole number that is between 0 and x (Inclusive).

1132 The Round Function
Converts a real value to a longint value.

Result Type: longint
Pararmeter List: round(x)
1. x Is an expression with a value of type real.

Round(x) returns a longint result that is the value of x rounded to the nearest
whole number. If x Is exactly halfway between two whole numbers, the result
Is the whole number with the greatest absolute magnitude.

11.33 The Ordd Function
Converts an ordinal-type or pointer-type value to type longint
Result Type: longint
Parameter LIst: orda(x)

1. x Is an expression with a value of ordinal-type or pointer-type.

Ord4(x) returns the value of x, converted to type longint If x is of type
longint, the result is the same as x

If x Is of pointer-type, the result is the corresponding physical address, of type
longint.

If x is of type integer, the resuit is the same numerical value represented by X,
but of type longint. This is useful in arithmetic expressions. For example,
consider the expression

abcxyz

where both abc and xyz are of type integer. By the rules given in Section
3.1.1.2, the result of this multiplication is of type integer (16 bits). If the
mathematical product of abc and xyz cannot be represented in 16 bits, the
result is the low-order 16 bits. To avoid this, the expression can be written as

ord4(abc)*xyz

11-4

Pascal Rererence Mern/s! Stanoara Procedures & Furrct/ons

This expression causes 32-bit arithmetic to be used, and the result is a 32-bit ;
longint value.

If x Is of an ordinal-type other than integer or longint, the numerical value of
the result Is the ordinal number determined by mapping the values of the type
onto consecutive non-negative integers starting at zero.

11.3.4 The Pointer Function
Converts an integer or longint value to pointer-type.

Result Type: pointer
Parameter [Ist: pointer(x)
1. x is an expression with a value of type Integer or longint.

Pointer(x) retums a pointer value that corresponds to the physical adaress x
This pointer is of the same type as nll and is assignment-compatible with any
pointer-type.

114 Arithmetic Functions
In general, any real result returned by an arithmetlc function is an approx-
imation. There are two exceptions to this: the resuit of the abs function is
exact, and the result of the pwroften function Is exact when the parameter n
is in the range 0 =< n < 10.

11.4.1 The Odd Function
Tests whether a whole-number value s odd.

Result Type: boolean
Parameter LIst: odd(x)

1. x Is an expression with a value of Lype integer or longint.
00d(x) returns true if x Is odd; otherwise it ylelds false.

11.42 The Abs Function
Returns the absolute value of a numeric value.

Result Type: same as parameter
Parameter LIst: as(X)

1. x Is an expression with a value of type real, integer, or longint.
Abs(x) returns the absolute value of x

11-5

Pascal Rererence Marnk! Stardarg Proceaues & Fuctions

1143 The Sqr Function
Returns the square of a numeric value.

Result Type: depends on parameter (see below)
Parsmeter LIst: sqr(x)
1. x Is an expression with a value of type real, integer, or longint

Sqr(x) returns the square of x. If x Is of type real, the result Is real; if x Is of

type longint, the result is longint; and if x Is of type integer, the result may be
either integer or longint

If x is of type real and floating-point overflow occurs, the result is +e,

11.4.4 The Sin Function
Retumns the sine of a numeric value.

Result Type: real
Parameter List: sin(x)

1. x is an expression with a value of type real, Integer, or longint. This
value |s assumed to represent an angle In radians.

Sin(x) returns the sine of x If x is infinite, a diagnostic NaN is produced and
the invalid operation signal s set (see Appendix D).

1145 The Cos Function
Retums the cosine of a numeric value.

Resuit Type: real
Parameter LIist: cos(x)

1. x Is an expression with a value of type real, integer, or longint. This
value s assumed to represent an angle in radians.

Cos(x) returns the cosine of x. If x s infinite, a dlagnostic NaN s produced
and the Invalid operation signal is set (see Appendix D).

11.4.6 The Exp Function
Returns the exponential of a numeric value.

Result Type: 1eal
Parameler LIst: exp(X)

1. x Is an expression with a value of type real, integer, or longint. All
possible values are valid.

Exp(X) retumns the value of €%, where e is the base of the natural logarithms.
If floating-point overflow occurs, the result is +e.

11-6

Pascal Reference Marmal Stardarg Proceaures & Furctions

11.4.7 The Ln Function
Returns the natural logarithm of a numeric value.

Result Type: real
Parameter LIst: In(x)

1. x is an expression with a value of type real, integer, or longint. All
non-negative values are valid; negative values are invalid.

If x Is non-negative, In(x) retumns the natural logarithm (loge) of x

If x is negative, a diagnostic NaN s produced and the Invalid Operation signal
Is set (see Appendix aD%.

11.4.8 The Sqrt Function
Returns the square root of a numeric value.

Result Type: real
Parameter LIst: sqrt(x)

1. x Is an expression with a value of type real, integer, or longint. All
non-negative values are valid; negative values are Invalid.

If x is non~negative, sqrt(x) returns the positive square root of X

If x is negative, a diagnostic NaN is produced and the Invalld Operation signal
is set (see Appendix D).

1149 The Arctan Functon
Returns the arctangent of a numeric value.

Resuit Type: real
Parameter LIst: arctan(x)

1. x Is an expression with a value of type real, integer, or longint. All
numeric values are valid, including ze.

Arctan(x) returns the principal value, in radians, of the arctangent of x

11.4.10 The Pwroften Function
Returns a specified power of 10.

Resuit Type: 1eal
Parameter LIst: pwroften(n)
1. nis an expression with a value of type integer.

If -45 < n < 38, then pwroften(n) returns 107, The result is mathematically
exact for 0 < n = 10. If n < -46, the result is 0; if n > 39, the result is +co,

11-7

Fascal Rererence Mamibl! Standard Froceoures & Functions

115 Ordinal Functons
115.1 The Ord Function
Returns the ordinal number of an ordinal-type or pointer-type value.

result Type: integer or longint
Parameter List: ord(x)

1. x Is an expression with a value of ordinal-type or pointer-type.
If x is of type integer or longint, the result is the same as x

If x Is of pointer-type, the result is the corresponding physical address, of type
longint.

If x Is of another ordinal-type, the result is the ordinal number determined by
mapping the values of the type onto consecutive non-negative whole numbers
starting at zero.

For a parameter of type char, the result is the corresponding ASCII code. For
a parameter of type boolean,

ord(false) returns 0
ord(true) retums 1

1152 The Chr Function
Returns the char value corresponding to a whole-number value.

Result Type: char (but see below)
Parameter LIst: chr(x)
1. x is an expression with an Integer or longint value.

Chr(x) returns the char value whose ordinal number (li.e., its ASCII code) Is x, if
x Is in the range 0.255. If X is not In the range D..255, the value retumed is
not within the range of the type char, and any attempt to assign it to a
variable of type char will cause an error.

For any char value ch, the following is true:
chr(ord(ch)) = ch

1153 The Succ Function
Returns the successor of a value of ordinal-type.

Resuit Type: same as parameter (but see below)
Parameter List: succ(x)
1. X Is an expression with a value of ordinal-type.

Succ(x) returns the successor of X, If such a value exists according to the
Inherent ordering of values in the type of x

11-8

|

I

E Eu

Pascal Rererence Marnasl Standard Procegures & Functions

If x is the last value in the type of x, it has no successor. In this case the
value retumed is not within the range of the type of x, and any attempt to
assign it to a variable of this type will cause unspecified results.

115.4 The Pred Functlon
Returns the predecessor of a value of ordinal-type.

Result Type: same as parameter (but see below)
Parameter List: pred(x)
1. x is an expression with a value of ordinal-type.

Pred(x) returns the predecessor of X, If such a value exists according to the
inherent ordering of values in the type of X

If x is the first value in the type of x, it has no predecessor. In this case the
value returned is not within the range of the type of X and any attempt to
assign it to a variable of this type will cause unspecified resuits.

11.6 String Procedures and Functions
The string procedures and functions do not accept packed array of char
parameters, and they do not accept indexed string parameters.

1161 The Length Function
Returns the current length of a value of string-type.

Result Type: integer
Parameter List: length(str)

1. str is an expression with a value of string-type.
Length(str) returns the current iengtn of str.

1162 The Pos Function
Searches a string for the first occurrence of a specified substring.

Result Type: integer

Parameter List: pos(substr, str)
1. substr is an expression with a value of string-type.
2. str is an expression with a value of string-type.

Pos(substr, str) searches for substr within str, and returns an integer value that
Is the Index of the flrst character of substr within str.

If substr is not found, pos(substr, str) returns zero.

11-9

Pascal Rererence Marnal Starara Procedures & Functions

11.6.3 The Concat Function
Takes a sequence of strings and concatenates them.

Result Type: string-type
Parameter L/st: concat(strl [, str2, ... strn])

¢ Each parameter iIs an expression with a value of string-type. Any practical
number of parameters may be passed.

Concat(strl, ..., strn2) concatenates all the parameters in the order in which
they are written, and returns the concatenated string. Note that the number
of characters In the result cannot exceed 255.

11.6.4 The Copy Function

Returns a substring of specified length, taken from a specifled position within
a string.

Result Type: string-type

Parameter List: copy(source, index, count)
1. source Is an expression with 3 value of string-type.
2. Index is an expression with an integer value.
3. count is an expression with an Integer value.

Copy(source, index, count) returns a string containing count characters from
source, beginning at source|{index}

11.65 The Delete Procedure

Deletes a substring of specified length from a specified position within the
value of a string variable.

Parameter L/st: delete(dest, index, count)

1. dest Is a variable-reference that refers to a variable of string-type. This
Is a variable parameter.

2. Index Is an expression with an integer value.
3. count Is an expression with an integer value.

Delete(dest, index, count) removes count characters from the value of dest,
beginning at dest{index]

1166 The Insert Procedure
Inserts a substring Into the value of a string varlable, at a specified position.

Parameter L/st: 1nsert(source, dest, index)
1. source is an expression with a vaiue of string-type.

2. oest Is a varlable-reference that refers to a variable of string-type. This
Is a variable parameter.

3. Index is an expression with an integer value.

11-10

)

|

Pascal Rerference Mamnal Stenaarg Proceaures & Functions

Inserty(source, dest, index) inserts source into dest. The first character of
source becomes dest{index]

11.7 Byte-Oriented Procedures and Functions
These features allow a program to treat a program variable as a sequence of
bytes, without regard to data types.

NOTE

The sizeof function (described in Section 11.7.3, below) can be used to
determine the number of bytes In a varlable.

These procedures do no type-checking on thelr source or dest actual-
parameters. However, since these are varlable parameters they cawwot ve
Incexea if they are packed or if they are of string-type. If an unpacked
"pyte array” Is desired, then a variable of the type

array [lo..h1] of -128..127

should be used for source or dest. The elements in an array of this type are
stored in contiguous bytes, and, since it is unpacked, an array of this type can
be used with an index as an actual-parameter for these routines.

IMPLEMENTATION NJTE

Currently, an array with elements of the type 0..255 or the type char
has its elements stored in words, not bytes.

11.7.1 The Moveleft Procedure
Coples a specifiled number of contiguous bytes from a sxuce /awe o a

aestination range (starting at the lowest address).

Parameter [ist: moveleft(source, dest, count)

1. source is a varlable-reference that refers to a variable of any type
except a flle-type or a structured-type that contains a flle-type. This is
a variable parameter. The flrst byte allocated to source (lowest address
within source) is the first byte of the source range.

2. dest is a variable-reference that refers to a variable of any type except
a file-type or a structured-type that contains a flle-type. This is a
variable parameter. The first byte allocated to dest (lowest address
within dest) is the first byte of the destination range.

3. count Is an expression with an integer value. The source range and the
destination range are each count bytes long.

Moveleft(source, dest, count) copies count bytes from the source range to the
destination range.

11-11

Pascal Rerference Manual Standard Proceadures & Functions

Moveleft starts from the “left" end of the source range (lowest address). It
proceeds to the “"right” (higher addresses), copylng bytes into the destination
range, starting at the lowest address of the destination range.

The count parameter i not range-checked.

11.7.2 The Moveright Procedure
Moveright is exactly like moveleft (see above), except that it starts from the
"right" end of the source range (highest address). It proceeds to the “left"
(lower addresses), copying bytes into the destination range, starting at the
highest address of the destination range.

The reason for having both moveleft and moveright is that the source and
destination ranges may overlap. If they overlap, the order in which bytes are
moved is critical: each byte must be moved before it gets overwritten by
another byte.

11.7.3 The Sizeof Function

Returns the number of bytes occupied by a specified variable, or by any
variable of a specified type.

Result Type: Integer
Parameter List: sizeof(id)

1. id is elther a variable-identifier or a type-identifier. It must not refer to
a flle-type or a structured-type that contains a file-type, or to a
variable of such a type.

Sizeof{id) returns the number of bytes occupied by 1d, if id is a variable-
identifier; if id is a type-identifier, it returns the number of bytes occupied by
any variable of type ld.

11.8 Packed Array of Char Procedures and Functions
NOTE

These routines operate only on packed arrays of char. The packed
arrays of char cannot be subscripted; the operations always begin at the
first character In a packed array of char.

11.8.1 The Scaneq Function
Searches a packed array of char for the first occurrence of a specified
character.

Result Type: Integer
Parameter List: scaneq(1imit, ch, paoc)

1. Ilimit Is an expression with a value of type integer or longint. It is
truncated to 16 bits, and is not range-checked.

2. ch Is an expression with a value of type char.

11-12

[
1

Fascal Rererence Marn/al Standarg Proceoures & Functions

3. paoc is an expression with a value of type packed array of char. This is
a varlable parameter.

Scaneq(limit, ch, paoc) scans paoc, looking for the first occurrence of ch. The
scan begins with the first character in paoc. If the character Is not found
within limit characters from the beginning of paoc, the value returned is egual
to limit. Otherwise, the value retumed is the number of characters scanned
before ch was found.

11.8.2 The Scanne Function
This function is exactly like scaneq, except that it searches for a character
that does nof match the ch parameter.

11.8.3 The Fllichar Procedure
Fills a specified number of characters In a packed array of char with a
specified character.

Parameter List: fillchar(paoc, count, ch)

1. paoc is an expression with a value of type packed array of char. This Is
a varliable parameter.

2. count is an expression with a value of type Integer or longint. It Is
truncated to 16 bits, and is not range-checked.

3. ch Is an expression with a value of type char.

Filichar(paoc, count, ch) writes the value of ch into count contiguous bytes of
memory, starting at the first byte of paoc.

Since the count parameter Is not range-checked, it Is possible to write into
memory outside of paoc, with unspecified resuits.

11-13

Chapter 12
The Compiler

12.1 ComPLIEr COMMBANGS . .ccuoeeieiiiriccrrerencnrnerectenrereasssersessasenssansnnscnsas 12-1
12.2 Conditional Compllationo e 12-3
12.2.1 Complle-Time varlables angd the $DECL Command.......c.cceveveeeees 12-3
12.2.2 The $SETC COMMAND ...cuceieeierereerareeranrsraesisnraresensessassimanensses 12-4
12.2.3 Complile-TIMe EXPIESSIONS ..cceerieereirreereerrrrenrrereeereeerarrerranns 12-4
12.2.4 The $1IFC, $ELSEC, and $ENDC COMMEANGS ..vvvuerreeerrenernnnseenaneees 12-4
12.3 Optimization of If-SLateMENLScccccceciemerecrennreeenioneeanannsasenassasencnss 12-5
12.4 Optimization of While-Statements and Repeat-Statememnts 12-7
12.5 Efficlency of Case—Staleimentsccccicecieeiiiriecireeceestenccenscsasscossnsasaes 12-7

CHANGES /App1 T7ONS

Fascal Reference 3.0 Noles The Compiler

Chapter 12
The Compiler

New Compiler Commands (See Section 12.1)

The 3.0 relesse of Pascal for the Lise adds new compiler commands and
compiler and code-generator invecation options. The following pagez detail
the additions. A table on page 12-7 of these notes summarizes &/ of the
available commands and options, including those discussed in Chapter 12 of
the manusl.

Five new Compiler commands have been added: $ASM, $E, M, $P, and $U.
$ASM controls whether or not the listing shows the assembly code generated
by your Pascal statements. $E lets you automatically irvoke the Editor. $M
lets you generate Macintosh code. $P starts a new page in your listing. $U
controls the Compiler's search for a regular or intrinsic unit's interface.

‘*SASM+ or $ASM- If a listing is being generated, show the assembly code
generated by the Code Generator along with its associated
Pascal source (+), or show a minimum listing without the
assembly code, but with the LisaBug procedure-relative
addresses (-). This option is done on a
procedure-hy-procedure basis. See Appendix J for a
discussion and examples of the different listing formats.

$E+ or $E- Turn on automatic invocation of the Editor (+) or turn it
off (-). The default ic $E-. If there is no error log file
and you sre not generating a listing, then the Compiler
will prompt you as to whether to continue the compilation,
abort it by pressing [CLEAR], or call the Editor by pressing
E. By specifying $E+, the E response is assumed and the
Compiler will give control to the Editor without prompting
you. If an error log file is heing generated and there are
errors, then at the end of cornpilation, with the $E+ option
in effect, the Compiler will call the Editor, which will in
turn load the error log file for you. $E- with an error log
file will cause the Editor not to be called.

™M+ or $M- Generate Macintozh code (4) or Lisa code (-). The default
is $M-. $M is actually a Code Generator option, and has

meaning only if the Code Generator is automatically
invoked.

* ?rodw;%% 'Mj . e‘l Aﬂjﬁ‘le rmet line
¢ M DALY A COMpiIer (
‘ ;ﬁmﬁﬁ&%ﬁ% mggg) r_gpwr;, Y

Fascal Reference 3.0 Notes The Compiler

$P Output a form-feed character (CHR(12)) as the first
character of the line containing the $P command. Any
characters between the $P and the right comment delimiter
are ignored (no + or - is required). The form-feed
character causes an eject on maost printers, so the line
containing the $P will be at the top of a new page when
printed. The $P command is ignored if the listing is on
the screen.

$U+ or $U- Turns on (+) or off (<) the Compiler's search of the
INTRINSIC.LIE for unit interfaces. The default is $U+. If
you specify $U-, the Compiler does nof look in
INTRINSIC.LIB for the unit's interface. Instead, it searches
the file named in the $U filename command. In the
default $U+ mode, the Compiler 7irst searches the
INTRINSIC.LIE for the unit's interface, then, if the
interface is not found, the file named in the $U filename
comrand (if any) is searched.

Compiler and Code Generator Invocation Options
The Compiler and Code Generator now let you specify options at invocation
time. Some of the Code Generator's options can be specified to the
Cornpiler, if the Code Generator is being invoked automatically from the
Compiler. To specify an option, enter it when you are prompted for an input
file. If the option is valid, you will be prampted for the input file again, at
which point you can enter another option or the input file name. If what you
enter is not a valid option, it is interpreted as an input file name, and will
result in an error.

Compiler Options

$ASM+ or $ASM- Allow assernbly listing generation controls (+) or ignore
them (-). The $ASM- option acts &s & master control
switch for the $ASM Compiler comrnand, overriding any
$ASM Compiler commands in the source. The default is
not to generate an assembly listing unlesz a $ASM+ is
specified as an option (or as a Compiler comrmand if no
option is given) and a listing file iz being generated. See
Appendix J for a discussion and examples of the different
listing formate.

$ASM PROC Forrnat the assembly listing by procedure. Normally,
assembly code is interleaved with the Pascal source code
to show which statements generate which code. If you
specify $ASM PROC, all the code for a procedure is shown
after the source for that procedure. This option has
meaning cnly if you are showing the assembly code (ie.,
you specified $ASM+ as a Compiler or Code Generator
option or you have $ASM+ Compiler commands in your
source). $ASM PROC is actually a Code Generator option,

MNotes 17-2

Fascal Reference 3.0 Noles The Compiier

$ASM ONLY

3C+ or $C-

$E tilename

$E+ or $E-

$G+ or $G-

snd has mesaning only if the Code Genersator is
automatically invoked. See Appendix J for a discussion
and examples of the different listing formats.

Format the listing as an Assembler input file, with the
Pascal source shown as comments (each Pascal line
preceded by a semicolon). Using $ASM ONLY, you can
convert Pascal procedures to assembly code to
hand-optimize them. (Beware, though, the generated code
may not be valid Assembler input.) This option hes
mesaning only if you are showing the assembly code (ie.,
you specified $ASM+ as a Compiler or Code Generator
option or you have $ASM+ Compiler commands in your
source). $ASM ONLY is actually a Code Generator option,
and has meaning only if the Code Generator is
automatically invoked. See Appendix J for a discussion
and examples of the different listing formats.

Turn code generation on (+) or off (=). The default is $C+.
This has the same effect as the $C Compiler command.

Output a listing of Compiler errors to the specified file.
This has the same effect as the $E filename Cornpiler
command. The default is no error listing except to the
console screen.

Turn automatic invocation of the Editor on (+) or off (-).
The default is $E-. This has the same effect as the $E
Compiler command.

Turn sutomatic invocation of the Code Generator on (+) or
off (-). The default is $G+. There is no corresponding
Compiler commmand for this option. If you use the default,
the Compiler will prompt you for an object file name
instead of an I-code file name. (An l-code file is still
created, however, and the file name given to it by the
Compiler will be the file name you specified for the output
object file, except that the .OBJ extension is replaced with
I This I file will be deleted by the Code Generator after
it actuslly creates the object file) If you specify $G-, the
Compiler will prompt you for an I-code file name and the
Code Generator will not be automatically invoked. You
will have to invoke the Code Gererstor explicitly, and the
I-code file will not be automatically deleted. This mode
of operation is compatible with previous releases. Specify
$G- if you want to use Code Generator options that are
not sllowed as Compiler options.

Notes 12-3

Fascal Reference 3.0 Notss The Compilsr

3L+ or $L- Allow listing controls (+) or ignore them (-). The default is
$L+. The $L- option acts as a master control switch for
the listing commands, overriding aryy $L Compiler
comrnandz in the source. If you zpecify $L+, all $L
Compiler commands are processed, and you &e prompted
for a listing file. If you specify $L-, you are not prompted
for a listing file and all $L Compiler commands are
ignored.

™M+ or $M- Generate Macintosh code (+) or Lisa code (-). The default
is $M—. This has the same effect as the $M Compiler
command. $M is actually a Code Generator option, and
has meaning conly if the Code Generator is automatically
invoked.

$OV+ or $0OV- Turn integer overflow checking on (+) or off (-). The

default is $OV-. This has the same effect ss the $OV
Compiler command.

$R+ or IR- Turn range checking on (+) or off (-). The default is $R-.
This has the same effect as the $R Compiler command.

$W tilename Uses the named file in place of INTRINSIC.LIB when
searching for unit interfaces.

Code Generatar Options
Muost of the Code Generator options deal with listing generation. These
options allow you to override, to some degree, what you elected to do when
you generated the listing from the Compiler. If yvou uenerate only a
Compiler listing, the Code Generator will add the procedure-relative
[LizsaBuqg) addresses for each line of Pascal source. By using the $ASMs
Compiler command, you can see the generated code for selected procedures
as well. The different listing formats are described in more detail, with
examples, in Appendix J.

Code Generator options, like Compiler options, are specified when you are
prompted for an input file. Since the Compiler usually invokes the Cade
Generator automatically, some (not all) of these options may be specified as
if they were Compiler options, at the time you invoke the Compiler. They
will be passed along to the Code Generator when it is invoked. To use
cptions that must be given directly to the Code Generator, run the Compiler
in $G- mode, and then explicitly invoke the Code Generator.

when you indicate to the Compiler that you want a listing file, the listing
file name is conveyed to the Code Generstor through the I-code file. That
listing file is modified by the Code Generstor to produce the final listing
{you must have disk space to hold two copies of the listing file). Also

Notes 17-4

- -

Fascal Reference .0 Noles The Compiler

passed in the I-code is line number information (used to synchronize the
generated code with the Compiler's listing) and changes in the Compiler's
$ASM status. All this inforrnation, particularly the line numbers, makes the
I-cade file larger if you are generating a listing and if you did not specify
the $L- Compiler option. The Code Generator options allow yvou some
control over its interpretation of the listing-control I-code.

$ASM+ or $ASM- Produce a full listing showing the generated code (+) or a

$ASM PROC

$ASM ONLY

$1+ or $I-

minimum listing containing only address information (-). In
both cases, ignore all $ASM status changes in the [-caode.
This option must be specified explicitly to the Code
Generator, since it acts as an override to the Compiler's
setting. The listing will show only the generated code if
you specify a $ASMs Code Generator option or a $ASM
Compiler cornmand or option. See Appendix J for a
discussion and examples of the different listing formats.

Format the assembly listing by procedure. Normally,
assembly code is interleaved with the Pascal source code
to show which statements generate which code. If you
specifly $ASM PROC, all the code for a procedure is shown
efter the source for that procedure. This option has
meaning only if vou are showing the assembly code (i.e.,
you specified $ASM+ as a Compiler or Code Generator
option or you have $ASM+ Compiler commands in your
source). $ASM PROC may be specified as a Compiler
option. See Appendix J for a discussion and examples of
the different listing formats.

Format the listing as an Assembler input file, with the
Pascal source shown as comments (each Pascal line
preceded by a semicolon). Using $ASM ONLY, you can
convert Pascal procedures to assembly code to
hand-optimize them. (Beware, though, the generated code
meay not be valid Assembler input.) This option hes
meaning only if you are showing the sssembly code (ie.,
you specified $ASM+ as a Compiler or Code Generator
option or you have $ASM+ Compiler commands in your
source). $ASM ONLY may be specified as a Compiler
option. See Appendix J for a discussion and examples of
the different listing formats.

Delete the I-code file (4) or don't delete it (-). The

default is to delete the l-code file ($I+) if the Code
Generator is automatically invoked by the Compiler (the

Notes 12-5

Fascal Reference 3.0 Notss The Compiler

Compiler's default $G+ mode), and not to delete the I-code
file ($I-) if the Code Generator is explicitly imvoked by the
user (if vou specify the Compiler option $G-). $I may not
be specified as a Compiler option.

$L+ or $L- Output a Code-Generator-produced listing in addition to
the Compiler-produced listing (+), or ignore all listing
control I-codes and output only the Compiler-produced
listing (-). If you specify $L+, the Code Generator will
prompt vou for the name of an output listing file whenever
the Code Generstor encounters listing filename l-code
(meaning prompts can uccur in the middle of code
generation). These options must be specified explicitly to
the Code Generator; they have different meanings as
Compiler options.

$™M+ or $M- Generate Macintosh code (+) or Lisa code (-). The default
is $M-. $M= may be specified as a Compiler option.

Register Allocation
The Code Generator's allocation of machine registers has been modified for
improved code generation. In some cases, it may run ocut of registers while
generating procedures for which code generation was previously successful,
due to the longer lifetimes of some registers. If this happens, you must
sirmmplify the expressions in the problem procedure and recompile,

Asterisks in 31 Filenames in Compiler Commands (See Section 12.1)
If there iz an asterisk in the name of an include file, do not enclose the $1
construct in the (*...*) Compiler comment delimiters. Instead use the (...}
delimiters.

N

\

- -

Fascal Reference X0 Noles

The Compiler

Compliler Compiler Code Generatar
Comumands Irwocation Irvocation
(in source code) Options Options Default Description
$ASM: $ASM: $ASM= (none) || assemdly code in 1isting
{$ASM _PROC! [$ASM PROC Asserply listing by prooecure
i$ASM ONL Y| $ASM ONLY Listing in form of Assembler input file
$C- $Ca $C+ Code generstion onArff
$D- $D+ || Debug--generation of proc names on/dff
$DECL list Declare compile-time veriaples
$ELSEC Compile-tine ELSE
$E- $E- $E- automatic Editor invocation on/off
$E filename | $E filename Error listing to fileneme
$ENDC Corpile-tine ENDIF
$G:= 3G+ Auto Code Generator invocation on/oft
$1s $I+ 1 || perete 1-code file after code generation
$I filename Include source code from filensme
$IFC compile-time 1F
$L. $L2 $L. $L-2 || uisting control (mester switch if option)
$L tilename | ___ List to filename
$M- M | M. $M-3 || cenerate macintoshLise code
$OV: $OV: $OV- || overfiow checking on/off
3P Start nev pege in listing
$Rs $R: $R+ || renge checking onsotf
$S segname Start putting code in segnsme
$SETC Set value of compile-time variable
$U- $U+ INTRINSIC LIS search for interfaces on/off
$U filename Search fileneme for interfeces in USES
$w rilename Use filename instead of INTRINSIC.LIB
$X2 $X+ % || mutomatic steok expansion on/ote

The options shown in boxes are actually Code Generetor options, but can be specified
to the Compiler if the Code Generstor is sutomatically invoked.

Notes

1. $1+ is the defeult if $G+ is in effect, otherwise $1- is the default.

2. $L~ is the default unless you've specified a listing file.
3. 8k is only valid if $G+ is in effect.
4. $X+ is the default if $M- is in effect, otherwise $X- is the default.

i

7

Sunmery of Compiler Commands and
Compiler and Code Generator Options

MNotes 17-7

The Compiler

The Pascal compller translates Pascal source text to an intermediate code, and
the code generator transiates the Intermediate code to MC68000 object code.
Instructions for operating the compliler and code generator are given in the
workshop Lisers Guice ror the LIsa

12.1 Compller Commands

A compller command is a text construction, embedded in source text, that
controls compiler operation. Every compiier command is written within
comment delimiters, {...} or (..} Every compiler command begins with the $
character, which must be the first character insige the comment delimiters.

In this manual, compller commands are shown In upper case to help distinguish
them from Pascal program text; however, upper and lower case are inter-
changeable In compiier commands Just as they are In Pascal program text.

The following compller commands are avallable:
INPUT FILE CaVTRA

$I filename

$U fllename

Start taking source code from flle fllename. when the end
of this file is reached, revert to the previous source file.
If the fliename begins with + or -, there must be a space
between $I and the filename (the space Is not necessary
otherwise).

Search the flle filename for any units subsequently
specified In the uses-clause. Does not apply to intrinsic-
units.

CONTRA. OF CADE GENERATIAN

$C+ or $C-

¥ gove or sov-

$R+ Or $R-

Turmn code generation on (+) or off (-). This is done on a
procedure-by-procedure basis. These commands should be
written between procedures; results are unspecifieg if they
are written inside procedures. The default Is $C+.

Tum lnt.e?er overflow checking on (+) or off (-} Overflow
checking Is done after all integer add, subtract, 16-bit
multiply, divide, negate, abs, and 16-bit square operations,
and after 32 to 16 bit conversions. The default is $OV-.

Tum range checking on (+) or off (). At present, range
checking is done In assignment statements and array
indexes and for string value parameters. No range
checking Is done for type longint. The default Is $R-.

¥ hvoid 4his . Version 3.36 of conrflar erashes wlon

SS0VH3 encountered - gy 00

12-1

Pascal Reference Mamal The Compller

$S segname Start putting code modules into segment segname. The
default segment name Is a string of blanks to designate the
"plank segment,” in which the maln program and all bulit-in
support code are always linked. All other code can be
placed into any segment.

$X+ or $X- Tum automatic run-time stack expansion on (+) or off (-).
The default Is $X+.

NOTE

Compller directives that affect code generation take effect when the
end of the Pascal statement in which they are embedded Is reached. If
the same directive Is specified more than once In a statement, the last
setting is used. A tricky case of this is:

begin
) := foo;
{$r-}
1 := 12
{$R+}
end
Since the second assignment does not end with a semicolon, and

actually ends when the end is encountered, range checking will not be
turned off for that statement.

LEBUGGING.

$0+ or $D- Tum the generation of procedure names In object code on
(+) or off (-). These commands should be written between
procedures; results are unspeclified If they are written
inside procedures. The default is $D+.

CONDITIONAL COMFILA TIAN

$OECL 1ist (see Sectlon 12.2 below).

$ELSEC (see Sectlon 12.2 below).
$ENDG (see Section 12.2 below).
$IFC (see Section 12.2 below).
$SETC (see Section 12.2 below).
Misc.) _ . e

¥ f};_c?-{;f%‘-— Allew /”t"'(r‘"ﬁL 514 ir (%) /;;;(H/w‘e/ﬂ.u {/m

/‘\(?/“é’.S. D(vv/%u/f /s 00"~

12-2

Pascal Rererence Maral The Compiler

LISTING CONTR

$t fllename Start making a listing of compller errors as they are

encountered. Analogous to $L fllename (see below) The
default {s no error listing.

$L fllename Start listing the compllation on flle filename. If a listing
Is belng made already, that file Is closed and saved prior to
opening the new file. The default is no listing. If the
fllename begins with + or -, there must be a space between
$1 and the fllename (the space Is not necessary otherwise)

$L+or $L- The first + or - following the $L turns the source listing on
(+) or off (-) without changing the list file. You must
specify the listing file before using $L+. The default Is
$ +, but no listing Is produced If no listing flle has been
specified.

12.2 Conditional Compllation
Conditional comptiiation is controlied by the $IFC, $ELSEC, and $SENDC
commands, which are used to bracket sections of source text. whether a
particular bracketed section of a program is compiled depends on the boolean
value of a camplle-time expression which can contaln complle-time variables

122.1 Complle-Time Variables and the SOECL Cormmand
Complle-time varlables are completely Independent of program variables; even
If a complle-time varlable and a program variable have the same ldentifler,
they can never be confused by the compiler.

A complle-time variable is declared when it appears In the identifier-list of a
$OECL command.

Example of compile-time varlable declaration:
{SDECL LIBVERSION, PROGVERSION}

This declares LIBVERSION and PROGVERSION as compile-time variabies.
Notice that no types aye specified.

Note the following points about complle-time variables:

* Complle-time variables have no types, although thelr values do. The only
possible types are integer and boolean

* All complle-time variables should be declared before the end of the
varlable-declaration-part of the main program. In other words a $OECL
command that declares a new compile-time varlable must precede the
main program's procedure and function declarations (if any). The new
complle-time variable Is then known throughout the remainder of the
compilation.

* At any point In the program, a complle-time varlable can have a new
value assigned to it by a $SETC command.

12-3

Pascal Reference Marnial The Compiier

12.2.2 The $SETC Command
The $SETC command has the form

{$SETC ID := EXPR}
or
{$SETC ID = EXPR}

where 1D Is the ldentifler of a complle-time varlable and EXPR Is a complle-
time expression. EXPR I3 evaluated immediately. The value of EXPR 1S
assigned to ID.

Example or assignment (o complle-time varlable:
{$SETC LIBVERSION := S}
This assigns the value 5 to the complle-time varlable LIBVERSION.

1223 Compile-Time Expressions
Ccomplle-time expresstons appear in the $SETC command and In the $IFC

command. A complle-time expression is evaluated by the compller as soon as
it 1s encountered In the text.

The only operands allowed in a complle-time expression are:
* Complle-time variables

* Constants of the types integer and boolean (These are also the only
possible types for results of complle-time expressions.)

All Pascal operators are allowed except as follows:
* The in operator is not allowea.
* The @ operator Is not allowed.
* The / operator is automatically replacea by div.

12.24 The $IFC, $ELSEC, and $ENDC Commands

The $ELSEC and $ENDC commands take no arguments. The $IFC command has
the form

{$IFC EXPR}
where EXPR Is a compile-time expression with a boolean value.

These three commands form constructions slmilar to the Pascal If-statement,
except that the $ENDC command Is always needed at the end of the $IFC
construction. $ELSEC is optional.

12-4

—

-

Pascal Reference Maral The Compller

Example of codltionally complled cose:

{$IFC PROGVERSION >= L IBVERSION}

k := kvali(data+indat); 3
{$€ELSEC))

k := kvalz(data+cpindat "),
{$ENDC}

writeln(k)

If the value of PROGVERSION {s greater than Or equal to the vaiue of
LIBVERSION, then the statement k:-kvall{data+indat) is compiled, and the
statermnent k:=kvalZ(data+cpindat ") is skipped.

But if the value of PROGVERSION s less than the value of LIBVERSION, then
the first statement is skipped and the second statement is compiled.

In elther case, the wrlteln(k) statement is compiled because the conditional
construction ends with the $ENDC command.

$IFC constructions can be nested within each other to 10 levels. Every $IFC
must have a matching $ENDC.

when the compiler is skipping, all commands in the skipped text are ignored
except the following:

$ELSEC
$ENDC
$IFC (so that $ENDC's can be matched properly)

Al]l program text is ignored during skipping. If a listing is produced, each
source line that is skipped is marked with the letter S as its "lex level.”

12.3 Optimization of If-Statements

when the compller finds an if-statement controlied by a boolean constant, it
may be unnecessary to compile the then part or the else part. For example,
glven the declarations

const always = true;
never = false;

then the statement
if never then statement
wlill not be compilled at all. In the statement

if never then statementl
else statement2

“statementl” is not compiled; only “statement2" {s compiled.

12-5

Pascal Reference Marnual The Compiler

similarly, In the statement

if always then statementi
else statement2

only "statement1” is comptled.

The Interaction between this optimization and condltional compliation can be
seen from the following program:

program Foo;
{$SETC FLAG :- FALSE}
const pl = 3.1415926;

size = 512;
{$IFC FLAG}

debug = false; {a boolean constant, 1f FLAG=true}
{senoC}

var 1,),k,1,m n: integer;
{SIFC NOT FLAG}

debug: boolean; {a boolean varlable, 1f FLAG=false}
{sENDC)

{$IFC NOT FLAG}
procedure whatmode;
begin
{interactive procedure to set global boolean variable, debug}

ernd;
{senoC)

begin {main}
{$IFC NOT FLAG)

whatmode;
{sENDC)

1f debug then begin
statementl

end
else begin
statement2
end

end.
The way this is compiled depends on the compile-time varlable FLAG. If

FLAG Is false, then debug is a boolean var/ab/e and the whatmode procedure
is compiled and called at the beginning of the main program. The if debug

12-6

Pascal Referernce Manual The Compiler

statement Is controlled by a boolean variable and all of it is compiled, in the
usual manner.

But if the value of FLAG is changed to true, then debuqg is a constant with
the value false, and whatmode is neither compiled nor called. The if debug

statement s controlled by a constant, so only its else part, “statement2”, is
compiled.

124 Optimization of while-Statements and Repeat-Statements

A while-statement or repeat-statement controlled by a boolean constant does
not generate any conditional branches.

125 Efficiency of Case-Statements
A sparse or small case-statement will generate smaller and faster code than
the corresponding sequence of if-statements.

12-7

_.- .. A-. ,«.,.4-!“

w = T O TMTMQDQO®>D

Appendixes
Compearison to Apple 11 and Apple 111 Pascal A-1
Known Anomalies in the Compiler B-1
Syntax of the LanguUBme .. o e c-1
Floating-Point Arithmetic D-1
QUICKDDT W e ieemeeieaaaaana E-1
Hardware Interface . . i, F-1
Lisa Extended Character Set ___ G-1
EITor MEeSSaB0BS .ot H-1
Pascal Warkshop Files . . -1
Listing Formaks e J-1

Appendix A
Comparison to Apple 11
and Apple III Pascal

Al Extensions ________ ... o A-1
A2 Deletions ieiecetecceemaaeaas A-1
A3 Other DIfferences - ... e a3
A4 Predefined Idenmtifiers . .. e A4

Comparison to Apple 1I 1.2
and Apple III Pascal |.|

This appendix contains lists of the major differences between the Pascal
language on the Lisa and the Pascal implemented on the Apple II and Apple
I11. Please note that these liste are not exhaustive.

Al Extensions
The following features have been added on the Lisa&

= @ Operator—returns the pointer to its operand {see Section 5.1.6).

= Heapresult, pointer, and ord4 functions (see Sectionz 11.2.2, 11.3.2, and
11.3.4),

= Keypress function built into the language, with same effect as the
keypress function in the applestuff unit of Apple II and Apple III Pescal
see Section 10.3.7.1).

= Hexadecimal constants (zee Section 1.4).

= Otherwise-clause in case-statement (same as Apple 111 Pascal: see
Section 6.2.2.2).

= Global goto-statement (see Section 6.1.3).

= A file of char type that is distinct from the text type (see Sections
3.2.4 and 10.3).

= Numerous compiler commands (see Section 12.1).
= Procedural and functional pararneters (see Sections 7.3.3 and 7.3.4).
= Stronger type-checking (see Sections 3.4 and 7.3.5).

A.2 Deletions
The following features are not included on the Lisa:

= Turtlegraphics, applestuff, and other standard units of Apple II and
Apple Il Pazcal.

= Iteractive type (not needed, as the 170 procedures will do the right
thing with a file of type text if it is opened on a charscter device).

= Keyboard file--same effect can be obtained by opening a file of type
text on the device -KEYBOARD [(see Section 10.3).

= Unit (device~oriented) 1/0O procedures.

Fescal Relerence Manus! Comparison io Apple [T 8 Tl Fascal

= Recognition of the ETX character (control-C) to mean "end of file" in
input from a character device.

= "Long integer" data type, with length attribute in declaration. Replaced
by the longint type (see Section 3.1.1.2).

= "Initializetion" code in a unit (see Section 9).

= The ability to create new imtrincic-units and install them in the system
(see Section 9).

= Reset procedure without an external file title, for use on & file that is
already open (see Section 10.1.1). To obtain the same effect, close the
file and reopen it.

- Treesearcha Iv!imrch
= Bytestreamn, wordstream (data types in Apple 11l Pascal).

= Exit(program)--The exit(identifier) form works, and the identifier can be
the program-identifier. Halt can alsc be used far orderly exit from a
program (see Section 11.1).

= Extended comperizons (see Section 5.1.5).
= Scan function. Replaced by scaneq and scanne (cee Section 11.8).
= Bit-wise boolean operations.

= Segment keyword for procedures and functions. Use the $S cormmand
instead (see Section 12.1)

= The following compiler commands (see Section 12.1):

= $I+ and $I- (no automatic 1/0 checking; program must use ioresult
function).

= $G ($G+ is the assumption on the Liss).
= $N and $R (for resident code segments).
- $Q.

= $S+ and $S++ for swapping.

= $U+ and $U- (for User Program).

- V.

In general, do not a=sume that a compiler command used in Apple II or
Apple 111 Pascal is valid on the Lisa. Furtherrnore, do not assume that an
Apple 1I or Apple Il Pascal compiler command is “"harmless” on the Lisa, as
it may be implemented with a different meaning.

Fascal Reference Menusl Compearison Lo Apple I & Il Fascal

A3 Other Differences
The following features of Pascal on the Liza are different from the
corresponding features of Apple 11 and Apple 111 Pascal-

= Size of all strings must be explicitly declared (see Section 3.1.1.6).
= Mod and div--Pascal on the Lisa truncates toward O (see Section 5.1.2).

= Apple Il and Apple Il Pascal ignore underscores; Pascal on the Lisa
does not. They are legal cheracters in identifiers (see Section 1.2).

= A goto-statement cannot refer to & case-constant in Pascal on the Lisa
{see Section 6.1.3).

= A program must begin with the word program in Pazcal on the Lisa (see
Chapter 8).

= Trunc is different (see Section 11.3.1).

= Write(b) where b is a boolean will write either ' TRUE' or 'FALSE' in
Pascal on the Lisa (see Section 10.3.3).

= Whether a file is a textfile does not depend on whether its name ends
with ".TEXT" when it is created. Instead, anv external file opened with
a file variable of type text is treated as a textfile, while a file opened
with a file variable of type file of char is not; it is treated as a
"datafile," i.e. a straight file of records which are of type char (see
Sections 3.2.4 and 10.2).

= Get, puit, and the contents of the file buffer variahle are not supported
on files of type text. Use only the text-oriented 1/0 procedures with
textfiles.

= Eoln and eof functions on files of type text work as they do on
interactive files in Apple Il and Apple 1II Pascal.

= Pascal on the Lisa does not let you pass an element of a packed
variable as a variable pasrameter (see Sections 7.3.2, 11.7, and 11.8).

= Limite on sets are different (see Section 3.2.3).

= The control variable of a for-statement must he a local variable (see
Section 6.2.3.3).

= In a write or writeln call, the default field lengths for integer and real
values are 8 and 12 respectively (see Section 10.2.3).

A4 Predefined ldentifiers
The predefined identifiers listed in Table A-1 are built into the Pascal
Compiler for each machine, as indicated. If you declare or define these
nhames in your program, no Compiler error will result, but you will lose the
capacity of the corresponding built-in, or predefined, entity. The list does
not include identifiers in special library units, such as those in the
QuickDraw graphics unit.

A-3

Fascal Reference Msnual Compesrison 16 Apple IT & Il Fascal

Table A-1

Predefined Identifiers
in the Lisa Pascal Compiler

Idertifier Type Lisa Apple /// Apple][
ABS Generic function Yes Yes Yes
ELOCKREAD Integer function Yes Yes Yes
BLOCKWRITE Integer function Yes Yes Yes
BEOQOLEAN Type Yes Yes Yes
BYTESTREAM Type No Yes No
CHAR Type Yes Yes Yes
CHR Character function Yes Yes Yes
CLOSE Procedure Yes Yes Yes
CONCAT String function Yes Yes Yes
COPY String function Yes Yes Yes
DELETE Procedure Yes Yes Yes
EOQF Boolean function Yes Yes Yes
EOLN Boolean function Yes Yes Yes
EXIT Procedure Different Yes Yeas
EXP Real function Yes Yes Yes
FALSE Constant Yes Yes Yes
FILLCHAR Procedure Different Yes Yes
GET Frocedure Yes Yes Yes
GOTOXY Procedure Yes Yes Yes
HALT Procedure Yes Yes Yes
HEAPRESULT Integer function Yes No No
IDSEARCH Procedure No Yes Yes
INCLASS Boolean function Yes No No
INPIT File Yes Yes Yes
INSERT Procedurs Yes Yes Yes
INTEGER Type Yes Yes Yes
INTERACTIVE Type Yes Yes Yes
A-~4

Fascal Reference Meanual

ldentifier
IORESULT
KEYBOARD
KEYPRESS
LENGTH
LN

LOG
LONGINT
MARK
MAXINT
MEMAYAIL
MOYELEFT
MOYERIGHT
NEW

ODD

ORD

ORD4
OouUTPUT
PAGE
POINTER
PQOS

PRED

PUT
PWROFTEN
READ
READLN
REAL
RELEASE
RESET
REWRITE
ROUND

Iype

Integer function
File

Boolean function
Integer function
Real function
Real function
Type

Procedure
Constant
Integer function
Procedure
Procedure
Procedure
Boolean function
Integer function
Integer function
File

Procedure
Painter function
Integer function
Integer function
Procedure

Real function
Procedure
Procedure

Type

Procedure
Frocedure
Procedure

Integer function

A-5

Cormpearison io Apple 17 & Il Fascal

Lisa

Yes
Device

In library
Yes

Yes

No

Yes
Different
Yes
Different
Different
Different
Different
Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes
Different
Different
Yes

Yes

fpple 1/l
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes

Yes
Yes
Yes
Yes

Apple] |
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes

Frecsl Reference MNanugl

Identifier
SCAN
SCANEQ
SCANNE
SEEK
SIZEOF

SQR

SQRT

STR
STRING
SUCC

TEXT
THISCLASS
TREESE ARCH
TRUE
TRUNC
UNITEUSY
UNITCLEAR
UNITREAD
UNITSTATUS
UNITWAIT
UNITWRITE
WORDSTREAM
WRITE
WRITELN

Type

Integer function
Integer function
Integer function
Procedure
Integer function
Generic function
Real function
String function
Type function
Integer function
Type function
Pointer function
Integer function
Constant
Integer function
Eoolean function
Procedure
Procedure
Procedure
Procedure
Procedure

Type

Procedure
Procedure

A-6

Comparison o Rpple 11 & Il Psscel

Lisa
No
Yes
Yes
Yes
Yes
Yes
Yes
No
Length reg
Yes
Different
Yes
No
Yes
Yes
No
No
No
No
No
No
Ne
Yes
Yes

Apple ///

Yes
No

No

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No

Yes
Yes
Yes

Apple] |

Yes
No

No

Yes
Yes
Yes
Yes
Yes

Yes

Yes
Yes
Yes
Yes
Yes
Yes
No

Yes
Yes
No

Yes
Yes

Appendix B
Known Anomalies in the Compiler

This appendix describes the known anomalies in the current implementation of
the compiler.

B.1 Scope of Declared Constants
Consider the following program:

program cscopel;
const ten=10;
procedure p;
const ten=ten; {THIS SHOULD BE AN ERROR}
begin
writeln(ten)

24

begin
p
end.

The constant declaration in procedure p should cause a compiler error, because
it is illegal to use an identifier within its own declaration (except for pointer
identifiers). However, the error is not detected by the compiler. The effect is
that the value of the global constant ten is used in defining the local constant
ten, and the writeln statement writes "10°.

A more serious anomaly of the same Kind is illustrated by the following
program:

program cscope2;
const red=1; violet=2;
procedure q;
type arrayType=array[red. .violet] of integer;
color=(violet, blue, green, yellow, orange, red);
var arrayvar:arrayType; c:color;

begin
arrayVar[1]:=1;
c:=red;
writeln(ord(c))
begin
q
end

B-1

Pascal Reference Merws! Compiler Anoméiies

within the procedure g, the global constants red and violet are used to define
an array Index type; the effect of armay{red.violet] is equivalent to array{1.2]
In the declaration of the type color, the constants red and violet are locally
redefined; they are no longer equal to 1 and 2 respectively--instead they are
constants of type color with ordinalities 5 and 0 respectively. The writeln
statement writes “5",

The use of red in the declaration of the type color should cause a compiler
error but does not.

Consider the statement
arrayvVar[1]:=1;

If this staterment is replaced by
arrayVar([red]:=1;

a compiler error will result, as red is now an illegal index value for arrayVar
--even though arrayvar is of type arrayType and arrayType is defined by
array{red_violet].

To avoid this kind of situation, avoid redefinition of constant-identifiers in
enumerated scalar types.

B2 Scope of Base-Types for Pointers
Consider the following program:

program pscopel;
type s=0..7;

procedure makecurrent;
type sptr= s;
s=record
ch:char;
bool :boolean
end;
var current:s;
ptrs:sptr;
in
new(ptrs);
ptrs :=curremt
end;
beqin
makecurrent
end.

Here we have a global type s, which is a subrange of integer; we also have a
local type s, which is a record-type. Within the procedure makecurrent, the
type sptr is defined as a pointer to a variable of type s. The intention is that
this should refer to the local type s, defined on the next line of the program;
unfortunately, however, the cormpiler does not yet know about the local type s

Pascal Reference Marual Compiler Anornalies

and uses the global type s. Thus ptrs becomes a pointer to a variable of type
0.7 instead of a pointer to a record. Consequently the statement

ptrs” := current
causes a compiler error since ptrs” and current are of incompatible types.

To avoid this kind of situation, re-declare the type s locally before declaring
the pointer-type sptr based on 5. Altemately, avold re-declarauon of
identifiers that are used as base-types for pointer-types.

B-3

Ci
Cc2
C3
ca
CS5
C6
C.7
cs8
c9

Appendix C
Syntax of the Language

Tokens and ConstantS ... cre et eac e e e Cc-1
[} (o i &3 C-a
(9217 1 5, 0 == SO C-5
R 5 1= ¢ (= c-9
[= T C-10
BS1 7= 17 1 = S o S C-12
Procedures and FUNCUONS ... eaeae C-15
[0 11 £ 1 1 PR PO C-16
L8 1 . C-17

Syntax of the Language

This appendix collects the syntax diagrams found in the main sections of this
manual. See the Preface for an introduction to syntax diagrams.

C.1 Tokens and Constants (see Chapter 1)

L ol (A g (Z). () twowp (2)

agit) (o) oy (9)|—>

L@w'gﬂ_t@_ .
(®) trougn (F) J

loentifier @

underscore

g/_q/t_—mm

hex-~digit-sequence hex-digit

C-1

Pascal Reference Manual Syntax
wsignea-integer digit-sequence >
$ hex-digit-sequence
sign @ >

wnsigred-real

—&!dlgit-sequence \—v@-b{giglt—sequence } T >
»| scale-factor |-

seale-ractor

D@ digit-sequence }-—-———b
L@__f Sigﬂ

wslgrea-number ,{ unsigned-integer h
unsigned-real IL

signea-rnumber

D{ unsigned-number ———»

sign

Quoted-stiing-constant

’C} (—-l string-character

C-2

Pascal Reference Manial Symiax

Quoted-character-constant >®_.| string-character]——»@—b

String-character

constant-ceclaration _y["servirier (=)—»| constant ()

constant ~ >[constant-identifier J——\
! signed-numper | ~
N quoted-string [—)
quoted-char > g
C-3

Pascal Reference Mandl Smtax

C.2 Blocks (see Chapter 2)

Qlock label-declaration-part

-
\chonstant—declaration»part]—j

-

| type-declaration-part IL-D

“

\v[variable—declaration—parth

-
\bl procedure-and-function-declaration-part

(’
. statement-part >

label-aeclaration-part

1abel label »(>) >
(D

—15”1—»{ aigit-sequence [——

constant -aeclaret/on-part

const constant-declaration

Lype-odecisration-part

type-declaration }—_j—.

C-4

Pascal Reference Manl Syntax

variable-oeciaration-part

var

variable-declaration |

procecure-sna-ruction-oeclaration-part

procedure-declaration

function-geclarauon

stalement part #{ compouno-statement, [——

C.3 Data Types (see Chapter 3)

toelantlr o f i |3 e

simple-type

simple-type

structured-type

polnter-type

real-t

ordinal-type

real-type |

string-type

real-type-identifier }————-———b

Pascal Reference Manual Symtax

orainal-type >

subrange-type
enumerated-type |

ordinal-type-identifier

string-type

0 size-a[tributﬂ—*®7—~b

string-type-igentifier

size-atlriouie >[unsigned-integer }———-b

enumerated- e >®—+| identifier-list |—#(R

:>| identifier | : >

P constant - constant

laentifler-list

suorange-type

C-6

Pascal Reference Manial s

- structured-type-identifier |— -~
i

arrgy-type

inoex-{ype ordinal-type

fleld-list

\awm)/

rlela-list

fixed-part >
\.% variant-part ML@'J
rixed-part (>{ field-declaration]»_T—’

flela-geclaration ®{ identifier-list H@—'@é_—r—’

Pascal Reference Marnial Syniax

variant-part

—@ tag-field-type of variant
identifier ()

L Y]

tag-flield-type ordinal-type-identifier |——>
varlant

0 field-list
sel-L set of ordinal-type —##

____mg_’(ﬂ/ a4 flle) >
@) s[om

abtertze s

pointer-type-identifier

baase-{,

type-identifier ——»

Pascal Reference Marnal Syntax

C.a Varlables (see Chapter 4)

varigble-declaration ’,! igentifier-list e e

varigble-reference

——! varlable-ldentifler | >

variable-identifier

field-designator
flle-buffer-symbol
pointer-object-symbol

kX (1 expression j—@—b

flela-oesignator ‘ igentifier

file-tufrer-symbol ,@ >

pointer-object-symbol .@ >

rFascal Rererence Marval Syntax

C.5 Expressions (see Chapter 5)

unsigned-constant

>| unsigned-nurmber

quoted-string-constant

constant-identifier

nil >

factor

A — e >| variable-reference J—————\
¥~+{ unsigned- constant }

N——={ function-call

set-construclor

O+ opremin |+
.

“n—r
O
A

S 4 s

SIT0Ie-expression

C-10

Ml BE IR W BN W Em e EE W

Pascal Rerference Manal syntax

expression

—=| simple-expression [>
\>®—7—D{ simple-expression |—/

Anctlon-call

—-b[function-identifier } ~

»>
actual-parameter-list ’—/

o -pAINelEr-1Ist » (:) .I actual-parameter | > (:) »

actusl-parameter

expression

variable-reference

procedure-identifier

function-identifler

set-construetor
[v@—»

c-11

Pascal Reference Manal Syntax

member-grou

expression >

(- expression

C6 Statements (see Chapter 6)

statement

»
\b{@—@-/ M simple-statement

structured-statement

f"gij—‘bl digit-sequence I————+

Simple-statemernt

b{ assignment-statement

procedure-statement

goto-statement »

assignment -statement

variable-reference
function-identifier e

proceaure-statement
procedure-identifier } >

actual-parameter-list

QLo-stalement (o label —#

C-12

™

Pascal Reference Marxal

Syntax
structureg-statement

b{ compound-statement

conditional-statement |

repetitive-statement

with-statement

compolna-siaterment
(tegin) (end)

» if-statement
Lb[case-statement

if expression

conditional -statement

Ir-statermernt

]
(b(then)—-b{ statement |

else statement

expressio
case @
\—l otherwise-clause lf e

(O-+{ Fatzrent |

otherwise-clause .@_>(otherwise)| statement [—&

case-statement .(

caxe

Cc-13

Pascal rerererve Manigl Symtax

repetitive-statement

#| repeat-statement

while-statement

for-statement >

16008t -StAEMeNt

~—+(repeat}(>|"statemem }j—»(m_ug—»{w

while-statement

—>(cite) oxpresion |»(a0)

rat-statement

——b(forH control-variable = initial-value

(@ final-value do statement

ool -variable

variable-Identifier »

it
final-value

with-statement

——'(wltn}(bl record-variable-reference do statement l——b

C-14

Pascal Reference NMarxsl

C.7 Procedures and Functions (see Chapter 7)

procedure-oeclaration
—bl procedure-heading ; procedure-body ;

procedure-oody » :mook
(forwara)

extermnal >

oo ur-1e3lng

—%Mre}——bl identjfierJl >
\bl formal-parameter-l1ist }—-/

function-declaration

—————b{ function-heading]—b@—bi function-body J—b®——>

runction-body

extemal >

ACton-heading_y,ncrion)-»] ientifier }-)

(paao =

\-‘ formal-parameter-list

result-tyoe

b{ ordinal-type-ldgentifier

real-type-identifier

pointer-type-identifier } >

C-15

Pascal Reference Manal Syntax

formal-parameter-/ist
b@ parameter-declaration

procedure-heading

function-heading

G)e

LAV RCIAINT) e rler-1ist (-)+ type-1cenurier |-»

C.8 Programs (see Chapter 8)

213
program-heading : block

uses-clause 0

program-Healng

———b@mgran Identifler »>
()¥{ program-parameters)

grogran-paramelers

ldentifier-list —»

WET-CIGUE (" yses)—»] icentifier-list |—

Cc-16

LT,
E N

Pascal Reference Marnal Syntax

C9 Units (see Chapter 9)

requiar-unit o] unit-heading |))
(bl interface-part H implementation-part

it rieadilg unit identifier

Interface-part
8 Hwtarface }

uses-clause

constant-declaration-part

type-declaration-part I——>

|~
\OL variable-declaration-part

Cprchcedtma—and—funct.lc1n—t'.ieclarat.lon-part [r-L—b

inp/ementaﬂaﬂ~p&rt.(m1mwum /L) =

ﬁh{ constant-declaration-part I_j

P
-»| type-declaration-part

('
\bl variable-declaration-part

C»[procedure-and-function-declaration-part |—L—>

Cc-17

D.1
D2

D3

Appendix D
Floating—Point Arithmetic

2 = - o - S PP I D-1
Pascal Real Arithmetic i D-1
D21 Introduction ... e D-1
D.2.2 ROUNING ..o e D-2
D.23 Infinity Arithmetic D-2
D24 NaN Arithmetic ..o .. D-3
FPLib D-4
D21 Introduction ...t D-4
D.3.2 DALA Ty DB o e e e e s D-7
D.3.3 Arithmetic Operations D-7
D.3.3.1 Add, Subtract, Multiply, and Divide D-7
D322 RemMaINGEY ... eee e, D-8
D333 Square RootD-8B
D24 LOaT Y-} -] oSS D-9
D.34.1 Conversiors to and from Extended D-9
0D.3.4.2 Cornversions Between Binary and Decimal D-9
D.2.5 Expreszion Evaluationl D-11
0351 Global Constants ..., D-14
D.3.6 Comparison Functions i, D-14
D.2.7 Infinities, NaNs, and Denormalized Numbers D-15
D.3.7.1 Inquiries: NumClass and the Class Function .D-15
D.2.8 Environmental Control......ol D-16
D381 Rounding Direction D-16
D.38.2 Exception Flags and Halte D-17
D383 Managing Environmental Settings D-17
D.29 Auxiliary Procedures i D-18
0391 Round to Integral Valueocoooiin... D-1&
D.3.9.2 Sign Manipulstion b-19
D393 Next-Arter ... i D-19
D.394 Binary Scale and Logl D-19
D.2.10 Elementary FUnctionscooviiiiiiiiiiieieiiiiaaanns D-19
D.3.101 Logarithms ... i D-20
D.3.10.2 Exponentiale, D-21
D.2.10.3 Financial Functionsc.iiiiiil... D-22
D.3.10.4 Trigonometric Functions D-24
D.3.10.5 Random Number Generator....................... D-24
D.3.11 Additional FPLib Procedures ccoiimiiiiiiiinnnnnn, D-25
D.3.12 FPLib Interface i D-28

D41 How to Use MathLib n-7%
D.4.2 Environment ProcedUres D-35
D43 Elementary Functions D-36
D44 Utility PrOCeOUIeSt D-38
D.4.5) 4 1 T+ [S D-39
D46 Free Format Conversion to ASCIL D-41
D47 Correctly Rounded Corrversion
Eetween Binary and Decimal D-45
D.4.8 Financial Analysis D-46
D49 Zero of a Maonlinear Function D-51
D.4.10 Linear Algebra. D-55
0.4.10.1 Vectors and Linesr Transformations D-55
D4.10.2 Transformatinns Fetween Spaces of
Different Dimension D-56
D.4.10.3 Arrays and Matrices ... D-56
0.4.10.4 Ill-Conditioned Problernz........................ D-&0
D.4.105 Determinants ... D-€0
D.4.10.6 Iterative Improvement D-61
D.4.10.7 Statistical Computations with ATA D-61
[0.4.10.8 Linear Algebra Procedures D-62
D.4.109 QR Factorization......... D"E_’5
D.4.10.10 MathLik QR Procedures D-67
D.4.10.11 QR Example D-68
D411 MathLib NaNs ... D-70
D.4.12 Mathlik Interface D-71
Macintosh Floating-Point Programming ._........_........._.__...._. D-79
D.5.1 S3embly LENQUEDE - oo D-79
0.5.2 Pascal Real Arithmetic D-79
D.5.3 TFPLib and MathLib, D-79
D54 Restrictions ... D-go

|

|

Floating—Point Arithmetic

D.1 Preface

This appendix describes Pascal real arithmetic and two Lisa intrinsic units,
FPLib and MathLib. FPLib is a Pascal interface for SANE (the Standard
Apple Numerics Environment). MathLib contains varicus mathematical
routines, including routines for sorting, formatting, financial analysis, zero
finding, and linear algebra.

This appendix refers to two documents:
= The Standsrd Apple Numeric Environment
n The 88X Assembly-Lanquage SANE Engine

These documents are Parts I and 111 of the Apole NMumerics Manwal and are
included in the third volume of this set, the System Software Manuals. [Part

I1 of the Apple NMumerics Manuel. The 8307 Assembly-Langusge SANE Enging,
is not included in this set.)

Linking: When using Pascal real variables or constants or the units FPLib or
MathLib, you must include IOSFPLib, in addition to 10SPasLib, in your list of
files to be linked.

Macintosh

Pascal programs can be compiled on the Lisa to run on the Macintosh.

Floating- poirt ucage is slightly different, and some restrictions apply, as
described in Section D.5.

D.2 Pascal Real Arithmetic
D.2.1 Introduction

Lisa Pascal real erithmetic conforms to as many of the requirements of a
single-precizion implementation of IEEE arithmetic as can be expressed in
the standard Pescal langusge syntax. [EEE arithmetic is described in A2

Froposed Standsrd for Binary Floating-Foint Arithmetic, Draft 10.0 of IEEE
Task P754, December 2, 1982.

SANE (the Standerd Apple Numeric Environment), which contains a
completely conforming extended-precision implementation of IEEE arithmetic,
is in the intrinsic unit FPLib. FPLib, which also contains elementary
functions, and MathLib, which contains the higher mathematical procedures
used in LisaCsalc and Lisa BASIC, are in the file IOSFPLib. FPLib and
MathLib are described in Sections D.3 and D.4 of this sppendix.

If, however, you only wish to use the features of Pascal real arithmetic as
defined in the Pascal language standard, you do not need to use either of
these units in your source code. Pascal real arithmetic will then operate
according to the default modes for IEEE single-precision arithmetic. IEEE

e,

Fascal Reference Manual Floating-Foint Arithmetic

arithmetic works like conventional floating-point arithmetic, except
sometimes it works better. In particular, results are defined for all
floating-point operations; invalid operations never terminate execution and
always supply appropriate results. When examining printed results produced
by a write of a real variable:

= A number that looks normal iz a faithful representation, within the
format specification, of the binary number held internally.

= "0" or "-0" represent exactly zero with positive or negative sign
respectively. Positive and negetive zercs behave identically mast of the
time, but 1/0 yields positive infinity and 1/(-0) yields negative infinity.

= "INF" or "-]NF" are the representations of positive and negative infinity.
They can be produced by floating-point overflow as well as by divigion
by zero.

= "NaN" or "-NaN" represent Not-a-Number, used to represent an
undefined or erroneous value. Often the representation includes a
parenthesized NaN code; for instance, write(sqrt(-1)) produces
"NaN(1)." NaN codes are described in 7he Standsard Apple Nurmneric
Environment.

NMormal numbers that are printed with nine or rnore significant digits can he
read back in to produce the same binary value. The strings printed for
infinite and Nak values are accepted by read, and produce the same binary
real value that produced the string. The strings for infinity and NaN are not
accepted by the Compiler as real constants in Pascal sowrce code, however.
D.2.2 Rounding
When the result is not representable exactly as a real value, then it is
rounded to the nearest representable real value. If the result is exactly half
way between two representable real values, then it i rounded to the even
representable wvalue which has a zerc in its least significant bit.
D23 Infinity Arithmetic

Infinity arithmetic obeys common mathematicsl conventions as indicated in
the tables on the following page.

D-2

Fascal Reference Manual Floating-Foimt Arithmetic

Table D-1
Results of Addition and Subtraction on Infinities
Right

Left Qperand

Qperand -INF finite +INF
~INF -INF -INF NaMN
finite + -INF finitef +INF
+INF NaN +INF +INF
-INF NaN -INF -INF
finite —_— +INF finitef -INF
+INF +INF +INF NahN

¥ Result is infinite if the operastion overflows.

Table D-2
Results of Multiplication and Division on Infinities

Night
L eft Qperand
perand 20 finite +INF
2:0 +Q =0 NaN
finite X +0 finitet +INF
+INF NaN +INF +INF
+0 NaN +0 =0
finite / <INF finitet +0
+INF = INF +INF NaN

T Result is infinite if the operation overflows.

MNote: Sign of result is determined by signs of
operands in the usual manner.

D.24 NaN Arithmetic
NeNs sre produced as the result of an imvalid operation such as sart(-1),
INF-INF, 0/0, O*INF, 1n(-1), or sin(INF). If one or more NaN is an

operand to any operation that produces a floating-point result, that result
will be a NaN.

N
'

Fascal Reference Manual Floating-Foirmt Arithmetic

Comparisons involving NaNs are never less than, equal to, or greater than;
they are always unequal. So if x is a NaN, x<>y will be true, while x<y,
Xy, x=y, x2y, and x>y will always be false regardless of yv. "If x(>x" is a
good test of whether x is a NaN.

Round and trunc operatiors upon NaNs produce undefined values since
integers do not have NaN values. Round and trunc of numbers too large to
represent as integers alse produce undefined values.

D3 FPLib

D.3.1 Introduction
This section describes the Lisa intrinsic unit FPLib, which is a Pascal
interface for SANE (the Standard Apple Numeric Environment). SANE in turn
implements P754, the proposed IEEE Standerd for binary floating-point
arithmetic.

SANE data types, operations, and exceptions are described in detail in 7he
Standard Apple Numeric Emvironment. This section describes only the FPLib
interface for Pascal programs. The FP&8K interface for assembly-langusge
programs is described in 7he 88000 Assembly-Langusge SANE Engine.

If you are familiar with Pascal, you should be able to use most of FPLib just
on the basiz of the comments in the interface in Section D.3.12.

When writing Pascal source code, include a uses statement such as:
USES FPLib;

after the program statement in & main program or after the interface
staternent in a unit.

The two examples that follow, a program and a unit, illustrate the use of
FPLib. We encourage you to type in these examples, to compile them, and,
in the case of the prograrn, to execute the code file while following this
discuesion.

Example 1

Thig program reads an input string representing a floating-point value and
echpes it to the zcreen. It demonstrates the use of SANE data typeg, and
how values can be accepted on input and displayed on output.

program EchoNumbex;

Uses
FPLib;
yar
InStr, OQutStr : DecStr; { Input and output strings. }
x : Single; { Single value of InStr. }
f : DecFoam; { Specifies output foomat. }

D-4

) . s . . .
sl erence Manual Floating-Foird Arithmetic

begin { EchoNumber }

f.style
f.digits :

FLOATDECIMAL; { Floating output format .
9. { 9 significant digits.

]

write ('Enter number: ');
readln (InStr); { Read first input string. }
while InStr <> '' do begin
Str2S (InStr, x); { Convert input to Single value x_ }
S25txr (f, x, OutStr); { Convext x to stxing by f. }
writeln (DOutStr);
write ('Enter number: ');
readln (InStr) { Read next input string. }
end

end { EchoNumber }

In the program EchoNumber, note that:

= The input and output strings (InStr and QutSir) ere of type DecStr, a
Fascal string type defined by FPLih.

= A veariable x of type Single has been declared to hold the value of the
input string.

= The variable f is of type DecForm, which specifies the format of the
output string. In this case, f is assigned so thet the output will be in
FLOATDECIMAL format (as opposed to FIXEDDECIMAL), and will show
9 significant digits.

= The FPLib routine Str2S converts the ASCII characters from the input
string InStr to the Single value x.

= The FPLib procedure S2Str converts the Single value x to the output
string QutStr. The format of this string is determined by the value of .

Throughout FPLib, the names of procedures reflect the data types involved.
For example, Str2S converts to Single. There are also procedures StrzD,
Str2C, and Str2X far converting to the other SANE data types Double, Comp,
and Extended, respectively.

Now compile and execute the program, trying out various input values. You
will note that the input string '0.5' is echoed (as you would expect) as
'5.00000000E-1', whereas the input value '0.1' iz echoed as '1.00000001E-1",
because of roundoff, as discussed in 7he Standard Apple Numeric
Environmerit.

Fascal Reference Manus! Floaling-Foiit Rrithmetic

Example 7

The second example shows the use of FPLib from another unit. This exarple
also shows how expreszion ewvaluation is accomplished using Extended
intermediate variables.

The unit. provides & procedure to evaluate the dot product of two vectors.
The input vectors v and w (of type Vector) ere represented as arrays of
Single values. The desired result is the 5ingle value z. In order to compute
the value of z with maximurn accuracy, all of the intermediate calculations
are perfarmed in extended precisicn. This feature is at the heart of the
design of SANE.

unit DotProd;

INTERFACE
uses
FPLib;
const
N = 20; { Size of Vector. }
type
Vector = array [1..N] of Single;
procedure DotProduct (v,w: Vector; var z: Single);

IMPLEMENTATION
procedure DotProduct { (v,w: VYector; var z: Single) };
{ Returns the dot product of v and w in z,

accumulated in Extended and returned in Single. }

var s, t : Extended;
i:1..KN

begin { DotProduct }

12X {0, s); {s<— 0 }
for i := 1 to N do begin
SZX (v[i], t); { t «— v[i] }
Muls (w[il], t); { t <— v[i] * w[i] }
{ Accumulate in Extended. }
AddX (t, <) {s(—s+t }
end;
X5 (8, 2) { Produce Single result. }

end { DotProduct } ;
end { DotProd } .

Fascal Reference Manusl Floating-Foint Arithmetic

In the procedure DotProduct, note that:

= The sum ¢ is initialized to zero using 12X (12X provides convenient and
efficient assighment of integral constants to Extended).

= A Single value from v is converted to extended precision in the
temporary variable t. This conversion is performed by 52X and is exact.

= T is directly multiplied by the corresponding value from w, leaving the
extended-precision result in t.

= The sum is accumulated in extended precision by adding t directly to
the Extended value s.

= When the loop completes, the sum in s iz converted, using XZS, to the
desired Single result z.

= [n FPLib, all of the bazic arithmetic operations on two values are
two-address operations; that Is, the operation is performed on the two
inputs and the result is stored in the second argument (as in MulS and
AddX in the example).

= All arithrmetic operations are performed in extended precision and the
result is returned in Extended.

= The names of the procedures again reflect the type of the input
argument: MulS multiplies an Extended by a Single, AddX adds an
Extended to an Extended, and X2S converts an Extended to & Single.

D.3.2 Dsata Types

FPLib fully supports the SANE data types Single, Double, Comp, and
Extended.

Pascal's 16- and 3Z-bit integer arithmetic remains distinct from SANE

arithmetic. However, any program using the FPLik unit can use Pascal
integer arithmetic.

D33 rArithmetic Operstions
This section discusses the arithmetic operations add, subtract, multiply,
divide, remainder, and square root.

D.33.1 Add, Subtract, Multiply, and Divide
The arithmetic operations add, subtract, multiply, and divide ere provided by
sixteen procedures:

AddS, AddD. AddC, AddX:
SubS, SubD, SubC, SubX;
MulS, MulD, MulC, MulX;
DivS, DivD, DivC, DivX.

Each procedwre has two operands. The first is always a walue parameter of
type Single, Double, Comp, or Extended, as indicated by the last letter of the

Fascal Reference Manual Floating-Foint rrithmetic

procedure name. The second is always a variable parameter of Extended
type that receives the result. For example, subtraction is provided by the
procedures Sub$S (subtract Single), SubD (subtract Double), SubC (subtract
Comp), and SubX (subtract Extended). If x and vy ere declared by

var x : Single;

vy : Extended;
then the statement
SubS (x, v); {y—vy-x}
causes x to be subtracted from y and the extended-precision result to be
stored in vy.
Exarmple

To compute ¢ = a / b, where 8, b, and g are of type Double, declare:

var a b, q : Double;
t - Extended; { extended temporary }

and write:
DZX (a, t); {t < a }
DivD (b, t); {t«<—asb}
XD (t, q); {qt }

D.3.3.2 Remainder
The remainder operation is provided by

procedure RemX (x - Extended; var y : Extended; var quo : integer);

The remainder, ¥ REM x, is delivered ta vy.

The remainder cperation determines n, the nearest integer to x/y; if x/y is
halfway between two integers, the even integer is chosen. Thus, y rem x = vy
- n*x.

The third argument, quo, delivers the integer whose magnitude is given by
the seven least significant bits of the magnitude of n, and whose sign is the
sign of n. (Quo is useful for reducing the arguments of trigonometric
functions, but can be ignored if not needed.)

D333 Square Root
The square root operation is provided by

procedure SqrtX (var x - Extended);
for any x »>= 0. The argument x is both source and destination.

rascal Rererence Manusl Floaling-Foimt Rrithmetic

Example

To find v = square root of u, where u and v are of type Single, declare
var u, v : Single;

t : Extended; { extended temporary }
and write
S2X (u, t); {t<—u }
SqrtX (t); { t < sgrt (u) }
X5 (t, v); {veet }

D34 Conversions

D.3.4.1 Conwversions to and from Extended
Conversions between the Extended type and the other numeric types
recognized by FPLib ere provided by the procedures

I2X - integer to Extended
L2X —~ longint to Extended
52X - Single to Extended
D2X - Double to Extended
C2¥ - Comp to Extended
X2X - Extended to Extended
X21 - Extended to integer
A2L - Extended to longint
x2S - Extended to Single
X20 - Extended to Double
X2C - Extended to Comp

For exarnple, if x and y are declared by
var x : Comp;

v : Extended;

then to convert a Comp-format value in x to an Extended-format in vy, write
C2ZX (x, y); {y ¢<—x}

D342 Conversions Between Binary and Decimal

Converting Decimal Strings into SANE Types
The procedures Str2S, Str2D, Str2C, and Str2X convert numeric strings into
Single, Double, Comp, and Extended formats, respectively.

D-9

Fascal Reference Manual Floating-Foirt Arithmetic

Example 1

To assign -0.0000253 to an Extended variable x, write
var x: Extended;

Strzx ('-2.5%-5', x); { or Strzx ('-0.0000253', x); }

r

The Standard Apple Numeric Environment describhes numeric string syntax.

Converting SANE Types into Decimal Strings

The procedures S2Str, D2Str, C28tr, and X28tr will convert a Single, Double,

Cornp, and Extended, respectively, into a nurneric string (of type DecStr). As
any numeric value can have many decirnal representations, vou must specify
the decimal result format. To do so, pass a record of type DecForm, shown

belaw:

DecFoom = recoxrd
style : (FLDOATDECIMAL, FIXEDDELCIMAL):
digits : integer
end;

Example 2

To print the value of a Double variable y using a fixed-point decimal farmat
with ten digite to the right of the decimal point, write:

var y: Double;
s: DecStr;
f: Decform;

f.style := FIXEDDECIMAL;
f.digits := 10;

DIStr (f, v, s);

writeln ('y = ', s);

Nurnbers that round to zero in the specified DecForm sre converted to the
string ' 0.0' or '-0.0'. NalN's are converted to the string ' NaN'‘, '-NaN',

* NaN(n)', or '-NaN(n)', where n is a NaN error code in decimal. Infinities
are converted to the string ' INF' or '-INF".

All other numbers behave in an intuitive manner as long as the DecForm
specifies no more than SIGDIGLEN-1 significant digits. Otherwise, the
formatted number is padded with zeros where necessary. If the resulting
string has rnore than DECSTRLEN characters, the number is represented in
floating-point notation. (SIGDIGLEN and DECSTRLEN are specified in the
interface to FPLib)

All string results have either a leading negative sign or a leading blank (thus,
colurnnz of numbers will line up regardless of sign).

D-10

Fascel Reference Manual Fioating-Foint Arithmetic

Decimal Record Corwersions
The Decimal record type is specified in the interface as below:

Sighig = string [SIGDIGLEN];

Decimal = record
sgn : O0_.1; { Sign (0 for pos, 1 for neg).)
exp : integer; { Exponent.
sig : Sighig { String of significant digits. }

The procedures S2Dec, D2Dec, C2Dec, and X2Dec each conwert a Single,
Double, Comp, or Extended value, respectively, into a record of type
Decimal. A DecForm operand (shown in the preceding section) specifies the
format of Decimal. The maxirnum number of ASCI digits delivered to sig is
SIGDIGLEN-1, and the implied decimal point is at the right end of sig, with
exp set accordingly. Further formatting details are given in 74s 5X0
Assemnbly-Langusge SANE Engine.

The procedures Dec2S, DeczD, Dec2C, and Dec2X corwert a Decimal record
inta Single, Double, Cornp, and Extended, respectively. The sig part of
Decimal accepts up to SIGDIGLEN-1 significant digits, with an implicit
decimal point at the right end of the significant digite. If SIGDIGLEN digits
are passed, then the implicit decimal peoint is between the digits at
SIGDIGLEN-1 and SIGDIGLEN; the last digit, if nonzero, represents one or
more nonzero digits in the SIGDIGLEN or subsequent positions., Further
details of the representations of Decimal input values for these routines are
given in The 68000 Assembly-Language SANE Engine.

D.35 Expression Evaluation

SANE floating-point arithmetic (and the FPLib unit) is designed to operaste on
Extended values. For example, DivD (x, y) operates on the Extended-format
value in v by dividing the Double-format number x into y and leaving the
result in yv. To evaluate more complicated expressions, Extended temporaries
can be uzed.

The following exarnples illustrate extended-based expression evaluation. The
first example uses an Extended accumulator to store the results of all
operatians.

Example 1
Compute the value of

r= [a+h-c]l*d+e
f

where all veariables are of Double type.

var &, b, ¢, d, e, f, r : Double;
t : Extended; { extended temporary)

D-11

Fascal Rerference Msnual Floating-Foimtl Arihmelic

begin

DX (a, t); {t«< a)
AddD (b, t); {t«—a+hb }
SubD (c, t); {t¢<—a+b-¢ }
MulD (d, t); {t<—(a+b-¢c)*d }
AddD (e, t); {t<—(a+b-c)*d+e }
Diw (f, t); {t<«—((a+b-c)*d+e)/ ¢}
XD (t, 1); {r ¢t }

Note that although the arithmetic style is extended-baced, not every operand
need be cornverted to Extended. In the exarnple, only one explicit conversion
to Extended was required.

Exemple 2

Cornpute the value of the root r of larger magnitude of a quadratic equation
from the formula:

b + sign(b) * sgrt{ bZ - 4 * a * ¢)
Y = -

2*a
where a8, b, c, and r are of Single type.
var a, b, ¢, ¥ : Single:

DivX (tz, t1); tl1 <— —(b + sign(b) *
sqgqrt (b*2-4*a*c))/ (2* a)
XZ5 (t1, 1); {r (— ti1

t1, t2, t3 . Extended; { extended temporaries }
begin

S2X (b, t1); tl< b)
t3 .= t1; t3¢(— b }
MulS (b, t1); { t1 <— b*2 !
1ZK (4, L 2); LZ <— 4 H
MulS (s, t2); t2¢— 4%a }
MulS (c, t2); {tz2¢<—4*a*c }
SubX (t2, t1); {tl(—b*2-4%atc }
Sqrtx (t1); { t1 ¢(— sqgrt (b"2 -4 * a* c) }
CpySgnX (t1,t3); { t1 <— seme with sign of b }
Adds (b, t1); { t1 <— b + sign(b) * sqrt (b2 — 4%a*c) }
NegX (t1) ; { t1 <— —(b + sign(b) * sqrt.._. }
SZX (a, t2); {tz2<— a }
AddS (a, t2); }tz — 2*a }

}

}

Fascal Relference Manual Fioating-Foimt rRrithmetic

The smaller root may then be computed by evaluating the formula c/Aa*t1) in
extended. Exceptional cases include b2 < 4 * a * c and a = 0.

Example ¥
Evaluate the polynornial
Y =Ch+C*Xx+cCp*xZ+ .. 40cy*xn
and ite derivative
Dy =ci+2*ca*x+3*%cy*x2+ ...+4n%*cy* xnd)

where the coefficients ¢o through cn are stored in an array of Single and x,
vy, and Dy are of type Single.

const NMAX = 100;
var n, i : 0. NMAX;

X, v, Dy - Single;
c : array [0._NMAX] of Single;

t1, { For computation of v. }
t2, t3 . Extended; { For computation of Dy.}
12X (0, t1); {t1¢— o)
tz .= t1; {tz¢0 }
far i -= n downto 1 do begin

{t1<—c[i] +x*tl:)}

Muls (x, t1); {t1 ¢— x * t1

AddS (c [i], t1); { t1 <— c [i] + t1 }

{t2¢— t1+x%t2:}

MulS (x, t2); { t2 ¢(— x * t2 }
SZX (c[i], t3);

MulS (i, t3);

AddX (t3, t2)

end;

{t1<—c[0] +x*tl1:)}

Muls (x, t1); { t1 «<— x * ¢t1 }

Adds (c [0], t1); {t1<—c [0] + t1 }

X2S (t1, v); {y«—t1 }

XZs (t2, Dy); { Dy <— t2 }
D-12

Fascal Reference Manual Floating-Foint Arithmetic

The method, called Horner's Rule, used to evaluate the polynomials is based
oh the polyncmial representation

v ... ({ep* x+eng) P x+epg) ¥x+ 0)X+ Cp.

It is faster and more accurate than the straightforward computation
suggested by the standard representation, shown at the beginning of the

example, and is conveniently implemented using SANE's extended-based
arithmetic.

D.3.5.1 Global Constants
To speed up execution, frequently used constants can be defined globally
[outzide the routines). For example, if pi is declared and defined by:

var pi - Extended:

begin

" StrzX ('3.14139263376979323846°, pi);
then executing

X -= pi;
is significantly faster than

Strzx ('3.14159265358979323846°, x);

Defining constants globally is particularly helpful when the definition is wvia
one of the string conversion routines, such as Str2X. For conversion of
integers, 12X and L2X are significantly faster than Str2Xx.

D.3.6 Compearison Functions
Anmy two floating-point values in the Extended format can be compared using:

function CmpX (x : Extended; r : RelOp; vy : Extended) : boolean;
or

function RelX (x, y : Extended) . RelOp;
The RelQOp values are

GT greater than

LT less than

GL greater than or less than

EQ equal

GE greater than or equal

LE less than or equal

GEL greater than, equal, or less than

INORD unordered

D-14

Fascel Reterence Manusl Flogting-Foimt Rrithmetic

Single, Double, or Comp values can be compared by first converting them to
Extended.

For every pair of operand values, exactly one of the relations LT, GT, EQ,
and UNORD is true. The wvalue of RelX is the appropriate one of these four
relations. CmpX (x, I, y) is true if and only if the relation x r y is true.

Example

If p is greater than ¢ then print 'p > g iz TRUE'; otherwise, print 'p > q is
FALSE'.

var p, q: Extended;

if CmpX (p, GT, q) then
writeln ('p > q is TRLE')
else
writeln ('p > q is FALSE');

Note that equivalent results are produced by

if CmpX (p, LE, q) or CmpX (p, UNORD, q) then
writeln ('p > q is FALSE')

else
writeln ('p > g is TRIE');
or by
case RelX (p, q) of
GT: writeln ('p > q is TRUE');
LT, EQ: writeln ('p > q is FALSE');
UNDRD: begin

SetXcp (INVALID, TRUE);
writeln ('p > q is FALSE')

end; { case RelX }

D.3.7 Infinities, NaNs, and Denormalized Numbers
In addition to the normalized numbers supported by most floating-point
packages, FPLib fully supports the special values--infinities, NaNs, and
denormalized numbers--specified by the IEEE Standard, as described in 7he
Standard Apple Numeric Envireriment.

D.3.7.1 Inquiries: NumClass and the Class Functions
The functions ClassS, ClaessD, ClessC, and ClaszX can be used to classify the
value of a variable. These functions are of type NumClass and return one of
the values:

D-15

Fascal Relerence Meanual Floating-Foirt Rrithmetic
SNAN - signaling NaN
ONAN - quiet NeN
INFINITE - infinity
ZERD - Zero
NORMAL - normalized number
DENORMAL — denormalized number

The class functions alzo return the zign of a value in the parameter
var sgn: integer.

D.3.8 Emvironmental Control
Ervvironmental controle supported in FPLih include the rounding direction, as

well as exception flags and their corresponding halts. Rounding precision is
supported in the MathLib unit.

D.38.1 Rounding Direction
The rounding directions are of the type

RoundDir = (TONEAREST, UPWARD, DOWNWARD, TUWARDZERD)

The rounding direction is set by the SetRnd and SetEnv procedures and can
he interrogated by the GetRnd function.

Exampie
The common rounding function specified by

{ trunc (x + 0.5), if x >= 0 #xkinsert bracke trkk
Rnd (x) = 1
. trunc (x - 0.5), if x < O

-

can be implemented by:
function Rnd (x : Extended) : integer:

{ Sets INVALID and returns -32768 if
x isaNeN or x (= -32768.5 or =x >= 32767.5_

Sets INEXACT if
-32768.5 ¢ x ¢ 32767.5 and x is nonintegral .

Sets no other exceptions. }
var t : Extended;

i : integer;
T : RoundDix;

D-16&

Fascal Reference Manusl Floating-Foirt prithmetic

begin { Rnd }

Strzx ('0.5°, t);

CpySanX (t, x); {t <— +0.5if x > 0 or x is +0
{t«— 05if x (0O or x is O

T := GetRnd; { Save rounding direction.

SetRnd (TOWARDZERD); { Set round-toward-zero.

AddX (x, t); {t(—x+t

X21 (t, i); { i ¢<— truncate (t)

IZX (i, t); { No exceptions!

SetXcp (INEXACT, not (CmpX (t, EQ, x) or TestXcp (INVALID)));
{ Correct INEXACT setting.

SetRnd (1); { Restare rounding direction.

Rnd := i { On INVALID, i <— -32768.

end {Rnd} :

D.3.8.2 Exception Flags and Halts

The exception flags are values of the type
Exception = (INVALID, UNDERFLOW, OVERFLOW, DIVBYZERO, INEXACT)

These five exceptions are signaled when detected, and if the corresponding
halt is set, the SANE engine will JSR to the 'halt vector'. The halt vector is
initially O, so that halts terminate execution with & bus error. However, the
user can call the procedure SetHItAddress to set the halt vector to the
address of a user-defined halt-handling procedure. See Section D.3.11 for
details.

Initially all exception flags and halts are cleared. You can examine, set, or
clear individual exception flags and halts using TestXcp and TestHIt
functions and SetXcp and SetHIt procedures. The SetEnv and GetEnv
procedures can be used to set or get the entire environment (rounding
direction, rounding precizion, exception flags, and halts).

D.3.8.3 Managing Environmental Settings

Issues and technigues for managing environmental settings are covered in 7Ae
Standard Apple Numeric Emvironment. (The Pascal syntax used in the
examples there does not fully match the syntax in FPLib.)

The procedure-entry and procedure-exit routines are provided in FPLib by:

procedure ProcEntry (var e: Enwviron);
procedure ProcExit (e: Environ);

Exemple

The following procedure signals underflow if its result is denormal, and
overflow if ite result iz infinite, but hides spurious exceptions occurring from

D-17

Frecal RKelerence Manual

internal computations. This is Example 2 in Section 8 of 7The Standard RApple

Numeric Emnironment, irnplernented with FPLIb calls.
procedure compres (var x: Double);

uses FPLib;
var e: Environ; { local storage for enviromment }
c: NumClass; { for class inquiry }
sgn: integer; { for class inquiry — not used }
procedure clearxcps; { more efficient version in Mathlib }
const FIRSTXCP = INVALID;
LASTACP = JNEXACT;
var xcp: Exception; { for clearing exceptions }
begin {clearxcps}
for xcp-= FIRSTXCP to LASTACP do
SetXcp (xcp, FALSE)
end {clearxcps};
begin {compres}
ProcEntry (e); { save caller’'s environment and)}
{ set default environment — }
{ now halts disabled }
{ compute result x }
¢ := ClassD (x, sgn); { class inquiry }
clearxcps; { clear possibly spurious exceptions }
{ now raise specified exception flags:
if ¢ = INFINITE then SetXcp (OYERFLOW, TRUE)
else if c = DENORMAL then SetXcp (UNDERFLOW, TRUE);
ProcExit (e) { restore caller's enviromment, }
{ including amy halt enables, and }
{ then signal exceptions from }
{ subroutine }

end {compres} ;

D39 Auxiliary Procedures
The FPLib unit includes a set of special routines: RintX, NegX, AbsX,
CpySanX, NextS, NextD, NextX, ScalbX, and LoghX.

D391 Round to Integral Yalue
An Extended variable can be rounded to an integral value by

procedure RintX (var x : Extended);
The result is returned in the input x.

D-18

Flosting-Foint Rrithmetic

S I I

I

0

Fascal Reference Manusl Fliceting-Foint Rrithmetic

D.39.2 Sign Manipulation
Procedures NegX, AbsX, and CpySgnX each operate on an Extended variable,
altering only the sign of the Extended argument.

The negation operation is provided by
procedure NegX (var x : Extended);

The absolute value operation iz provided by
procedure AbsX (var x : Extended);

An operation to copy the sign of one Extended variable to the sign of
another is provided by

procedure CpySgnX {var x : Extended; v : Extended);
which copies the sign of y into the sign of x.

D.393 Next-After
The procedures MextS, NextD, and MextX each generate the next
reprezentable neighbor in its respective format, given an initial value and a
direction. The first argument (x) to each of these routines is “"bumped" to
the next representeble value in the direction of the second argument (v).

The procedure NextS bumps the Single value x to the next representable
Single value in the direction of y:

procedure NextS (var x : Single; vy : Single);

The procedure NextD bumps the Double value x to the next representable
Double value in the direction of y:

procedure NextD (var x : Double; v : Double);

The procedure NextX bumps the Extended value x to the next reprezentable
Extended value in the direction of y:

procedure NextX (var x : Extended; y : Extended);

D.394 Binary Scale and Log
An Extended variable can be efficiently scaled by a power of two by

procedure ScalbX (n : integer; var y : Extended);

The procedure ScalbX computes y * Z0, and returns it in y.

The binary exponent of an Extended variable can be determined by
procedure LoghX (ver x : Extended);

The procedure LoghX returns in x the binary exponent of x as a signed
integral value.

D.3.10 Elementary Functions
FPLib provides a number of mathematical functions, including logarithms and
exponentials, two important financial functions, trigonometric functions, and a

Fascal Reference Manual Flosting-Foinmt Arithmetic

random number generator. The logarithms and exponentials are provided in
base-2 and base-e versions.

D.3.10.1 Logarithms

The procedures Log2X, LnX, and LnlX each operate on an Extended variable,
returning the result in the input argument.

The base-2 logarithm log, x is computed by
procedure LogZX (var x : Extended);

for any nonnegative x.

The natural (base-e) logarithm loge x is computed by
procedure LnX (var x : Extended);

for any nonnegative x.

The natural {base-e) logarithm loge (1 + x) is computed by
procedure LnlX (var x : Extended);

for any x »= -1.

D.3.10.2 Exponentials

Procedures Exp2X, ExpX, and ExpiX each operate on an Extended veriable,
returning the result in the input argument. Procedure Xpwrl operates on an
Extended variable using an integer value, returning the result in the Extended
input argument. Procedure XpwrY operates on two Extended variables,
returning the result in the second input argurnent.

The procedure Exp2X calculates 2%X and returns this value to x:
procedure ExpZX (var x : Extended);

The procedure ExpX computes eX and returns this value to x:
procedure ExpX (var x : Extended);

The procedure ExplX computes eX - 1 and returns this value to x:
procedure ExpiX (var x - Extended):

The procedure Xpwrl computes xi and returns this value to x:
procedure Xpwrl (i - integer; var x : Extended);

The procedure XpwrY computes xY and returns this value to x:
procedure XpwxY (y : Extended; var x : Extended);

D-20

{ Fascal Reference Manual Floating-Foimt Arithmetic

D.3.10.3 Financial Functions
FPLib provides two procedures, Compound and Annuity, that can be used to
solve various financial problems. Each of these procedures takes two input
arguments of type Extended, and produces an Extended result. The two input
arguments, r and n, represent in each case an interest rate and a number of
pericds, respectively.

Compound Interest
Compound interest can be computed using

procedure Compound (xr, n : Extended; var x : Extended);
This procedure computes the value

x = (1+71)n,
where r is the interest rate and n is the number of periods.
Example

If $1000 is invested for 6 years &t 9% compounded quarterly, then what is the
future value of the principal? Compute:

var 1, n, four, years, rate, PV, FV : Extended;
f : DecForm; -
s : DecStr;

with f do begin style = FIXEDDECIMAL; digits := 2 end;

— 12X (4, four); [four — 4)

= 12X (6, years); { years <— 6 }

: Strzx ('0.09°, rate); { rate ¢— 9% }

- 12X (1000, PY); { PY <— 1000.00 }

) T := rate;

- DivX (four, r); {r«<— rate / 4 }

= n -= yedars;

= MulX (four, n); { n ¢<— 4 * years }

- Compound (r, n, FV), { FV ¢— (1 + r)"n }

= MulX (PY, FV); {FV<— P *(1+1)n }
X25tr (f, FY, s); { £ is FIXED with 2 fraction digits.}
writeln ('FV = $°, s);

- The future value FV is $ 1705.77.

{
= D-z1
L]

Fascal Reference Manusl Fioating-Foint Arithmetic

Evarmple

How much must a person invest todsy at 9% compounded querterly to have
$15,000 in his account in 6 years? Assuming f, rate, years, r, and n have
velues as in the example above, compute:

var I, n, nn, four, years, rate, PV, FV : Extended;

f : DecForm;
s : DecStr M

with £ do begin
style := FIXEDDECIMAL;

digits := 2
end;
12X (15000, FVY); { FY <— 15000.00)
m :=n;
NegX (nn); { opn ¢(— —n)
Compound (xr, nn, PV); { PY ¢— (1 + 1)"-n }
MulX (FV, PV); { PV ¢<— FV * (1 + 1)*n }
X2Str (f, PV, s); { £ is FIXED with 2 fraction digits.} k

writeln ('PY = $', s);

The present value PY is $ 8793.70.

The present value and future value of an annuity can be computed using
procedure Annuity (r, n : Extended; var x : Extended);

Thiz procedure computes the value

x= 1-(1+1)",
T

where r is the interest rate and n iz the number of periods.
Examiple

Suppose that a loan at 12¥ compounded monthly is to be paid off at a rate
of $225 per month in 36 months. What is the present value of the loan?
Compute:

var I, n, twelve 1xate, PY, PMT . Extended:
f : DecFomm;
8 : DecStr;

D-22

! Fascal Kelerence Manusl Fioating-Foirt Rrithmetic

with £ do begin
style := FIXEDDECIMAL;

digits -= 2

end,-

12X (12, twelve); { twelve (— 12 }
StrzxX ('0.12°, rate); { rate <— 12% }
Strzx ('36', n); { n<— 36 }
12X (225, PMT); { PMT <— 225.00 }
T -:= rate;

DivX (twelve, 1); { T <— rate / 12 }
Annuity (r, n, P¥); {P¥ (— (1 - (1+1)*-n) /T }
MulX (PMT, PV); (W (—PMIT*(1-(1+1)~n) /1)
X25tx (f, PV, s=); { £ is FIXED with 2 fraction digits.}

writeln ('PY = $', s);

The present value PY is $ €774.19.
(o Example

If $30 i= deposited each maonth to a savings account that pays 12%
compounded monthly, what is the future value of the account sfter 10 years?
Compute

var I, n, twelve, rate, years, FY, PMI, t : Extended;
f - DecForm;
s - DecStr;

with f do begin
style := FIXEDDECIMAL;

digits := 2

end;

17X (12, twelve): { twelve (— 12]
StrzX ('0.12', rate); { rate (— 12X }
12X (10, vears); { years <— 10 }
12X (50, PMT); { PMT <— 50.00)
T := rate;

DivX (twelve, 1); { T <— rate / 12 }
n := years;

MulX (twelve, n); { n <— vyears * 12 }

D-23

Fascal Reference Manual

Floating-Foirt Rrithmetlic

Compound (r, n, t); {t«<— (1+71)"n }
Annuity (r, n, F¥); {F¥ (—(1-(1+1)"-n) /1 }
MulX (t, FY); {FY <— ((1+1)"n-1) /1 }
MulX (PMT, FY); {FY <—PMT * ((1+1)"n-1)/1 }

{f }

X2Str (f, FV, s);
writeln ('Fv = §°, s);

The final value FV is $ 11501.93.

is FIXED with 2 fraction digits.

D.3.104 Trigonometric Functions

The trigonoretric functions are provided by the procedures CosX, SinX,
TanX, and ATanX (arctangent or inverse tangent), which cperate on an
Extended variable and return the result in the input srgument.

The cosine is computed hy

procedure CosX (var x - Extended);
The sine is computed by

procedure SinX (var x : Extended);
The tangent is computed by

procedure TanX (var x : Extended);
The arctangent is computed by

procedure ATanX (ver x : Extended);

D.3.105 Random Number Generstor

Pseudorandom numbers are provided by
procedure RandomX (var x : Extended);

RandomX uses the iteration formula
x = (7% * x) mod (23 - 1)

A sequence of psuedorandom integral values r in the range
1412282

can be generated by initializing an Extended variable r to an integral value
{the seed) in the range and making repeated calls RandomX (r); each call
delivers in r the next pseudorandom number in the sequence.

If seed values of 1 are nonintegral or outside the range
lere2-2
then resulte are unspecified.

D-24

Fascal Rererence Manual Flosting-Foimt Arithmetic

Example
A procedure yielding a pseudorandom rectanguler distribution on (0, 1):
Exterior to the procedure declare and initialize

const SEED = 1018375230 { arbitrary seed }
var P, one, r: Extended;
begin
12X (1, one); { one <— 1 }
P := one; {P« 1 }
ScalbX (31, P); {P<«— 2°31)
SubX (one, P); {P(—2"31-1 }
LZX (SEED, 1); { T (— SEED }
The desired procedure can be written
procedure Rand (var x : Extended);
begin
RandomX (1); { T ¢— random int value }
X :=T; {x<—r }
DivX (P x) { nomalize to (0, 1) }
end;
D.3.11 Additional FPLib Procedures
Function SANE_Environ : longint ; { Intexnal use only.)}
Procedure InitFPLib ; { Initializes FPLib. }
Function GetHltAddress : longint ; { Returns halt address.}
Procedure SetHltAddress (HltAddress : longint) ; { Sets halt address. }

SANE_Environ is for internal use of other FPLib procedures.
InitFPLib resets the ervironment and the halt address to default values.

This initialization occurs automatically at the beginning of the outer block of
a Pascal main program. InitFPLib may be called later to reestablish default
conditions if desired.

The halt address is the address to which control pesses when a flosting-point
halt occurs, as described in detail in 7he 680 Assembly~-L anguage SANE
Engine. GetHltAddress and SetHItAddress mey be used to obtain the halt
address. SetHIt Address may be used to change the halt address to the entry
point of a halt- handling procedure.

The following demonstrates & sample halt procedure:

D-25

Fascal Keference Menusl Floating-Foint Rrithmetic

type miscrec = recoxrd
halterTors : integer;
ccxpending : integer;
dopending : longint;
end;

procedure haltroutine
(var misc : miscrec;
src2, src, dst : longint;
opcode : integer) ;

(* Prints out the op word and address psrameters of the floating-
point operation that halted, then displays the name of each
exception that occurred in that operation and whose halt was
enabled. After perusing this infoxrmation, the user presses
RETUMN to continue execution as if no halt had occurred. *)

var erw : Environ ;
X - Exception ;

begin (* haltroutine *)

ProcEntry(emw) ;

writeln(’ Floating point halt taken on op code ', opcode) ;

writeln(' Destination address ', dst) ;

writeln(' Source address ', src) ;

writeln(' 2nd Source address ', src?) ;

write(' Exceptions signaled with enabled halts :) ;

SetEnv(misc.halterrors) ;

for x -= INVALID to INEXACT do if TestHlt(x) then case x of
INVALID : write(' Invalid ') ;
UNDERFLOW : write(' Undexrflow ')
OVERFLOW : write(' Overflow ') ;
DIVBYZERD : write(' DivByZero ')
INEXACT - write(' Inexact ') ;

end (* case x *) ;

writeln ;

writeln(' Press RETURN to continue_. ')

Teadln ;

ProcExit(env) ;

end (* haltroutine *);

Ne

~r

r

....................... (* Elsewhere in the program ... *)

(* This code is executed prior to the floating-point operations for
which the halts are to be enabled. Oldhltaddress is
declared to be a longint. *)

P

Fascsal Relerence Manusl Flogting-Foimt Arithmetic

oldhltaddress -= GetHltRddress ; (* Save old halt address. *)
SetHltAddress(ord4(@haltroutine)) - (* Set new halt address to go to
haltroutine. *)

(* Enable halts on 'severe’ exceptions. *)
SetH1t(INVALID, TRUE) :

SetH1t(OVERFLOW, TRLE) ;
SetH1t(DIVBYZERD, TRIE) ;

{(* If any of these three exceptions subsequently occur, control
will pass through haltroutine. *)

D-27

Fascal Reference Manusl

D.3.12 FPLib Interface
UNIT FPLib ; INTRINSIC

INTERFACE

4

Floating-Foirnt Arithmetic C

{ Lisa Floating Point Library. }

{3C Copyright 1983, 1984, Apple Computer Inc. }

CONST

{ SANE: Standard Apple Numeric Environment }

{ Comments like !A// denote differences from the Apple // and /// SANE unit

interface. }

SIGDIGLEN

1}

20

5 { Maximum length of SigDig. !A//: 28 }

DECSTRLEN =255; { Maximum length of DecStr. IA//: 80 }

TYPE
{

** Numeric types.

Single
Double
Comp
Extended

real; tA//: array [0..1] of integer }
array [0..3] of integer:
array [0..3] of integer;
array [0..4] of integer;

** Decimal string type and intermediate decimal type,
** representing the value:
** (-1)"sgn * 10%exp * sig

SigDig

DecStr
Decimal

string [SIGDIGLEN];

string [DECSTRLEN];
record
sgn : 0..1; { Sign (O for pos, 1 for neg). }
exp : integer; { Exponent. }
sig : SigDia { String of significant digits. }
end; e

D-28

Fascal Reterence Manusl

Flosting-Foimt Arithmetic

{
** Modes, flags, and selections.
** NOTE: the values of the style element of the DecForm record
** have different nemes from the Apple // and /// version to
** gvoid name conflicts.
}
Enwviron = integer ;
RoundDir = (TONEAREST, UPWARD, DOWNWARD, TOWARDZERO);
RelOp = (GT, LT, GL, EQ, GE, LE, GEL, UNORD);
{>» ¢ O = = (= (=}
Exception = (INVALID, UNDERFLOW, OVERFLOW, DIVBYZERQ, INEXACT);
NumClass = (SNAN, ONAN, INFINITE, ZEROQ, NORMAL, DENORMAL);
Decform = record
style : (FLOATDECIMAL, FIXEDDECIMAL);
{ 'a//. FLORT, FIXED }
digits : integer
end;
** Two address, extended-based arithmetic operations. |
procedure RddS (x : Single; wvar y : Extended);
procedure AddD (x : Double; var v : Extended);
procedure RddC (x : Comp; var y : Extended);
procedure AddX (x : Extended; var v : Extended);
{y =y+x}
procedure SubS (x : Single; wvar y : Extended);
procedure SubD Ex : Double; wvar vy : Extended);
procedure SubC (x : Comp; var v : Extended);
procedure SubX (x : Extended; var y : Extended);
{y =y-x]}
procedure MulS Ex : Single; wvar v : Extended);
procedure MulD (x : Double; wvar y : Extended);
procedure MulC (x : Comp; var y : Extended);
procedure MulX (x : Extended; var y : Extended):
{y =y *x}
procedure DivS (x : Single; wvar v : Extended);
procedure DivD {x - Double; wvar y : Extended);
procedure DivC (x : Comp; var v : Extended);
D-29

Fascel Reference Manual Flosting-Foint rRrithmetic

procedure DivX (x : Extended; var y : Extended);
{v:i=y/x]

function CmpX (x : Extended; r : RelOp; v : Extended) : bhoolean;
{ CmpX := xr vy }

function RelX {x, y : Extended) : RelOp;
{ x RelX y, where RelX in [GT, LT, EQ, UNORD] }

{
** Conversions between Extended and the other numeric types,
** including the types integer and longint.

}

procedure I2X (x : integer; wvar vy : Extended);
procedure S2X (x : Single; wver v : Extended);
procedure D2X (x : Double; war y : Extended);
procedure C2X (x : Comp; var v : Extended);
procedure X2X (x : Extended: var v : Extended);

{y :=x [arlthmet1c a831gnment) }
procedure X2I (x : Extended; var y : integer);
procedure XZ5 (x : Extended; var y : Single);
procedure X2D (x : Extended; ver v : Double);
procedure X2C (x : Extended; var y : Comp);

{ v := x (arithmetic assignment) }
{ . .
** IThese conversions sre not in the Apple // & /// SANE unit.
procedure LZX (x : longint; ver v : Extended);
procedure X2L (x : Extended; var y : longint);

{ v := x (arithmetic assignment) }
{
**+ Conversions between the numeric types and the intermediate
** decimal type.

}

procedure S2Dec : DecForm; : Single; var y : Decimal);
procedure DZDec : DecForm : Double; wvar vy : Decimal);

——.—
- Hh Th

X
be
procedure C2Dec : DecForm x : Comp; var y : Decimal);
procedure X2Dec (f : DecForm; x : Extended; var y : Decimal);
{ v := x (according to the format f) }

procedure Dec2S (x : Decimal; var y : Single);

D-30

Fascal Reference Manual Fioating-Foint Arithmetic

- procedure Dec2D (x : Decimal; var y : Double);
procedure Dec2C (x : Decimal; var y : Comp);
procedure Dec2X (x : Decimal; var y : Extended);

{y :=x}

** Conversions between strings and the intermediate decimal type.

procedure StrZ2Dec (s : DecStr; var index : integer;
var d : Decimal ; var YalidPrefix : booclesn);

{ d := s, starting at s{index]; on output index points to
first character past accepted token; YalidPrefix is
true if the token, concatenated with the characters
following it, is a valid prefix of a numeric token. }

procedure DecZStr (f: DecForm; d: Decimsl; var s: DecStr);
{ s := d (according to the format f) }

[{

** Conversions between the numeric types and strings.

- procedure S2Stxr (f : DecForm; x : Single; wvar y : DecStr);

procedure D2Str (f : DecForm; x : Double; var vy : DecStr);

— procedure C28txr (f : DecForm; x : Comp; var y : DecStr);

procedure X25tr (f : DecForm; x : Extended;, var y : DecStr);
{ v := x (according to the format f) }

procedure Str2S (x : DecStr; var y : Single);

procedure Str2D (x : DecStr; var y : Double);

= procedure Str2C (x : DecStr; var y : Comp);
- procedure Str2X (x : DecStr; var y : Extended);
{y :=x)}

** Numerical 'library' procedures and functions.

— procedure RemX (x : Extended, var y : Extended;
var quo : integer);

{ (new y) := (0ld y) - x * n, where n is the integer closest
) to v/x; n 1s even in case of tie.
quo = low order seven bits of integer quotient vy / x,

o | " so that -127 <= quo <= 127.

0-31

Fascel! Reference Manusal

procedure SgrtX (var x : Extended);

{ x := sart (x) }
procedure RintX (var x : Extended);

Floating-Foint Arithmetic 4 7

{ x := rounded to integral value of x }

procedure NegX (var x : Extended);

{ x := =x }
procedure AbsX (var x : Extended);
{ x = |x] }

procedure CpySgnX (var x . Extended; v
{ x := x with the sign of vy }

procedure NextS (var x : Single; vy
procedure NextD (ver x : Double: v

procedure NextX (var x : Extended; vy
{ x := next representable value from

function ClassS (x : Single; wvar sgn :
function ClassD (x : Double; wvar sgn :

function ClassC (x : Comp; var sgn
function ClassX (x : Extended; var sgn

- Extended);

: Single);

: Double);
: Extended);
x toward y }

integer)
integer)

: integer)

integer)

{ sgn := sign of x (0 for pos, 1 for neg) }

procedure ScalbX (n : integer; var y : Extended);

{y:=y*2'n)
procedure LogbX (var x : Extended);
{ returns unbiassed exponent of x }

e

: NumClass;
: NumClass:
: NumClass;
: NumClass;

** Manipulstions of the static numeric state.

procedure SetRnd (r : RoundDir);
procedure SetEnv (e : Environ);

function GetRnd : RoundDir;
procedure GetEnv (var e : Environ);

function TestXcp (x : Exception) : boolean;

procedure SetXcp (x : Exception; OnOff :

boolean);

function TestHlt (x : Exception) : boolean;

procedure SetHlt (x : Exception; OnOff

D-32

{

: boolean);

Fascal Reference Manual

Floatling-Foirt rRrithmelic

** | Lisa and Mac only.

}

{ Procedures to Get and Set Extended Rounding Precision are in Mathlib}

procedure ProcEntry (var e : Environ); { Procedure entry protocol.}

procedure ProcExit(e : Environ);

{

{ ELEMS: Elementary Functions. }

procedure Log2X (ver x : Extended);
{ x := log2 (x) }

procedure LnX (var x : Extended);
{ x :=1n (x) }

procedure LniX (var x : Extended);
{ x :=1n (1+x) }

procedure Exp2X (var x : Extended);
{ x := 2%x }

procedure ExpX (ver x : Extended);
{ x := e"x)

procedure ExplX (var x : Extended);
x :=e’x -1}

procedure Xpwrl (i : integer; ver x : Extended);
{ x := x*1}

procedure XpwrY (v : Extended; var x : Extended);
{ x :=x" }

procedure Compound (r, n : Extended; var x : Extended);
{ x :=(1+1)"n}

procedure Annuity (r, n : Extended; var x : Extended);
{x:=(1-(1+1)"-n) /1)

procedure AtenX (ver x : Extended);
{ x := atan(x) }

D-33

{ Procedure exit protocol. }

}

Fascal Reference Manugl

procedure SinX (var x : Extended);
{ x := sin(x) }

procedure CosX (var x : Extended);
{ x := cos(x) }

procedure TanX (var x : Extended);
{ x := tan(x) }

procedure RandomX (var x : Extended);

{ x := (75 * x) mod (2°31 - 1)

}

Floating-Foimt Arithmetic

{

{ Procedures for Lisa and Mac only. }

function GetHltAddress : longint ;
procedure SetHltAddress (HltAddress

procedure InitFPLib ;
function SANE_Environ : longint ;

{
: longint) ; E
{

Returns halt address. }
Sets halt address. }
Initializes FPLib. }
Internal use only. }

{

D-34

Fascal Reference Manual

Fioating-Foint rrithmetic

D4 MathLib

The intrinsic unit MathLib, contained in the file IOSFPLib, contains
procedures in the following areas:

= Envitonment Procedures.

= Elementary Functions.

= Utility Procedures.

= Sorting.

= Free-Format Comversion to ASCIIL.

= Correctly Rounded Conversion between Binary and Decimal.
= Financial Analysis.

= Zeros of Functions.

= Linear Alaebra.

D4.1 How to Use MathlLib

MathLib is & Lisa intrinsic unit. Thus it may be conveniently used by Pascal
programmers. MathLib procedures may also be used by assembly-language
programmers who observe the Pazcal conwventions for data structures and
procedure calls.

when writing Pascal source code, include a USES statermnent such as:
USES FPLib, MathLib ;

after the program statement in a main program or after the interface
statement in a unit. If you are also using other units, include FPLib and
MathLib in the list of units in your one USES statement. They may be listed
before or after other units you are using, but FPLib must appear in the list
before MathLib.

D42 Environment Procedures

Type RoundPrecision = (ExtPrecision, DblPrecision, RealPrecision) ;

Procedure SetPrecision (p : RoundPrecision) ;

{ Set rounding precision. }
Function GetPrecision : RoundPrecision

{ Get rounding precision. }
Procedure ClearXcps ; { Turn off all exception flags. }
Procedure ClesxHlts ; { Disable all halts. }

The environmental control procedures in MathLib supplement those in FPLib.
They wark on the global fleating-point environment.

ClearXcps turns off all the exception flags at once. It is faster than the
equivalent code:

for e := INVALID to INEXACT do SetXcp(e, FALSE) ;
In the same way, ClearHlts disables all the hslts at once.

D-35

Fascal Reference Manugl Flosting-Foint Arithrmetic /"\)

v &
ey

The MathLib type RoundPrecision defines the possible settings of the
rounding precision mode. The procedures SetPrecision and GetPrecision are
used with RoundPrecision in the same way that SetRnd and GetRnd are uged
with RoundDir.

Rounding precision iz usually used to simulate single-only or double-only
arithmetic on a system which uses extended-precision expression evaluation.
Thus to simulate

Z :=x % v ;
ss it would occur in a double-only system, the following suffices:

savepre := GetPrecision ; { Savepre of type RoundPrecision. }
SetPrecision(DblPrecision) ;

DZX(x, xx) ;

AddD(vy, xx) ;

XD xx, z) ;

SetPrecision(savepre) ;

In this example the rounding precision affects only the AddD operation. The
extended result xx is rounded as if the final destination were double
precision, with inexact, underflow, and overflow signalled accordingly. The
X2D operation will then raise no further exception.

D43 Elementary Functions

Const RandModulus = 2147483647 ;
{ Prime modulus for random number generation = 2°31-1_ }

Function NextRendom (lastrandom : longint) : longint ;
{ Returns next 'random' longint with 1 <= nextrandom <=
RandModulus-1_ }

Procedure ASinX (var x : Extended) ; { x := asin(x) }
Procedure ACosX (var x : Extended) ; { x := acos(x) }
Procedure SinhX (var x : Extended) ; { x := sinh(x) }
Procedure CoshX (var x : Extended) ; { x := cosh(x) }
Procedure TanhX (var x : Extended) ; { x := tanh(x) }
Procedure AbsZX (x, v : Extended ; var z : Extended) ; { z := abs(y+ix) }
Procedure ATanZX(x, v : Extended ; var z : Extended) ; { z := arg{y+ix) }

FPLib provides the procedure RandomX which operates on an extended
argument. A valid argument for RandomX is an integral value between 1
and 231-2, and RandomX replaces a valid argument with the next such valid
argument. MathLib provides a more efficient function NextRandom, which
operates on and returns longints. The following is equivalent to

P

D-36

(. Fascal Reference Manwual Floating-Foint Arithmetic

RandomX(x) for valid arguments x:

XA(x, 1x) ;
LX := NextRandom (1x) ;
L2X(1x, x) ;

NextRandom uses integer rether than floasting-point arithmetic and thus is
faster. The result of supplying an invalid argument to NextRandom is
undefined.

The constant RandModulus can be used a8 in either of the following
examples to produce an array of numbers distributed uniformly strictly
hetween O and 1:

L2X(RandModulus, XRandModulus) ;
IZX 1234, I] ;
for i := 1 to n do begin
RﬂM(b g] ;
t :=x ;
DivX(XRandModulus, t) ;
a[i] =t ;
end ;
OR

¢ L2X(RaendModulus, XRandModulus) ;
Ir := 1234 ;
for i := 1 to n do begin
1r = NextRandom(1r) ;

LZX(11’, t] ;

DivX(xRandModulus, t) ;
. ﬂ[l] =t ;
— end ;

The elementary functions ASinX, ACosX, SinhX, CoshX, and TanhX provide
inverse sine and cosine, and hyperbolic sine, cosine, and tangent. Arguments
in the interval [-1, +1] are valid for inverse sine and cosine; for thesge
arguments, ASIinX returns a value in [-pi/2, +pi/2] while ACosX returns a
value in [+0, +pi]; the NaN for inverse trigonometric functions is returned for
other arguments. The hyperbolic sine, cosine, and tangent are defined for all
arguments, but SinhX and CoshX signal overflow for large arguments.

— Abs2X and ATan2X are provided to facilitate coordinate conversion. Abs2x
computes the squere root of the sum of squares of its arguments; ATan2x
computes the angle between a point (x, y) and the positive x-axis. ATan2x
returns a number in [-pi, +pi], even if x ar y is zero or infinite.

To convert from rectangular coordinates (x, y) to polar coordinates (r, t) :

Abs2X(y, x, T) ;
- ATan2X(y, x, t) ;

Fascal Reference Msanual Floating-Foird RArithmetic

To corvert back to rectangular coordinates:

X:=t;Y:=t;
CosX (x);SiX (y);
MulX (r, x); MulX(r, v);

D44 Utility Procedures

Type FP_Type = (TFP_byte, TFP_integer, TFP_longint, TFP_Comp, TFP_resal,
TFP_Double, TFP Extended) ;
{ Number type names for FP_size.)

Procedure FP_Size (x: Extended ; var sgn: integer ; var class: NumClass ;
var size: FP_Type) ;
{ Returns sign bit, class, and size of smallest type that
would hold x exactly. }

Function SignDfX (x : Extended) : boolean ; { True if x has neg sign. }

Function FP_New (n : longint) : longint ;
{ Attempts to allocate n bytes on heap, returning address.
Returns ord4(nil) if space not available. }

The utility procedures simplify common programming tasks. SignOf X returns
TRUE if x has negative sign, and FALSE if x has positive sign. Rernember
that zero, infinity, and NaN have sign bits too. The following are equivalent
but the first is more efficient if only the sign is of interest:

if SignDFX (x) then _..
OR

c :=ClassX (x, sgn) ;
if sgn = 1 then ...

FP_Size tells the smallest storage type that can contain the value of x, and
a3 a side benefit returns the cless of x and its sign in the same format that
ClassX uses. If x contains an integral value that can be contained in a
Comp variable, then FP_Size will return TFP_byte, TFP_integer, TFP_longint,
or TFP_comp if the smallest integral container that will contain x is a byte
-128..4127, an integer, a longint, or a comp, respectively. Otherwise FP_Size
will return TFP_real, TFP_double, or TFP_extended {f the smallest
floating-point container that will contain x is real, double, or extended,
respectively. Thus the size of positive zero is TFP_byte, of negsative zero is
TFP_real, of infinity is TFP_real, of denormal is TFP_extended, and of NaN is
always one of the floating-point sizes.

D-38

om—

Fascal Relerence Menual Floating-Foint Arithmetic

FP_Mew is a shortcut way to allocete a number of bytes on the Pascal heap
withowt specifying the data structure to be placed there. It is used
internally in MathLib to implement temporary arrays needed by the sorting
and linear algebra procedures, but it is also useful for allocating space for
other dynamic storage structures. The number of bytes to be allocated is
specified by a longint argurnent and thus can be as large as desired, although
the Lisa Pascal heap will rarely have more than about 600000 bytes
available. If the requested space is available, then FP_New returns the
address of the first byte of the allocated storage; if not available then
FP_New returns ord4(nil). For instance, to allocate an array of 10000 double
precision, do the following:

const DOUBLESIZE = 8 ; { B = SizeDf(Double) }

dpa := FP_New(ord4(10000) * DOUBLESIZE) ;
if dpa = ord4(nil) then { exrxor } else { ok }

Aszurmning the array is to be indexed from O to 9999, to access element k:
type pd = ° Double ;

pd := pointer(dpa + ord4(k) * DOUBLESIZE) ;

ak := ﬂd"L ;
Just as in using the built-in Pascal procedwre new, appropriate use of mark
and release allows reuse of heap space: use mark(p) just before calling

FP_New, and then releaze(p) when that and any other heap space subsequently
allocated with new or FP_New is nc longer in use.

D45 Sorting

Procedure Math Sort ({ General procedure to stably soxrt an arbitrary list.}
first, last : integer ; { Records first._last will be sorted. }
Function Sorted (i, j : integer) : boolean ;

{ User-supplied procedure called by Hath_Sort to compare order of
records i and j. Math_sort guarantees first <=1 ¢ j <= last.
Sorted returns true if records i and j are already correctly
sorted with respect to each other. }

Procedure Swep [i, j : integer) ;

{ User—-supplied procedure called by Math Soxrt to swap records i
and j. Math sort guarantees first <=1 ¢ j ¢= last_ }

Var exxor : boolean) ; { True if sort routine failed due to
insufficient heap space available. }

Fascal Relerence Meanual Floating-Foird Arithmetic

Math_Sart is a generalized merge sorting procedure. It has no knowledge of
the structure of the records being sorted; it obtains the information it needs
through the user-supplied procedures Sorted and Swep. Math_Sort only calls
Sorted and Swap with i and j satisfying first ¢ i ¢ j ¢ last.

Math_Sort contains two phases: sorting and swapping. To sort n records, the
number of calls of Sorted is proportional to n*log(n). The number of calls of
Swap is at mast n-1.

The slgorithm is sfable: If prior to the sort, two records i followed by j are
correctly ordered with respect to each other, then after the sort, the record
that was originally at i will still be followed by the record that was
originally at j. This is true even if Sorted(i, j) and Sorted(j, i) are true, as
might happen if Sorted were implemented by a comparison like

' keyli] <= key[j] ‘.

Internally, Math_Sort creates and digposes of a temporary array on the Pascal
heap of size 4 * (last - first + 1) bytes. If there is insufficient heap space
available then error will be set TRUE and no sorting will be done.

The following sorting example is based on an array of 1000 records
containing a primary key, which is a double precision number, and a
secondary key, which is binary. For this example, records with NaN keys are
to go to the end of the list.

type srec = record
key : Double ;
subkey - 0..1 ;

P

end ;
var a : axrray [1..1000] of srec ;
function srecsorted (i, j : integer) ; (* User Sorted function. *)
var ki, kj : Extended ;

begin (* srecsorted *)
D2X(a[i].key, ki) ;
DZX(afj].key, kj) ;
case RelX(ki, kj) of
LT : srecsorted := TRUE ;
GT : srecsorted := FALSE ;
EQ : srecsorted := a[i].subkey <= a[j].subkey ;
UNORD : srecsorted := ClassX(ki, sgn) <= ClassX(kj, sgn) :
end (* case *) ;
end (* srecsoxrted *) ;

procedure srecswap (i, j : integer) ; (* User Swap function. *)

D-40

Fascal Reference Manusl

var t : sTec ;

begin (* srecswap *)

t = 8[1] ;
a[i] := a[}] ;
alj] =t ;

end (* ne&map *)

... (* In the user's main program... *)

Floating-Foirt Rrithmetic

HMath Sort(1, 1000, srecsorted, srecswap, exTor) ;
if exrxror then { not enough heap space } else { sorted K)

D.4.6 Free Foomat Conversion to NASCII

Type Free Format = record { Specifications for free-form output . }

MaxSig : integer ;

Sig FFoxm,
Trail_Point, {
Int_EForm, {

Plus_EForm - boolean ; {
end ;

Procedure FP_Free ASCII (
x : Extended ;

form : Free Format;

Maximum number of significant digits. }
True if “fixed" style applies MaxSig to
significant digits; false if to digits
after the point.

True if trailing point should be printed
for inexact values in "integral”™ style.
True if "exponential” style acceptable for
integral values.

True if "exponential”™ style should exhibit
+ sign for positive exponents.

)
}
)
}

Procedure to provide free foxm ASCII output. }
Number to be converted from binary to ASCII. |}

Detailed format specifications.

|
Width : integer ; E Maximum number of characters in output string.
{

var s : Decstr } ;

Output destination string. If, after call,

length(s) > Width, then x was inconsistent with
the constraints Width or MaxSig.

Fascal Reference Manual

Floating-Foimt Arithmetic

FP_Free_ASCIll provides a solution to the following problem: Given a number
to be displayed in ASCII in a fixed field width, choose an ASCII format that
displays as much information about the number as possible with as few
ASCI] characters as possible, not exceeding the fixed field width unless
absolutely necessary.

Thus the number one should be displayed as '1' and not ‘1.0' or ‘1e0'.
Positive zero should appear as '0' and not '0.000e-0'. Pi, to be displayed in
columns of width 1, 5, 10, and 15, should appear as '3, '3.142', '3.14159265',
'2.1415926535898'. -0.00001 should appear as '-1E-3' unless Width »=7, in
which case '-.00001' should appear.

The following special cases are formatted strictly according to Width:

For positive zero, s := '0'; for negative zero, s := '-0' unless Width <= 1, in
which case § := '0".

For positive infinity, = := 'Inf’; for negative infinity, s := '-Inf'.

For NaNs, s will have the value that X2&tr would return, unless that would
exceed Width; then s := ‘NaN' or '-NaN' depending on the sign bit, unless
Width <= 3. then ¢ := 'NaN’ regardless of sign.

The essential method for formatting normal numbers is to first attempt a
representation with integral formet, then with a 7ived decimal point format,
and then with an exponential format with a minimal number of decimal
digits in the exponent. (FORTRAN programmers are familiar with these as I,
F, and E formats, respectively) At each stage, a representation is rejected
if it would require more than Width ASCII characters to represent the
number according to the specifications in the Free_Format record.

The number of significant digits never exceeds 19 and may be further limited
by MaxSig.

Integral format is attempted only if x containg a value that would fit
exactly in a Comp. The integral format of ten billion is 10000000000, but
3.14, not being an integral value, is not displayed in integral format. Wwhen
the Free_Format field Int_EForm is true, then numbers like ten billion are
shortened to 1E10 by converting three or more trailing zeros to an E and
expanent.

A string in ffxeg decimal point format might look like '123.456' or
*.00000000000234565'. MaxSig specifies the maximum number of digits that
will be displayed. Sig_FForm determines how MaxSig is applied. If
Sig_FForm is TRUE then there will be no more than MaxSig significant
digits. Significant digits are counted from the first nonzero digit to the last
nonzero digit. Thus 123456000000., 123.456, and .0000000000123456 all have
six significant digits. If Sig_FForm is FALSE then there will be no more
than MaxSig digits after the point. Thus 10000000000000.123456, .123456, and
000001 all have six digits after the point.

D-42

Fascal Relerence Msnual Flogling-Foird Arithmetic

[|

After rounding to the specified number of decimal digits, which may be
= reduced to fit in Width, trailing zeros after the point are ignored. Thus if
the number, rounded to six digits after the point, was 122.456000, the last
three zeros would be deleted. Sometimes all the digits after the point might
,,,,, f be removed, as in the case of 123.000000, which would be truncated to '123.
Wwhether a trailing point is retained is determined by the Free_Format field
Trail_Point: if TRUE, then s := '123"; if FALSE, s := '123'. Note that the
original value of x in this example could not have been 123 exactly; x would
then have been displayed as '123' in integral format. Instead it might have
been 123.0000000000001 before rounding to six digits efter the point.

Finally exponential format is tried. MaxSig specifies the maximum number
of significant digits to be displayed. If x is ten billion, then the exponential
display will depend on the specification as follows:

Treil_Point: Plus_EForm: String:
False False 1E10
- True False 1.E10
B False True 1E+10
True True 1.E+10

- when a single- or double-precision number is converted to extended and then

: converted to ASCII in free format with no more than 18 significant digits,
then the ASCII string will satisfy the requirements of the IEEE Standard. But
_ a free form string that, for instance, displays 12 digits in exponential
format, may differ by one in the last digit from the string that would be
obtained by calling S2Str or D2Str with form = FLOATDECIMAL and digits =
12. Both strings satisfy the 1EEE Standard; a difference may only srise in
the extreme exponent cases for which the Standerd allows more than one
possible result for conversion from binary to decimal.

Denormal x is always represented in exponential form with four exponent
digits.

. In LisaCalc, the default formatting conventions are MaxSig = 14, Trail_point
= FALSE, Int_EForm = FALSE, Plus_EForm = FALSE. Sig_FFarm is set
- FALSE for numbers less than one in magnitude, and TRUE otherwise.

— Examples:

_ MaxSig = 19
Sig_FForm = TRUE

- Trail_Point = TRUE
Int_EForm = TRUE
Plus_EForm = FALSE

D-43

Fascal Reference Manual

Floating-Foirkt

Input = 1234567890.0123456789

Width

Input = 00001234

>= 25
23..24
8..22

Input = -6.023e-23

>= 25
10. .24
9
8

<= 7

String

'1234567890.012345678"
'1234567890.01234568'
'1234567890.0123457"
'1234567890.012346'
'1234567890.01235'
'1234567890.0123"
'1234567890.012'
'1234567890.01'
‘1234567890 "
'1234567890. "
"'1.234568E9'
'1.23457€9"
'1.2346E9'

'1.235€9'

'1.23€9'

"1.269'

'1.€9'

'.00001233999999999999999"
'1.233999999999999999%E-5"
'1.234E-5'

:1.23E—5'

'~6.022999999999999999%E-23"
'-6.023E-23'

'-6.02E-23'

'-6.E~23'

'~-6.E-23"

D-44

Arithmetic

4

e

Fascal Reference Manusl Floating-Foird Arithmetic

DA4.7 Carectly Rounded Corwersion Between Binary and Decimal
Const LSigDiglen = 30 ; { Length of significand string. }
Type LongSigDig = string[LSigDigien] ;

LongDecimal = recoxrd
sgn : 0..1;
exp : integer ;
sig : LongSigDig :
end ;

Procedure XZLDec (f : DecFoom ; x : Extended ; var vy : LongDecimal);
{ Converts x to y, correctly rounded according to f. }

Procedure LDec?X (prec: RoundPrecision; x: LongDecimal; var y: Extended)
{ Converts x to y, correctly rounded according to prec. }

The procedures X2LDec and LDec2X correspond to X2Dec and Dec2X, and
work similarly, only more accurately and much more slowly. The IEEE
Standard does not require correctly rounded conversion for single- and
double-precision numbers for extremely large and small exponents, and does
not specify conversion at all for extended-precision numbers. The results
returned by DeczS, S2Dec, Dec2D, and D2Dec may differ by one unit in the
least significant bit or digit from the correctly rounded results, while the
results returned by Dec2X and X2Dec may differ by more than one unit from
the correctly rounded results.

The correctly rounded conversion routines accept or produce up to 30 decimal
digits. X2L.Dec produces correctly rounded LongDecimal recorde according to
its DecForm parameter. To obtain correctly rounded results from Single,
Double, or Extended arguments, use one of the sequences:

SZX(s, x) ;

X2lDec(f, x, v) ;
OR

D2X(d, X) ;

X2Dec(f, x, v) ;
OR

X2lDec(f, x, v) ;

LDec2X rounds correctly according to its RoundPrecision psrameter. To
obtain correctly rounded single, double, or extended results, use one of the
sequences:

Fascal Reference Manusl Floating-Foint Arithmetic

LDec2X(REALPRECISION, x, v) ;
X8(y, s);

OR

LDecZX(DBLPRECISION, x, v) ;
XD(y, d);

OR
WDecZX(EXTPRECISION, x, v) ;

No correctly rounded corwersions to DecStr strings are provided, but the
routines StrzDec and Dec2Str may be tricked to spply to LongDecimal
arguments. To convert a DecStr x with no more than 19 significant digits to
a correctly rounded Extended y, do:

var t : Decimal ;

pd : * LongDecimal ;

index := 1 ;

StrDec(x, index, t, ValidPrefix) ;
pd := pointer (ord4(@t)) ;

IDec2X(EXTPRECISION, pd®, v) ;

and to convert an Extended x to a string y correctly, do:

var t : LongDecimal ;
pd : * Decimal ;

X2ADec(f, x, t) ;
pd := pointer (ord4(Bt)) ;
Dec2Str (f, pd*, v) ;

X2LDec sets the inexact flag appropriately. LDec2X sets the inexact,
underflow, and overflow flags appropriately.

The time required to convert correctly rounded is proportional to the square
of the exponent. The most extreme double precision numbers take a few
seconds, but extendeds with very large or small exponents require up to
twenty minutes. Thus these routines are too slow to use habitually for
converting the full range of extended-precision numbers; use these routines
for applications such as obtaining the best possible approximations to
tabulated values of mathematical constants such as pi or e.

D48 Financial Analysis

Procedure Fin Npv ({ Compute net value of series of payments. }
rirst, { First payment period. }
last, { Last payment period. }
D-46

Fascal Reference Manual Floating-Foint Rrithmetic

net : integer ; { Period at which net value is to be
computed; need not be between first and
last. }

rate : Extended ; { Periodic interest rate. }

var Npv : Extended ; { Net payment value. }
Procedure payment (i : integer ; var pmt : Extended)
{ User—supplied procedure to provide pmt, the payment at
period i. }
{ Fin Npv guarantees first <= i (= last. }
)

Procedure Fin Return ({ Analyze series of payments for external or
internal rate of return. Discounting by
external rates may be specified for positive or
negative payments or both or neither. Standard
internal rate of return is obtained by
specifying, for example, negperiod, posperiod :=
first—1. A conservative external rate of return
is obtained by considering negative payments as
out from the investor, positive payments as in
to the inwvestor, and specifying:

negperiod := first ;

posperiod := last ;

negrate := guaranteed safe rate of return ;

posrate = expected average portfolio
reirvestment rate of return. }

first, Initial payment period. }
last : integer ; Final payment period. }
negperiod, posperiod : integer ;

{ Periods to which negative or positive payments
are to be discounted; if ¢ first or > last then
corresponding payments axe not discounted. }

negrate, posrate : Extended ;

{ Discount rates for negative and positive payments
respectively; ignored if corresponding period
does not satisfy first <= .. .period (= last. }

var ncs : integer ; { ExTor code = number of changes of sign
among adjusted payments; on nommal return
ncs = 1.ncs = -2 if an inf or NaN
payment was supplied. }

var ret : Extended ; { Rate of return: if ncs = 1 then ret will
contain the single real root > ~1; if ncs
>1 is odd, then ret will contain some
real root > -1; if ncs) 1 is even ret
may contain a real root > —-1; otherwise
ret will contain NaN. }

D-47

Fascal Relerence Manual Fioating-Foirt Arithrnetic

Procedure payment (i : integer ; var pmt : Extended)
{ User-supplied procedure to provide pmt,
the payment at period i. }
{ Fin_Npv guarantees first <= i <= last. }

Fin_Npv is used to calculate the time value of a series of payments.
Typically, a series of payments, to occur at times 1 through n, is to be
discounted to a net present value at time O using a fixed discount rate r.
The contribution of the first payment pl will thus be p1/1+r); the next will
be p2/1+r)°2; the last pn/(1+r)"n. For this typical problem, first=1, last=n,
net=0, and rate=r.

For a fixed series of payments, Vi, the net value at time i, and Y|, the net
value at time j, are related by:

Vi = ¥Yj * compound(rate, i-j).
So if the net value is zero at one time, it will be zero at any other time.

Note that discount rates <= -1 are meaningless from a financial point of
view.

Often a transaction involving payments between two parties at different
times is regarded as fair if the net discounted value of the payment series is
zero at the agreed upon discount rate. Alternately, given a series of
payments regarded ss fair, we might interpret the effective interest rate a=
one making the net value of the payments zero. Note that roundoff error
may prevent the net value from ever being exactly zero. Furthermore, the
net value can not be zero if any payment is infinite or a NaN, or if all the
nonzero payments have the same sign.

Fin_Return is designed to solve the problem mentioned above: given a series
of payments, what discount rate would result in a net value of zero? This is
the conventional form of the Internal Rate of Return (IRR) problem. In this
form, it should be obvious that there will not always be a rate carresponding
to every series of payments: if any payment is infinite or NaN, or if all the
payments have the same sign, then no discount rete can ever meke the net
value zero. It turns out in other cases that there may be no such rate or
there may be several rates with equally valid right to be called "internal rate
of return." Modified methods for solving such problems will be discussed
later.

To obtain a conventional internal rate of return, in the Fin_Return calling
sequence set negperiod end posperiod to, for instance, first-1 or lest+1. Then
after the call, the output parameter ncs returns a code to aid in
interpretation of the result ret.

Fin_Return will not attempt to compute an internal rate of return if any
payment is infinite or NaN or if all payments are zero or all nonzero

D-48

Fascal Reference Manusl Floating-Foint Arithmetic

payments have the same sign. Fin_Return will return a NaN with code
NaNIRR in these cases. Ncs = -2 if any payment was infinite or NaN;
ncs = O in the other cases mentioned.

If ncs »= 1 then its value is the numbker of changes of sign in the payment
seriez. A change of sign occurs whenever a nonzero payment has different
sign from the previous nonzero payment. Thus, in the sequence:

0 10,8,7,0,13,0,-0,1,0,-1,0,0,-7,0

there is exactly one change of sign, between +1 and -1. The zero payments
are ignored in computing changes of sign.

The numker of changes of sign is important: if it is an odd number then the
internal rate of return problem has one or more solutions; if it is an even
number >= 2 then the internsl rate of return problem may have one or more
solution. Generally, the number of real solutions ¥ -1 is the number of
changes of sign or is less than that number by an even integer. So a series
with three changes of sign has three or one internal rates of return while a
series with four changes of sign has four, two, or none.

Fin_Return always computes an interpal rate of return if ncs is odd. If ncs
= 1 then assuredly ret contains the only internal rate of return. If ncs »>= 3
then ret containg an internal rate of return but there may be others and
there is no assurance that the value in ret is appropriate in the user's
context.

If ncs >= 2 is even, Fin_Return will search for an internal rate of return but
will soon give up if it can't find any. In the latter case ret will be NaNIRR.
There is no way to distinguish the cases in which no internal rate of return
exists from those in which Fin_Return is unable to find one. If ret is not a
NaN then it is a valid rate of return but there is at least one other that may
be equally valid.

when there are two or more changes of sign the interpretation of the
internal rate of return is evidently not a simple matter. One may plot the
net present value of a series as a function of discount rate. Points where
the graph crosses the x-axis are internal rates of return. Perhaps one of
these points will be otwiously suitable.

Another approach to rate of return is to simplify the series of payments until
there is only one change of sign. For instance, if there are only two
payments of different =ign, Pi at time i and Pj at time j, then the internal
rate of return r is defined by the equation:

(1+r)F = -PiPi
which should be solved by the formula:
r = expl(1ni(—(Pi+Pj)Pi)/(j-1));

Yerious methods based on this approach are called adjusted, modified,
financial management, or external rate of return. A subseries such as all the

D-49

Fascal Reference Meanual

positive payments is replaced by its discounted value at some time, using an
externally defined discount rate. If that positive subseries is replaced by a
gingle positive payment, either before or sfter all the negative payments,
then there will be exactly one change of sign and exactly one internal rate
of return. Either the positive subseries or the negative subseries or both
may be discounted; the sarme externsl discount rate may be applied to both,
or different ones may be applied to the negative and positive subseries.

As an example, consider the following series of payments:
-3,-2,2 ~1,1 IRR = =325

It has three sign changes, so there are either one or three internal rates of
return. We might discount all the negative payments to the beginning, using
a discount rate of 0.5, to get a different series:

-43/9,0, 2,0, 1 IRR = -.156

or we might discount all the positive payments to the end, using a discount
rate of 0.753, to get:

-3, -2, 0, -1, 57/8 IRR = +.055
or we might do both to get:
-43/9, 0, 0, 0, 57/8. IRR = +.100

Each of these three series has 8 unique internal rate of return, but these
rates differ according to the choices made to simplify the problem.

Fin_Return allows for sll these possibilities. To discount the subseries of
negstive payments to a single time between first and last, simply specify
negperiod to be that time and specify a discount rate in negrate. Similarly,
posperiod and posrate may be used to discount the subseries of positive
payments.

The following code fragments correspond to the previous examples:

var
p : array[1..n] of real;

procedure payment(i: integer: var pmt: Extended);
in
SzxX(p[i], pmt);

begin
S2X(0.5, negrate); S2X(0.75, posrate);

Fin Return(1, n, O, n+l, negrate, posrate, ncs, retirr, payment);

if ncs >= 1 then if not(ClassX(retirx, sgn) in [ONAN,SNAN]) then

{ retirr is a conventional internal rate of return. } ...

D-50

Floating-Foirt Arithmetic

TN

Fascal Relerence Manual Floaling-Foirt Arithmetic

Fin Return(i, n, 1, m+1, negrate, posrate, ncs, retneg, payment);
if ncs >= 1 then { retneg is a return rate based on discounting
negative payments to the beginning. } ...

Fin_Return(i, n, O, n, negrate, posrate, ncs, retpos, payment);
if ncs »= 1 then { retpos is a return rate based on discounting
positive payments to the end. } ...

Fin_Return(1, n, 1, n, negrate, posrate, ncs, retx, payment);
if ncs >= 1 then { retx is a return rate based on discounting all

payments to the beginning or end. } ...
end,-

LisaCalc adopts the corwvention that negative payments are discounted to the
first time period, and positive payments are discounted to the last time
period. If only cone discount rate is specified, it is used for both negrate and
posrate.

A common type of complex investment involves several payments in followed
by several payments out. Even though with only one sign change there is a
unique internal rate of return, it may not be meaningful since it does not
reflect external conditions. A frequent bazis for analyegis is to require that
at the beginning, sufficient funds must be on hand ta be able to guerantee
all payments in. So all the payments in are discounted to the firet period
using a "safe" guaranteed rate of return such ss the return on a conventional
savings account. Payments out, on the other hand, are to be reinvested at
another rate which is probably higher than the safe rate. This rate is
sometimes called the “"portfolio” or "reinvestment” rate and represents the
average return of the irvestment portfolio. These externally defined safe and
reinvestment rates modify the rate of return of the investment.

When analyzing complex investments, remember that the computed results
are no better than the sssumptions from which they were developed. In
particular, measures of rate of return do not reflect the risk that some of
the payments might not occur as expected.

D.49 Zero of a Nonlinear Function

Procedure Math_Solve ({ Computes zero of function. }

estl, est2 : Extended ; { A priori estimates of zero. }

var res : Extended ; { r(res) may = O or NaN or its sign may
differ from one of its neighbors or it
may merely be the x with minimal
abs(f(x)) among those x sampled by
Math_Solve. The user must decide the
significance of the result res. }

D-51

Fascal Reference Manual Floating-Foint Arithmetic / A

procedure f (x : Extended ; var fx : Extended)
) { User-supplied procedure to evaluate fx = f(x). }

Math_Solve is used to find a zero z of a nonlineer function f(x), thet is, &
place where f(z) = 0. Z is also called a root of the equation f(x) = 0.

The user must specify the function f which should be at least piecewise
continuous; the better the function, the better Math_Solve can perform. The
user may slso specify one or two starting guesses. The user may supply
NaNs as guesses; then Meth_Solve will generate its own guesses which
usually will not be as efficient as those the user might have supplied. Zero
finding is tricky enough with good guesses, so the user should supply the best
information he can.

Internally, Math_Sclve hes two main phaeses: the search for a sign change
interval and the refinement of such an interval. A sign change interval is an
interval for which the values of f at the endpoints have different signs. If
the function is continuous it will have a zero in the interval; if 1/f(x) is
continuous then f will have a pole in the interval. Thus finding a sign
change interval is critical. Thet interval is sought using a secant method
whenever thet is productive, and a perabolic method otherwise. After the
sign change interval is found, the secant method is used unless bisection is
faster. If no sign change interval is found, Math_Solve eventuslly gives up,
leaving in res the point at which the sampled function's magnitude was
minimal.

Only the user can determine the ultimate significance of res. That's because
nonlinear functions display a veriety of complicated hehaviors that can't be
handled equslly efficiently by one subroutine. Many functions such as f(x) =
1 + x * x have no real zeros while others may hide their zeros where
Math_Salve can not find them.

To interpret res, compute f(res). Seldom do we find the happy circumstance
that f(res) is O without generating any exceptions. If inexact, underflow, or
other exceptions were signalled then the user must decide whether to ignore
themn or to subject res to the further tests described below. If f(res) is &
NaN then Math_Solve has wandered outside the domain of validity of f. The
user might want to extend the domain of f and try again. Sometimes such
extension is trivial, 88 in the case of a remaovable discontinuity.

Suppose f(x) were defined as sin(x)/x; then at x = O its value is a NaN, and if
Math_Solve were to look there it would stop with res = 0. Remove this
discontinuity by defining f(x) by

if x = 0 then f(x) == 1 else f(x) = sin(x)/x;

A tougher case is a function like f(x) = sgrt(x) - 2 ; if Meth_Solve happens to
look at x ¢ O it will stop on & NaN. In this case, extend this definition of
f(x) leftward:

Fascal Reference Meanusl Flogting-Foint rRrithmetic

if x ¢= 0 then f(x) = -2 else f{x) .= sqrt(x) - 2;

Many such domain problems can be avoided if the starting guesses are
sufficiently close to the desired zero.

Suppose now that f(res) is a nonzero number or infinite. One possibility is
that res is actually a zero of f but that the computed value f{res) is nonzero
because of roundoff. Another possibility is that the true zero of f does not
lie at a machine representable number but lies between res and one of its
adjacent machine representable numbers. A third possibility is that res lies
at ar near a pole rather than a zero of f. Let's consider these cases in turn.

Often it is possible to compute an analytical error bound ef(x) for & function
f(x) that indicates a bound on the roundoff error in the function at x. Then a
reasonable approach is to evaluate f(res) and ef(res) and accept res as an
approximate zero of f if the error bound dominates the function value, that

is, abs{f(res)) <= abs(ef(res)).

Books on rounding error analysis provide examples for constructing analytical
formulas for error bounds. Another possibility is to use interval arithmetic
to obtain computational error bounds. The directed rounding modes of 1EEE
arithmetic are helpful in implementing interval arithmetic.

A simpler alternative that suffices in many cases is simply to evaluate f{res)
in each of the four IEEE rounding directions. If f is typical, then f(res) will
be different in each rounding direction. If all four values are nonzero with
the same sign, it is usually safe to assume that the true value of f(res) is
not O. If one of the four values is O or if the signs vary, then the true value
of f{res) may well be O and res may be teken to be an approximate zero of f.
Furthermore, it often suffices to compute f(res) only in upward and downward
directions.

Turning now to the case that the true zero of f is not a machine
representable number, we may evaluate f at both of res's neighbors. If the
sign of f et & neighbor differs from the sign of f(res), then f must have
either a zero or a pole between res and its neighbor. On an interval in
which f changes sign, it's not possible to distinguish zeros from poles. Other
knowledge of the function, such as a bound on a derivative, may be helpful if
this issue is in doubt.

If f is known to have a pole in the region of interest, it may be useful to
remove the pole analytically before calling Math_Solve. For example, instead
of solving f(x) = 3 - 1/x, solve f(x) = 3x - 1 to aveoid the pole at zero. But
beweare of introducing spurious zeros this way.

If none of the above produces an indication of a zero st or neer res, then it
msy be that res is merely that point at which abs(f(x)) was minimized among
those x sampled by Math_Solve. Since many functions do not have real
zeros, Math_Solve will eventually give up searching if for each point it tries,
f has the same sign and there is no significant decrease in the magnitude of
f. If Math_Solve ever finds two points for which f has different signs, then

D-53

e e P e PE————— —

Fascal Reference Manusl Flosting-Foint #rithmetic /‘7

it will persist in searching for a solution until it finds a point x where f(x) is
0O or NaN; failing that, the sign change interval will be reduced in size until
the endpoints are adjacent machine representable numbers. But if the
function value seems to vanish between two such numbers, then it makes
sense to accept one of them as a reasonable approximation of the zero.

It must be emphasized that at best Math_Solve will find a zero of the
function defined by the procedure f, which may not be the same function the
user had in mind when he wrote that procedure. Because one function may
have many mathematically equivalent expressions, it is the user's
responsibility to find an expression that will not produce aratuitously wrong
results in the presence of roundoff. Two examples of helpful principles:
Avoid or minimize rounding error when possible (e.g., x/10 instead of 0.1*x]),
and cancel early rather than late (e.g., (x+y)*(x-y) rather than x**2 - y**2),

The following example is intended to find a zero of a polynomial function
MX)HCO‘ Xn*Ol‘Xn-l‘...*C.}'_1*X*Cn

Note that the function is evaluated in extended precision using Horner's
method of nested multiplications and additions, and the Math_Solve result r
is evaluated sccording to the quidelines discussed above:

const n = { degree of polynomial >= 0 } ;

var c : arxray [O0..n] of real ;

procedure peval (x : Extended ; var px : Extended) ;
var i : integer ;

begin { peval }

SZX(c[0], px) ;

for i := 1 to n do begin { px := px * x + ci }
MulX(x, px) ;
m(‘::[i']l px);

end {px:=px*x+ci}

end { peval } ;

Math_Solve(g1, g2, 1, peval) ;

ClearXcps ;

fr := p&Vﬂl(I) ;

if ClassX(fr, sgn) in [Qnan, Snan] then
{extend function domain and try again}

else if (ClassX(fr,sgn) = ZFRO) and { no exceptions } then
{ accept r as zero }

Fascal Reference Manual Flogting-Foint rrithmetic

else begin
SetRnd{ DOWNWARD) ;
fd := pevall(r) ;
SetRnd(UPWARD) ;
fu := peval(r) ;
SetRnd(TONEAREST) :
if SignOfX(fd) <> SignOfX(fu) then
{ accept r as zero }
else begin
left := NextX(r, neginf); {neginf contains negative infinity}
right NextX(r, posinf); {posinf contains positive infinity}
fleft -= peval(left) ;
fright -= peval(right) ;
if (SignOfX(fleft) <> SignOFX(fr))
or (SignOfX(fright) <> SignOfX(fr)) then
{ accept r as a zexo }
else { no zero was found }
end ;
end ;

DA4.10 Linear Algebra
The linesr algebra routines in MathLib solve common algebraic and
statistical problems using methods that are independent of the storage
formats of vectors and matrices. Prior to discussing specific routines we
shall review relevant aspects of linear algebra.

D.4.10.1 Vectars and Linear Transfarmations
Linear algebra is concerned with elements in vector spaces and the class of
linear transformation= upon them. If that sounds too abstract, think about
this specific example: The vector space is the set of points in a graphics
window, forming a picture. One point, the origin, is zpecial; often it is one
of the corners. Typical lineer transformations include the identity
transformation, which does nothing, scaling transformations, which act like &
zoom lens to magnify or reduce the picture, and rotations, which rotate the
picture by a fixed angle relative to the origin. It is possible to combine
linear transformetions to create new ones.

The simplest way to understand the effect of a linear transfarmation in two
dimensions is to consider what it does to the unit circle, which is a circle of
radius one around the origin. The identity transformation leaves the circle
unchanged; scaling transformations make the circle bigger or smaller;
rotations leave the unit circle seemingly unchanged, although circles centered
elsewhere are rotated as a whole. The unit sphere is the three-dimensional
counterpart to the unit circle.

Maost linear transformations can be inverted. For instance, a scaling
transformation that magnifies by two can be inverted by the inverse

D-55

!

i |

Fascal Refsrence Manwsl Flogting-Foimt rRrithmetic

transformation: a scaling transformation that reduces by two. A 45-degree
clockwise rotation can be inverted by a rotation of 45 degrees
counter-clockwise.

Transformations that have inverses are called nonsingular; transformations
without inverses are called singular. To understand singulerity, consider the
cases of ordinary multiplication and division of numbers. The transformation
"multiply by x", a8 in z = x * vy, is nonsingular unless x = 0. The inverse
transformation "divide by x", as ihy := z / x, does not exist when x = Q.
We could define a "pseudo-inverse" transformation:

ifx=0theny :=0elsey := 2/X ;
which exists for any x, but we would not expect to recover the original value
of v unless by luck it were 0.

Two-dimensional linear transformations can only map the unit circle in
certain ways. Nonsingular transformations map the unit circle into a circle
or an ellipse. Singular transformations map the unit circle into a line
segment or point. There are no other possibilities. A singular linear
transformation that maps the unit circle to a line segment is not one-to-one;
it maps more than one peint in the unit circle to the same point on the line
segment. Such a transformation has no inverse becauze a point on the line
segment rnay hsve come from more than one point on the unit circle, and
there's no way to tell from which it came. However, pseudo-inverses have
been defined which make somewhat arbitrary choices; all linear
transformations hawve pseudo-inverses.

D.4.10.2 Transformations Between Spaces of Different Dimension

Transformations may be defined which map elements of one vector space
into elements of another. For instance, a painting of a three-dimensional
scepe is based on artistic perspective convention for mapping three
dimenzions into twa.

Linear transformations that map vectars from two dimensions to three can at
bhest map the unit circle into a two-dimensional object in the
three-dimen=zional space. Tranzformations from three dimensions to two map
the unit sphere into at most a teo-dimensional object, of course. Generally
speaking, a tranzformation that maps the unit circle or sphere into an object
of the maxinmum possible dirnenzionality i3 said to be of full rank.

Otherwise it is zaid to be rank-deficient. When the two spaces are of the
same dimersion, then "full rank"” iz the same as "nonsingular" and
"rank-deficient" iz the same az "singular."

D4.103 Armrays and Matrices

Prograrnming languages deal with arrays of numbers rather than elements of
a vectar space and transformations upon them. Arrays of numbers can have
any meaning that the programrner wishez to assign, but conventionally
vectors are represented by an array with one dimenzion. Thus an element of
a two-dirnenszional vector space might be declared as

E—

Fascal Reference Manual Floating-Foirt Arithmetic

u : array [1..2] of real ;

where 1] is the first coordinate, along the x axis, and (2] is the second
coordinate, along the y axis, of a point in a two-dimensional space. The size
of a vector is measured by its Euclidean length, which is the square root of
the sum of the squares of its elements:

lengthu := sqrt(sqr(u[1]) + sqr(u[2])) ;

Linear transformations mapping n-dimensional spaces to m-dimensional
spaces are conveniently declared as

a: array [1..m, 1..n] of real ;

The following discussion uses the term "matrix" to refer to an array
representing a single linear transformation. The individual components of a
matrix A depend on the linear transformation that A represents.

In general, the components of an array reprecenting a two-dimensional linear
transformation can be determined by examining the effect of the
transformation on the unit vectors E1 and E2 corresponding to the
coordinates (1,0) and (0,1). The first column of A contains the coordinates of
the result of applying the transformation to E1 and the second column
contains the coardinates corresponding to E2.

In two dimensions, to represent the identity transformation:
for i :=1to 2do for j :=1 to 2 do
if i=j then a[i, j] := 1 else a[i, j] :=0;
while to represent a three times magnification:
for i -=1to2do for j :=1to 2 do
if i=j then a[i, j] := 3 else a[i, j] :=0;
and to represent a rotation through angle t:
a[1,1] := cos(t) ; a[l,2] :
8[2, 1] = —sin(t] ; 3[2, 2] :

One singular transformation is the zero transformation which maps everything
to the origin:

for i := 1to2dofoxr j := 1 to 2 do
a[i, j] :=0;

Another singular transformation maps any vector vertically onto the x-axis:

for 1 :=1to2dofor j :=1to 2 do
a[i, j] :=0;
8[1,1] =1 ;

It maps the unit circle into a line segment on the x-axis.

+sin(t) ;
cos(t) ;

Sometimes it is convenient to think of a two-dimensional array [1..m, 1..n),
not as a transformation from an n-dimensional vector space to an

D-57

Fascal Reference Menual Floating-Foirt Arithmetic

m-dimensional vector space, but as a collection of n distinct vectors of
dimension m. For instance, a triangle is defined by specifying its three
vertices, so an array of three columns may be used to represent a triangle.

With the conventions for vectors and transformations outlined above, there
are operations for applying transformations to one or more vectors,
composing transformations, finding the vector that would be transformed to a
given one, and computing inverse and pseudo-inverse transformations.

Composing Transformations

To represent a transformation C which first performs A, then performs B,
multiply the matrix B times the matrix A; in mathematical notation, C := B
* A. In Pascal you could write

var
a b c : arxay [1..n, 1..n] of real ;

for i :=1tondo for j := 1 to n do begin

t :-"-'-0;
for k :=1tondot :=t+blikl*alk j];
clilj] :-t;

r

although the matrix multiplication routine in MathLib is better. If you ever
wondered why the textbook definition of matrix multiplication is so
complicated, it is to insure that transformations can be combined by
multiplying their matrices in this way. Matrix multiplication only works
when the second dimension of B is the same as the first dimension of A,
because it only makes sense to compose two such transformations when the
result space of A is the same as the operand space of B.

To apply a transformation represented tw an array A to a vector X, simply
multiply them together to get the transformed vector B:

B:=R*X
Note that X might represent one or more vectors depending on the number of
columns of X.
Linesr Equations
The sssignment B:=A*X computes B, given A and X. The inverse problem, to
compute X, given A and B, is usually called "solving & system of linear
equations." The dimensions of B, A, and X must conform so that A and X

could be multiplied to get B. If A is square and nonsingular, there will
always be a unique X satisfying B=A*X.

MathLib procedures find X directly from B and A. Another way to find X is
to find P, the inverse transformation of A, and apply it to E:

X :=P*B

D-58

pr—
4

,\
. N

\

S,

Fascal Reference NManual

Floating-Foirt Arithrnetic

But computing P explicitly is always slower and less accurate than computing
X directly from B and A.

Linear Least Squares

The equation B=A*X sometimes has solutions X even when A is singular or
not square. Sometimes there is more than one such X, at other times there
iz none. All these cases can be generalized as the "linear least squares"
problem: Given B and A, find an X that minimizes the length of the residual
R:=B-A*X. Such an X always exists; X will be unigue if and only if Y=0 is
the unigque solution of the equation O=A*Y,

Clearly X solves the linear equation problem B=A*X if and only if R:=B-A*X
is zero. Therefore, MathLib provides just one set of procedures to solve the
linear least squares problem; these procedures can also be used to solve
linear equations. A solution X is always computed directly from B and #A; if
there is more than one solution X, MathLib returns an X whose length is
small, but not necessarily minimal among all X minimizing the length of R.

Only square nonsingular matrices A have inverses, but every matrix A has a
pseudo-inverse P, which may be applied to B to compute X:

X :=P*B

But computing P explicitly is always slower and less accurate than computing
X directly from B and A.

An even more inaccurate method for obtaining X is to solve the linear
equetion system:

(AT*B) = [AT*R) * X
using AT, the transpose of A.

Avoid methods that require P or AT*A rather than A; they are inaccurate, or
slow, or both.

Existence

MathLib always computes an x to solve a linear least squares problem. How
can you tell whether that x is also & solution of the system of linear
equations B=A*X?

That depends on the shape of A. If A has at least as many columns &3 rows,
and A is of Tull rank, then x would satisfy, in the absence of rounding
errors, B=A*X. Fullness of rank is indiceted by a condition number greater
than zero, discussed in Section D.4.10.4.

If A has more rows than columns or is rank deficient, then it will be
necessary to actually compute the residual R:=B-A*X to see if it is zero or
negligible compared to B.

Uniqueness
MathiLib always computes some X, even when the linear equation system
B=A*X has zero, one, or many solutions. The multiplicity of solutions may

D-59

Fascal Reference Manusl Floating-Foint Arithmetic £

be seen even for b=a*x where b, a, and x are real numbers. This equation
has a unique solution x=b/a if a=0. But if 8=0, then b determines the number
of solutions. When a=0 and b=C, any value of x is a solution; when a=0 and
h#0, no value of x is & solution.

But the related problem "minimize | b - ax | always has at least one
solution x. When a=0, then MathLib chooses the solution x=0, regardless of
b. This is because among all the solutions x, namely all the real nurnbers,
x=0 has the smallest magnitude. .

When MathlLik hes computed a solution x that minimizes R=B-A*X, how can
vou tell that is is unique? That depends on the shape of A. If A has more
columns than rows, then X is never unigque. If the number of A's rows is
greater than or equal to the number of A's columns, then X will be unique if
and only if A is of full rank. Fullness of rank is indicated by a condition
number greater than zero.

D.4.104 IIl-Conditioned Problems
All the operations we have discussed are subject to roundoff errors during
each floating-point operation. This has important implications because
roundoff errors blur the distinction between matrices of full and deficient
rank. A matrix may be of full rank, but if it is close enough to a
rank-deficient matrix, the result X may not be satisfactory: it may be far
from the correct solution X, and the residual R := B - A * X might not be ST
minimal. The condition number COND supplies an estimate of the effect of
roundoff; COND will be zero for singular and rank-deficient matrices A and
greater than zero for nonsingular and full rank &. The largest possible value
of COND is 1, which is ettained by the identity and rotetion metrices, among
others. Generally, you can not count on more than 18+LOG10{COND)
significant digits being correct in the largest component of X, with fewer
reliable digite in smaller components. But occasionally X will by chance he
more accurate than COND suggests.

COND is actually an estimate of the relative change in A to make A into
the nesrest rank-deficient matrix. Matrices with small COND often cause
trouble because they are close to rank-deficient. The corresponding
transformations map the unit circle into very skinny ellipses, which from a
distance look much like the line segments generated by rank-deficient
transformations. Two points on opposite sides of such a skinny ellipse may
be very close together, perhaps within a rounding error, but the corresponding
points on the unit circle that they were mapped from may be much further
apart. So small errors like rounding errors can cause big errors when
computing solutions X to linear equations or least squares problems.

DA4.105 Detaminants
MathLib provides routines to obtain the determinant of a square matrix. The
determinant is not defined if the matrix is not squere.

The determinant of a square matrix has valid uses in statistical
computations, but the determinant is most often used inappropriately as a x

D-60

Fascal Reference iManual Floating-Foint Arithmetic

criterion for singularity. The determinant of a singular square matrix is zero
and the determinant of a nonsingular square matrix is not zero, but a
nonzero determinant tells nothing about the condition of the problem.
Consider a two-by-two matrix A with u and v on the diagonal, |u| < |v|, and
zeros off the diagonal. The determinant is u*v, and the condition number is
Jufv|. The distance to the nearest sinqular matrix is |ul; this distance
relative to A is |u/v|, the condition number. Both the determinant and
condition number are zero if A is singular, an infrequent occurrence; only the
condition number is helpful in the far more common caese when A may be
nearly, but nat quite, singular. Since the determinant can only be used to
distinguish singular from nonsingular, and rounding errors blur this distinction,
the use of the determinant is not recommended. Use COND instead.

DA4.10.6 Rerative Improvement

Iterative improvement iz a technique for refining a first approximation to a
solution of a linear equations or linear lesst squares problem. Given an
approximate solution X0, iterative improvement computes a residual R := B -
A * X0 and then solves the equation R = A * DX uging a factorization of A.
Then the improved solution is X1 := X0 + DX. Usually one iteration
improves the residual and mcves X1 closer to the correct answer.
Subsequent iterations are sometimes helpful but they mey warsen R, Xn, or
both.

The LinSys operators in LizaCalc and Lisa BASIC aslways perform one
iteration of iterative improvement.

D.4.10.7 Statistical Computations with ATA

Many important statistical problems of regression are formulated in terms of
the matrix ATA, which is the matrix product of AT, the transpose of A, with
A itself. For instance the solution of the linear least squares problem

“choose X to minimize the length of B-A*X" is the same as the solution of
the linear equsation

ATA* X = AT * B

in exact arithmetic. But since the solution must be computed in the
presence of rounding errors and A may be rank-deficient or nearly so, least
squares problems are better solved without forming ATA.

MathLik does provide two procedures for solving problems formulated in
terms of ATA. Neither computes ATA or its factorization; instead the
solutions are more accurately determined from the factorization of A itself.
Standard errors can be determined from the diagonal elements of the inverse
of ATA; these can be obtained by solving

ATA * X = Identity

Determinants of ATA are of interest when ATA is a correlation matrix.

D-61

g e Ay e e

Fascal Relerence Manusl Flogting-Foird Rrithmetic

D4.108 Linear Algebra Procedures

Procedure Mat_Mult (t Matrix multiplication B -= A * X_ }

n, Rows of A = Tows of B. }

p, { Columns of A = Tows of X. }

m : integer ; { Columns of X = columns of B. }

overlap : boolean ; { True if B overlaps A or X; temporary
B is t}xeated on heap and copied at
end.

var exxror : boolean ; { True if failure due to lack of heap
space. Not possible if overlap
false. }

procedure afetch (i,j : integer ; var aij - Extended)

{ User routine to provide aij := A[i, j]. }

{ Afetch may assume 1 <=i ¢=n, 1 ¢= j<=p. }
procedure xfetch (i,j : integer ; var xij : Extended)
{ User routine to provide xij := X[i, j]. }

{ Xfetchmay assume 1 <=i <=p, 1¢= j<(=m._}

L1

e

procedure bstore (i, j : integer ; bij : Extended)
{ User routine to stare B[i, j] := bij. }

] { Bstore may assume 1 <= i ¢=n, 1 ¢=j <=m. }

Procedure QR Factar ({ Compute the QR factorization of
matrix A.}

n, { Number of rows of A. }

p : integer ; { Number of columns of A. }

pivot : boolean ; { True if pivoting is to be pexrfoxmed,

false if not_ }
var QR : P OR Recoxrd ; { Pointer to factorization of A, which
will be created in the heap in an
internal foormat. OR will be ord(NIL)
if insufficient heap space is
available. }
procedure afetch (i, j : integer ; var aij : Extended) ;
{ User routine to provide aij := A[i, j]- }
{ Afetch may assume 1 <=1 <=n, 1 <= j<=p. }

)
Procedure QR Condition ({ Estimate condition number of
matrix whose factorization is in
R}
OR : P_UR Record ; { OR" is a decomposed matrix

produced by QR Factor. }
var cond : Extended { Estimate of condition number. }

)

D-62

Fascal Reference Manual

Procedure QR _Determinant (

R : P_OR Record ;

var det : Extended

);
Procedure QR_Solve (
m : integer ;
OR : P_UR Record ;

var exxor : boolean ;

Floating-Foint Arithmetic

{ Compute determinant of
matrix whose factorization is in

R}

{ OR" is a decomposed matrix
produced by OR Factor. }
{ Determinant . }

{ Compute X = pseudo-inverse(QR") * B
to solve linear equations or linear
least squares problems. }

{ Number of columne of X and B. }

{ OR" is a decomposed matrix
produced by QR_Factor. }

{ True if procedure failed
due to lack of heap space. }

procedure bfetch (i, j : integer ; var bij : Extended)
{ User routine to provide bij := B[i, j]. }
{ Bfetchmay assume 1 <=1 <=n, 1 <= j<=m_}
procedure xstare (i, j : integer ; xij : Extended) ;
{ User routine to store X{i, j] := xij. }
{ Xstore may assume 1 <=1 ¢=p, 1 ¢= J ¢<=m. }

);
Procedure QR_Residual (

n,
p : integer ;
m : integer ;

{ Compute residual R := B — AX for a
linear equations or linear
least—squares problem }

{ Number of rows of A. }

{ Number of columns of A. }

{ Number of columns of X and B_ }

procedure afetch (i,j : integer ; var aij : Extended) ;

{ User routine to provide aij := A[i, j]. }

{ Afetch may assume 1 <= i <=n, 1 <= j ¢=p. }
procedure bfetch (i, j : integer ; var bij : Extended)

{ User routine to provide bij := B[i, j]. }

{ Bfetch may assume 1 <=1i <¢=n, 1 (= j (=m.
procedure xfetch { i,j : integer ; var xij : Extended) ;

{ User routine to provide xij := X[i, j]. }

{ Xfetch may assume 1 <=1i <=p, 1 <= J <=nm. }
procedure rstore (i, j - integer ; rij : Extended)

{ User routine to store R[i, j] := rij.

{ Rstare may assume 1 <=1 ¢=n, 1 ¢= jJ <=m. }

) ;

D-&3

Fascal Reference Manual Floating-Foimt Arithmetic

Procedure QR_Improve ({ Pexrform one iteration to improve
the solution X of a linear equations
ar linear least sguares problem
A*X=B.)

{ Number of columns of X and B. }

{ OR" is a decomposed matrix
produced by QR_Factor. }

{ True if QR Improve failed
due to lack of heap space. }

procedure afetch (i, j : integer ; var aij : Extended) ;

m : integer ;
R : P_UR Recoxd ;

var error - boolean ;

{ User routine to provide aij
{ Afetch may assume 1 <= i <=
procedure bfetch (i, j : integer :
{ User routine to provide bij
{ Bfetch may assume 1 <= i <=
procedure xfetch (i,j : integer ;
{ User routine to provide xi}j
{ Xfetch may assume 1 <= i (=

= Ali, j].)

n 1< j<=p.}

var bij : Extended)
:= B[i, j]. }

n 1<=j<<=m. }

var xij : Extended) ;
== x[ilj]' }

p, 1¢<=j<=m }

procedure xstore (i, j : integer ; xij : Extended)
{ User routine to store X[i, j] := xij. }
{ Xstore may assume 1 <=1 ¢<=p, 1 <= j <=m_ }

4

Procedure QR_TranSolve (

{ Compute a solution for (ATA) X = B,
where T denotes transpose, given
factorization of A in QR". }

{ Numbexr of columns of X and B. }

{ OR" is a decomposed matrix
produced by OR_Factar. }

{ True if procedure failed
due to lack of heap space. }

procedure bfetch (i, j : integer ; var bij : Extended)

{ User routine to provide bij := B[i, j]. }

{ Bfetch may assume 1 (=i ¢<=p, 1 ¢(=j <=m. }
procedure xstore (i, : integer ; xij : Extended)

{ User routine to store X[i, j] := xij. }

{ Xstaxre may assume 1 <=1 ¢=p, 1 ¢= j ¢<=m_ }

m : integer ;
R : P_UR Record ;

var exror : boolean ;

) ;

Procedure QR_TranDeterminant ({ Compute determinant of ATA
given factarization of A in QR*. }
{ OR* is a decomposed matrix
produced by OR_Factor. }
{ Determinant . }

R : P_m_RBCUId ;

\)/ar det : Extended

D-64

Fascal Rererence Manusl Floating-Foirt Arithmetic

Mat_Mult performs matrix multiplication in order to determine the effect of
a linear transformation upon one or more vectors or upon another linear
transformation. The user specifies the dimensions of arrays A, X, and B, and
defines procedures that provide access to the elements of these arrays.
Mat_Mult is not concerned with the internal orgsnization of the arrays, which
may be more general or of a different structure than the array type defined
in the Pascal language. Mat_Mult calls the user-defined -fetch and -store
procedures (afetch, xfetch, etc) to fetch or store the (i,j) element of the
user's arrays.

The result B meay overlap the inputs A or X. If so, Mat_Mult must compute
a temporary copy of B prior to storing any of it lest an input he overwritten
prematurely. The boolean overlep is specified by the user accordingly. If
the user has specified that the data overlap, then Mat_Mult creates its
temporary copy of B on the Pascal heap. If the heep is nearly full then
there may not be sufficient room to hold B. Then Mat_Mult will terminate
and set the boolean error true prior to performing any computation. If the
user sets overlsp true prior to the call then he must check error after the
call. Any heap space used by Mat_Mult is released prior to returning.

The following example illustrates a typical use of Mat_Mult and
demonstrates overlapping X and & as well as how to create and access a
matrix A which is larger than 32768 kwtes, the limit for a Pascal data
structure.

const n = 1000 ;
p =100 ;
II=2;

var a : longint ;
aifactor : longint ; { aifactor * i <= 400000 requires 32 bit
integers }
ajractor : integer ; { ajfactor * j <= 400 Tequires 16
bit integers }

b:arxay [1..n, 1..m] of real ;
error : boolean ;

procedure fetcha(i, j : integer ; var aij : Extended) :
var pr : * real ;
begin
pr := pointer(a + aifactor * i + ajfactor * j) ;
SZX(px”, &aij) ;

L4

D-65

Fascal Reference Manual Fioating-Foint Arithmetic /"')

R

procedure fetchx(i, j : integer ; var xij : Extended) ;
begin

SZX(bli, j1, xij)
end -

’

Nt

procedure storeb(i, j : integer ; bij : Extended) ;

N

begin
X23(bij, b[i,j])
end ;

s

{ Create space for a on heap. }
a := FP New(ord4(n) * oxdd(p) * SizeOf(real)) ;

if a = ord4(nil) then
{ no room far al }
else begin
aifactor := SizeDf(real) * ordd(p) ;
ajfactor := SizeOf(real) ;
a := a — aifactar — ajfactor ;

{ a will point to a[0,0] to improve the efficiency of afetch. }
{ Now fill a with its elements, and b with the elements of x. }
Mat_Mult(n, p, m, true, errar, fetcha, fetchx, storeb) ;

if erxraor then { not enough room on heap } else { K }
end ;

s

D.4.10.9 QR Factorization

The MathLik routines to solve systems of linear equations A * X = B and
linear least squares problems depend on first obtaining the QR factorization

of the matrix A. Every n-by-p matrix A can be factored into a product of
two meatrices Q and R.

The n-by-n orthogenal matrix Q represents an n-dimensional rotation of the
coordinate axes and so preserves lengths of vectors. The inverse of Q is just
its transpose Q.

The n-by-p triangular matrix R has zeros below the diagonal: if 1 > j then
R[i,j] = 0. This form makes R * X = QT * B easier to solve for X than

A * X = B. In MathLib, QR_Factor performns the ractorization A = @ * R,
and QR_Solve cormputes X.

It turns out that smaller residuals B-A*X can often be obtained if a process
called column piveoting is performed during the QR factorization. This

D-66

.

i

Fascal Reterence Manuel

Floating-Foirt rrithmetic

amounts to performing the factorization first on the column of largest norm,
then on the column of largest norm among those remaining, and so en. The
effect is to produce three factors Q * R * P = A, where P is a p-by-p
permutation ratrix: an identity rmatrix with some of the rows interchanged.
Column piveting is optional in QR_Factor since some ratrices can be
analyzed in advance to show that they do not require it. But if column
pivoting has not been shown to be unnecessary then it should be performed.
Pivoting usually irmproves accuracy but it may slow down the factorization by
a factor of five to ten per cent for square matrices. LisaCalc and Lisa
BASIC always perform column pivoting.

QR_Factor stores the rfactorization QRP in a condensed internal form on the
Pascal heap. QR_Factor returns a pointer to the factorization for use by the
other QR routines. None of these other rowtines relesses the heap space
allocated by QR_Factor, so it is up to the user to merk the heap before
calling QR_Factor and to release the heap to the same meark when that
factorization is no longer required. The other QR routines that allocate
space on the Pascal heap release that space before returning. All the QR
routines that require heap space contain an error flag in their calling
sequences and terminate without storing any result if sufficient heap space is
not available.

DA4.10.10 Mathlib QR Procedures

QR_Factor is the factorization routine. Its inputs describe f; its output is a
pointer to the factorization QRP. Thet pointer and factorization are only
usefu] to the other QR routines in MathLib. About 18 + 10np bytes are
allocasted on the heap if pivoting is not requested; pivoting requires an
additional 20p bytes. Execution time is proportional to n3 for an n-by-n
matrix.

QR_Determinant computes the determinant of A very quickly given A's QR
factorization. A NaN is returned if the matrix A is not square.

QR_Condition provides an estimate of the condition number of A with
respect to solving linear equations or least squares problems. Corwventionally
this condition number is defined to be the ratio of the largest singular value
of A to the smallest, and thus ranges from 1 upward to infinity.
@R_Condition inverts this ratio and so returns a number ranging from 1 down
to 0. Furthermore, since computation of singular values is fairly time
consurning, QR_Condition only makes an estimate of the largest and smallest
singular values, which sometimes may vary substantially frormn the correct
values. Execution time is about twenty percent of the time required for the
factorization. QR_Condition requires 10p bytes of heap space.

QR_Solve finds the X in A * X = B given A's factorization. It requires
10 * max(n,p) bytes of heap space. The j'th column of X may overwrite the
j'th column of B.

D-67

Fascal Reference Manusl Fioating-Foint Arithmetic

QR_Residual provides a convenient computation of the residual
R:=8B - A* X, not to be confused with the R in the QR factorization!

QR_Improve uses QR_Residual and QR_Solve to perform one iteration of
improvement of the solution X.

QR_TranSolve computes a solution X of ATA * X = B from the QR
factorization of A.

QR_TranDeterminant computes the determinant of ATA from the QR
factorization of A; even if A has no determinant, ATA iz always square and
always has a determinant.

D4.10.11 QR Example
The following example codes a procedure LinSys that works somewhat like
the LinSys in LisaCalc and Liza BASIC, but its arguments are limited to
Pascal real arrays.

LinSys solves m linear least squares problems:
"For k=1 to m, find xj yx to minimize the length of

Yik = (8g,3X3.k + 81 ,2X2,k + ... + 81 pXp k) — Bk

Tn,k = (Bn,1X1,k + Bn,2X2,k + ... + 80 pXp,k) — bow .

If rjx = 0 then xj y also solves the m systems of linear equations
8,1X1,k * B 2X2,k * ... * 8 pXpk = Py i

®n,1X1,k + Bn,zXz,k *+ ... * OnpXp,k = b

array [1..n,1__p] of real
array [1..n, 1. m] of real
array (1..p,1..m] of real

type atype
btype

itype

Hun

N W

var amatrix : atype
bmatrix : btype
xmatrix : xtype

LY T I)

det, cond : real ;
{ Last determinant and condition number computed by linsys. }

function linsys (a: atype; b: btype; var x: xtype) : boolean ;

{ Linsys will find x to minimize b-a*x, if possible; will return a
function value of FALSE if successful, TRUE otherwise; will

D-68

Fascal Reference Manual Floating-Foint Arithmetic

update det and cond with the determinant and condition estimate
for a. } i
var marker : * integer ; |
gr : P_OR_Record ;
exror : boolean ;

procedure fetcha(i, j : integer ; var aij : extended) ;
begin

SzX(a[i, j], a1y) ;
end ;

r

procedure fetchb(i, j : integer ; var bij : extended) ;

~

in
SZX(b[i, j], bij)
procedure stoxrex(i, j : integer ; xij : extended) ;
begin
X25(xij, bli, 3])
end ;

4

)

procedure fetchx(i, 3 : integer ; var xij : extended) :
in
Sm(blllj]I XIj) z

L4

begin { linsys)
mark(marker) ; { Mark heap storage for subsequent release. }

OR_Faector(n, p, {pivot} true, qr, fetcha) ;
if qr = oxd4(nil) then error := true
else begin { factorization (K }
OR Determinant { qr, det) ;
OR_Condition (qr, cond) ; { Cond error represented by NaN.}
OR_Solve(m, qr, erroxr, fetchb, storex) ;
if not error then begin { solve OK }
OR_Improve (m, qr, exxoxr, fetcha, fetchb, fetchx, storex);
{ Only one improvement iteration. }
end { solve K } ;

end { factorization (K } ;
linsys := exror ;

release(marker) ; { Release heap storage. }
end { linsys } ;

D-69

Fascal Reference Manual Floating-Foimt Rrithmetic

D4.11 MathLib NaNs
Besides the NaNs that can be generated by the procedures in FPLib, there
are some NaN codes that are used by the procedures in MathLib to signify
unusual results:

Name Dec Hex Meaning

NaNIRR 39 $27 Internal rate of return is not resl, does
not exist, or was not found.

NahDet 49 $31 nonsquere matrix has no determinant.

NaNCond 50 $32 Condition estimate could not be computed
becsuse of insdequate heap space.

D-70

Fascal Reference Manusl Floating-Foint Arithmetic

D4.12 Mathlib Intesface
UNIT MathLib ; INTRINSIC ;
INTERFRACE
{ Lisa Math Library. }
{$C Copyright 1983, 1984, Apple Computer Inc. }
USES FPLib ;
CONST
{ Lisa Math Library constants. }

RandModulus = 2147483647 ;
{ Prime modulus for random number generation = 2°31-1. }

LSigDigLen = 30 ; { Length of significand string. }
TYPE
{ Lisa Math Library types. }
RoundPrecision = (ExtPrecision, DblPrecision, RealPrecision) ;
Type FP_Type = (TFP_byte, TFP_integer, TFP_longint, TFP_Comp, TFP_real,

TFP_Double, TFP_Extended) ;
{ Number type names for FP_size.}

Free_Format = record { Specifications for free-form output. }
MaxSig : integer ; Maximum number of significant digits. }
Sig_fForm, True if "fixed" style applies MaxSig to

significant digits; false if to digits after
the point. }
Trail_Point, { True if trailing point should be printed for
inexact values in "integral” style. }
Int_EForm, { True if "exponential"” style acceptsble for

integral values. }

Plus_EForm : boolean ; { True if "exponential” style should exhibit
+ gign for positive exponents. }

end :

P_QR_Record = longint ; { Pointer to matrix factored as QRP. }

0-71

s

M

Fascal Reference Meanual

LongSigDig = string[LSigDi

LongDecimal = record

sgn : 0..1;

exp : inte

Fioaling-Foird Arithmetic

glLen] ;

rd

ger ;

sig : LongSigDig ;

end :

{ Elementary functi

procedure ASinX (var x
procedure ACosX [var x

procedure SinhX (var
procedure CoshX (wvar
procedure TanhX (var x

{

[g

: Extended

ons to support BRSIC and Fortran. }

. Extended) ; { x := asin(x) }
: Extended) ; { x := acos(x]) }
: Extended) ; { x := sinh(x) }
: Extended % % x := cosh(x) %

tanh(x)

{ Procedures to sup

procedure Abs2X (x, v : E
procedure ATan2X(x, v : E

{

port poler coordinates. }

xtended ; var z : Extended) ; { z :
xtended ; var z : Extended) ; { z

abs(y+ix) }
arg(y+ix) }

{ Random number pro

function NextRandom (last

cedure. }

random : longint) : longint ;

{ Returns next "random" longint with 1 <= nextrandom <= RandModulus-1.}

{ Floating point st
procedure ClearXcps ;
procedure ClesrHlts ;
procedure SetPrecision ([p

function GetPrecision : R

atus and mode procedures. }

{ Turns off all exception flags.
{ Turns off all halt flags.
: RoundPrecision) ;
{ Set extended rounding precision.
oundPrecisicn
{ Get extended rounding precision.

St Nt St S

D-72

}

Fascal Reference Manual Fiogting-Foint Arithmetic

{ Sort procedure. }

procedure Math_Sort ({ General procedure to stably sort an arbitrary list.}
first, last : integer ; { Records first..last will be sorted. }
function Sorted (i, j : integer) : boolean ;
{ User-supplied procedure called by Math_Sort to compere order of
records i and j. Math_sort gusrantees first <= 1 ¢ j <= last.
Sorted returns true if records i and j are already correctly
sorted with respect to each other. }
procedure Swap (i, j : integer) ;
{ User-supplied procedure called by Math_Sort to swep records i
and j. Math_sort gusrantees first <= i ¢ j <= last. }
var error : hoolean) ; { True if sort routine failed due to
insufficient heap space available. }

{ Miscellaneous utility procedures. }

function SignOfX (x : Extended) : boolean ; { True if x has neg sign. }

function FP_New (n : longint) : longint ;
{ Attempts to allocate n bytes on heap, returning address.
Returns ord4(nil) if space not availsable. }

procedure FP_Size (x: Extended ; var sgn: integer ; var class: NumClass ; ver
size: FP_Type) ;

{ Returns sign bit, class, and size of smallest type that
would hold x exactly. }

procedure FP_Free_ASCII (Procedure to provide free-form ASCII output. }
x : Extended ; Number to be converted from binary to ASCII. }

E
width : integer ; { Maximum number of characters in output string. }
form : Free_Format; E Detailed format specificetions. }

var s : Decstr) ; Output destination string. If, after call,

length(s) > width, then x was inconsistent with
the constraints Width or MaxSig. }

{ Financial analysis procedures. }

procedure Fin_Npv ({ Compute net value of series of payments. }

first, { First payment period. }

last, { Last payment period. }

net : integer ; { Period at which net value is to be computed;
need not be between first and last. }

D-73

Fascal Reference Manual Floating-Foirt Rrithmetic

rate : Extended ; { Periodic interest rate. }
var Npv : Extended ; { Net payment value. }
Procedure peyment (i : integer ; var pmt : Extended)
{ User-supplied procedure to provide pmt, the payment at
period i. }
{ Fin_Npv guarantees first <= i <= last. }

)

procedure Fin Return ({ Analyze series of payments for external or internal

rate of return. Discounting by external rates meay be
specified for positive or negative payments or both or
neither. Standaxrd internal rate of return is obtained
by specifying, for example, negperiod, posperiod :=
first-1. A conservative external rate of return is
obtained by considering negative payments as out from
the irvestor, positive payments as in to the investar,
and specifying:

negperiod := first ;

posperiod := last ;

negrate := guaranteed safe rate of return ;

posrate := expected sverage portfolio reinvestment
rate of return. } T
first, { Initial payment period. }
last : integer ; { Final payment period. }

negperiod, posperiod : integer ;
{ Periods to which negative or positive payments
are to be discounted; if ¢ first or > last then
corresponding payments are not discounted. }
negrate, posrate : Extended ;
{ Discount rates for negative and positive payments
respectively; ignored if corresponding period
does not satisfy first <= ...period <= last. }
var ncs : integer ; { Error code = number of changes of sign among
adjusted payments; on normsal return ncs =
1.ncs = -2 if an inf or NaN payment was
supplied. }
var ret : Extended ; { Rate of return: if ncs = 1 then ret will
contain the single real root > -1; if ncs >
1 then ret will contain some real root > -1 if
ncs is odd; if nce > 1 is even ret msy contain
a rea} root > -1; otherwise ret will contain
NeN.
Procedure payment (i : integer ; var pmt : Extended)
{ User-supplied procedure to provide pmt,
the payment at period i. }

D-74

——

Fascal Reference Manual Floating-Foirt Arithmetic

{ Fin_Npv guarantees first <= i (= last. }

)

{ Numerical algebra. }

procedure Mat_Mult ({ Matrix multiplication B := A * X. }
n, { Rows of A = rows of B. }
P, { Columns of A = Tows of X. }
m : integer ; { Columns of X = columns of B. }
overlap : hoolean ; { True if B overlaps A or X; temporary B is

created on heap and copied at end. }

var error : boolean ; { True if failure due to lack of hesp space.
Not possible if overlsp false. }

procedure afetch (i,j : integer ; var aij : Extended)

{ User routine to provide aij := A[i, i]. }
{ Afetch may assume 1 <=1 <=n, 1 <= j <=p. }
procedure xfetch (i,j : integer ; var xij : Extended) ;
{ User routine to provide xij := X[i, j]. }
{ Xfetch may assume 1 <= i <=p, 1 <= j <=m. }
procedure bstore (i, j : integer ; bij : Extended
{ User routine to store B[i, j] := bij. }
{ Bstore may assume 1 <=1 <¢=n, 1 <= j <=m. }
) s
procedure OQR_Factoxr (Compute the QR factorization of matrix A. }
n, Number of rows of R. }

p : integer ;
pivot : boolean ;

’

Number of columns of f. }
True ;f pivoting is to be performed, false if
not .
Pointer to factorization of A, which will be
created in the heap in an internal format.
OR will be ord(NIL) if insufficient heap
gspace is available. }
procedure afetch (i, i : integer ; var aij : Extended) ;
{ User routine to provide aij := A[i, j]. }
{ Afetch may assume 1 <= i <=n, 1 <= j <= p. }

—— v, g, oo, st

var OR : P_QR_Record ;

)
procedure QR_Condition ({ Estimate condition number of
matrix whose factorization is in QR™. }
OR : P_OQR_Record ; { OR" is a decomposed matrix produced by
QOR_Factor. }
var cond : Extended { Estimate of condition number. }
)
D-75

Fascel Kelsrence Manual Fiogling-Foirt Arithmelic
procedure QR_Determinant ({ Compute determinant of matrix whose
factorization is in QR". }
OR : P_OR_Record ; { OR® is a decomposed matrix produced by
OR_Factor. }
gar det . Extended { Determinant. }
procedure QR_Solve ({ Compute X = pseudo-inverse(QR") * B to Solve
linear equations or linear leasst squares
problems.
m : integer ; { Number of columns of X and B.
QR : P_OR Record ; { QR" is a decomposed matrix produced by
OR_Factor.
var error : boolean ; { True if procedure failed due to lack of heap
space.

procedure bfetch (i,j : integer ; var bij : Extended)

{ User routine to provide bij := B[i, j].

{ Bfetch may assume 1 <=1 <=n, 1 <= j <=m.
{

{

St s N et —— Lo— RE -

procedure xstore (i,j : integer ; xij : Extended) ;
User routine to store X{i, j] := xij.
| Xstore may assume 1 ¢= i <= p, 1 (= j <= m. -
procedure QR_Residual ({ Compute residual R := B - AX for & linear
equations or linear least squares problem. }
n, { Number of rows of R. }
p : integer ; { Number of columns of A.
m : integer ; { Number of columns of X and B. }
procedure afetch (i,j : integer ; var aij : Extended) ;
{ User routine to provide aij := R[i, j]. }
{ Afetch may assume 1 <= i ¢<=n, 1 <= j ¢=p. }
procedure bfetch (i, j : integer ; var bij : Extended)
{ User routine to provide bij := B[i, j]. }
{ Bfetch may assume 1 <=1 <=n, 1 <= j ¢=m. }
procedure xfetch (i,j : integer ; var xij : Extended) ;
{ User routine to provide xij := X[i, j). }
{ Xfetch may sssume 1 <= i <=p, 1 (=] <=m. }
procedure rstore (i, j : integer ; rij : Extended)
{ User routine to store R[i, j] := rij. }
{ Rstore may assume 1 <=1 <=n, 1 <¢=j <¢=m. }
)
procedure QR_Improve ({ Perform one iterstion to improve the
solution X of a linear equations or linear
least sguares problem A * X = B. }
m : integer ; { Number of columns of X and B. }
D-76

|

Fascal Relerence Menual

OR : P_OR_Record ;
var error : boolean ;

s

procedure afetch (i,

procedure bfetch (i, j

procedure xfetch (i,J :

procedure xstore (i,} :

)

procedure QR_TranSolve

m : integer ;
OR : P_OR Record ;

var error : boolean ;

procedure bfetch (i, :

procedure xstore (i,j :

)

Floating-Foinl Arithmetic

{ OR" is a decomposed matrix produced by
QR_Factor.

{ True if procedure failed due to lack of heap
space.

: integer ; var aij : Extended)

User routine to provide aij := A[i, j].
Afetch may assume 1 <= 1 <=n, 1 <= j <= p.

: integer ; var bij : Extended)

{

{

{ User routine to provide bij := B[i, j].

{ Bfetch may assume 1 <= i <=n, 1 <= j ¢<=m.
integer ; var xij : Extended) ;

{ User routine to provide xij := X[i, j].

{ Xfetch may assume 1 <=1 ¢<=p, 1 ¢=] <=m.
integer ; xij : Extended)

{ User routine to store X[i, j] := xij.

{ Xstore may assume 1 <=1 ¢=p, 1 <= j ¢<=m.

{ Compute a solution for (ATA) X = B, where T
denotes transpose, qiven factoxization of R
in QR".

{ Number of columns of X and B.

{ OR" is a decomposed matrix produced by
QR_Fsactor.

{ True if procedure failed due to lack of heap

space.

integer ; var bij : Extended)

{ User routine to provide kij := B[i, j].

{ Bfetch may assume 1 <= i <=p, 1 <= j <=m.
integer ; xij : Extended)

{ User routine to store X[i, j] := xij.

{ Xstore may assume 1 <=1 <=p, 1 <= j <=m.

procedure QR_TranDeterminant ({ Compute determinant of ATA given

{

OR : P_OR_Record ;

var det : Extended
I

factorization of A in QR". }

{ OR" is a decomposed matrix produced by
OR_Feactor. }

{ Detexrminant. }

[WURVTVRVET I w—

g et

{ Procedures for correctly rounded conversion between binary and

decimal . }

D-77

.

Fascal Reference Manusl Fioating-Foirt Arithmetic

procedure X2LDec (f : DecForm ; x : Extended ; var y : LongDecimsal) ;
{ Converts x to vy, correctly rounded according to f. }

procedure LDec2X (prec: RoundPrecision; x: LongDecimal; wvar y: Extended) ;
{ Converts x to v, correctly rounded sccording to prec. }

{ Numerical analysis. }

procedure Math_Solve ({ Computes zero of function. }
estl, est? : Extended ; { A priori estimates of zero. }
VAr Yes . Extended ; { f(xres) may = O or NaN or its sign may differ

from one of its neighbors or it may merely
be the x with minimal abs(f(x)) smong those x
sampled by Math_Solve. The user must decide
the significance of the result res. }
procedure f { x : Extended ; var fx : Extended)
\ { User-supplied procedure to evaluate fx = f(x). }

{ } TN

—

Fascal Reference Manual Fioating-Foint Arithmetic

D.5 Macintosh Floating-Point Pr ng
Sections D.2, D.3, and D.4 describe floating-point programming for the Lisa. {
Floating-point programming for the Macintosh is similar; the changes are
described below.

Assermnbly-language programs that use FP&BK may be sssembled on the Lisa
and run on the Macintosh or on MacWorks. Pascal programs that use real
arithmetic or the intrinsic units FPLib or MathLib may be cempiled with the
Lisa Pascal Compiler and run on Macintosh or Macworks.

WARNING

Early Macintosh developers received the files:

INTRFC/SANE.TEXT OBJ/SANE.OBEJ OBJ/SANEAsm.OBJ
INTRFC/Elems. TEXT OBJ/Elems.OBJ OBJ/ElemsAsm.OBJ

which are no longer recommended, and older versions of the files:

OBJ/MacPasLib.OB) TLASM/ToolMacs. TEXT TLASM/SANEMacs. TEXT

which have been replaced by newer versions distributed with the
Macintosh software supplement. Do not mix any of these older files
with the newer ones described below.

D.5.1 Assembly Language
Include the files TLASM/SANEMacs, TLASM/ToolEqu, and TLASM/ToolMacs
with your sssembly-language source files. It is not necessary to link with
any other Lisa files to get assembly-language flogting-point arithmetic. In
the file TLASM/SANEMacs, the first equate, FPByTrap, must be 1 to run on
Macintosh or MacWorks, or 0 to run on the Lisa Operating System.

D.5.2 Psascal Real Arithmetic
It is not necessary to USE any Pescal files to compile Pascal real arithmetic.
Link with the files:

OBJ/RealPasUnit OBJ/FPUnit OBJ/FPSub OBJ/MacPasLib
D5.3 FPLib and MathLib
Regular versions of the units FPLib and MathLib, called FPUnit and

MathUnit, are available in the files OBJ/FPUnit and OBJ/MathUnit. Change
vour USES statement accardingly:

USES {$U OBX/FPUnit] FPUnit,
{$U 0BIMathiinit} MathUnit ;

Do not include {$U INTRFC/SANE} SANE or {$U INTRFC/Elems} Elems in
your USES staterment.

D-79

FPascal Reference Manusal Floaling-Foird rrilhmetic

Link with the files:

0BJ/MathUnit OBJ/FPUnit OBJ/RealPasUnit
OBJ/FPSub OBJ/MacPssLib

Only the procedures you actually need will be linked into your object file.
Do not link with:

OBJ/SANE OBJ/SANEAsm OBJ/Elems OBJ/ElemsAsm

D54 Restrictions
Assembly-language programmers should clear the floating-point environment

with FSetErv prior to any floasting-point cperations. Pascal programmers
should call

Procedure InitFPLib ;

which is declared in the FPUnit interface, prior to any floating-point
operations.

MathLib depends on certain 10SPasLib procedures that are not implemented
in OBJ/MacPasLib. Consequently, certain MathUnit procedures do not work
reliably. Affected procedures include financial rate of return, matrix, and
sorting.

i
3

El

E4

ES

Eé6
E.7

E.8

E9

Appendix E

QuickDraw
ADOUL ThIS APPENAIX ... oo et imcmers e e s s e s e s anenes E-1
ADOUL QUECKDITEW .o nae E-2
E.2.1 How TOUSE QUICKDIAW ..c.enriiiiiineieireeeetarareaaranrassacaensesosmansas E-3
E.2.2 QuUICKDTIaw Data TYPESccoiiiiiimiiiniiitie e raaascmen e nenae e E-4
The Mathematical Foundation of QUICKIDTaWoiiiiimcecaaanees E-a
E.3.1 The Coordinate Plane e aiieee e et aca e s eaeanee E-4
2 T = o) 4 | 5. PP E-S
E3.3 ReCtangles e E-6
E3l8 REGQIONSouie i ettt e e E-7
GraphiC ENUUES ...t E-9
00 R g =31 (17 o E-9
B2 The Bilmap oot cce st s eansnn san e E-11
N0 T o 11123 o SR E-13
(ST W IR 7 0 ¢ SRR E-13
The Drawing Environment: GrafPort iiirrrencemrnnenee E-15
E5.1 PenCharacteristiCs .ottt cee e E-18
ES.2 TextCharacteristiCs . ..cciieiviereriiicii e rrree st e cecaeans E-20
Coordinates N GrafPoILs ittt ner e s E-22
General Discussionof Drawingo E-2a
E.7.1 TransferMOOES ... cciiiainieiiaieiaiatce et ettt st rarntenccneassssanenans E-26
E.7.2 DrawlngInColor ... E-28
PlCWIes 8N POLYJONSccceeaceineneenstaseananssennnassanesaaseesssensasssnennnns E-28
0 0 I g (01 () - N E-29
EB.2 POlYQONS.. .. i E-30
QUICKDIBW ROULINES ... cere e cee e eeceeneesee e ennnean E-31
E.9.1 GrafPOrt ROULINES. ..o iciii i crtereree st eemcereen s snsnamnanans E-32
E.9.2 Cursor-HandlingRoUtINESo eee E-36
E9.3 PenandLine-DrawiNgROULINEScc.coiiiiiiiiiiiiiiiiciiiecceeeeeaas E-37

ES4 Text-DrawingRoutinescccooiiiiiiiiiiiiiiniiiiiiicrecceaneees E-40
E.95 DrawinginColor.o iiiiiiiiiiiiciiaei it e ce e re e s e E-43

Pascsal Reference Marnual QuickDraw

E.9.6 Calculations WithRectanglesceveeeeiiimiiiiiiiinriieeeaeneeeee. E-43
E.9.7 GraphicOperationsonRectangles.........cccooeiveiiiiiiiiiiiinenninineens E-46
E.9.8 GraphicOperationsonvalscocciiimiimiiiiiiii e E-47
E.9.9 Graphic Operations on Rounded-Corner Rectangles.................... E-47
E.9.10 Graphic Operationson Arcsand Weagescccccceeeirecnenienncaenns E-49
E.9.11 Calculations withRegions ... E-S51
E.9.12 Graphic Operations onRegions ieenee E-55
E.9.13 Bit Transfer Operationsocccvivimiiieiiieciein e E-56
E.9.18 PICHUIES ..co ettt c e e e s e e e e e enn nans E-58
E.9.15 Calculations withPOlygonseeeieiiiiiiiiiiiiiiineieeeeeeeeeeee, E-59
E.9.16 Graphic Operations ONPOLYGONScviimuuriiiiiiecearecrnneeaeecnneens E~-61
E.9.17 Calculations withPointst cereenen E-62
E.9.18 Miscellaneous UtIlIties E-64
E.10 Customizing QuickDraw Operationscc.ecceeeeeienmoiiamccomccreananeas E-67
E.11 Using QuickDraw from Assembly LangQuagec...ccocviiiimmmeinnaenes E-71
{00 0 0 a1 £ | E-71
(SR S A B | £ T Y o= R E-71
E.11.3 Global Variablesot e E-73
E.11.4 Procedures and Functionsot eeeaees E-73
E.12 Graf3D: Three-Dimensional Graphicsooooiieiiiiiiiiiiiaeeee E-75
E.12.1 How Graf3DisRelated to QUICKDTIaWcoouiimniiieniinniianiaans E-75
£.12.2 Features of Graf3Dccooeiiieiimiiiiieieecreeceenr e E-75
E.12.3 Graf3D Data TYPES . .cccceeieeriienniieenniraretncrennsreassennseananans E-76
E.12.4 Graf3D Procedures and FUNCUIONSccovviiiiiiiiiiiiiiiianeees E-77
E.13 QUICKDIaW IN B a0e .. .o ccetce et a e seene e s nansaaes E-80
E.13.1 Graf3D INteIfacecouiieiii et re et eee e s e e e E-89
E.14 QuickDraw Sample PIOgrams ... oo arnecmasemeee o canemmaennenae E-91
E.14.1 QDSAMPIL «...ciieeiieniiniiaret e tneeene ot e ean s e ee s e s e anaans E-91
9 1L 1o PR E-101
E.15 QOUSUPPIOM .. ccotiiemeenireteentstassicessssmssessennssssennssssesssssnssssasnsesnsesasnsenas E-106

MMGé% DDITION S

Fascal Relerence 30 Notes

Appendix E
QuickDraw

Linking QuickDraw Programs (See Section E.2.1)

The list of files you link a QuickDraw program to has changed; you should

link to I0SPaslib, QD/Support, and SysiLib.

Drawing Text (See Section E.9.4)

QuIck L aiw

If you are drawing text using QuickDraw, the Workshop files Font.Lib and
Font_.Heur must be on your prefix volume. If your prefix volume is not set
to the volume your Pascal Workshop is on, copy these two files to your

prefix volumne before calling any text-drawing routines.
Minor changes have also occurred in the interface to QuickDraw.

Notes £-1

QuickDraw

E.1 About This Appendix

This appendlx describes QuickDraw, a set of graphics procedures, functions,
and cata types that allows a Pascal or assembly-language programmer of Lisa
to perform highly complex graphic operations very easlly and very quickly. It
covers the graphic concepts behind QuickDraw, as well as the technical
detalls of the data types, procedures, and functions you will use in your
programs.

we assume that you are famillar with the Lisa workshop Manager, Lisa Pascal,
and the Lisa Operating System’s memory management. This graphics package
Is for programmers, not end users. Although QuickDraw may be used from
either Pascal or assembly language, all examples are given in thelr Pascal
form, to be clear, conclise, and more Intuitive; Sectlon E.11 describes the
detalls of the assembly-language Interface to QuickDraw.

The appenaix begins with an introduction to QuickDraw and what you can do
with it (Section E.2). It then steps back a little and looks at the mathemat-
lcal concepts that form the foundation for QuickDraw: coordinate planes,
points, and rectangles (Section E.3). Once you understand these concepts, read
on to Sectlon E.4, which describes the graphic entities based on them--how
the matnematical world of planes and rectangies is transiated inwo e
physical phenomena of light and shadow.

Then comes some discussion of how to use several graphics ports (Section E.6),
a summary of the basic drawlng process (Section E.7), and a alscussion of two
more parts of QuickDraw, pictures and polygons (Section E.8).

Next, in Section E.9, there's a detalled description of all QuickDraw proce-
dures and functions, thelr parameters, calling protocol, effects, side effects,
and so on--all the technical information you'll need each time you write a
program for the Llisa.

Following these descriptions are sections that will not be of interest to all
readers. Special Information Is given In Section E.10 for programmers who
want to customize QuickDraw operations by overriding the standard drawing
procedures, In Section E.11 for those who will be using QuickDraw from
assembly language, and In Sectlon E.12 for those interested in creating
three-dimenslonal graphics using the Graf3D unit.

Finally, there are listings of the QuickDraw Interface (Sectlon E.13), two

sample programs (Section E.14), and the QDSupport unit (E.15); and a glossary
that explalns terms that may be unfamiliar to you (Sectlon E.16),

I}

[5 1 NI O T 1 11 1 A [N I

(Wl

|

-

rascal Rererence Manal

E.2 About QuickDraw

QuickOraw

QuickDraw allows you to organize the Lisa screen into a number of indlvidual
areas. Wwithin each area you can draw many things, as lllustrated in Flgure

E-1.

Text

Bold
e
Underline
Butline
Shedlew

Rectangles

L]

AR
s
T
z 7 7
NN

Ovals
OO0

RoundRects

You can draw:

Polygons

(¢

qure E-1
Samples of QuickDraw's Abllities

Al

* Text characters In a numper of proportionally-spaced fonts, with variations
that include boldfacing, italicizing, underlining, and outlining.

* Stralght lines of any lenqgth and width.

* A varlety of shapes, elther solid or nollow, Including: rectangles, with or
without rounded corners; full circles and ovals or wedge-shaped sections;

and polygons.

* Any other arbitrary shape or collection of shapes, again either solid or

hollow.

* A plcture consisting of any combination of the above items, with just a

single procedure call.

In addition, QuickDraw has some other abllities that you won't find in many
other graphics packages. These abilitles take care of most of the “house-

Pascal Rererence Manal QulckOraw

keeping”--the trivial but time-consuming and bothersome overhead that's
necessary to keep things in order.

* The abllity to define many distinct ports on the screen, each with its own
complete drawing environment--its own coordinate system, drawing
location, character set, location on the screen, and so on. You can easlly
switch from one such port to another.

* Full and complete cljgoing to arblitrary areas, so that drawing will occur
only where you want. It's like a super-duper coloring book that won't let
you color outside the lines. You don't have o worry about accidentally
drawing over something else on the screen, or drawing off the screen and
destroying memory.

* Off-screen drawing. Anything you can draw on the screen, you can draw
Into an off-screen buffer, so you can prepare an image for an output
device without disturbing the screen, or you can prepare a plcture and
move It onto the screen very quickly.

And QuickDraw lives up to its name! It's very fast. The speed and
responsiveness of the Lisa user Interface are due primarily to the speed of the
QuickDraw package. You can do good-quality animatlon, fast interactive
graphics, and complex yet speedy text displays using the full features of
QuickDraw. This means you don't have to bypass the general-purpose
QuickDraw routines by writing a lot of special routines to improve speed.

E.2.1 How To Use QuickDraw

QuickDraw can be used from either Pascal or MC68000 machine language. It
has no user interface of its own.

If you're using Pascal, you must wrlte a Pascal program that Includes the
proper QuickDraw calls, complle it against the files QD/QuickDraw.0BJ and
QDAOSupport. 0By, link it with the files listed in QD/QDSWIfF.TEXT, and
execute the linked object file.

If you're using machine language, your program should include the proper
QuickDraw calls, and .INCLUDE the file QD/GRAFTYPES.TEXT. Assemble the
program, link it with the flles listed in QD/QDSWIFF.TEXT, and execute the
linked object file,

A programming model, QDSample, is Included with the workshop software In
the flle QD/QDSample. TEXT (listed In Section E.14.1); {t shows the structure of
a properly organized QuickDraw program. What's best for beginners Is to read
through the text, and, using the superstructure of the program as a “shell”,
mogdify 1t to sult your own purposes. Once you get the hang of writing
programs Inside the presupplied shell, you can work on changing the shell
itself.

Note that all flles related to QuickDraw are prefixed by "QO/".

QuickDraw includes only the graphics and utllity procedures and functions
you'll need to create graphics on the screen. Procedures for dealing with the

Pascal Rererence Marwsal QuickOraw

mouse, cursors, keyboard, and screen settings, as well as those allowing you to
generate sounds and read and set clocks and dates, are described In Appendix
F. Hardware Interface.

E22 QuickDraw Data Types
QuickDraw defines three general data types, QDByte, QDPUu, and QDHandle:

type QDByte = -128..127
Q@etr = "QDByte
QDHandle = “QOPtr

Other data types are described throughout this appendix in the sections In
which they're relevant. For a surmmary of all QuickDraw data types, see
Section E.13.2.

E.3 The Mathematical Foundation of QuickDraw
To create graphics that are both precise and pretty requires not super-charged
features but a firm mathematical foundation for the features you have. If the
mathematics that underlie a graphics package are imprecise or fuzzy, the
graphics will be, too. QuickDraw defines some clear mathematical constructs
that are widely used In its procedures, functions, and data types: the coora/-
nate plane the poing the rectangle and the reglon

E3.1 The Coordinate Plane

All Information about location, placement, or movement that you glve to

QuickDraw Is In terms of coorainates on a plane. The coordinate plane is a
two-dimensional grid, as illustrated In Figure E-2.

-32768
f

-32768 ¢ - 32767

¥
32767

Figure E-2
The Coordinate Plane

-~

Pascal Rerference Marnial uickDraw

There are two aistinctive features of the QuickDraw coordinate plane:
* All grid coordinates are Integers.
* All grid lines are infinitely thin.

These concepts are important! First, they mean that the QuickDraw plane Is
finite, not Infinite (although it's very large). Horizontal coordinates range
from -32768 to +32767, and vertical coordinates have the same range.

Second, they mean that all elements represented on the coordinate plane are
mathematically pure. Mathematical calculations using integer arithmetic will
produce Intultively correct results. If you keep In mind that grid lines are
infinitely thin, you'll never have “endpoint paranofa”--the confusion that
results from not knowing whether that last dot is included in the llne.

E.3.2 Points

On the coordinate plane are 4,294,967,296 unique points. Each point is at the
intersection of a horizontal gria line and a vertical grid line. As the grid lines
are infinitely thin, a point is infinitely small. 0Of course there are more points
on this grid than there are dots on the Lisa screen: when using QuickDraw you
assoclate small parts of the grid with areas on the screen, so that you aren't
bound Into an arbitrary, limited coordinate system.

The coordinate origin (0,0) is in the middle of the grid. Horlzontal coordinates
increase as you move from left to right, and vertical coordinates increase as
you move from top to bottom. This is the way both a TV screen and a page
of English text are scanned: from the top left to the bottom right.

You can store the coordinates of a point in a Pascal variable whose type is
defined by QuickDraw. The type Point is a record of two Integers, and has
the following structure:
type vHSelect = (V,H);
Point = record case integer of

0: (v: 1nteger;
h: integer);

1: (vh: array [VHSelect] of integer)

end;

The variant part allows you to access the vertical and horizontal components
of a point elther individually or as an array. For example, {f the variable
goodPt were declared to be of type Point, the following would all refer to the
coordinate parts of the point:

goodPt.v goodPt .h
goodPt .vh[V] gooaPt .vh[H]

Pascal Rerference Marnil! QuickDraw

E£.3.3 Rectangles
Any two points can define the top left and bottom right corners of a
rectangle. As these points are Infinitely small, the borders of the rectangle
are Infinitely thin (see Figure E-3).

Left

Top

Bottom

]
Right

Figure E-3
A Rectangle

Rectangles are used to define active areas on the screen, to assign coordinate
systems to graphic entities, and to specify the locations and sizes for various
drawlng commands. QuickDraw also allows you to perform many
mathematical calculations on rectangles--changing their sizes, shifting them
around, and so on.

NOTE

Remember that rectangles, like points, are mathematical concepts that
have no direct representation on the screen. The association between
these conceptual elements and thelr physical representations is made by
a bitmap, described below.

E-6

Pascal Reference Mansl] QUckDraw

The data type for rectangles Is Rect, and consists of four Integers or two
points:

type Rect = record case integer of

0: (top: integer;
left: integer;
bottom: 1integer;
right: integer);

1: (topLeft: Point;
botRight: Point)

end;
Agaln, the record variant allows you to access a variable of type Rect either
as four boundary coordinates or as two dlagonally opposing corner points.

Combined with the record variant for points, all of the following references to
the rectangle named bRect are legal:

bRect {type Rect}

DReCt. topLeft bRect .botR1ignt {type Point}

bRect . top bRect.left {type 1nteger}
bRect .topieft.v bRect _topleft_h {type integer
bRect .topLeft.vh[V] bRect.topLeft .vh[H] {type integer)
bRect .bottom bRect.right {type integer}
bRect .botRight .v bRect .botRight.h type integer}

DRect.botRight .vh[V] DRect.botRight.vh[H] {type integer}

WARNING

If the bottom coordinate of a rectangle is equal to or less than the top,
or the right coordinate Is equal to or less than the left, the rectangle
Is an empty rectangle (l.e., one that contains no bits).

E€3.4 Reglons

Unlike most graphics packages that can manipulate only simple geometric
structures (usually rectilinear, at that), QuickDraw can gather an arbitrary set
of spatially coherent points into a structure called a region, and perform
complex yet rapld manipulations and calculations on such structures. This
remarkable feature not only will make your standard programs simpler and
faster, but will let you perform operations that would otherwise be nearly
irmpossible; it is fundamental to the Lisa user interface.

Pascal Reference Manial QulckDraw

You gefine a region by drawing lines, shapes such as rectangles and ovals, Or
even other reglons. The outline of a region should be one or more closed
loops. A reglon can be concave Or convex, can consist of one area or many
disjoint areas, and can even have "holes” in the middle. In Figure E-4, the
region on the left has a hole in the middie, and the region on the right
consists of two disjoint areas.

jeegrec N

IIIITITIL

| =

ransananess
T

EEsasn
1asl
ITTIT
T

T

:
jsscns
janwssi

T
ey
TiIrrerirrree

jsesssxni

I
Tt
I3

3
"=

Figure E-4
Reglons
Because a region can be any arbitrary area or set of areas on the coordinate
plane, it takes a variable amount of information to store the outline of a
region. The data structure for a region, therefore, is a variable-length entity

with two fixed flelds at the beginning, followed by a variable-lengln gata
flela:

type Region = record

rgnSize: 1integer;

rgnBBox: Rect;
{optional region definition data)
end;

The rgnSize fleld contalns the size, In bytes, of the reglon varlable. The
rgnBBox field is a rectangle which completely encloses the region.

The simplest region is a rectangle. In this case, the rgnBBox field defines the
entire region, and there is no optional region data. For rectangular regions (or
empty reglons), the rgnSize field contains 10 (two bytes for rgnSize, plus
eight for rgnBBox).

The region definition data for nonrectangular regions is stored in a compact
way which allows for highly efficient access by QuickDraw procedures.

E-8

Pascal Reference Ml QuickOraw

As reglons are of variable size, they are stored dynamically on the heap, and
the Operating System’s memory management moves them around as thelr sizes
change. Belng dynamic, a reglon can be accessed only through a pointer; but
when a region Is moved, all pointers referring to it must be upgated. For this
reason, all reglons are accessed through /Zar/es which point to one master
pointer which in tum points to the region.

type RgnPtr “Region;
RgnHandle = “RgnPtr;

when the memory management relocates a reglon’s data in memory, it updates
only the RgnPtr master pointer to that reglon. The references through the
master pointer can find the region’s new home, but any references pointing
directly to the reglon's previous position in memory would now point at dead
bits. To access indiviaual fields of a region, use the reglon handle and double
Indirection:

nyﬂg\ .rgnSize size of region whose handle is myRgn}
* . 1gnBBoX rectangle enclosing the same reglon}
myRm .TgnBBoX. top minimum vertical coordinate of all points
in the region}
myRgn" . rgnBBoX {semantically incorrect: will not compile if
myRgn Is a rgnHandle}

Reglons are created by a QuickDraw function which allocates space for the
region, creates a master pointer, and returns a region handle. when you're
done with a region, you dispose of It with another QuickDraw routine which
frees up the space used by the reglon. Only these calls allocate or deallocate
regions; do no¢ use the Pascal procedure new to create a new reglon!

You specify the outline of a reglon with procedures that draw lines and
shapes, as described in Section E.9, QuickDraw Routines. An example Is given
In the discussion of CloseRgn In Section E.9.11, Calculations with Reglons.

Many calculations can be performed on regions. A reglon can be “expanded”
or "shrunk” and, given any two reglons, QuickDraw can find thelr union,
Intersection, difference, and exclusive-OR; it can also determine whether a
given point or rectangle intersects a given reglon, and so on. There Is of
course a set of graphic operations on regions to draw them on the screen.

E.4 Graphic Entitles

Coordinate planes, points, rectangles, and reglons are all good mathematical
models, but they aren't really graphic elements-~they don't have a direct
physical appearance. Some graphic entities that do have a direct graphlc
interpretation are the &/t /mage, b/tmag pattemn and cursor This section
describes the data structure of these graphic entitles and how they relate to
the mathematical constructs described above.

E4.1 The bit

A bit image is a collection of bits in memory which have a rectllinear
representation. Take a collection of words in memory and lay them end to

E-9

Pascal Reference Marxial QulckDraw

end so that bit 15 of the lowest-pnumbered word Is on the left and bit 0 of
the highest-numbered word s on the far right. Then take this array of bits
and divide it, on word boundaries, into a number of equal-size rows. Stack
these rows vertically so that the first row Is on the top and the last row s on
the bottom. The result Is a matrix like the one shown In Figure E-5--rows
and columns of bits, with each row containing the same number of bytes. The
{umber of bytes In each row of the bit image is called the /ow w/oil/7 of that
mage.

First
Byte
Row width
{ s & bytes
f Lasi
. Byte
Flgure E-5
A Bit Image

A bit image can be stored In any static or dynamic variable, and can be of
any length that 1s a multiple of the row width.

The Lisa screen itself is one large visible bit image. There are 32,760 bytes of
memory that are displayed as a matrix of 262,080 p/xe/s on the screen, each
bit corresponaing to one pixel. If a bit's value is 0, its pixel is white; If the
bit's value Is 1, the pixel Is black.

The screen is 364 pixels tall and 720 pixels wide, and the row width of its bit
image is 90 bytes. Each pixel on the screen is one and a half times taller
than it is wide, meaning a rectangle 30 pixels wide by 20 tall looks square,
and a 30 by 20 oval looks circular. There are 90 pixels per Inch horizontally,
and 60 per Inch vertically.

E-10

Pascal Reference Manual QUickOraw

NOTE

Since each pixel on the screen represents one bit In a bit image,
wherever this appendix says “bit", you can substitute "pixel” if the bit
Image Is the Lisa screen. Likewise, this appendix often refers to pixels
on the screen where the discussion applies equally to bits In an
off-screen bit image.

E.4.2 The Bitmap
when you combine the physical entity of a bit image with the conceptual
entities of the coordinate plane and rectangle, you get a bitmap. A bitmap
has three parts: a polnter to a bit image, the row width (In bytes) of that
image, and a boundary rectangle which gives the bitmap both its dimensions
and a coordinate system. Notice that a bitmap does not actually Include the
bits themselves: It points to them.

There can be several bitmaps polinting to the same bit image, each Imposing a
different coordinate system on {t. Tnis Important feature Is explalned more
fully in Sectlon E.6, Coordinates in GrafPorts.

As shown In Figure E-6, the data structure of a bitmap s as follows:

type BitHap = record
basepddr: QOPtr;
rowBytes: Integer;
bounds: Rect

end;
Baseh
Address
baseAddr
rowbBytes
bounds \;

—— Row width —

Figure E-6
A Biunap

E-11

Pascal Rererence Maral ulckDraw

The baseAddr fleld Is a pointer to the beginning of the bit Image In memory,
and the rowBytes fleld is the number of bytes in each row of the image. Both
of these should always be even: a bitmap should always begin on a word
boundary and contaln an {ntegral number of words In each row.

The bounds fleld Is a boundary rectangle that both encloses the actlve area of
the bit Image and Imposes a coordinate system on 1t. The relationship
between e boundary rectangle and the bit image In a bitmap Is simple yet
very Important. First, a few general rules:

* Bits in a bit Image fall between points on the coordinate plane.

* A rectangle divides a bit Image Into two sets Of bits: those bits inside the
rectangle and those outside the rectangle.

* A rectangle that Is H polnts wide and V points tall encloses exactly
(H-1) * (v-1) bits.

The top left comer of the boundary rectangle ls allgned around the first blt In
the bit image. The width of the rectangle determines how many bits of one
row are logically owned by the bitmap; the relationship

8 * map.rowBytes >= map.bounds.right-map.bounds.left

must always be true. The height of the rectangle determines how many rows
of the image are logically owned by the bitmap. To ensure that the number

of bits in the logical bitmap Is not larger than the number of bits In the bit

image, the bit Image must be at least as big as

(map . bounds . bot tom-map . bounds . top) *map . rowBytes

Normally, the boundary rectangle completely encloses the bit image: the width
of the boundary rectangle is equal to the number of bits In one row of the
Image, and the helght of the rectangle Is equal to the number of rows In the
image. If the rectangle Is smaller than the dimensions of the Image, the least
significant bits in each row, as well as the last rows in the image, are not
affected by any operatlons on the bitmap.

The bltmap also Imposes a coordinate system on the image. Because bits fall
between coordinate points, the coordinate system assigns integer values to the
lines that border and separate bits, not to the bit positions themselves. For
example, if a bitmap Is assigned the boundary rectangle with corners (10.-8)
and (34,8), the bottom right bit In the Image will be between horizontal
cooidlnates 33 and 34, and between vertical coordinates 7 and 8 (see Flgure
E-7

E-12

‘\A"«Hw

,,l

arimir

|

t
|

(1 RE

Pascal Reference Markial ICkDraw

(10,-8) (34,-8)

(10,8) (34,8)

Figure E-7
Coordinates and Bitmaps

E.43 Pattems

A pattern is a 64-bit image, organized as an 8-by-8-bit rectangle, which is
used to define a repeating design (such as stripes) or tone (such as gray).
Patterns can be used to draw lines and shapes or to fill areas on the screen.

when a pattern is drawn, it is aligned such that adjacent areas of the same
pattern in the same graphics port will blend with each other into a contin-
uous, coordinated pattern. QuickDraw provides the predefined patterns white,
black, gray, 1tGray, and dkGray. Any other 64-bit variable or constant can be
used as a pattern, too. The data type definitlon for a pattern Is as follows:

type Pattern = packed array [0..7] of 0..255;
The row width of a pattern Is 1 byte.

E.8.4 Cursors

A cursor Is a small image that appears on the screen and is controlled by the
mouse. (It appears only on the screen, and never In an off-screen bit image.)

A cursor {5 defined as a 256-bit image, a 16-by-16-bit rectangle. The row
wldth of a cursor is 2 bytes. Flgure E-8 illustrates four cursors.

E-13

Pascal Reference Marxsal QuickDraw

0 111
1

»
Z

: -

) . -

T
1

Figure E-8
Cursors

A cursor has three flelds: a 16-word data field that contalns the image itself,
a 16-word mask field that contains information about the screen appearance
of each bit of the cursor, and a /tspol polnt that aligns the cursor with the
position of the mouse.

type Cursor = record

gata: array [0..15] of integer;

mask : array [0..15] of integer;

hotspot: Point

end;

The data for the cursor must begin on a8 word boundary.
The cursor appears on the screen as a 16-by-16-bit rectangle. The appear-
ance of each bit of the rectangle is determined by the corresponding bits in

the data and mask and, If the mask bit Is 0, by the pixel “under” the cursor
(the one already on the screen in the same position as this bit of the cursork

Data Mask Resulting pixel on screen
0 1 white
1 1 Black
0 0 Same as pixel under cursor
1 0 Inverse of pixel under cursor

Notlce that If all mask bits are 0, the cursor is completely transparent, in
that the image under the cursor can still be viewed: pixels under the white
part of the cursor appear unchanged, while under the black part of the cursor,
black pixels show through as white.

The hotspot aligns a point in the image (not a bit, a point!) with the mouse
position. Imaqine the rectangle with corners (0,0) and (16,16) framing the
Image, as in each of the examples In Figure E-8; the hotspot Is defined in this
coordinate system. A hotspot of (0,0) Is at the top left of the image. For the
arrow In Figure E-8 to point to the mouse position, (0,0) would be its hotspot.
A hotspot of (8.8) Is In the exact center of the image; the center of the plus

E-14

L

Pascal Rerererice Marxial

QuickOraw

sign or oval in Figure E-8 would coincide with the mouse position if (8.8) were
the hotspot for that cursor. Similarly, the hotspot for the pointing hand would
be (16,9).

whenever you move the mouse, the low-level interrupt-driven mouse routines

move the cursor's hotspot to be aligned with the new mouse position.
QuickDraw suppllies a predefined arrow cursor, an arrow pointing north-

northwest.

Refer to Appendix F, Hardware Interface, for more information on the mouse

and cursor control.

E.S5 The Drawing Environment: GrafPort
A grarPort s a complete drawing environment that defines how and where
graphic operations will have thelr effect. It contains all the information
about one Instance of graphic output that Is kept separate from all other
Instances. You can have many grafPorts open at once, and each one will have
its own coordinate system, drawing pattem, background pattemn, pen size and
location, character font and style, and bitmap in which drawing takes place.
You can Instantly switch from one port to another. GrafPorts are the
structures on which a program bullds wingows, which are fundamental to the
Lisa’s "overlapping windows™ user interface.

A grafPort is a dynamic data structure, defined as follows:

type GrafPtr = “GrafPort;
GrafPort = record

device: integer;
portBits: BitHap:

portRect: Rect;

visRon: RgnHandle;
clipRgn: RgnHandle;
bkPat : Pattern:
flllPat: Pattern;
pnLoc: Point;

pnSize: Point;

pnioce : integer:
poPat : Pattern;
pnvis: integer.
txFont: integer;
xrace: Style;

txtode : integer;
txS1ze: integer;
spExtra: longint;
fgColor: longint;
bkColor: longint;
colrBit: integer;
patStretch: integer;
plcSave: QDHand1e;

E-15

Pascal Reference Marnial QuickOraw

rgnSave: QDHandle;

polySave: QDHandle;

grafProcs: QOProcsPtr
end;

All QuickDraw operations refer to grafPorts via grafPtrs. You create a
grafPort with the Pascal procedure new and use the resulting pointer In calls
to QuickDraw. You could, of course, declare a static varlable of type
GrafPort, and obtaln a pointer to that static structure (with the @ operator),
but as most grafPorts will be used dynamically, thelr data structures should be
dynamic aiso.

NOTE

You can access all flelds and subfields of a grafPort normally, but you
should not store new values directly into them. QuickDraw has
procedures for altering all flelds of a grafPort, and using these
procedures ensures that changing a grafPort produces no unusual slde
effects.

Tne gevice fleld of a grafPort 1s the numper of the logical cutput gevice that
the grafPort will be using. QuickDraw uses this Information, since there are
physical differences In the same loglical font for different output devices. The
default device number Is 0, for the Lisa screen,

The portBits fleld Is the bitmap that points to the bit image to be used by the
grafPort. All drawing that is done in this grafPort will take place in this bit
image. The cdefault bitmap uses the entire Lisa screen as its bit image, with
rowBytes of 90 and a boundary rectangle of (0,0,720,364). The bitmap may be
changed to indicate a different structure in memory: all graphics procedures
work In exactly the same way regardiess of whether their effects are visible
on the screen. A program can, for example, prepare an image to be printed
on 3 printer without ever displaying the image on the screen, or develop a
picture in an off-screen bitmap before transferring it to the screen. By
altering the coordinates of the portBits.bounds rectangle, you can change the
coordinate system of the grafPort; with a QuickDraw procedure call, you can
set an arbltrary coordinate system for each grafPort, even If the different
grarPorts all use the same bit image (e.g., the rull screen)

The portRect fleld is a rectangle that defines a subset of the bitmap for use
by the grafPort. Its coordinates are In the system deflned by the
portBits.bounas rectangie. All drawing done by the applicauon occurs Inside
this rectangle. The portRect usually defines the "writable” interlor area of a
wlnldow, document, or other object on the screen. The default portRect Is the
entire screen.

The visRgn fleld indicates the region that is actually visible on the screen. It
Is reserved for use by future software, and should be treated as read-only.

E-16

Pascal Rererence Marr/al QUIckODraw

The default visRgn Is set to the portRect.

The cllpRgn Is an arbitrary region that the application can use to limit
drawing to any region within the portRect. If, for example, you want to draw
a half circle on the screen, you can set the clpRgn to half the square that
would enclose the whole clrcle, and go ahead and draw the whole circle. Only
the half within the cipRgn will actually be drawn in the grafPort. The
default clipRgn Is set arbitrarily large, and you have full control over its
setting. Notice that unlike the visRgn, the clipRgn affects the image even if
it Is not oisplayed on the screen,

Figure E-9 lllustrates a typlcal bitmap (as defined by portBits). portRect.
visRgn, and clipRgn

?-,’.Por__tﬂ_e'ct;:,

PortBits?

Figure E-9
GrafPort Reglons

The bkPat and flllPat flelds of a grafPort contaln patterns used by certain
QuickDraw routnes. BkPat Is the “packground” pattemn that Is used when an
area Is erased or when bits are scrolled out of it. when asked to fill an area
with a speclfled pattem, QuickDraw stores the glven pattern in the flllPat
fleld and then calls a low-level drawlng routine which gets the pattem from
that fleld. The varlous graphic operations are oiscussed in detall later In the
descriptions of indlvidual QuickDraw routines.

Of the next ten fields, the first five determine characteristics of the graphics
pen, described in Section E.5.1, and the last flve determine characteristics of
any text that may be drawn, described in Section E.S.2.

The fgColor, bkColor, and colrBlt fields contaln values related to drawing in
color, a capabllity that will be avallable In the future when Apple supports

E-17

Pascal Rererence NMarni! QuUickDraw

color output devices for the Lisa. FgColor is the grafPort’s foreground color
and bkColor is its background color. ColrBit tells the color imaging software
which plane of the color picture to draw into. For more iInformation, see
Sectlon E.7.2, Drawing In Colar.

The patStretch fleld Is used during output to a printer to expand patterns if
necessary. The appllcation should not change its value.

The picSave, rgnSave, and polySave flelds reflect the state of picture, region,
and polygon definition, respectively. To define a region, for example, you
"open” It, call routines that draw it, and then “close" it. If no region is open,
rgnsave contalns nil; otherwise, it contalns a handle to Information related to
the region definitlon. The application should not be concerned about exactly
what information the handle leads to; you may, however, save the current
value of rgnSave, set the fleld to nil to disable the region definition, and later
restore it to the saved value to resume the region definition. The picSave
and polySave flelas work similarly for plctures and polygons.

Finally, the grafProcs fleld may point to a speclal data structure that the
application stores into if It wants to customize QuickDraw drawing procedures
or use QuickDraw in other advanced, highly specialized ways. (For more
Information, see Section E.10, Customizing QuickDraw Operations.) If
grafProcs is nll, QuickDraw responds in the standard ways described in this
appendix

ES.1 Pen Characteristics
The pnL.oc, pnSize, pnMode, pnPat, and pnVis flelds of a grafPort deal with the
graphics pen. Each grafPort has one and only one graphics pen, which is used
for drawlng lines, shapes, and text. As illustrated In Flgure E-10, the pen has
four characteristics: a Jocat/on a size a orawing mooe and a arawing pattem

E-18

“

g prab O

(-

{
!

Pascal Rererence Marnil GufckOraw

] }\\
AR Height

' ‘\'\-—--—- Fattern
| Width

Lacation

S

Figure E-10
A Graphics Pen

The pen location (pnLoc) Is a point in the coordinate system of the grafPort,
and 1s where QuickDraw will begin drawing the next line, shape, or character.
It can be anywhere on the coordinate plane: there are no restrictions on the
movement or placement of the pen. Remember that the pen location is a
point on the coordinate plane, not a pixel in a bit image!

The pen Is rectangular in shape, and has a user-definable width and height
(pnsize). The default slze Is a 1-by-1-bit rectangle; the width and helght can
range from (0,0) to (32767 ,32767). If elther the pen width or the pen helght Is
less than 1, the pen will not draw on the screen.

* The pen appears as a rectangle with its top left comer at the pen
location; it hangs below and to the right of the pen location.

The pnMode and pnPat flelds of a grafPort determine how the bits under the
pen are affected when lines or shapes are drawn. The pnPat is a pattem that
Is used as the "ink” In the pen. This pattern, like all other patterns drawn In
the grafPort, Is always allgned with the port's coordinate system: the top left
corner of the pattemn Is aligned with the top left comer of the portRect, so
that adjacent areas of the same pattern will blend into a continuous,
coordinated pattern. Five patterns are predefined (white, black, and three
shades of gray); you can also create your own pattern and use it as the pnPat.
(A utllity procedure, called StuffHex, allows you to flll patterns easlly.)

E-19

Pascal Rererence Manual QuickOraw

The pnMooe field determines how the pen pattemn 1Is to affect what's already
on the bitmap when lines or shapes are drawn. when the pen draws,
QuickDraw first determines what bits of the bitmap will be affected and finds
thelr corresponding bits In the pattern. It then does a bit-by-blt evaluation
based on the pen mode, which specifies one of elght boolean operations to
perform. The resulting bit is placed into its proper place In the bitmap. The
pen modes are described in Section E.7.1, Transfer Modes.

The pnVis fleld determines the pen's visibllity, that Is, whether [t draws on the
screen. For more Information, see the descriptions of HidePen and ShowPen
in Section E.9.3, Pen and Line-Drawlng Routines.

E.5.2 Text Characteristics
The txFont, txFace, txdode, 1xSize, and spExtra flelds of a grafPort determine
how text will be drawn--the font, style, and size of characters and how they
wlill be placed on the bitmap.

QuickDraw can draw characters as quickly and easily as it draws lines and
shapes, and In many prepared fonts., Figure E-11 shows two QuickDraw
characters and socme terms you should become famlillar with.

ascent line
ascent -
- Q- base line
character
descent width
descent line

Figure E-11
QuickDraw Characters

QuickDraw can display characters in any size, as well as boldfaced, italicized,
outlined, or shadowed, all without changlng fonts. It can also underline the
characters, or draw them closer together or farther apart.

The txFont fileld is a font number that ldentifles the character font to be used
in the grafPort. The font number O represents the system font, and Is the
default established by OpenPort. The unit QDSupport (listed In Sectlon E.15)
includes definitions of other avallable font numbers.

A character font is defined as a collection of bit images: these images make
up the Indlvidual characters of the font. The characters can be of unequal
widths, and they're not restricted to their “cells™: the lower curl of a
lowercase j for example, can stretch back under the previous character
(typographers call this 4emug). A font can consist of up to 256 distinct
characters, yet not all characters need be defined In a single font. Each font

E-20

Pascal Rererence Marwal QuIckOraw

a contains a ~7Ussing symitx/ to be drawn in case of a request 1o draw a
character that Is missing from the font.

The txF-ace fleld controls the appearance of the font with values from the set
defined by the Style data type:

type StyleItem = (bold, italic, underline, outline, shadow,
condense, extend);

Style = set of StyleItem;

You can apply these elther alone or in combination (see Figure E-12). Most
combinations usually 100k good only for large fonts.

Normal Characters

Bold Characters

: Hatie Oharacters
Underlined Characters xyz

Owitned Cheresters
Bhadowad Oharasiore
- Condensed Characters
Extended Characters
okt m mm@

.. and in other fonts, toc!

Figure E-12
Character Styles

If you speclify bold, each character Is repeatedly drawn one bit to the rignt an
appropriate number of times for extra thickness.

Italic adds an italic slant to the characters. Character bits above the base
line are skewed right; bits below the base line are skewed left.

Ungerline draws a line below the base line of the characters. 1f part of a
character descends below the base line (as "y” In Filgure E-12), the underline is
not drawn through the pixel on elther side of the descending part.

You may specify either outline or shadow. Outline makes a hollow, outlined
character rather than a solid one. Wwith shadow, not only Is the character
holiow and outlined, but the outline Is thickened below and to the right of the
character to achieve the effect of a shadow. If you specify bold along with
outline or shadow, the hollow part of the character Is widened.

E-21

Pascal Reference Marvial GUICKOraw

Condense and extend affect the horizontal distance between all characters,
including spaces. Condense decreases the distance between characters and
extend increases it, by an amount which QuickDraw determines Is appropriate.

Tne tdMooe fleld controls the way characters are placed on a bit Image. It
functions much like a pnMode: when a character Is drawn, QuickDraw
determines which bits of the bit image will be affected, does a bit-by-bit
comparlson based on the mode, and stores the resulting bits into the bit
Image. These modes are described In Section E.7.1, Transfer Modes. Only
three of them--srcr, srcXor, and srcBle--should be used for drawing text.

The txSlze fleld specifies the type size for the font, in points (where “point”
here Is a typographical term meaning approximately 1/72 inch) Any slze may
be specified. If QuickDraw does not have the font in a specified size, it will
scale a size it does have as necessary to produce the size desired. A value of
0 In this fleld airects QuickDraw to choose the size from among those it has
for the font; it will choose whichever size is closest to the system font size.

Finally, the spExtra field Is useful when a line of characters is to be drawn
justified such that It Is allgned with both a left and a right margin (sometimes
called "full justificatlon”). SpExtra Is the number of pixels by which each
space character should be widened to fill out the line.

E.6 Coordinates in GraffPorts

Each grafPort has its own Jaca/ coordinate system. All flelds in the grafPort
are expressed in these coordinates, and all calculations and actions performed
In QuickDraw use the local coordinate system of the currently selected port.

Two thlngs are important to remember:

* Each grafPort maps a portion of the coordinate plane into a similarly-
sized portion of a bit image.

* The portBlts.bouads rectangle defines the local coordinates for a grafPort.

The top left comer of portBlts.bounds Is always aligned around the first bit In
the bit image; the coordinates of that corner "anchor” a point on the grid to
that bit in the bit image. This forms a common reference point for rmultlple
grafPorts using the same bit Image (such as the screen). Glven a
portBllts.bouus rectangle for each port, you know that thelr top left corners
colncide.

The Interrelationship between the portBits.bounds and portRect rectangles is
very Important. As the portBits.bounds rectangie establishes a coordinate
system for the port, the portRect rectangle indicates the section of the
coordinate plane (and thus the bit image) that will be used for drawing. The
portRect usually falls inside the portBits.bounds rectangle, but it's not required
to do so.

when a new grafPort Is created, its bitmap Is set to point to the entire Lisa
screen, and both the portBits.bounds and the portRect rectangles are set to

E-22

Pascal Rererence Marnal

—_—

GAICkDraw

720-by-364-bit rectangles, with the point (0,0) at the top left corner of the
screen.,

You can redefine the local coordinates of the top left corner of the grafPort’s
portRect, using the SetOrigin procedure. This changes the local coordinate
system of the grafPort, recalculating the coordinates of all points in the
grafPort to be relative to the new corner coordinates. For example, consider
these procedure calls:

SetPort(gamePort);
SetOrigin(40, 80);

The call to SetPort sets the current grafPort to gamePort; the call to
SetOrigin changes the local coordinates of the top left corner of that port's
portRect to (40,80) (see Figure E-13).

0 95 30 512 -55 40 245 457
[I | [I I
0— 1 =40 - T
B0 — i
prLOC i
portRect
275 — [l 735 ~
YR 302 ~

vishign (95,120)(300,27%) visRgn (40,80)(245,235)
clipfign (95,120%300,275) clipRgn (95,120)(300,275)

Betore SetOrigin Atter SetOrigin{40,80)

Flgure E-13
Changing Local Coordinates

This recalculates the coordinate components of the following elements:
gamePort” . portBlits. bounds gamePort” .portRect
gamePort” .visRgn

These elements are always kept "In sync”, so that all calculations, compari-
sons, or operatlons that seem right, work rignht.

Notice that when the local coordinates of a grafPort are offset, the visRgn of
that port Is offset also, but the clipRgn Is not. A good way to think of it is
that if a document is being shown inslde a grafPort, the document “"sticks" to
the coordinate system, and the port's structure “sticks” to the screen.
Suppose, for example, that the visRgn and clipRgn in Figure E-13 before

E-23

Pascal Reference Marx/al QuickDraw

Setorigin are the same as the portkect, and a gocument 1Is being shown. After
the SetOrigin call, the top left comer of the clipRgn is still (95,120), but this
locatlon has moved down and to the right, and the location of the pen within
the document has similarly moved. The locations of portBits.bounds, portRect,
and visRgn did not change; thelr coordinates were offset. As always, the top
left comer of portBits.bounds remains aligned around the first bit in the bit
image (the first pixel on the screen)

If you are moving, comparing, or otherwise dealing with mathematical items in
different grafPorts (for example, finding the intersection of two reglons in two
different grafPorts), you must adjust to a common coordinate system before
you perform the operation. A QuickDraw procedure, Local ToGlobal, lets you
convert a point's local coordinates to a g/ada/ system where the top left
corner of the bit image is (0,0); by converting the varlous local coordinates to
global coordinates, you can compare and mix them with confidence. For more
information, see the description of this procedure in Section E.9.17,
Calculations with Polnts.

E.7 General Discussion of Drawing
Drawing occurs:

s Always Inside a grafPort, In the bit image and coordinate system defined
by the grafPort's bitmap.

* Always within the intersection of the grafPort’s portBits.nounds and S
portRect, and clipped to its visRgn and clipRgn.)

* Always at the grafPort's pen location.
* Usually with the grafPort’s pen size, pattemn, and mode.

with QuickDraw procegures, you can draw lines, shapes, and text. Shapes
include rectangles, ovals, rounded-corner rectangles, wedge-shaped sections of
ovals, regions, and polygons.

Lines are defined by two points: the current pen location and a destination
location. when drawing a line, QuickDraw moves the top left corner of the
pen along the mathematical trajectory from the current location to the
destination. The pen hangs below and to the right of the trajectory (see
Figure E-14).

E-24

Pascal Reference Mamial QuickDraw

LU
:;:.::.:s:t:o:o:o:t' :o:o:o:
0%0%0%4%0%% %% "%’
0%0%0%0%0% %% %0, %%
SOSSOESSOOY

Figure E-14
Drawing Lines

NOTE

No mathematlical element (such as the pen location) Is ever affected by
clipping: clipping only determines what appears where in the bit image.
If you draw a line to a location outside your grafPort, the pen location
will move there, but only the portion of the line that is inside the port
will actually be drawn. This Is true for all drawing procedures.

Rectangles. ovals, and rounded-comer rectangles are defined by two comer
points. The shapes always appear inside the mathematical rectangle defined
by the two points. A reglon Is defined in a more complex manner, but also
appears only within the rectangle enclosing it. Remember, these enclosing
rectangles nave Infinitely thin porders and are not visible on the screen.

As lllustrated In Flgure E-15, shapes may be drawn elther so/fo (fllled In with
a pattern) or ~amed (outlined and hollow).

E-25

Pascal Reference Manual QuickDraw

ALABEEER.
LLAEEEEEE
EEEIREIEEIEL
BIEBEIERIC
BEREEEIEIRE
[alelaEa
REIEE

pen height

pen
width

Figure E-15
Solid Shapes and Framed Shapes

In the case of framed shapes, the outline appears completely within the

enclosing rectangie--with one exception--and the vertical and horizontal
thickness of the outline Is aetermined by the pen size. The exception is
polygons, as discussed In Section E.8.2, POlygaons.

The pen pattern is used to fill in the bits that are affected by the drawing
operation. The pen mode defines how those bits are to be affected by
directing QuickDraw to apply one of eight boolean operatlons to the bits In
the shape and the corresponding pixels on the screen,

Text drawlng does not use the pnSize, pnPat, or pnMode, but 1t does use the
pnLoc. Each character Is placed to the right of the current pen location, with
the left end of its base line at the pen’s location. The pen Is moved to the
right to the location where It will draw the next character. No wrap or
carriage return Is performed automatically.

The method QuickDraw uses in placing text is controlled by a mode similar to
the pen mode. This is explalned In Section E€.7.1, Transfer Modes. Clipplng of
text is performed In exactly the same manner as all other clipping In
QuickDraw.

E.7.1 Transfer Mooes

when lines or shapes are drawn, the pnMode field of the grafPort determines
how the drawing is to appear in the port's bit image; simllarly, the tdvode
fleld determines how text is to appear. There Is also a QuickDraw procedure
that transfers a bit image from one bitmap to anather, and this procedure has
a mode parameter that determines the appearance of the result, In all these
cases, the mode, called a &ansrer moae speclfies one of eight boolean
operations: for each bit in the item to be drawn, QuickDraw finds the

E-26

——

Fascal Rreference Marnia! QuUIckOraw

corresponding bit in the destination bit image, performs the boolean operation
on the palr of bits, and stores the resulting bit into the bit image.

There are two types of transfer rode:
* Pattemn Lansfer mooes for drawlng lines or shapes with a pattem.

» Sowrve transrer modes for drawing text or transferring any bit image
between two bitmaps.

For each type of mode, there are four basic operations--Copy. Or, Xor, and
Bic. The Copy operation simply replaces the pixels in the destination with
the pixels In the pattern or source, "painting”™ over the destination without
regard for what s already there. The Or, Xor, and Bic operations leave the
destination plxels under the white part of the pattern or source unchanged,
angd differ In how they affect the pixels under the black part: Or replaces
those plxels with black pixels, thus "overlaying” the destination with the black
part of the pattern or source; Xor Inverts the pixels under the black part; and
Bic erases them to white.

Each of the basic operations has a variant In which every pixel in the pattem
or source Is Inverted before the operation is performed, glving eight
operations In all. Each mode Is deflned by name as a constant In QuickDraw

(see Figure E-16).

patiern or source destination

"Paint" "Overlay" "Invert" "Erase"

patCopy patOr patXor patBic
srcCopy sreOr srcXor srcBic

B E R

notFstCopy notPatOr notPatXor rotFatBic
notSrcCopy notSrcOr notSrcXor notSreBic

Figure E-16
Transfer Modes

E-27

Fascal Rrererernce NMarnial QCkDraw
Pattem Source Action on each pixel in destination:
transfer transfer If black pixel In If white pixel in
mode mogde pattem or source pattemn or source
patCopy srcCopy Force black Force white
pator sicOr Force black Leave alone
patxor sreXor Invert l.eave alone
patBic sreBic Force white Leave alone
notPatCopy notSrcCopy Force white Force black
notPatox notSIcOy L.eave alone Force black
notPatXor notSrcXor Leave alone Invert
notPatBic notSrcBlc Leave alone Force white

E.7.2 Drawing in Color

Currently you can only look at QuickDraw output on a black-and-white screen
or printer. Eventually, however, Apple will support color output devices. If
you want (o set up your application now to produce color output in the future,
you can 00 so by using QuickDraw procedures to set the foreground color and
the background color. Elght standard colors may be specified with the
following predefined constants: blackColol, whiteColor, redColor, greenColor,
blueColor, cyanColor, magentaColor, and yellowColor. Initlally, the foreground
color Is blackColor and the background color Is whiteColor. If you specify a
color other than whiteColor, it will appear as black on a black-and-white
output device.

To apply the table above (in Section E.7.1) to drawlng In color, make the
following translation: where the table shows “"Force black”, read “"Force
foreground color”, and where it shows "Force white", read "Force background
color”. when you eventually recelve the color output device, you'll find out
the effect of Inverting a color on it.

NOTE

QulckDraw can support output devices that have up to 32 bits of color
information per pixel. A color picture may be thought of, then, as
having up to 32 planes. At any one time, QuickDraw draws into only
one of these planes. A QuickDraw routine called by the color-imaging
software specifies which plane,

E.8 Pictures and Polygons

QuickDraw lets you save a sequence of drawlng commands and “play them
back” later with a single procedure call. There are two such mechanisms: one
for drawing any picture to scale In a destination rectangle that you specify,
an? another for drawing polygons in all the ways you can draw other shapes in
QuickDraw.

E-28

Pascal Rererence Marual QuickOraw

E.8.1 Plctures

A pleture in QuickDraw Is a transcript of calls to routines which draw
something--anything--on a bitmap. Plctures make it easy for one program to
draw something defined In another program, with great flexibility and without
knowing the detalls about what's Deing drawn,

For each picture you cefine, you specify a rectangle that surrounds the
picture; this rectangle is called the p/lctwre rame When you later call the
procegure that draws the savea plcture, you supply a destination rectangle,
and QuickDraw scales the picture so that its frame Is completely aligned with
the destination rectangle. Thus, the plcture may be expanded or shrunk to fit
its destination rectangle. For example, if the plcture is a circle inside a
square picture frame, and the destination rectangle Is not square, the picture
Is drawn as an oval.

Since a picture may inciude any sequence of drawing commands, its data
structure s a variable-length entity. It consists of two fixed fields followed
by a variable-length data flela:

type Picture = record
picSize: integer;
picFrame: Rect;
{picture definition data)
enq;

The picSize fleld contains the size, In bytes, of the plcture variable. The

plcFrame fleld is the picture frame which surrounds the picture and gives a
frame of reference for scaling when the picture is drawn. The rest of the

structure contalns a compact representation of the drawing commands that

define the plcture.

All pictures are accessed through handles, which polnt to one master pointer
which In tumn points to the plcture.

type PicPtr “Picture;
PicHandle = “PlcPtr;

To deflne a plcture, you call a QuickDraw function that retumns a picture
handle and then call the routines that draw the picture. There Is a procedure
to call when you've finisheg defining the picture, and another for when you're
done with the picture altogether.

QuIckDraw also allows you to Intersperse giciire camments with the
definition of a picture. These comments, which do not affect the plicture’s
appearance, may be used to provide additional Information about the picture
when it's played back. This is especially valuable when pictures are
transmitted from one application 1o another. There are two standard types of

E-29

rFascal Rererence NMarkal GRAICkDraw /""3

comment which, like parentheses, serve to group drawing commands together
(such as all the commands that draw a particular part of a plcture):

const piciParen = 0;
plcRParen = 1;

The application defining the picture can use these standard comments as well
as comments of its own design.

To Include a comment in the deflnition of a plcture, the appiication calls a
QuickDraw procedure that specifies the comment with three parameters: the
comment kind, which ldentifies the type of comment; a handle to additional
data if desired; and the size of the additional data, If any. When playing back
a plcture, QuickDraw passes any comments in the picture's definition to a
low-level procedure accessed indirectly through the grafProcs field of the
grafPort (see Section E.10, Customizing QuickDraw Operatlons, for more
Information). To process comments, the application must Include a procedure
to do the processing and store a pointer to it in the data structure pointed to
by the grafProcs field.

NOTE

The standard low-level procedure for processing plcture comments
simply ignores all comments.

E.8.2 Polygons
Polygons are similar to pictures in that you define them by a sequence of
calls to QuickDraw routines. They are also similar to other shapes that
QuickDraw knows about, since there Is a set of procedures for performing
graphic operations and calculations on them.

A polygon 1s simply any sequence of connected lines (see Figure E-17). You
gefine a polygon by moving to the starting point of the polygon and drawing
lines from there to the next point, from that point to the next, and so on.

Flgure E-17
Polygons

e

E-30

Pascal Reference Marnsal QuickOraw

Ine data structure for a polygon iIs a varlable-length entity. It consists of
two fixed flelds followed by a variable-length array:

type Polygon = record
polySize: integer;
polyBBox: Rect;
polyPoints: array [0..0] of Point
end;

The polySize fleld contalns the size, In bytes, of the polygon variable. The
polyBBox fleld is a rectangle which just encloses the entire polygon. The
polyPolnts array expands as necessary to contain the points of the polygon--
the starting point followed by each successive point to which a line is drawn.

Like pictures and reglons, polygons are accessed through handles.

type PolyPtr “Polygon;
PolyHandle = “PolyPtr;

To define a polygon, you call a QuickDraw function that returns a polygon
handle and then form the polygon by calling procedures that draw lines. You
call a procedure when you've finished defining the polygon, and another when
you're done with the polygon altogether.

Just as for other shapes that QuickDraw knows about, there is a set of
graphlc operations on polygons to draw them on the screen. QuickDraw draws
a polygon by moving to the starting point and then drawing lines to the
remalning polnts in succession, just as when the routlnes were called to define
the polygon. In this sense it "plays back” those routine calls. As a result,
polygons are not treated exactly the same as other QuickDraw shapes. For
example, the procedure that frames a polygon draws outside the actual
boundary of the polygon, because QuickDraw line-drawing routines draw below
and to the rignht of the pen location. The procedures that flll a polygon with
a pattern, however, stay within the boundary of the polygon: they alsc add an
adoitional ilne between the ending point and the starting point if those points
are not the same, to complete the shape.

There is also a difference In the way QuickDraw scales a polygon and a
similarly-shaped reglon if it's being drawn as part of a picture: when
stretched, a slanted line Is drawn more smoothly If it's part of a polygon
rather than a reglon. You may find it helpful to keep in mind the conceptual
difference between polygons and regions: a polygon is treated more as a
continuous shape, a reglon more as a set of bits.

E.9 QuickDraw Routines

This sectlion describes all the procedures and functions in QuickDraw, thelr
parameters, and thelr operation. They are presented in thelr Pascal form; for
Information on using them from assembly language, see Section E.11, Using
QuickDraw from Assembly Language. Note that the actual procedure and
function declarations are given here, rather than the BNF notation or syntax
diagrams used elsewhere in this manual.

E-31

Pascal Reference Maral QulckDraw >

E9.1 GrafPort Routines
Procedure InitGraf (globalPtr: QOPLr);

InitGraf initlalizes QuickDraw. It is called by the QDSupport unit's QDINIL
routine; you need not call it agaln. It initializes the QuickDraw global
variables listed below.

varlable Type Initial setting

thePort GrafPtr nil

vhite Pattern all-white pattern

black Pattern all-black pattern

gray Pattern 50% gray pattern
1tGray Pattern 25% gray pattem
okGray Pattern 75% gray pattern

arrow Cursor pointing arrow cursor
screenBits BitMap Lisa screen, (0,0,720,364)
ranaseed longint 1

The globalPtr parameter tells QuickDraw where to store Its global variables,

beginning with thePort. From Pascal programs, this parameter should always

be set to @thePort; assembly-language programmers may choose any location,

as long as It can accommodate the number of bytes specified by GRAFSIZE In
GRAFTYPES.TEXT (see Sectlon E.11, Using QuickDraw from Assembly ST
Language). ‘

NOTE

To initialize the cursor, call InitCursor (described in Section E.9.2,
Cursor-Handling Routines).

Procedure OpenPort (gp: GrafPtr);

OpenPort allocates space for the glven grafPort's visRgn and clipRgn,
Inftializes the flelds of the grafPort as indicated below, and makes the
grafPort the current port (see SetPort, below) You must call OpenPort before
using any grafPort; first create a grafPtr with new, then use that grafPtr in
the OpenPort call. :

~~

E-32

Pascal Reference Manal QuickDraw
Fleld Type Initlal setting
device integer 0 (Llisa screen)
portBits BitHap screenBlts (see InitGraf)
portRect Rect screenBits.bounds (0,0,720,364)
visRgn RgnHandle handle to the rectangular region (0,0,720,364)

clipRgn RgnHandle handle to the rectangular region
(-30000, -30000, 30000, 30000)

bkPat Pattern white

fillPat Pattern black

pnl.oc Point (0,0)

pnSize Point (1.1)

pntiode integer patCopy

pnPat Pattern black

pnvis integer 0 (visible)
txront integer 0 (system font)
txFace Style normal

txtode integer srcOr

txSize integer 0 (QuickDraw decides)

SpExtra longint 0

fgColor longint blackColor
bkColor longint whiteColor
colrBit integer 0
patStretch integer 0

picSave QOHandle nil
Ignsave QHandle nil
polySave QDHandle nil
grafProcs QUProcsPtr nil

Procedure InitPort (gp: GrafPtr);

Glven a pointer to a grafPort that has been opened with OpenPort, InitPort
reinitializes the flelds of the grafPort and makes it the current port (if it's
not already).

NOTE

InitPort does everything OpenPort does except allocate space for the
visRgn and clipRgn.

Procedure ClosePort (gp: GrafPtr);

ClosePort deallocates the space occupied by the given grafPort’s visRgn and
clipRgn. when you are completely through with a grafPort, call this
procedure.

E-33

Pascal Rererernce Marxial QUICKkDraw

WARNINGS

If you do not call ClosePort before disposing of the grafPort, the
memory used by the visRgn and clipRgn will be unrecoverable.

After calling ClosePort, be sure not to use any coples of the visRgn or
clipRgn handles that you may have made.

Procedure SetPort (gp: GrafPtr);

SetPort sets the grafPort Ingicated by gp to be the current port. The qglobal
pointer thePort always polnts to the current port. All QuickDraw drawing
routines affect the bitmap thePort” portBits and use the local coordinate
system of thePort . Note that OpenPort and InitPort do a SetPort to the
given port,

WARNING
Never do a SetPort to a port that has not been opened with OpenPort.

Each port possesses Its own pen and text characteristics which remain
unchanged when the port Is not selected as the current port.

Procedure GetPort (var gp: GrafPtr);

GetPort returns a polnter to the current grafPort. If you have a program that
draws Into more than one grafPort, It's extremely useful to have each
procedure save the current grafPort (with GetPort), set 1ts own grafPort, ao
drawlng or calculations, and then restore the previous grafPort (with SetPort).
The pointer to the current grafPort Is also avallable through the global
pointer thePort, but you may prefer to use GetPort for better readability of
your program text. For example, a procedure could do a GetPori{savePort)
before setting Its own grafPort and a SetPort(savePort) afterwards to restore
the previous port.

Proceoure GrafDevice (device: integer);

GrafDevice sets thePort " .device to the given number, which identifles the
logical output device for thls grafPort. QuickDraw uses this informatlon. The
initial device number is 0, which represents the Lisa screen.

Procedure SetPortBits (bm: BitMap);:

SetPortBits sets thePort ™ portBits to any previously defined bitmap. This
allows you to perform all normal drawing and calculations on a buffer other
than the Lisa screen--for example, a 640-by-8 output buffer for a dot matrix
printer, or a small off-screen Image for later “stamping” onto the screen.

E-34

Pascal Reference Mam/al QuickDraw

Remember to prepare all flelds of the bitmap before you call SetPortBits.

Procedure PortSize (width, height: integer);

PortSize changes the size of the current grafPort’s portRect. 772/s daes not
arrect the screeny: it merely changes the size of the “actlve area” of the
grafPort.

The top left cormer of the portRect remains at its same location; the width
and height of the portRect are set to the glven width and height. In other
words, PortSize moves the bottom right comer of the portRect to a position
relative to the top left corner.

PortSize does not change the cllpRgn or the visRgn, nor does it affect the
local coordinate system of the grafPort: it changes only the portRect's width
and helght. Remember that all drawing occurs only In the Intersection of the
portBits.bounds and the portRect, clipped to the visRgn and the clipRgn.

Procedure HovePortTo (leftGlobal, topGlobal: integer);

MovePortTo changes the position of the current grafPort’s portRect. 72/s apes
not arrect the screen; 1t merely changes the location at which subsequent
drawing Inside the port will appear.

The leftGlobal and topGlobal parameters set the distance between the top left
corner of the portBits.bounds and the top left corner of the new portRect.
For example,

HovePortTo(360, 182);

will move the top left corner of the portRect to the center of the screen (if
portBits is the Lisa screen) regardless of the local coordinate system.

Like PortSize, MovePortTo does not change the clipRgn or the visRgn, nor
does it affect the local coordinate system of the grafPort.

Procedure SetOrigin (h,v: integer);

SetOrigin changes the local coordinate system of the current grafPort. 77/s
aoves not arrect the scregr-it does, however, affect where supsequent drawing
and calculation will appear in the grafPort. SetOrigin updates the coordinates
of the portBits.bounds, the portRect, and the visRgn. All subsequent drawling
and calculation routines will use the new coordinate system.

The h and v parameters set the coordinates of the top left comer of the
portRect. All other coordinates are calculated from this point. All relative
distances among any elements In the port will remain the same; only their
absolute local coordinates will change.

E-35

Pascal Reference Manl QuickOraw £
T

NOTE

SetOrigin does not update the coordinates of the clipRgn or the pen;
these items stick to the coordinate system (uniike the port's structure,
which sticks to the screen).

SetOrigin 1s useful for adjusting the coordinate system after a scrolling
operation. (See ScrollRect in Section E.9.13, Bit Transfer Operations.)

Procedure SetClip (rgn: RgnHandle);

SetClip changes the clipping region of the current grafPort to a region
equivalent to the given region. Note that this does not change the region
handle, but affects the clipping reglon itself. Since SetClip makes a copy of
the given reglon, any subsequent changes you make to that region will not
affect the clipping reglon of the port.

You can set the clipping region to any arbitrary region, to ala you In drawing
inside the grafPort. The Initial clipRgn is an arbltrarily large rectangle.

Procegure GetClip (rgn: RgnHandle);

GetClip changes the glven region to a region equivalent to the clipping reglon
of the current grafPort. This Is the reverse of what SetClip does. Like
SetClip, it does not change the region handle.

P
" . kY

Procecure ClipRect (r: Rect):

ClipRect changes the clipping region of the current grafPort to a rectangle
equivalent to glven rectangle. Note that this does not change the reglon
handle, but affects the region itseif.

Procequre BackPat (pat: Pattern);

BackPat sets the background pattem of the current grafPort to the glven
pattern. The background pattern Is used In ScrollRect and In all QuickDraw
routines that perform an “erase" operation.

E9.2 Cursor-Handling Routines
Adaitional Information on cursor handling can be found in Appendix F,
Hardware Interface.

Procedure InitCursor;

InitCursor sets the current cursor to the predefined arrow cursor, an arrow
polnting north-northwest, and sets the cwsor /eve/ to B, making the cursor
visible. The cursor level, which Is Initialized to 0 when the system is booted,
keeps track of the number of times the cursor has been hidden to compensate
for nested calls t0 HideCursor and ShowCursor (below).

E-36

Pascal Refererne Marsal QIckDraw

Before you call InitCursor, the cursor Is undefined (or, if set by a previous
process, it's whatever that process set it to).

Procegure SetCursor (crsr: Cursor);

SetCursor sets the current cursor to the 16-by-1e-bit Image in crsr. If the
cursor is hidden, it remalns hidden and will attaln the new appearance when
it's uncovered; if the cursor Is already visibie, It changes to the new
appearance immediately.

The cursor Image is initlalized by InitCursor to a north-northwest arrow,
visible on the screen. There is no way to retrleve the current cursor image.

Procedure HideCursor;

HldeCursor removes the cursor from the screen, restoring the bits under fit,
and decrements the cursor level (which InitCursor initlalized to 0O). Every call
to HideCursor should be balanced by a subsequent call ta ShowCursor.

Procedure ShowCursor;

ShowCursor Increments the cursor level, which may have been decremented by
HideCursor, and aisplays the cursor on the screen if the level becomes 0. A
call to ShowCursor should balance each previous call to HideCursor. The
level Is not incremented beyond 0, so extra calls to ShowCursor don't hurt,

If the cursor has been changed (with SetCursor) while hidden, ShowCursor
presents the new cursor,

The cursor Is Initiallzea by InftCursor 10 a north-northwest arrow, not hidden.

Procedure ObscureCursor;

ObscureCursor hides the cursor until the next time the mouse 1s moved. Unlike

HideCursor, it has no effect on the cursor level and must not be balanced by
a call to ShowCursor.

E9.3 Pen and Line-Drawing Routines
The pen and line-drawing routines all depend on the coordinate system of the
current grafPort. Remember that each grafPort has its own pen; if you draw
in one grafPort, change to another, and return to the first, the pen will have
remained in the same location,

Procedure HidePen;

HidePen decrements the current grafPort’s pnVis field, which Is initialized to
0 by OpenPort; whenever pnVvis Is negative, the pen does not draw on the
screen. PnVis keeps track of the number of times the pen has been hidden to
compensate for nested calls to HidePen and ShowPen (below). HidePen s

E-37

Pascal Rererence Marnial QuickDraw

called by OpenRgn, OpenPicture, and OpenPoly so that you can deflne reglons,
pictures, and polygons without drawing on the screen.

Procedure ShowPen;

ShowPen increments the current grafPort's pnvis field, which may have been
decremented by HidePen; If pnVis becomes 0. QuickDraw resumes drawing on
the screen. Extra calls to ShowPen will increment pnvis beyond 0, so every
call to ShowPen should be balanced by a subsequent call to HidePen.
ShowPen is called by CloseRgn, ClosePicture, and ClosePoly.

Procedure GetPen (var pt: Point);

GetPen returns the current pen location, In the local coordinates of the
current grafPort.

Procedqure GetPenstate (var pnstate: PenState);

GetPenState saves the pen locatlon, size, pattern, and mode In a storage

variable, to be restored later with SetPenState (below). This Is useful when

calllng short subroutines that operate in the current port but must change the

graphics pen: each such procedure can save the pen's state when It's called, do

whatever it needs to do, and restore the previous pen state Immediately
pefore retumning.

The PenState data type Is not useful for anything except saving the pen's
state.

Procequre SetPenState (pnstate: PenState);

SetPenState sets the pen location, size, pattern, and mode in the current
grafPort to the values stored In pnState. This Is usually called at the end of
a procedure that has altered the pen parameters and wants to restore them to
thelr state at the beginning of the procedure. (See GetPenState, above.)

Procedure PenSize (width, height: integer);

Pensize sets the dimensions of the graphics pen In the current grafFPort. All
subsequent calls to Line, LineTo, and the procedures that draw framed shapes
in the current grafPort will use the new pen dimensions.

The pen dimensions can be accessed In the varlable thePort ™ pnSize, which Is
of type Point. If either of the pen dimensions is set to a negative value, the
pen assumes the dimensions (0,0) and no drawing Is performed. For a
discussion of how the pen draws, see Sectlon E.7, General Discussion of
Orawing. :

E-38

Pascal Reference Manal QuickOraw

Procequre Pentode (mode: integer);

PenMode sets the transfer mode through which the pnPat Is transferred onto

the bitmap when llnes or shapes are drawn. The mode may be any one of the
pattern transfer modes:

patCopy patXor notPatCopy notPatXor
pator patBic notPator notPatBic

If the mode Is one of the source transfer modes (or negative), no drawing is
performed. The current pen mode can be obtained in the varlable

thePort ".pnMode. The initial pen mode Is patCopy, in which the pen pattem
is copiea alrectly to the bitmap.

Procedure PenPat (pat: Pattern);

PenPat sets the pattern that is used by the pen In the current grafPort. The
standard patterns white, black, gray, 1tGray, and dkGray are predefined; the
initlal pen pattern s black. The current pen pattern can be ocbtalned In the
varlable thePort pnPat, and this value can be assigned (but not compared!) to
any other varlable of type Pattem.

Procedure PenNormal;

PenNormal resets the Initial state of the pen in the current grafPort, as
follows:

Fleld setting
pnSize (1.1)
pnttode patCopy
pnPat black

The pen location is not changed.

Procedure MoveTo (h,v: integer);

MoveTo moves the pen to location (hv) In the local coordinates of the current
grafPort. No drawing is performed.

Procedure Hove (dh, dv: integer);

Move moves the pen a distance of dh horizontally and dv vertically from its
current location; it calls MoveTaoh+dh,v+dv), where (h,v) Is the current location.
The positive directions are to the right and down. No drawing iIs performed.

E-39

Pascal Rererence Manual QuickOraw

Procedure LineTo (h,v: integer):

LineTo draws a line from the current pen location to the location specified (In

local coordinates) by h and v. The new pen location is (hv) after the line Is
drawn. See Section E.7, General Discussion of Drawing.

If a region or polygon is open and being formed, its outline is infinitely thin
ang is not affected by the pnSize, pnMode, or pnPat. (See OpenRgn and
OpenPoly.)

Procedure Line (dh,av: integer);

Line draws a line to the location that Is a distance of dh horizontally and dv
vertically from the current pen location; it calls LineToh+dh,v+av), where (hv)
Is the current location. The positive directions are to the right and down.
The pen location becomes the coordinates of the end of the line after the line
Is drawn. See Section E.7, General Discussion of Drawing.

If a region or polygon is open and being formed, its outline Is infinitely thin
and Is not affected by the pnSize, pniMode, or pnPat. (See OpenRgn and
OpenPoly.)

E9.4 Text-Drawing Routines

Each grafPort has its own text characteristics, and all these procedures deal
with those of the current port. Y

Procedure TextFont (font: integer);

TextFont sets the current grafPort's font (thePort ~.txdont) to the given font
number. The initial font number is 0, which represents the system font. For
other font numbers, refer 1o the QDSupport unit, listed in Section E.15.

Procegure TextFace (face: Style);

TextFace sets the current grafPort's character style (thePort ™ .bdace). The
Style data type allows you to specify a set of one or more of the followlng
predefined constants: bold, Itallc, underline, outline, shadow, condense, and
extend. For example:

TextFace([bold]); {bolu)

TextFace([boldg, italic]); bold and italic})
TextFace(thePort".txface+[bold]); {whatever it was plus bold
TextFace(thePort“.tﬁa:e—[bold g, {matever it was but not bold}
TextFace([]), {normal}

E-4D

|

Pascal Reference Manual QuickDraw

Procequre Texthode (mooe: integer);

TextMode sets the current grafPort’s transfer mode for drawing text
(thePort .txMode). The mode should be stcOr, sroXor, or srebic. The initial
transfer mode for drawing text is srcOr.

Procedure TextSize (size: integer);

TextSize sets the current grafPort's type size (thePort ".txSize) to the given
number of polnts. Any size may be specified, but the result will look best if
QuickDraw has the font In that size (otherwise it will scale a size it does
have). The next best result will occur if the glven size is an even multiple of
a size avallable for the font. 1f O Is specified, QuickDraw will choose one of
the avallable sizes--whichever is closest to the system font size. The initial
txslze setting is G.

Procedure Spacetxtra (extra: integer):

SpaceExtra sets the current grafPort's spExtra fleld, which specifies the
number of pixels by which to widen each space in a line of text. This is
useful when text Is belng fully Justified (that is, aligned with both a left and a
right margin). Conslder, for example, a line that contalns three spaces; if
there would normally be six pixels between the end of the line and the right

margin, you would call SpaceExtra(2) to print the line with full justification.
The initial spExtra setting is 0.

NOTE

SpaceExtra will also take a negative argument, but be careful not to
narrow spaces so much that the text Is unreadable,

Procedure DrawChar (ch: char);

DrawChar places the glven character to the right of the pen location, with
the left end of its hase line at the pen's location, and advances the pen
accordingly. If the character iIs not In the font, the font's missing symbol is
drawn.

Procegure DrawString (s: Strzss);

Drawstring performs consecutlve calls to DrawChar for each character in the
supplied string; the string is placed beginning at the current pen location and
extending right. No formatting (carriage retumns, line feeds, etc.) Is performed
by QuickDraw. The pen location ends up to the right of the last character in
the string.

E-41

Pascal Rererence Marnial QuickOraw

Proceaure DrawText (textBuf: QOPtr; firstByte, byteCount: integer);

DrawText draws text from an arbitrary structure in memory specified by
textBuf, starting firstByte bytes into the structure and continuing for
byteCount bytes. The string of text Is placed beginning at the current pen
location and extending right. No formatting (carriage returns, line feeds, etc.)
Is performed by QuickDraw. The pen location ends up to the right of the last
character in the string.

Function Char¥idth (ch: char) : integer;

Charwidth retums the value that will be added to the pen horizontal
coordinate if the specified character is drawn. Charwidth includes the effects
of the stylistic varlations set with TextFace; if you change these after
determining the character width but before actually drawing the character,
the predetermined width may not be correct. If the character Is a space,
Charwidth also Includes the effect of SpaceExtra.

Function String¥idth (s: Str2s5) : integer;

Stringwidth returns the width of the given text string. which it calculates by
aading the widths of all the characters in the string (see Charwidth, above).
Tnis value will be added to the pen horizontal coordinate if the specified
string is drawn.

Function Textwidth (textBuf: QDPtr; firstByte, byteCount: integer) :
integer;

Textwidth retums the width of the text stored In the arbitrary structure In

memory specified by textBuf, starting firstByte bytes into the structure and

continuing for byteCount bytes. 1t calculates the width by adding the widths
of all the characters In the text. (See Charwidth, above.))

Procedure GetFontInfo (var info: FontInfo);

GetFontinfo returns the following information about the current grafPort's
character font, taking Into consideration the style and size In which the
characters will be drawmn: the ascent, descent, maximum character wigth (the
greatest distance the pen will move when a character Is drawn), and leading
(the vertical distance between the descent line and the ascent line below it),
all In pixels. The Fontinfo data structure Is defined as:

type FontInfo = record
ascent: 1integer;
descent: integer;
viatax: integer;
leading: integer
end;

E-42

Pascal Rererence Manual QuUICkOraw

E.9.5 Drawing in Color
These routines will enable applications to do color drawing in the future when
Apple supports color output devices for the Lisa. All nonwhite colors will
appear as black on black-and-white output devices.

Procedure ForeColor (color: longint);

ForeColor sets the foreground color for all drawing in the current grafPort
(thePort .fgColor) to the glven color. The following standard colors are
predefined: blackColor, whiteColor, redColor, greenColor, blueColor, cyanColor,
magentacolor, and yellowColor. The initial foreground color is blackColor.

Procedure BackColor (color: longint);

BackColor sets the background color for all drawing In the current grafPort
(thePort bkColor) to the given color. Elght standard colors are predefined
(see ForeColor, above). The Initial background color is whiteColor.

Proceaure ColorBit (whichBit: integer);

ColorBit 1s called by printing software for a color printer, or other color-
imaging software, to set the current grafPort's colrBit field to whichBit; this
tells QuickDraw which plane of the color picture to draw Into. QuickDraw
will draw into the plane corresponding to bit number whichBit. Since
QuickDraw can support output devices that have up to 32 bits of color
informatlon per pixel, the possible range of values for whichBit is 0O through
31. The initial value of the colrBit field Is D,

E.9.6 Calculations with Rectangles
Calculation routines are independent of the current coordinate system; a
calculation will operate the same regardless of which grafPort is active.

NOTE

Remember that If the parameters to one of the calculation routines
were defined in different grafPorts, you must first adjust them to be In
the same coordinate system. If you do not adjust them, the result
returned by the routine may be different from what you see on the
screen, To adjust to a common coordinate system, see Local ToGlobal
and GlobalToLocal In Section E.9.17, Calculations with Points.

Procedure SetRect (var r: Rect; left, top, right,bottom: integer);

SetRect assigns the four boundary coordinates to the rectandle. The result is
a rectangle with coordinates (left,top, right,bottom).

This procedure s supplied as a utility to help you shorten your program text.
If you want a more readable text at the expense of length, you can assign

E-43

Pascal Rererence Marwal QuickDraw

Integers (or polnts) dlrectly Into the rectangle's flelds. There 1s no significant
code size or execution speed advantage to elther method; one's just easier to
write, and the other’'s easler to read.

Procedure OffsetRect (var r: Rect; oh,adv: integer);

DffsetRect moves the rectangle by adding dh to each horizontal coordinate
and av to each vertical coordinate. If dh and dv are positive, the movement
Is to the right and down; if elther Is negative, the corresponding movement Is
In the opposite directlon. The rectangle retains its shape and size; it's merely
moved on the coorainate plane. This does not affect the screen unless you
subsequently call a routine to draw within the rectangle.

Procedure InsetRect (var r: Rect; dh,dv: Integer);

InsetRect shrinks or expands the rectangle. The left and right sides are
moved In by the amount specified by dh; the top and bottom are moved
toward the center by the amount specified by dv. If dh or dv is negative, the
appropriate palr of sldes 1s moved outward Instead of Inward. The effect IS to
alter the size by 2*dh horizontally and 2*gv vertically, with the rectangle
remalning centered In the same place on the coorainate plane.

If the resulting width or height becomes less than 1, the rectangle Is set to
the empty rectangle (0,0,0,0).

Function SectRect (srcRectA, srcRectB: Rect; var dstRect: Rect) :
boolean;

SectRect calculates the rectangle that is the Intersection of the two Input
rectangles, and returns true if they indeed intersect or false if they do not.
Rectangles that "touch" at a line or a point are not considered intersecting,
because their intersection rectangle (really, in this case, an intersection line
or polnt) does not enclose any bits on the bitmap.

If the rectangles do not Intersect, the destination rectangle is set to (0,0,0,0).
SectRect works correctly even If one of the source rectangles is also the
destination.

Procedure UnionRect (srcRectA, srcRectB: Rect; var dstRect: Rect);

UnlonRect calculates the smallest rectangle which encloses both input
rectangles. It works correctly even If one of the source rectangles Is also the
destination.

Fascal Reference Manual QuickOraw

Function PtInRect (pt: Polnt; r: Rect) : boolear;

PtInRect determlnes whether the pixel below and to the rignt of the given
coordinate point is enclosed in the specified rectangle, and returns true if so
or false If not.

Procedure PtZRect (ptA,ptB: Polnt; var dstRect: Rect);
Pt2Rect retumns the smallest rectangle which encloses the two input points.

Procedure PtToAngle (r: Rect; pt: Point; var angle: integer):

PtToAngle calculates an integer angle between a line from the center of the
rectangle to the given point and a line from the center of the rectangle
pointing straight up (12 o'clock high). The angle Is In degrees from 0O to 359,
measured clockwise from 12 o'clock, with 90° at 3 o'clock, 180° at 6 o'clock,
and 270° at 9 o'clock. Other angles are measured relative to the rectangle: If
the line to the given point goes through the top right corner of the rectangle,
the angle returned Is 45 degrees, even if the rectangle is not square; if it goes
through the bottom right corner, the angle is 135 degrees, and so on (see
Figure E-18).

angle =45
_—N\\~ E‘t
7/ angle = 45
/s — "
/ Sy h
)/ =T
;-F"’/J,
1
. ¥
Figure E-18
PtToAngle

The angle returned might be used as Input to ane of the procedures that
manlpulate arcs and wedges, as described in Section E.9.10, Graphic Operations
on Arcs and Wedges.

Function EqualRect (rectA,rectB: Rect) : boolean;

EqualRect compares the two rectangles and returns true if they are equal or
false if not. The two rectangles must have identical boundary coordinates to
be considered equal.

E-45

Pascal Reference Manual QuickOraw

Function EmptyRect (r: Rect) : boolean;
EmptyRect returns true if the given rectangle is an empty rectangle or false

if not. A rectangle is considered empty if the bottom coordinate is equal to
or less than the top or the right coordinate iIs equal to or less than the left.

E.9.7 Graphic Operations on Rectangles
These procedures perform graphic operations on rectangles. See also
ScrollRect in Section E.9.13, Bit Transfer Operations.

Procedure FrameRect (r: Rect);

FrameRect draws an outline just inside the specified rectangle, using the
current grafPort’s pen pattern, mode, and size. The outline is as wide as the
pen width ang as tall as the pen height. It iIs drawn with the pnPat, according
to the pattern transfer mode specified by pnMode. The pen locatlon is not
changed by this procedure.

If a region is open and being formed, the outside outline of the new rectangle
is mathematically added to the region's boundary.

Procedure PaintRect (r: Rect); S

PaintRect paints the specified rectangle with the current grafPort's pen
pattern and mode. The rectangle on the bitmap is filled with the pnPat,
according to the pattern transfer mode specified by pnMode. The pen location
Is not changed by this procedure.

Procedure EraseRect (r: Rect);

EraseRect palnts the specified rectangle with the current grafPort’s back-
ground pattern bkPat (In patCopy mode). The grafPort's pnPat and pnMode are
ignored; the pen location is not changed.

Procedure InvertRect (r: Rect);

InvertRect inverts the pixels enclosed by the specified rectangle: every white
pixel becomes black and every black pixel becomes white, The grafPort's
pnPat, pnMode, and bkPat are all ignored; the pen location Is not changed.

Procedure FillRect (r: Rect; pat: Pattern);

FillRect fills the specified rectangle with the glven pattemn (in patCopy mode).
The grafPort's pnPat, pnMode, and bkPat are all ignored; the pen location is
not changed.

E-46

Pascal Rerference Maral QuickOraw

E.9.8 Graphic Operations on Ovals
Ovals are drawn Inside rectangles that you specify. If the rectangle you
specify Is square, QuickDraw draws a clrcle.

Procedure FrameOval (r: Rect);

FrameQval draws an outline just Inside the oval that fits Insige the specified
rectangle, using the current grafPort’s pen pattern, mode, and size. The
outline Is as wide as the pen width and as tall as the pen helght. It Is drawn
with the pnPat, according to the pattern transfer mode specified by pnMode.
The pen location is not changed by this procegure.

If a reglon Is open and belng formed, the outside outline of the new oval s
mathematically added to the reglon’s boundary.

Procedure PaintOval (r: Rect);

PaintOval paints an oval just inside the specified rectangle with the current
grafPort's pen pattern and mode. The oval on the bitmap Is filled with the
poPat, according to the pattern transfer mode specified by pnMode. The pen
location Is not changed by this procedure.

Procedure Erase0val (r: Rect):

EraseOval paints an oval Just inside the specified rectangle with the current
grafPort's background pattern bkPat (in patCopy mode). The grafPort's pnPat
and pnMode are Ignored; the pen location is not changed.

Procedure InvertOval (r: Rect);

InvertOval Inverts the plxels enclosed by an oval just inside the specified
rectangle: every white pixel becomes black ang every black pixel becomes
white. The grafPort's pnPat, pnMode, and bkPat are all ignored; the pen
location Is not changed.

Procedure Fill0Oval (r: Rect; pat: Pattern);

Fllloval fllls an oval just inside the specified rectangle with the given pattemn
(in patCopy mode). The grafPort’s pnPat, pnMode, and bkPat are all ignored;
the pen location is not changed.

E.9.9 Graphic Operations on Rounded-Comer Rectangles
Procegure FrameRoundRect (r: Rect; ovalwidth, ovalHeight: integer);

FrameRoundRect draws an outllne just inside the specified rounded-corner

rectangle, using the current grafPort’s pen pattern, mode, and size. OvalWidth
and ovalHelght specify the alameters of curvature for the corners (see Flgure
E-19). The outline is as wide as the pen width and as tall as the pen height.

E-47

Pascal Reference Manual QUickDraw

Procedure FillRoundRect (r: Rect; oval¥idth, ovalHeight: integer; pat:
Pattern);

FillRoundRect fllls the specified rounded-corner rectangle with the given
pattern (In patCopy mode). Ovalwidth and ovalHelght specify the diameters of
curvature for the comers. The grafPort’s pnPat, pnMode, and bkPat are all
ignored; the pen location is not changed.

E.S.10 Graphlc Operations on Arcs and wedges

These procedures perform graphic operations on arcs and wedge-shaped
sections of avals. See also PtToAngle In Section E.96, Calculations with
Rectangles.

Procedure FrameArc (r: Rect; startAngle, arcAngle: integer);

FrameArc draws an arc of the oval that fits Inside the specified rectangle,
using the current grafPort’s pen pattern, mode, and size. StartAngle Indicates
where the arc begins and is treated mod 360. ArcAngle defines the extent of
the arc. The angles are glven in positive or negatlve degrees; a positive angle
goes clockwise, while a negative angle goes counterclockwise. Zero degrees Is
at 12 o'clock high, 90° (or -270°) is at 3 o'clock, 180° (or -180°) Is at 6
o'clock, and 270° (or -90°) Is at 9 o'clock. Other angles are measured relative
to the enclosing rectangle: a line from the center of the rectangle through its
top right corner Is at 45 degrees, even If the rectangle Is not square; a line
through the bottom right corner Is at 135 degrees, and so on (see Figure E-20).

startAngle =0

arcAngle = 45
stertAngle=0 startAngle=0 ! ——1
arcangle = —45§ arcAngle=45 |r
lo e ~C FrameArc

startAngie =0

r arcAngle = 45
FrameArc ’
r
Faintarc
Flgure E-20

Operations on Arcs and wWedges

E-49

Pascal Reference Manual QuickDraw

The arc Is as wide as the pen width and as tall as the pen helght. It Is drawn
with the pnPat, according to the pattern transfer mode specified by pniMode.
The pen location Is not changed by this procedure.

WARNING

FrameArc differs from other QuickDraw procedures that frame shapes
in that the arc Is not mathematically added to the boundary of a
region that is open and being formed.

Procedure PaintArc (r: Rect; startAngle, arcAngle: integer);

PaintArc paints a wedge of the oval just Inside the specified rectangle with
the current grafPort’s pen pattern and mode. StartAngle and arcAngle define
the arc of the wedge as in FrameArc. The wedge on the bitmap is filled with
tne pnPat, according to tne pattern transfer mode specified by pnMode. The
pen location is not changed by this procedure.

Procedure EraseArc (r: Rect; startAngle,arcAngle: integer);

EraseArc paints a wedge of the oval just inside the specified rectangle with
the current grafPort's background pattern bkPat (In patCopy mode).

e and arcAngle define the arc of the wedge as In FrameArc. The
grafPort’s pnPat and pniMode are ignored; the pen location is not changed.

Procedure InvertArc (r: Rect; startAngle, arcAngle: integer);

InvertArc Inverts the pixels enclosed by a wedge of the oval Just inside the
specified rectangle: every white pixel becomes black and every black pixel
becomes white, StartAngle and arcAngle deflne the arc of the wedge as in
FrameArc. The grafPort's pnPat, pnMode, and bkPat are all Ignored; the pen
location is not changed.

Procedure FillArc (r: Rect; startAngle,arcAngle: integer; pat:
Pattern);

FillArc fills a wedge of the oval just inside the specified rectangle with the

glven pattern (In patCopy mode). StartAngle and arcAngle define the arc of
the wedge as in FrameArc. The grafPort's pnPat, pnMode, and bkPat are all

ignored; the pen location is not changed.

E-50

&
n 3
L o

g

Pascal Rererence Manal QulckOraw

E.9.11 Calculations with Reglons

NOTE

Remember that if the parameters to one of the calculation routines
were defined In different grafPorts, you must flrst adjust them to be In
the same coordinate system. If you do not adjust them, the result
returned by the routine may be different from what you see an the
screen. To adjust to a common coordinate system, see LocalToGlobal
and GlobalToLocal in Section E.9.17, Calculations with Points.

Function NewRgn : RgnHandle;

NewRgn allocates space for a new, dynamic, varlable-size region, Initiallzes it
to the empty region (0,0,0,0), and returns a handle to the new reglon. Only
this functlon creates new reglons; all other procedures just alter the size and
shape of reglons you create. OpenPort calls NewRgn to allocate space for the
port's visRgn and clipRgn.

WARNINGS

Except when using visRgn or cliplRgn, you /st call NewRgn before
speclfying a region's handle in any drawing or calculation procedure,

Never refer to a region without using Its handle.

Procedure DisposeRgn (rgn: RgnHandle);

DisposeRgn deallocates space for the region whose handle is supplied, and
returns the memory used by the region to the free memory pool. Use this
only after you are completely through with a temporary region.

WARNING

Never use a reglon once you have deallocated it, or you will risk being
hung by dangling polnters!

Procedure CopyRgn (sSrcRgn, dstRgn: RgnHandle);

CopyRgn copies the mathematical structure of srcRgn into dstRgn; that is, it
makes a dupiicate copy of sicRgn. Once this Is done, sicRgn may be altered
(or even disposed of) without affecting dstRgn. ConyRagn aoes not create the
oestination reglon: you must use NewRgn to create the dstRgn before you
call CopyRgn.

E-51

Pascal Rerference Manual QuickDraw

Procedure SetEmptyRgn (rgn: RgnHandle):

SetEmptyRgn destroys the previous structure of the glven reglon, then sets the
new structure to the empty region (0,0,0,0)

Procedure SetRectRgn (rgn: RgnHandle; left, top, right, bottom: integer);

SetRectRgn destroys the previous structure of the glven region, then sets the
new structure to the rectangle specified by left, top, right, and bottom.

If the specified rectangle is empty (l.e., left>-right or top>-bottom), the region
Is set to the empty reglon (0,0,0,0).

Procedure RectRgn (rgn: RgnHandle; r: Rect);

RectRgn destroys the previous structure of the glven region, then sets the new
structure to the rectangle specified by 1. This is operationally synonymous
with SetReCtRgn, except the Input rectangle Is defined by a rectangle rather
than by four boundary coordinates.

Procedure OpenRgn;

OpenRgn tells QuickDraw to allocate temporary space and start saving lines
and framed shapes for later processing as a reglon definition. Wwhile a region
is open, all calls to Line, LineTo, and the procedures that draw framed shapes
(except arcs) affect the outllne of the region. Only the line endpolnts and
shape boundaries affect the region definition; the pen mode, pattern, and size
do not affect it. In fact, OpenRgn calls HidePen, so no drawing occurs on the
screen while the region is open (unless you called ShowPen just after OpenRgn,
or you called ShowPen previously without balancing it by a call to HigePen).
Since the pen hangs below and to the right of the pen location, drawlng lines
with even the smaliest pen wlll change bits that lle outside the reglion you
define.

The outline of a reglon Is mathematically defined and infinitely thin, and
separates the bitmap Into two groups of bits: those within the reglon and
those outside It. A reglon should consist of one or more closed loops. Each
framed shape itself constitutes a loop. Any lnes drawn with Line or LineTo
should connect with each other or with a framed shape. Even though the
on-screen presentation of a reglon Is clipped, the definitlon of a reglon is not;
you can define a region anywhere on the coordinate plane with complete
disregard for the location of varlous grafPort entities on that plane.

when a region is open, the current grafPort’s rgnSave field contains a handle
to Information related to the region defipition. If you want to temporarily
disable the collection of lines and shapes, you can save the current value of

E-52

A

F"—\\

Pascal Rererence Manal QUickOraw

this flela, set the fiela to nil, ana later restore the saved value to resume the
region definition.

WARNING

Do not call OpenRgn while another reglon Is already open. All open
regions but the most recent will behave strangely.

Procedure CloseRgn (dstRgn: RgnHandle);

CloseRgn stops the collection of lines and framed shapes, organizes them into
a reglon definition, and saves the resulting region into the region indicated by
astRgn. You should perform one and only one CloseRgn for every OpenRgn.
CloseRgn calls ShowPen, balancing the HidePen call made by OpenRgn.

Here's an example of how to create and open a reglon, define a barbell shape,
close the reglon, and draw it

bamell := NewRgn; {moke a new region}
{begin collecting stuff}
SetRect(tenpReot 20 20,30,50); {form the left welight}

FrameOval (tempRec

SetRect(tempRect, 30 30,80, 40); {form the bar}

FrameRect (tempRect);

SetRect(tempRect, 80, 20,90, 50); {form the right weight}

FrameQval(tempRect);
CloseRgn(barbell); {we're done; save in barbell}
Fil1Rgn(barbell, black); {draw it on the screen}
DisposeRgn(barbell): {we con't need you anymore..}

Procedure OffsetRgn (rgn: RgnHandle; dh, ov: 1nteger):

OffsetRgn moves the region on the coordinate plane, a distance of dh
horizontally and av vertically. This does not affect the screen unless you
supsequently call a routine to draw the region. If dh and dv are positive, the
movement is to the right and down; If either is negative, the corresponding
movement Is In the opposite direction. The region retains its size and shape.

NOTE

OffsetRgn Is an especlally efficient operation, because most of the data
defining a reglon Is stored relative to rgnBBox and so isn't actually
changed by OffsetRgn.

E-53

Pascal Reference Marnial QuickOraw

Procegure InsetRgn (rgn: RgnHandle; dh,dv: integer):

InsetRgn shrinks or expands the region. All polnts on the reglon boundary are
moved Inwards a distance of dv vertically and dh horizontally; if dh or dv is
negatlve, the points are moved outwards in that directlon. InsetRgn leaves
the reglon “centered” at the same position, but moves the outline In {for
positive values of dh and av) or out (for negative values of dh and dv
InsetRgn of a rectangular region works just like InsetRect.

Procedure SectRgn (SrcRgnA, srcRonB, dstRgn: RgnHandle):

SectRgn calculates the intersection of two reglions and places the intersection
In a third reglon. 77s ooes not create the cestinatlon reglon: you must use
NewRgn to create dstRgn before you call SectRgn. The dstRgn can be one of
the source reglons, if desired.

If the reglons do not intersect, or one of the regions is empty, the destination
is set to the empty region (0,0,0,0).

Procedure UnionRgn (srcRgnA, srCRgnB, dstRgn: RgnHandle);

UnionRgn calculates the union of two regions and places the union In a third
reglon. 77fs aoes not create the destination reglon: you must use NewRgn to
create dstRgn before you call UnionRgn. The dstRgn can be one of the

source reglons, If desired.

If both regions are empty, the destination is set to the empty region (0,0,0,0)

Procedure DiffRgn (SrcRgnA, sSrcRgnB, dstRgn: RgnHandle);

DiffRgn subtracts stcRgnB from sTcRgnA and places the difference in a third
reglon. 77/s aoes not create the adestination regfon: you must use NewRgn to
create dstRgn before you call DiffRgn. The dstRgn can be one of the source
regions, if desired.

If the first source region is empty, the destination is set to the empty reglion
(0,0,0,0).

Procedure XorRgn (SrcRgnA, STCRgnB, dstRgn: RgnHandle);

XorRgn calculates the difference between the union and the intersection of
two regions and places the result in a third reglon. 72fs aoes not create the
aestination region: you must use NewRgn to create dstRgn before you call
XorRgn. The dstRgn can be one of the source reglons, if desired.

If the reglons are coincident, the destination is set to the empty region
(0,0,0,0).

E-54

o ‘ Pascal Reference Manual QuickOraw

Function PLINRgN (pPt: PoINT; rgn: RgnHanale) : boolean;

PtInRgn checks whether the pixel below and to the right of the glven

foordinate point Is within the specified reglon, and returns true if so or false
f not.

Function RectInRgn (r: Rect; rgn: RgnHandle) : boolean;

RectIinRgn checks whether the given rectangle Intersects the specified region,
- and returns true if the intersection encloses at least one bit or false if not.

- Function EqualRgn (rgnA, rgnB: rgnHandle) : boolean;

EqualRgn compares the two reglons and returns true !f they are equal or false
If not. The two reglons must have ldentlcal slzes, shapes, and locatlons to be
considered equal. Any two empty reglons are always equal.

Function EmptyRgn (rgn: RgnHandle) : boolean;

EmptyRgn returns true if the region is an empty region or false if not. Some
- of the clrcumstances in which an empty region can be created are: a NewRgn
call; a CopyRgn of an empty region; a SetRectRgn or RectRgn with an empty
rectangle as an argument; CloseRgn without a previous OpenRgn or with no
drawing after an OpenRgn; OffsetRgn of an empty region; InsetRgn with an

' empty reglon or too large an Inset; SectRgn of nonintersecting reglons;

= UnlonRgn of two empty reglons; and DiffRgn or XorRgn of two ldentical or
‘ nonintersecting reglions.

E.9.12 Graphic Operations on Regions
These routines all depend on the coordinate system of the current grafPort, If
a region iIs drawn in a different grafPort than the one in which it was defined,
It may not appear In the proper position inside the port.

(Y

Procedure FrameRgn (rgn: RgnHandle);

FrameRgn araws a hollow outllne Just inside the specifled region, using the
current grafPort’s pen pattern, mode, and size. The outline Is as wide as the
pen width and as tall as the pen helght; under no circumstances will the
frame go outside the reglon boundary. The pen location is not changed by
this procedure.

If a region Is open and belng formed, the outside outline of the region being
framed Is mathematically added to that reglon's boundary.

I .y .

Procedure PaintRgn (rgn: RgnHandle);

PalntRgn paints the specified reglon with the current grafPort's pen pattern
and pen mode. The reglon on the bitmap Is filled with the pnPat, according

g

E-55

Pascal Reference Manual QUIckDraw

to the pattern transfer mode specified by pnMode. The pen location Is not
changed by this procedure.

Procedure EraseRgn (rgn: RgnHandle);

EraseRgn paints the specified region with the current grafPort’s background
pattern bkPat (in patCopy mode). The grafPort's pnPat and pnMode are
Ignored; the pen location is not changed.

Procedure InvertRgn (rgn: RgnHandle);

InvertRgn inverts the pixels enclosed by the specified region: every white
pixel becomes black and every black pixel becomes white. The grafPort’s
pnPat, pnivode, and bkPat are all ignoreg; the pen location {s not changed.

Procedure F111Rgn (rgn: RgnHandle; pat: Pattern);

FillRgn fills the specified reglon with the glven pattern (in patCopy mode).
The grafPort’s pnPat, ppiMode, and bkPat are all lgnored; the pen location is
not changed.

E.9.13 Bit Transfer Operations

Proceagure ScrollRect (r: Rect; dh,av: integer; updateRgn: RgnHandle);

ScrollRect shifts ("scrolls”) those bits inside the Intersection of the specified
rectangle, visRgn, clipRgn, portRect, and portBits.bounds. The bits are shifted
a distance of dnh horlzontally and av vertically. The positlve directions are to
the rignt and down. No other bits are affected. Bits that are shifted out of
the scroll area are lost; they are nelther placed outside the area nor saved.
The grafPort’s background pattern bkPat fills the space created by the scroll.
In addition, updateRgn iIs changed to the area fllled with bkPat (see Figure
E-21).

E-56

-

Pascal Rererence Manual QuickOraw

BeforeScrollRect After ScrollRect(dstRect,-10,5...)

Lpﬁl €1C; o ’
QuickDraw

dstRect

sine updsteRgn 10
Flgure E-21

scrolling

Figure E-21 shows that the pen location after a ScrollRect Is in a different
position relative to what was scrolled In the rectangle. The entire scrolled
Item has been moved to different coordinates. To restore It to Its coordinates
before the ScrollRect, you can use the SetOrigin procedure. For example,
suppose the dstRect here is the portRect of the grafPort ang Its top left
corner iIs at (95,120). SetOrigin(105,115) will offset the coordinate system to
compensate for the scroll. Since the clipRgn and pen location are not offset,
they move down and to the left.

Procedure CopyBits (srcBits,dstBits: BitMap; srcRect, dstRect: Rect;
mode: integer; maskRgn: RgnHandle);

CopyBits transfers a bit iImage between any two bitmaps and clips the result
to the area specified by the maskRgn parameter. The transfer rmay be
performed In any of the eignht source transfer modes. The result is always
clipped to the maskRgn and the boundary rectangle of the destination bitmap;
If the destination bitmap Is the current grafPort's portBits, it Is also clipped
to the Intarsection of the grafPort's olipRgn and visRgn. If you do not want -
to clip to a maskRgn, just pass nil for the maskRgn parameter,

The dstRect and maskRgn coordinates are in terms of the dstBits.bounds
coordinate system, and the srcRect coordinates are in terms of the
sreBits.bounds coordinates.

The bits enclosed by the source rectangle are transferred into the destination
rectangle according to the rules of the chosen mode.

E-57

Pascal Reference Manual QuickOraw

The source transfer modes are as follows:

srcCopy srexXor notSrcCopy notSrcxXor
sre0r srcBic notSrcor notSrcBic

The source rectangle iIs completely aligned with the destination rectangie; if
the rectangles are of different sizes, the bit Image Is expanded or shiunk as
necessary to fit the destination rectangle. For example, if the bit image is a
circle in a square source rectangle, and the destination rectangle is not
square, the bit Image appears as an oval In the destination (see Figure E-22).

T maskR
xxxxxxx & gn
Source
1 Transfer
Source Bitmep ~ MP0®

Destination Bitmap

[askFgn
TTTTITITTY gl
‘ Source i
Ji3iti1E Transfer
Source Bitmep Mode HIDUIRN
Destination Bitmap
Figure E-22

Operation of CopyBits

E.9.15 Pictures

Function OpenPlicture (plcfFrame: Rect) : PicHandle;

OpenPicture returns a handle to a new plcture which has the glven rectangle
as its plcture frame, and tells QuickDraw to start saving as the picture
definition all calls to drawlng routines and all picture comments (If any).

OpenPicture calls HidePen, so no drawing occurs on the screen while the
plcture is open (unless you call ShowPen just after OpenPicture, or you called
ShowPen previously without balancing it by a call to HidePen).

when a picture is open, the current grafPort’s picSave field contains a handle
to information related to the picture definition. If you want to ternporarily

Pascal Reference Manual QuUickDraw

disable the collection of routlne calls and plcture comments, you can save the
current value of this fleld, set the fleld to nil, and later restore the saved
value to resume the picture definition.

WARNING

Do not call OpenPicture while another plcture is already open.

Procedure ClosePicture;

ClosePicture tells QuickDraw to stop saving routine calls and picture
comments as the definition of the currently open picture. You should perform
one and only one ClosePlcture for every OpenPicture. ClosePicture calls
ShowPen, balancing the HidePen call made by OpenPicture.

Procedure PicComment (kind, datasize: integer; dataHandle: QDHandle);

PicComment Inserts the specified comment into the definition of the currently
open plcture. Kind ldentifles the type of comment. DataHandle is a handle
to additional data if desired, and dataSize Is the slze of that data in bytes. If
there Is no additional data for the comment, dataHandle should be nil and
dataSlize should be 0. The application that processes the comment must
Include a procedure to do the processing and store a pointer to the procedure
In the data structure pointed to by the grafProcs field of the grafPort (see
Section E.10, Customizing QuickDraw Operations).

Procedure DrawPicture (myPicture: PicHandle; dstRect: Rect);

DrawPicture draws the glven picture to scale in dstRect, expanding or
shrinking it as necessary to align the borders of the plcture frame with
dstRect. DrawPicture passes any plcture comments to the procedure accessed
inairectly through the grafProcs fleld of the grafPort (see PlcComment above).

Procedure KillPicture (myPicture: PicHandle);

KillPicture deallocates space for the picture whose handle is supplied. and
returns the memory used by the picture to the free memory pool. Use this
only when you are completely through with a picture.

E.9.15 Calculations with Polygons

Function OpenPoly : PolyHandle;

OpenPoly returns a handle to a new polygon and tells QuickDraw to start
saving the polygon definition as specified by calls to line-drawlng routines.
while a polygon is open, all calls to Line and LineTo affect the outline of the
polygon. Only the line endpolnts affect the polygon definition; the pen mode,
pattern, and size do not affect it. In fact, OpenPoly calls HidePen, so no

E-59

Pascal Rererence Manual QuickDraw

drawing occurs on the screen while the polygon is open (unless you call
ShowPen just after OpenPoly, or you called ShowPen previously without
balancing it by a call to HidePen).

A polygon should consist of a sequence of connected lines. Even though the
on-screen presentation of a polygon Is clipped, the definition of a polygon is
not; you can deflne a polygon anywhere on the coordinate plane with complete
disregard for the location of various grafPort entities on that plane.

when a polygon Is open, the current grafPort's polySave field contalns a
handle to Information related to the polygon definition. If you want to
temporarlly disable the polygon definitlon, you can save the current value of
this fleld, set the fleld to nil, and later restore the saved value to resume the
polygon definition.

WARNING

Do not call OpenPoly while another polygon is already open.

Procedure ClosePoly;

ClosePoly tells QuickDraw to stop saving the definition of the currently open
polygon and computes the polyBBox rectangle. You should perform one and
only one ClosePoly for every OpenPoly. ClosePoly calls ShowPen, balancing
the HldePen call made by OpenPoly.

Here's an example of how to open a polygon, define it as a triangle, close it,
and draw it;

triPoly := OpenPoly; {save handle and begln collecting stuff}

HoveTo(300, 100); { move to first point and }
LineTo(400, 200); { form }
L1neTo(200, 200); { the }
LineTo(300. 100): { triangle }
ClosePoly; { stop collecting stuff }
F111Poly(triPoly, gray); { draw 1t on the screen }
KillPoly(triPoly),; { we're all done }

Procedure KillPoly (poly: PolyHandle);

KillPoly deallocates space for the polygon whose handlie is supplied, and
returns the memory used by the polygon to the free memory pool. Use this
only after you are completely through with a polygon.

Procedure OffsetPoly (poly: PolyHandle; dh,dv: integer);

OffsetPoly moves the specified polygon on the coordinate plane, a distance of
ah horizontally and dv vertically. This does not affect the screen unless you

E-60

Pascal Reference Manual QuickDraw

subsequently call a routine to draw the polygon. If dh and dv are positive,
the movement Is to the right and down; if elther Is negative, the correspond-

Ing movement Is In the opposite direction. The polygon retains its shape and
size.

NOTE

OffsetPoly Is an especlally efficient operation, because the data
defining a polygon Is stored relatlve to polyStart and so isn't actually
changed by OffsetPoly.

E.9.16 Graphic Operatlons on Polygons
Procedure FramePoly (poly: PolyHandle);

FramePoly plays back the llne-drawing routine calls that define the glven
polygon, using the current grafPort’s pen pattern, mode, and size. The pen
will hang below and to the right of each point on the boundary of the
polygon; thus, the polygon drawn will extend beyond the right and bottom
edges of poly .polyBBox by the pen width and pen height, respectively. All
other graphic operations occur strictly within the boundary of the polygon, as
for other shapes. You can see this difference In Figure E-23, where each of
the polygons Is shown with its polyBBox.

FremeFoly PaintPoly

Figure E-23
Drawing Polygons
If @ polygon is open and being formed, FramePoly affects the outline of the
polygon just as if the line-drawlng routines themselves had been called. If a

region is open and being formed, the outside outline of the polygon being
framed is mathematically added to the region‘s boundary.

E-61

Pascal Reference Manual QuickDraw

Proceaure PaintPoly (poly: PolyHandle);

PaintPoly palnts the specified polygon with the current grafPort's pen pattern
and pen mode. The polygon on the bitmap Is filled with the pnPat, according
to the pattern transfer mode specified by pnMode. The pen locatlon is not
changed by this procedure.

Procedure ErasePoly (poly: PolyHandle);

ErasePoly palnts the specified polygon with the current grafPort's background

pattern bkPat (in patCopy mode). The priPat and pniMode are ignored; the pen
location is not changed.

Procedure InvertPoly (poly: PolyHandle);

InvertPoly inverts the pixels enclosed by the specified polygon: every white
pixel becomes black and every black pixel becomes white. The grafPort's
prFat, pnivoge, and bkPat are all ignored; the pen location is not changed.

Procedure F111Poly (poly: PolyHandle; pat: Pattern);

FillPoly fills the specified polygon with the given pattern (in patCopy mode)

The grafPort's pnPat, pnMode, and bkPat are all ignored; the pen location Is
not changed. {

E9.17 Calculations with Points
Procedure AddPt (srcPt: Point; var dstPt: Point);

AddPt adds the coordinates of sicPt to the coordinates of dstPt, and retums
the result in dstPt.

Procedure SubPt (srcPt: Point; var dstPt: Point);

SubPt subtracts the coordinates of srcPt from the coordinates of dstPt, and
returns the result in gstPL

Procedure SetPt (var pt: Point; h,v: integer);
SetPt assigns two Integer coordinates to a variable of type Point

Function EqualPt (ptA,ptB: Point) : boolean;

EqualPt compares the two points and returns true if they are equal or false if
not.

E-62

Pascal Reference Manual QuickDraw

Procedure LocalToGlobal (var pt: Polint);

LocalToGlobal converts the glven point from the current grafPort's local
coordinate system into a global coordinate system with the origin (0,0) at the
top left comer of the port's bit Image (such as the screen). Thls global polnt
can then be compared to other global points, or be changed into the local
coordinates of another grafPort.

Since a rectangle Is defined by two polnts, you can convert a rectangle into
global coordinates by performing two LocaiToGlobal calls. You can also
convert a rectangle, reglon, or polygon into global coordinates by calling
OffsetRect, OffsetRgn, or OffsetPoly. For examples, see GlobalToLocal below.

Procedure GlobalTolocal (var pt: Point);

GlobalTolLocal takes a point expressed in global coordinates (with the top left
corner of the bitmap as coordinate (0,0)) and converts it Into the local
coordinates of the current grafPort. The global point can be obtained with
the LocalToGlobal call (see above). For example, suppose a game draws a
"ball"” within a rectangle named ballRect, defined in the grafPort named
gamePort (as lllustrated below in Flgure E-24). 1f you want to draw that ball
In the grafPort named selectPort, you can calculate the ball's selectPort
coordinates llke this:

SetPort(gamePort); start in origin port
selectBall := ballRect; make a copy to be moved

{ }
{ }
LocalToGlobal(selectBall .topLeft); { put both cormers into |}
LocalToGlobal(selectBall .botRight); { global coordinates }

SetPort(selectPort); { switch to destination port}
GlobalTolocal(selectBall.topLeft); { put both comers into }
GlobalTolLocal(selectBall .botRight); { these local coordinates }

{ }

Fi110val(selectBall, ballColor); { now you have the ball!

E-63

Pascal Reference Manua! QuickDraw / b

20 50 GO 15 45 B85
40 - ' ' -30-! §' !
70- it 0+ |
a 30 70
- 0 -
120~ 50~
‘ 3 30 - / s i
gemePort / o e selectPort
LocalToGlobal GlobalToLocal
80-
Figure E-2a "

Converting between Coordinate Systems

You can see from Figure E-24 that LocalToGlobal and GlobalToLocal simply
offset the coordinates of the rectangle by the coordinates of the top left
corner of the local grafPort's boundary rectangle. You could also do this with
OffsetRect. In fact, the way 10 convert reglons and polygons from one
coordinate system to another is with OffsetRgn or OffsetPoly rather than
LocalToGlobal and GlobalToLocal. For example, If myRgn were a region

enclosed by a rectangle having the same coordinates as ballRect in gamefort,
you could convert the region to global coordinates with

OffsetRgn(myRgn, -20, -40);
and then convert it to the coordinates of the selectPort grafPort with
offsetRgn(myRgn, 15, -30);
E.9.18 Miscellaneous Utllitles
Function Random : integer;

Random returns an integer, uniformly distributed pseudo-random, In the range
from -32768 through 32767. The value returned gepenas on the giobal
variable randSeed, which InitGraf Initlalizes to 1; you can start the sequence
over again from wnere it began by resetting ranagSeed to 1.

E-64

Pascal Reference Manual QuickDraw

Function GetPixel (h,v: Integer) : boolean;

GetPlxel looks at the plxel assoclated with the glven coordinate point and
returns true If it is black or false if It {s white. The selected pixel is
immediately below and to the right of the point whose coordinates are glven
in h and v, in the local coordinates of the current grafPort. There Is no
guarantee that the specified plxel actually belongs to the port, however; it
may have been drawn by a port overlapplng the current one. To see if the
point indeed belongs to the current port, call PtinRgn(pt.thePort ~.visRgn)

Procedure StuffHex (thingPtr: QDPtr: s: Str2ss);

StuffHex pokes bits (expressed as a strlng of hexadecimal digits) into any data

structure. This is a good way to create cursors, patterns, or bit images to be
“stamped" onto the screen with CopyBits. For example,

StuffHex(astripes, ‘0102040810204080")
places a striped pattern Into the pattern varlable stripes.
WARNING

There Is no range checking on the size of the destination variable. It's
easy to overrun the variable and destroy something if you don't know
what you're doing.

Procedure ScalePt (var pt: Point; srcRect, dstRect: Rect);

A width and helght are passed In pt; the horlzontal component of pt is the
width, and the vertical component of pt is the helght. ScalePt scales these
measurements as follows and returns the result in pt: 1t multiplies the given
width by the ratio of dstRect's width to srcRect's width, and multiplies the
given helght by the ratlo of dstRect's helgnt to srcRect’s height. In Figure
E-25, where dstRect's width Is twice srcRect's width and its helgnht is three

times srcRect's height, the pen width Is scaled from 3 to 6 and the pen helght
Is scaled from 2 to 6.

E-65

ScalePt scales pen size (3,2) to (6,6)
MapFt maps point (3,2) to {18,7)

Figure E-25
ScalePt and MapPt

!
’

Fascal Rererence Maual QuickDraw
g 3 1618

0! ! 1 '

2 _

. 1

7- B I
]
-
! |

Procegure MapPt (var pt: Polnt; srcRect, astRect: Rect);

Given a point within srcRect, MapPt maps it to a similarly located point
within dstRect (that Is, to where it would fall If 1t were part of a drawing
being expanded or shrunk to fit dstRect). The result is returned in pt. A
corner polnt of srcRect would be mapped to the corresponding comer point of
dstRect, and the center of srcRect to the center of dstRect In Flgure E-25
above, the polnt (3,2) In sroRect s mapped to (18,7) In dstRect. FromRect and
dstRect may overlap, and pt need not actually be within srcRect

)

A

E-66

Pascal Reference Manual QuickDraw

WARNING

Remember, if you are golng to draw inside the rectangle in dstRect,
you will probably also want to scale the pen size accordingly with
ScalePt.

Procedgure HapRect (var r: Rect; srcRect, dstRect: Rect);

Gliven a rectangle within srcRect, MapRect maps it to a similarly located
rectangle within dstRect by calling MapPt to map the top left and bottom
right corners of the rectangle. The result Is returned in 1.

Procedure HapRgn (rgn: RgnHandle; srcRect,dstRect: Rect);

Glven a reglon within srcRect, MapRgn maps it to a similarly located region
withln dstRect by calling MapPt to map all the points In the reglon.

Procegure HapPoly (poly: PolyHandle; srcRect, dstRect: Rect);

Given a polygon within srcRect, MapPoly maps 1t to a similarly located
polygon within dstRect by calling MapPt to map all the points that define the
polygon.,

E.10 Customizing QuickDraw Operations

For each shape that QuickDraw knows how to draw, there are procedures that
perform these basic graphic operations on the shape: frame, paint, erase,
invert, and fill. Those procedures in turn call a low-level drawing routine for
the shape. For example, the FrameOval, PaintOval, EraseOval, InvertOval, and
FiliOval procedures all call a low-level routine that draws the oval. For each
type of object QuickDraw can draw, Including text and lines, there Is a
pointer to such a routine. By changing these polnters, you can Install your
own routines, and either completely override the standard ones or call them
after your routines have modified parameters as necessary.

Other low-level routines that you can Install In this way are:
* The procedure that does bit transfer and is called by CopyBits.

* The function that measures the wldth of text and Is called by Charwliath,
Stringwldth, and Textwidth,

* The procedure that processes picture comments and Is called by
DrawPicture. The standard such procedure ignores picture comments.

* The procedure that saves drawlng commands as the definition of a picture,
and the one that retrieves them. This enables the application to draw on
remote devices, print to the disk, get picture input from the disk, and
support large pictures.

E-67

Pascal Reference Manual QuickOraw

The grafProcs field of a grafPort determines which low-level routines are
called; If it contalns nil, the standard routines are called, so that ail
operations In that grafPort are done In the standard ways described In this
appendix. You can set the grafProcs field to polint to a record of pointers to -
routines. The data type of grafProcs Is QDProcsPtr:

type QDProcsPtr = “QODProcs;

QDProcs = record
textProc: QOPtr; {text drawing}
1ineProc: QOPtr; {lire drawing}
rectProc: QoPtr; {rectangle drawing}

TRectPrOC: QoPtr; {roundRect drawing}
ovalProc: QoPtr; {oval drawing}
arcProc: QDPtr; {arc/wedge drawing}
polyProc: QoPtr; {polygon drawing}
TgNPTOC: QoPtr; {region drawing}
bitsProc: goPtr; ({bit transfer}
commentProc: QOPtr; {picture comment
processing}
txteasProc: QoPtr; {text width measurement}
getPicProc: QOPtr; {plicture retrieval}
putPicProc: QOPtr {picture saving}
end;

Procedure SetStdProcs (var procs: QOProcs):

SetStaProcs s provided to assist you in setting up a QDProcs record. It sets
all the fields of the given QDPTOCS t0 point to the standard low-level
routines. You can then change the ones you wish to polnt to your own
routines. For example, if your procedure that processes picture comments is
named MyComments, you will store @MyComments in the commentProc field
of the QDProcs record.

The routines you install must of course have the same calllng sequences as
the standard routines, which are gescribed below. The standard drawing
routines tell which graphic operation to perform from a parameter of type
Grafvern.

type GrafVerb = (frame, paint, erase, invert, fill);

when the grafverb Is fill, the pattern to use when filling Is passed in the
fillPat fleld of the grafPort.

Procedure StdText (byteCount: integer; textBuf: QOPtr; numer, denom:
Point);

StdText Is the standard low-level routine for drawling text. It draws text from
the arbitrary structure in memory specified by textBuf, starting from the first
byte and continuing for byteCount bytes. Numer and denom specify the

E-68

Fascal Rerferernce Mansl QulckOraw

scaling, If any: numer.v over denom.v gives the vertical scallng, and numer.h
over denom.nh glves the horizontal scaling.

Procegure StaLine (newt: Point);

StdLine is the standard low-levei routine for drawing a line. It draws a line

from the current pen location to the location specified (In local coordinates)
by newPt.

Procedure StdRect (verb: GrafVerb; r: Rect);

StdRect s the standard low-level routine for drawing a rectangle. It draws
the glven rectangle according to the specified grafvern.

Procedure StdRRect (verb: GrafVerb; r: Rect; ovalwldth, ovalHelght:
integer);

STORReECt Is the standard iow-level routine for arawing a rouncea-corner
rectangle. It draws the glven rounded-corner rectangle according to the

specified grafverb. Ovalwldth and ovalHelgnt specify the diameters of
curvature for the corners.

Procedure StdOval (verb: GrafVerb; r: Rect);

Stdoval 1s the standard low-level routine for drawing an oval. It draws an
oval Inside the glven rectangie according to the specified grafverb.

Procedure StoArc (verb: GrafVerb; r: Rect; startAngle, arcAngle:
integer);

StdArc Is the standard low-lievel routine for drawing an arc or a wedge. It

draws an arc or wedge of the oval that fits insige the glven rectangle, The

grafverb specifies the graphic operation; If it's the frame operation, an arc is
drawn; otherwise, a wedge Is drawn.

Procedure StdPoly (verb: GrafVerb; poly: PolyHandle);

StdPoly is the standard low-level routine for drawing a polygon. It draws the
glven polygon according to the specified grafvern.

Procedure StdRgn (verb: Grafverb; rgn: RgnHandle);

StoRgn is the standard low-level routine for drawing a reglon. It draws the
glven reglan according to the specified grafverb.

E-69

Pascal Rererence Mansal QuickOraw

Procedure StdBits (var srcBits: BitHap; var srcRect, dstRect: Rect;
mode: integer; maskRgn: RgnHandle):

StaBits Is the standard low-~level routine for doing bit transfer. It transfers a

bit image between the glven bitmap and thePort .portBits, just as if CopyBits

were called with the same parameters and with a destination bitmap egual to
thePort porntBits.

Procegure StaComment (kind, dataSize: integer; dataHandle: QDHandle);

StdComment 1s the standard low-level routine for processing a picture
comment. King identifles the type of comment. DataHandle is a handle to
additional data, and dataSize is the slze of that data in bytes. If there is no

additional data for the command, dataHandle will be nil and dataSize will be
0. StaComment simply ignores the comment.

Function StdTxeas (byteCount: integer; textBuf: QDPtr; var numer,
denom: Point; var info: FontInfo) : integer;

StdTxMeas Is the standard low-level routine for measuring text width. It
returns the width of the text stored In the arbltrary structure in memory
specified by textBuf, starting with the first byte and continuing for byteCount
bytes. Numer and denom specify the scaling as in the StdText procedure; note
that StdTxMMeas may change them.

Procedure StdGetPic (dataPtr: QOPtr; byteCount: integer);

StadGetPic is the standard low-level routine for retrieving information from
the definition of a picture. It retrieves the next byteCount bytes from the

definition of the currently open picture and stores them in the data structure
pointed to by dataPtr.

Procegure StdPutPic (cataPtr: QDPtr; byteCount: integer):;

StdPutPic Is the standard low-level routine for saving information as the
definition of a picture. It saves as the definition of the currently open
plcture the drawing commands stored In the data structure pointed to by
dataPtr, starting with the first byte and continuing for the next byteCount
bytes.

E-70

N

)
N

y

™y

j

Pascal Reference Manual QuickDraw

E.11 Using QuickDraw from Assembly Language
All QuickDraw routines can be called from assembly-language programs as
well as from Pascal. when you write an assembly-language program to use
these routines, though, you must emulate Pascal's parameter passing and
varlable transfer protocols.

This section discusses how to use the QuickDraw constants, global variables,
data types, procedures, and functions from assembly language.

The primary ald to assembly language programmers is a flle named
QD/GRAFTYPES.TEXT. If you use .INCLUDE to include this flle when you
assemble your program, all the QuickDraw constants, offsets to locatlons of
global variables, and offsets into the fields of structured types will be
available In symbollc form,

E.11.1 Constants
QuickDraw constants are stored in the QD/GRAFTYPES.TEXT flle, and you
can use the constant values symbolically. For example, if you've loaded the
effective address of the thePort ™ .txMode field into address register A2, you
can set that fleld to the srexor mode with this statement:

MOVE.¥ #SRCXOR, (A2)

To refer to the number of bytes occupled by the QuickDraw global varlables,
you can use the constant GRAFSIZE. when you call the InitGraf procedure,
you must pass a polnter to an area at least that large.

E.11.2 Data Types
Pascal’s strong typlng abllity lets you write Pascal programs without really
considering the size of a variable. But In assembly language, you must keep
track of the size of every varlable. The slzes of the standard Pascal data
types are as follows:

Type size

integer word (2 bytes)
longint Long (4 bytes)
boolean word (2 bytes)
char word (2 bytes)
real Long (4 bytes)

Integers and longints are In two's complement form; booleans have thelr
boolean value In bit 8 of the word (the low-order bit of the byte at the same
location); chars are stored In the high-order byte of the word; and reals are in
the KCS standard format.

Pascal Reference Marnal QuickDraw

The QuickDraw simple data types listed below are constructed out of these
fundamental types.

Type Size

QDPU Long (4 bytes)
QDHandle Long (4 bytes)
word Long (4 bytes)
Suz2s5 Page (256 bytes)
Pattem 8 bytes

Bits16 32 bytes

Other data types are constructed as records of variaples of the above lypes.
The size of such a type is the sum of the sizes of all the fields in the record;
the flelds appear in the variable with the first fleid in the lowest address.
For example, consider the data typc BitMap, which is defined as follows:

type BitHap = record
baseAddr: QOPtr;
rowBytes: integer;
bounds : Rect
end;

This data type would be arranged In memory as seven words: a long for the
baseAddr, a word for the rowBytes, and four words for the top, left, right, and
bottom parts of the bounds rectangle. To assist you In referring to the fielas
inside a varlable that has a structure like this, the QD/GRAFTYPES.TEXT flle
defines constants that you can use as offsets Into the flelds of a structured
varlable. For example, to move a bitmap's rowBytes value into D3, you would
execute the followling Instruction:

HOVE.¥ HYBITHAP+ROWBYTES, D3

Displacements are glven in the QD/GRAFTYPES.TEXT flle for all flelds of all
gdata types deflned by QuickDraw.

To do double indirection, you perform an LEA indirectly to obtain the

effective address from the handle. For example, to get at the top coordinate
of a region's enclosing rectangle:

MOVE.L HYHANDLE, Al ; Load handle into Al

MOVE.L (A1).A1 > Use handle to get pointer

MOVE.¥ RGNBBOX+TOP(A1),D3 ; Load value using pointer
E-72

N
S

1

y

Pascal Reference Marial QuUIckDraw

WARNING

For regions (and all other varlable-length structures with handles), you
must not move the polnter Into a register once and just continue to use
that polnter; you must do the double Indirection each time. Every
QuickDraw call you make can possibly trigger a heap compaction that
renders all polnters to movable heap items (llke reglons) invalld. The
handies will remain valld, but pointers you've obtained through handles
can be rendered Invalld at any subroutine call or trap In your program.

E.11.3 Global variables
Register AS always polnts to the section of memory where global varlables
are stored. The QD/GRAFTYPES.TEXT flle defines a constant GRAFG. (B
that polnts to the beginning of the QuickDraw varlables In this space, and
other constants that point to the individual variables. To access one of the
varlables, put GRAFGLOB In an address register, sum the constants, and Index
off of that register. For example, If you want to know the horizontal
coordinate of the pen location for the current grafPort, which the global
variable thePort points to, you can give the following instructions:

MOVE.L GRAFGLOB(AS), AD ; Point to QulckDraw globals
MOVE.L THEPORT(AO), Al ; Get current grafPort
HOVE.¥W PNLOC+H(A1), DO ; Get thePort”.pmioc.h

E.11.4 Procedures and Functions
To call a QuickDraw procedure or function, you must push all parameters to it
on the stack, then JSR to the function or procedure. when you link your
program with QuickDraw, these JSRs are agjusted to refer to QuickDraw's
Jump table, so that & JSR Into the table redirects you to the actual location
of the procedure or function.

The only difficult part about calling QuickDraw procedures and functions is
stacking the parameters. You must follow some strict rules:

* Save all registers you wish to preserve #&erore you begin pushing
parameters. Any QuickDraw procedure or function can destroy the

contents of the registers AD, Al, DO, D1, and D2, but the others are never
alteread.

* Push the parameters In the order that they appear in the Pascal procedural
interface.

* For booleans, push a byte; for integers and characters, push a word; for
pointers, handles, long integers, and reals, push a long.

* For any structured variable longer than 4 bytes, push a pointer to the
variable.

E-73

Pascal Reference Marual QuickDraw

* For all var parameters, regardless of size, push a pointer to the varlable.

* when calling a functlon, 7s¢ push a null entry equal to the size of the
function result, &en push all other parameters. The result will be left on
the stack after the functlon returns to you.

This makes for a lengthy Interface, but it also guarantees that you can mock
up a Pascal version of your program, and later transiate It into assembly code
that works the same. For example, the Pascal statement

blackness := GetPixel(50, mousePos.v);
would be written In assembly language like this:

CLR.¥ -(SP) ; Save space for boolean result
MOVE.W #50, -(SP) : Push constant S0 (decimal)
HOVE.¥ MOUSEPOS+V, -(SP) ; Push the value of mousePos.v
JSR GETPIXEL 2 Call routline

MOVE.W (SP)+, BLACKNESS ; Fetch result from stack

This Is a simple example, pushing and pulling word-long constants. Normally,
you'll be pushing more pointers, using the PEA (Push Effective Address)
instructlon:

Fil1RoundRect (myRect, 1, thePort”.pnSize.v, white);

PEA HYRECT ; Push pointer to myRect

MHOVE.® #1,-(SP) ; Push constant 1

MOVE.L GRAFGLOB(AS),AO ; Point to QuickDraw globals
MOVE.L THEPORT(AD), Al ; Get current grafPort

MOVE.W PNSIZE+V(A1). -(SP) ; Push value of thePort".pnSize.v
PEA WHITE(AD) ; Push polnter to global variable white
JSR FILLROUNDRECT ; Call the subroutine

To call the TextFace procedure, push a word In which each of seven bits
represents a stylistic varlation: set bit 0 for bold, bit 1 for itallc, bit 2 for
underline, bit 3 for outline, bit 4 for shadow, bit 5 for condense, and bit 6 for
extend.

E-74

Pascal Rererence Marnal QuickOraw

E.12 Graf3x Three-Dimensional Graphics
Graf3D helps you map three-dimensional Images onto the two-dimensional
space used by QuickDraw. If this Is your first exposure to three-dimensional
graphics, you will find Graf3D's standard procedures and functions a great help
in proaucing visually exclting graphs, charts, and drawlngs. 1f you are famillar
with Applegraphics for the Apple 11, you will feel right at home with Graf3D's
use of real variables and world coordinates.

with three-dimensional graphics you can present objects in true perspectlve,
which will evoke for users their everyday environment. Graf3D helps you
represent complex business Information pictorially; for example, a manager can
see Important relationships among sales, profits, and advertising dollars in a
three-dimensional graph.

You may be Interested in a more theoretical alscussion of three-dimensional
graphics, Including an explanation of some of the basic concepts of Graf3D,
such as the viewing pyramid. A good, illustrated discussion appears in the
section on three-dimensional computer graphics In Principles or interactive
Computer Graphics by Willlam M. Newman and Robert F. Sproull (New York:
McGraw-Hill, 1973),

E.12.1 How Graf3D Is Related to QuickDraw
Graf3D Is a Pascal unit that makes the QuickDraw calls necessary to produce
three-dimensional graphics. It provides you with an easy-to-use real number
interface to QuickDraw's Integer coordinates. You could, of course, write
your own QuickDraw calls to perform the same functions Graf3D provides for
you, but that would be a little like going to the trouble of writing your own
compller.

E.12.2 Features of Graf3D
* A camera-eye view. This allows you to set the point of view from which
the observer sees the object independently from the coordinates of the
object itself. The camera Is set up with the ViewPort, LookAt, and
viewAngle procedures. You can set the focal length of the camera as if
you had a cholce of telephoto, wide angle, or normal lenses.

o Thmee-adlmensional clipolng to g e pyramio. The apex of the pyramid is
at the point of the camera eye, and the pase of the pyramid Is equivalent
to the ViewPort. When you use the Clip3D function, only objects forward
of the camera eye and within the pyramid are displayed on the screen,

* Twa-almensional palrnt ana Hine capacliity using real coorainates. GrafiD
provides commands corresponding to the QuickDraw commands but using
real coordlnates Instead of Integers. With real coordinates you have a
larger dynamic range for graphics calculations; with integer coordinates
you get faster drawing time. For reais, the range is

1.4 x 107% to 34 x 10°8

E-75

Pascal Rerference Marnial QuilckDraw

s Two-dimensional ar tuee-dimensional retatfon, You can rotate an object
along any or ail axes simultaneously, using the Pitch, Yaw, and Roll
procedures.

* Transiation ana scaling or olfects In one ar more axes Simultaneously.
Translation means movement anywhere in three-dimensional space. Scaling
means shrinking or expanding.

E.12.3 Graf3D Data Types
Graf3D declares and uses the following data types:

Point3D: A Point3D contalns three real numper coordinates: x, y, and 2.
Graf3D uses x, y, and z for real number coordinates to distinguish
between the h and v Integer screen coordinates in QuickDraw.

Point2D: A PoIntZD is just like a Polnt3D pbut contalns only x and y
coordinates.

XfMatrlx: The XfMatrix 1s a 4x4 matrix of real values, used to hold a
transformation equation. Each transforming routine alters this
matrix so that 1t contalns the concatenated effects of all
transformations applied.

Port3DPtr: A Port3DPtr Is a pointer to a Port3D.

Port3D: A Port3D contains all the state variables needed to map real
number coordinates into integer screen coordinates. They are as
follows:

GPort: a pointer to the grafPort assoclated with this Port3D.

viewRect: the viewing rectangle within the grafPort; the base of the
viewing pyramid.

xt_eft, yTop, xRight, yBottom: world coordinates corresponding to
the viewRect.

per: three-dimensional pen location.
penPrime: the pen location transformed by the xForm matrix.

eye: three-dimensional viewpoint location established by viewAngle.

h3lze, vSlze: half-wiuth anu half-nelgnt of the viewRect {n screen
coordinates.

hCenter, vCenter: center of the viewRect In screen coordinates.

xCotan, yCotan: viewing cotangents set up by viewAngle, used by
Clip3D.

ident: a boolean that allows the transformation to be skipped when
when xForm s an identity matrix,

xForme a 4x4 matrix that holds the net result of all transformations.

E-76

Pascal Rerererce Manual QulckODraw

E.12.4 Graf3D Procedures and Functions

The following procedures and functions are provided In Graf3D.
Procedure Open3DPort(port: Port3bPir);

Open3DPort Initializes all the fields of a Port3D to thelr defaults, and makes
that Port3D the current one. Gport s set to the currently open grafPort.
The defaults established are:

thePort3D:=port;

port”.GPort:=thePort;

ViewPort(thePort”.portRect);

WITH thePort” .portRect DO LookAt(left, top, right, bottom);
vViewangle(0);

Igentity;

HoveTo3D(0, 0, 0);

Procedure SetPort3D(port: Port30Ptr);

SetPort3D makes port the current Port3D and calls SetPort for that Port3D's
associated grafPort. SetPort3D allows an application to use more than one
Port30D and switch between them,

Procedure GetPort3D(var port: Port3pPtr);

GetPort3D returns a pointer to the current Port3D. This procedure Is useful
when you are using several Port3Ds and want to save and restore the current
one.

Procedure HoveToZD(x, y: real); Procedure MoveTo3D(x, y,z: real);
Procedure HoveZ2D(dx, dy: real); Procedure Hove3D(dx, dy,dz: real);

These procedures move the pen In two or three dimensions without drawing
lines. The real number coordinates are transformed by the xForm matrix and
projected onto flat screen coordlnates; then Graf3D calls QuickDraw's MoveTo
procedure with the result.

Procedure LineTo2D(x, y: real); Procedure LineTo3D(x, y,z: real);
Procedure Line2D(dx dy: real): Procedure Line3D(dx dy,dz: real);

These procedures draw two- and three-dimenslonal lines from the current pen
location. LineToZD and LineZD stay on the same z-plane. The real number
coordinates are flirst transformed by the xForm matrix, then clipped to the
viewing pyramid, then projected onto the flat screen coordinates and drawn by
calling QuickDraw's LineTo procedure.

E-77

Pascal Rererence Manual

Function Clip3D(srcl, src2: Point3D; var dstl, dst2: Point): boolean;

Clip3D clips a three-dimensional line segment to the viewing pyramid and
returns the clipped line projected onto screen coordinates. Clip3D returns
true if any part of the line is visible. If no part of the line is within the
viewing pyramid, Clip3D returns false.

Procedure SetPt3D(var pt3D: Point3D; x, y,Z: real);

SetPt3D assigns three real numbers to a Polnt3D.

Procegure SetPtz2p(var ptZD: Point2D; X, y: real).
SetP12D assigns two real numbers to a Point2D.

E.124.1 Setting Up the Camera (ViewPort, LookAt, and ViewAngie)

Procedures ViewPort, LookAt and ViewAngle position the image in the
grafPort, alm the camera, and choose the lens focal length In order to map
three-dimensional coordinates onto the flat screen space. These procedures
may be called in any order.

Procedure ViewPort(r: Rect);

ViewPort specifles where to put the Image in the grafPort. The ViewPort
rectangle 1Is in Integer QuickDraw coordinates, and tells where to map the
LOOKAL coorainates.

Procedure LookAt(left, top, right, bottom: real);

LookAt specifies the real number x and y coordlnates corresponding to the
viewRect

Procedure ViewAngle(angle: real);

viewAngle controls the amount of perspective by specifying the horizontal
angle (in degrees) subtended by the viewing pyramid. Typical viewing angies
are 0° (no perspectlve), 10° (telephoto lens), 25° (normal perspective of the
human eye), and 80° (wide angle lens).

E.13.42 The Transformation Matrix

The transformation matrix allows you to impose a coordinate transformation
between the coordinates you plot and the vlewing coordinates. Each of the
transformation procedures concatenates a cumulative transformation onto the
xForm matrlx. Subsequent lines drawn are first transformed by the xForm
matrix, then projected onto the screen as speclfied by viewPort, LookAt, and
ViewAngie.

Procedqure Identity;
Identity resets the transformation matrix to an identity matrix

E-78

QuUitkODraw

&
v
y

;)_

i

/

Pascal Referernce Manual QuickDraw

Procedure Scale(xfactor, yFactor, zFactor: real);

Scale modifies the transformation matrix so as to shrink or expand by xfFactor,

yFactor, and zFactor. For example, Scale{2.0,2.0,2.0) wlll make everything
come out twice as blg when you draw.

Procedure Translate(dx,dy,dz: real);
Translate modifles the transformation matrix so as to aisplace by dxdy.dz.

Procedure Pitch(xAngle: real);

Pitch modifles the transformation matrix so as to rotate xAngle degrees
around the x axis. A positive angle rotates clockwlse when looking at the
origin from positive x

Procedure Yaw(yAngle: real);

Yaw modifies the transformation matrix so as to rotate yAngle degrees around
the y axis. A positive angle rotates clockwise when looking at the origin
from positive vy.

Procedure Roll(zAangle: real);

Roll modifies the transformation matrix so as to rotate zAngle degrees around

the z axis. A positive angle rotates clockwise when looking at the origin
from positive z.

Procedure Skew(zAngle: real);

Skew modifles the transformation matrix so as to skew zAngle degrees
around the z axls. Skew only changes the X coordinate; the result 1S much
llke the slant QuickDraw glves to ltalic characters. (Skew(15.0) makes a
reasonable italic.) A positive angle rotates clockwise when looking at the
orlgin from positive 2,

Proceaure Transform(src: Point3D; var dst: Point3D);

Transform applies the xForm matrix 1o src and returns the result as dst. If
the transformation matrix Is ldentity, dst will be the same as src.

€-79

Pascal Rererence Mamal QuickOraw

E.13 QuickDraw Interface
UNIT QuickDraw;

{ Copyright 1983 Apple Computer Inc. }
INTERFACE

CONST srcCopy
srcor
srcXor
srcBic
notSrcCopy
notSrcor
notSrcXor
notSrcBic
patCopy
patOr
patXor
patBic
notPatCopy
notPatOr
notPatXor
notPatBic

{ the 16 transfer modes }

Ne N e

~

B n W NN unnm
SR EOENONENNE
wRnev

14;

{ QuickDraw color separation constants }

normalBit =0; { normal screen mapping }
inverseBit = 1; { inverse screen mapping }
redBit = 4 { RGB additive mapping }
greenBit =3

blueBit =2

cyanBit = 8; { cHYBk subtractive mapping }
magentaBit = 7;

yellowBit = 6;

blackBit =5,

blackColor = 33; { colors expressed in these mappings }
whiteColor = 30;

redcolor = 205;

greenColor = 341;

blueColor = 409;

cyanColor = 273;

magentaColor = 137;

yellowColor = 69;

picLParen = 0; { standard picture comments }
picRParen =1,

E-80

Pascal Rererence Marndl

TYPE QDByte
QOPtY
QDHandle
Str2ss
Pattern
Bits16
VHSelect
Grafverb
Styleltem

Style

FontInfo

QuickDraw
-128..127;
“QDByte; { blind pointer }
“QDPLr; { blind handle }
String[25%);
PACKED ARRAY[0..7] OF 0..255;

ARRAY[0..15] OF INTEGER;

(v.h);

(frame, paint, erase, invert, fi11);

(bold, italic, underline, outline, shadow, condense,
extend);

SET OF StyleItem;

RECORD
ascent: INTEGER;
descent: INTEGER;
widMax: INTEGER;
leading: INTEGER;
END;

Point = RECORD CASE INTEGER OF

0: (v: INTEGER;
h: INTEGER);

1: (vh: ARRAY[VHSelect] OF INTEGER);

END;

Rect = RECORD CASE INTEGER OF

D: (top: INTEGER;

left: INTEGER;

bottom: INTEGER;
right: INTEGER);

1: (topLeft: Point;

END;

botRight: Point);

€£-81

Pascal Reference Marxial

BitHap

I

QuickDraw

RECORD

baseAddr: QOPtr;

ro
bo

wBytes: INTEGER;
unds: Rect;

END;

Cursor

da
ma
ho

RECORD

ta: Bitsie;
SK: Bitsi16;
tSpot: Point;

END;

PenState = RECORD

PolyHandle
PolyPtr

Polygon

RgnHandle
RgnPtr
Region

PicHandle
PicPtr
Picture

E

Moan

g n

pnLoc: Point;
pnSize: Point;
pnHode: INTEGER;
pnPat: Pattern;
ND;

“PolyPtr;

"Polygon;

RECORD

polySize: INTEGER;

polyBBox: Rect;

polyPoints: ARRAY[0..0] OF Point;
END;

"RgnPtr;
“Region;
RECORD
rgnSize: INTEGER; { rgnSize = 10 for rectangular }
TgNBBOX: Rect;
E{ plus more data if not rectangular }
ND;

"PicPtr;
“Picture;
RECORD
picsize: INTEGER;
picFrame: Rect;
{ plus byte codes for picture content }

»

E-82

Pascal Reference Marxial QulckDraw

QDProcsPtr = “QDProcs;
QDProcs = RECORD
textProc: QDPtr;
1ineProc: QoPLr;
rectProc: QoPtr;
rRectProc: QOPtr;
ovalProc: QDPtr;
arcProc: QoPtr;
polyProc: QOPLY;
TQNProc: QDPLr;
bitsProc: Q0Ptr;
commentProc: QDPtr;
txMeasProc: QDPtr;
getPicProc: QDPtr;
putPicProc: QOPtr;
END;

GrafPtr = "GrafPort;
GrafPort = RECORD

device: INTEGER;
portBits: BitHap;
portRect: Rect;
visRgn: RgnHandle;
clipRgn: RgnHandle;
bkPat : Pattern;
flllPat: Pattern;
pnLoc: Point;
pnSize: Polnt;
pritode : INTEGER;
priPat; Pattern;
pnVis: INTEGER;
txFont: INTEGER;
txFace: Style;

i txtode: INTEGER;
txSize: INTEGER;
spExtra: LongInt;
fgColor: LongInt;
bkColor: LongInt;
colrBit: INTEGER;
patStretch: INTEGER;
picSave: Q0Hand1e;

N rgnsave: QbHandle;

E-83

Pascal Reference Maval

QuiIckODraw
polySave: QDHandle;
grafProcs: QDProcsPtr;
END;

VAR thePort: GrafPtr;

white: Pattern;
black: pPattern;
gray: Pattern;
1tGray: Pattern;
dkGray: Pattern;
arrow: Ccursor;

screenBits: BitMap;
randSeed: LongInt.

{ GrafPort Routines }

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

InitGraf (globalPtr: QDPtr);
OpenPort (port: GrafPtr);
InitPort (port: GrafPtr);
ClosePort (port: GrafPtr);
SetPort (port: GrafPtr);
GetPort (VAR port: GrafPtr).
GrafDevice (device: INTEGER):
SetPortBits(bm: BitMap).

PortSize (width, height: INTEGER);
HovePortTo (leftGlobal, topGlobal: INTEGER):
SetOrigin (h,v: INTEGER);

SetClip (rgn: RgnHandle);
GetClip (rgn: RgnHandle);
ClipRect (r: Rect);

BackPat (pat: Pattern);

{ Cursor Routines }

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

InitCursor;
SetCursor(crsr: cursor);
HideCursor;

ShowCursor;
ObscureCursor;

E-84

Pascal Reference Manal QuickOraw

{ Line Routines }

PROCEDURE HidePen;

PROCEDURE ShowPen;

PROCEDURE GetPen (VAR pt: Point);
PROCEDURE GetPenState(VAR pnState: PenState);
PROCEDURE SetPenState(pnState: PenState);
PROCEDURE PenSize (width, height: INTEGER);
PROCEDURE PenMode (mode: INTEGER);
PROCEDURE PenPat (pat: Pattern);
PROCEDURE PenNormal;

PROCEDURE HoveTo (h,v: INTEGER):

PROCEDURE Hove (dh, av: INTEGER);
PROCEDURE LineTo (h,v: INTEGER);
PROCEDURE Line (dh, dv: INTEGER);

{ Text Routines }

PROCEDURE TextFont (font: INTEGER);

PROCEDURE TextFace (face: Style);

PROCEDURE TextHode (mode: INTEGER);

PROCEDURE TextSize (size: INTEGER);

PROCEDURE SpaceExtra (extra: LongInt);

PROCEDURE DrawChar {ch: char);

PROCEDURE DrawString (s: Str2ss);

PROCEDURE DrawText (textBuf: QDPtr; firstByte, byteCount: INTEGER);

FUNCTION Charwidth (ch: CHAR): INTEGER;

FUNCTION Stringwidth (s: Str255): INTEGER:

FUNCTION Textwidth (textBuf: QDPtr; firstByte, byteCount: INTEGER):
INTEGER;

PROGEDURE GetFontInfo (VAR info: FontInfo);

{ Point Calculations }

PROCEDURE AddPt (src: Point; VAR dst: Point);

PROCEDURE SubPt (src: Point; VAR dst: Point);

PROCEDURE SetPt (VAR pt: Point; h,v: INTEGER);

FUNCTION EqualPt (pt1, pt2: Point): BOOLEAN;

PROCEDURE ScalePt (VAR pt: Point; fromRect, toRect: Rect);
PROCEDURE MapPt (VAR pt: Point; fromRect, toRect: Rect);

PROCEDURE LocalToGlobal (VAR pt: Point);
PROCEDURE GlobalToLocal (VAR pt: Point);

E-85

Pascal Reference Manial

{ Rectangle Calculations }

PROCEDURE SetRect

FUNCTION EmptyRect (r: Rect): BOOLEAN;

PROCEDURE OffsetRect (VAR r: Rect; dh,dv: INTEGER);
(VAR T: Rect;
PROCEDURE InsetRect (VAR r: Rect; dh,dv: INTEGER);

(srcl, src2: Rect; VAR dstRect: Rect): BOOLEAN;

PROCEDURE MapRect
FUNCTION SeCtRect

PROCEDURE UnionRect (srci, src2: Rect; VAR dstRect: Rect);

FUNCTION PtInRect
PROCEDURE Pt2Rect

(pt: Point; r: Rect): BOOLEAN:
(pt1,pt2: Point; VAR dstRect: Rect);

{ Graphical Operations on Rectangles }

PROCEDURE FrameRect (r: Rect):
PROCEDURE PaintRect (r: Rect);
PROCEDURE EraseRect (r: Rect);
PROCEDURE InvertRect (r: Rect);

PROCEDURE F1llRect

{ RoundRect Routines }

(r: Rect; pat: Pattern);

PROCEDURE FrameRoundRect (r: Rect; ovWd, ovHt: INTEGER);

PROCEDURE PalntRoundRect (r:

Rect; ovWd, ovHt: INTEGER);

PROCEDURE EraseRouncRect (r: Rect; ovwd, ovHt: INTEGER);
PROCEDURE InvertRoundRect (r: Rect; oOvWd, ovHt: INTEGER),
(r: Rect; ovWd, ovHt: INTEGER; pat: Pattern);

PROCEDURE FillRoundRect

{ Oval Routines }

PROCEDURE FrameQval (r:
PROCEDURE PaintOval (r:
PROCEDURE EraseQval (r:
PROCEDURE InvertOval (r:
PROCEDURE F1l10val (r:

{ Arc Routines }

PROCEDURE FrameArc (r:
PROCEDURE PaintArc (r:
PROCEDURE EraseArc (r:
PROCEDURE InvertArc (r:

Rect):
Rect);
Rect);
Rect);
Rect; pat: Pattern);

Rect; startAngle, arcAngle:
Rect: startAngle,arcAngle:
Rect; startAngle, arcAngle:
Rect; startAngle, arcAngle:

E-86

INTEGER);
INTEGER);
INTEGER);
INTEGER).

QUickDraw

(VAR r: Rect: left, top, right, bottom: INTEGER),
FUNCTION EqualRect (rectl, rect2: Rect): BOOLEAN;

fromRect, toRect: Rect);

Pascal Reference Maral QuickDraw

PROCEDURE F111Arc (r: Rect; startAngle, arcAngle: INTEGER; pat:
Pattern);
PROCEDURE PtToAngle (T: Rect; pt: Point; VAR angle: INTEGER);

{ Polygon Routines }

FUNCTION OpenPoly: PolyHandle;

PROCEDURE ClosePoly;

PROCEDURE KillPoly (poly: PolyHandle);

PROCEDURE OffsetPoly (poly: PolyHandle; dh,dv: INTEGER);
PROCEDURE HMapPoly (poly: PolyHandle; fromRect, toRect: Rect);
PROCEDURE FramePoly (poly: PolyHandle);

PROCEDURE PaintPoly (poly: PolyHandle);

PROCEDURE ErasePoly (poly: PolyHandle);

PROCEDURE InvertPoly (poly: PolyHanole);

PROCEDURE F1illPoly (poly: PolyHandle; pat: Pattern);

{ Reglion Calculations }

FUNCTION NewRgn: RgnHandle;

PROCEDURE DisposeRgn(rgn: RgnHandle);

PROCEDURE CopyRgn (srcRgn, dstRgn: RgnHandle);

PROCEDURE SetEmptyRgn{rgn: RgnHandle);

PROCEDURE SetRectRgn(rgn: Rgniiandle; left, top, right, bottom: INTEGER);
PROCEDURE RectRgn (rgn: RgnHandle; r: Rect),

PROCEDURE OpenRgn;

PROCEDURE CloseRgn (dstRgn: RgnHandle);

PROCEDURE OffsetRgn (rgn: RgnHandle; dn, dv: INTEGER),
PROCEDURE MapRgn ~ (rgn: RgnHandle; fromRect, toRect: Rect);
PROCEDURE InsetRgn (rgn: RgnHandle; oh,dv: INTEGER);
PROCEDURE SectRgn (SrCRgnA, sTCRgnB, dstRgn: RgnHandle),
PROCEDURE UnionRgn (SrcRgnA, stcRgnB, dstRgn: RgnHandle);
PROCEDURE DiffRgn (STCRgNA, STCRQNB, dsthn RgnHandle),
PROCEDURE XorRgn (sTrcRgnA, sTcRgNB, dstRgn: RgnHandle);
FUNCTION EqualRgn (rgnA, rgnB: RgnHandle): BOOLEAN;

FUNCTION EmptyRgn (ron: RgnHandle): BOOLEAN;

FUNCTION PtInRgn gpt: Point; rgn: RgnHandle): BOOLEAN;
FUNCTION RectInRgn (r: Rect, rgn: RgnHandle): BOOLEAN;

{ Graphical Operations on Reglons }
PROCEDURE FrameRgn (rgn: RgrHandle);

PROCEDURE PaintRgn (rgn: Rngandleg;
PROCEDURE EraseRgn (rgn: RgnHandle);

rd

£-87

Pascal Reference Marnial

PROCEDURE
PROCEDURE

QuUickOraw

InvertRgn (rgn: RgnHandle);
FillRgn (rgn: RgnHandle; pat: Pattern);

{ Graphical Operations on BitMaps }

PROCEDURE

PROCEDURE

{ Picture

FUNCTION

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

ScrollRect(dstRect: Rect; dh,dv: INTEGER; updateRgn:
rgnHandle);
CopyBits (srcBits,dstBits: BitMap;
srcRect, dstRect: Rect;
mode: INTEGER;
maskRygri: RgrHanule);

Routines }

OpenPicture(picFrame: Rect): PicHandle;

ClosePicture;

DrawPicture(myPicture: PicHandle; dstRect: Rect);
PicComment(king, dataSize: INTEGER; dataHandle: QDHandle);
KillPicture(myPicture: PicHandle),

{ The Bottleneck Interface: }

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
FUNCTION

PROCEDURE
PROCEDURE

SetStdProcs(VAR procs: QDProcs);
StdText (count: INTEGER; textAddr: QDPtr; numer, denom:
Point);

StdLine (newPt: Point):

StdRect (verb: Grafverb; r: Rect);

StdRRect (verb: GrafVerb; r: Rect; owvWd, ovHt: INTEGER).
Stdoval (verb: Grafverb; r: Rect);

StdArc (verb: Grafverb; r: Rect; startAngle, arcAngle:

INTEGER),
StdPoly (verb: GrafVerb; poly: PolyHandle);
StdRgn (verb: Grafverb; rgn: RgnHandle);
StoBits (VAR srcBits: BitMap; VAR srcRect, dstRect: Rect;
mode: INTEGER; maskRgn: RgnHandle).
StdComment (kind, dataSize: INTEGER; dataHandle: QDHandle);
StdTxteas (count: INTEGER; textAddr: QDPtr;
VAR numer, denom: Point;
VAR info: FontInfo): INTEGER:
StdGetPic (dataPtr: QDPtr; byteCount: INTEGER);
StoPutPic (dataPtr: QDPtr; byteCount: INTEGER);

E-88

I

Pascal Refererce Marx/al QuickOraw

{ Misc Utllity Routines }

FUNCTION GetPixel (h,v: INTEGER): BOOLEAN;
FUNCTION Random: INTEGER;

PROCEDURE StuffHex (thingptr: QDPir; s:Strzss):;
PROCEDURE ForeColor (color: Longint);

PROCEDURE BackColor (color: LongInt);

PROCEDURE ColorBit (whichBit: INTEGER);

E.13.1 Graf3D Interface

{$S Graf }
UNLT Graf3D;
{ three-dimensional graphics routines layered on top of QuickDraw }
INTERFACE
USES {$U QD/QuickDraw.08J) } QuickDraw;
CONST radConst=57.29578;
TYPE Point3D=RECORD

X: REAL;
y: REAL;
Z: REAL.
END;
Point2D=RECORD
X: REAL;
y: REAL;
END;
XfHatrix = ARRAY[0..3,0..3] OF REAL;
Port30Ptr = “Port3D:
Port3D = RECORD
GPort: GrafPtr;
viewRect: Rect;
xLeft, yTop, xRight, yBottom: REAL;
pen, penPrime, eye: Point3D;
hSize, vSize: REAL ;
nCenter, vCenter: REAL ;
xCotan, yCotan: REAL ;
ident: BOOLEAN;
xForm: XfMatrix;
END;

€-89

Pascal Rererence Manua!

QuiIckDraw

VAR thePort3D: Port3DPir;

PROCEDURE Open3DPort (port: Port3DPtr);

PROCEDURE SetPort3D
PROCEDURE GetPort3o

PROCEDURE HoveTo2D(x, y: REAL);

(port: Port3DPtr);
(VAR port: Port3pePtr);

PROCEDURE HoveTo3D(X,y,Z: REAL);

PROCEDURE L1ineTo2D(X, y: REAL); PROCEDURE LineTo3D(x y,Z: REAL);
PROCEDURE Move2D(dx.dy: REAL); PROCEDURE Move3D(dx, dy,dz: REAL):
PROCEDURE Line2D(dx, dy: REAL); PROCEDURE Line3D(dx,dy,dz: REAL);

PROCEDURE ViewPort
PROCEDURE LOOKAT
PROCEDURE ViewAngle
PROCEDURE Identity;
PROCEDURE Scale
PROCEDURE Translate
PROCEDURE Pitch
PROCEDURE Yaw
PROCEDURE Roll
PROCEDURE Skew
PROCEDURE TransForm
FUNCTION Cl1ip3D

PROCEDURE SetPt3D
PROCEDURE SetPtzD

(r: Rect);
(1left, top, right, bottom: REAL);
(angle: REAL);

(«Factor, yFactor, zFactor: REAL);

(ax dy,dz: REAL);

(xAngle: REAL);

(yAngle: REAL):

(zAngle: REAL):

(zAngle: REAL);

(src: Point3D; VAR dst: Point3D);

(srcl, srcZ: POINt3D; VAR dstl, dst2: POINT):

BOOLEAN;

(VAR pt3D: Point3D; x,y,z: REAL);
(VAR pt2D: Point2D; x y: REAL);

E-90

I - AN

—

Pascal Reference Marnal

E.132 QuickDraw Sample

QuickOraw

Programs
This section proviges listings of two sample programs that are Included with

the Workshop software.,

E.1a.1 QODSample

The program QDSamgie (In the flle QD/QDSample, TEXT) demonstrates
different things that QuickDraw can do. Its output Is shown in Figure E-26.

Look what you can drow with QuickDraw

Text

Bold
Italic
Underline
utline]
Shadong

Rectangles

RoundRects

Bit Images

=
= Gf

=

&
sl

Regions

rbitrary Clippipe-Regio

rbitrapy Clig” {of
rbitr ‘\Qli? \\m
rbi ph Ao
riy \p!‘r@ﬂe’gim

Figure E-26
QDSample

The flle QD/M/QDSample. TEXT Is an exec flle that can be used to rebulld
this sample program. Disregard any warning messages from the linker about

name conflicts.

E-91

FPascal Rerferernce Marial! QuickDraw

PROGRAM QDSample;
{ Sample program 111lustrating the use of QuickDraw. }

USES {$U QD/QuickDraw.083 } QuickDraw,
{$U QD/7QDSupport.0B8J } QOSupport;

TYPE IconData = ARRAY[0..95] OF INTEGER;

VAR heapBuf : ARRAY[0..10000]) OF INTEGER;
myPort: GrafPort;
icons: ARRAY[0..5] OF IconData;

FUNCTION HeapFull(hz: QDPtr; bytesNeeded: INTEGER): INTEGER;

{ this function will be called if the heapZone runs out of space }
BEGIN

WRITELN('The heap is full. The program must now terminate! ');
Halt;
END;

PROCEDURE InitIcons;

{ Hanually stuff some icons. Normally we would read them from a file } L
BEGIN

{ Lisa }

StuffHex(a8icons[0, G], '000000000000000000000000000000000000001FFFFFFFFC’);
StuffHex(@icons[0, 12], ' 00600000000601800000000B0600000000130FFFFFFFFFA3");
StuffHex(aiconS'0,24J,'16000000004311FFFFF00023120000080F2312000008F923';;
StuffHex(@icons[0, 36], ' 120000080F 23120000080023120000080023120000080F 23");
StuffHex(alcons'0,48j,'12000008F923120000080F2312000008002311FFFFF00023';;
StuffHex(aicons[0, 60], * 08000000004307FFFFFFFFA30100000000260FFFFFFFFE2C');
StuffHex(3icons(0, 72], ' 18000000013832AAAAABAIF D655555515380C2AAAAB2ASE0")
StuffHex(@icons(0, 84], '800000000980FFFFFFFFF300800000001600FFFFFFFFFCO0"),

{ Printer }
Stuffiex(aicons[1, 0 ,'00'g-
4

11 ’
StuffHex(@icons(1, 12], ' 00000000000060007FFFFF00000080000280000111514440");
StuffHex(@icons[1, 24}, * 0002000008400004454510400004000017C00004A5151000");
StuffHex(@icons(1, 36 . ' 0004000010000004A5451000000400001 7FE0OF 4A5151003")
StuffHex(aicons|[1, 48), ' 0184000013870327FFFFF 10F 06400000021B0CFFFFFFFC37");
StuffHex(a1cons| 1. 60, ' 18000000006B3000000000D7 7F FFFFFFFFABCO0000000356")

)

StuffHex(@icons| 1, 72], *8000000001AC87F 000000158841000CCC1B087F000CCC160");
StuffHex(@1cons[1, 84], *8000000001C0C000000003807FFFFFFFFFQ007800001E0G0")

E-92

|

Pascal Rerferernce Marnial

{ Trash Can }

StuffHex(@icons[2,
StuffHex(aicons[2,

StuffHex(@aicons(?2

StuffHex(@2icons[2,

StuffHex(@icons

StuffHex(@aicons
StuffHex(@icons|

2
StuffHex(aicons[2,

2

2

{ tray }

StuffHex(@icons(3,

StuffHex(@licons
StuffHex(@icons
StuffHex(aicons|

StuffHex(@icons
StuffHex(aicons(
StuffHex(@icons|

3
3
3
StuffHex(aicons(3,
3
3
3

{ File Cabinet }

StuffHex(alcons[4,

StuffHex(@icons
Stuf fHex(@icons

StuffHex(aicons
StuffHex(@icons
StuffHex(aicons

4
[4
StuffHex(@1cons(4,
4
4
4

!
Stuf fHex(@icons[4,

{ drawer }

StuffHex(31cons
StuffHex(2icons(
StuffHex(@icons|

StuffHex(@icons|
StuffHex(@icons(

S
5
5
StuffHex(@icons([S,
S
S

StuffHex(@icons(5,

StuffHex(aicons[S

END;

onxlc\gwr\)'-
SN O N O

QO NP NN =
BN O ENOOORNMNENO

Cﬂ\ld\g\’”\)b—-
&S NO

’,

m\amgwr\)»—
SNO N O

QulckOraw

]. ' 000001F CO00000000E 0600000000300300000000C0918000"),
]. '00013849800000026C4980000004C0930000000861260000");
. ' 0010064FE0000031199830000020E6301800002418E00800°);
. "0033E3801C0000180E002C00000F F801CCO000047FFEQOCO0"),
. ' 000500004C000005259A4C000005250A4C00000525FA4C00");
], *000524024C00000524924C00600524924C0090E524924C7C")
], "932524924082A44524924D01C88524924CF 1004524924009 ");
], "0784249258E70003049233100000E 000E 40800001FFFC3FO"),

.
’,

], 1 00")
, 10000000000000000000000000000000000000007FFFFFFFO");
, '000E00000018001A00000038003600000078006A000000D8°);
., 'ODD7FFFFFFB801AC000003580358000006B807F COO0FFDS8");
]. ' 040600180AB80403FFF 00D58040000000AB8040000000058 ");
], *040000000AB807FFFFFFFDS806AC00000AB8055800000058")
], ' 06B000C0O0DCABBO7F COOOF FD70040600180AE 00403FFFO0DCO");
], ' 040000000880040000000F 00040000000E000O7FFFFFFFCO0");

, ' 0007FFFFFC00000800000C00001000001C00002000003400°");
, ' 004000006C0000F FFFFFD40000800000AC0O000BFFFFED400"),
, ' 00A00002ACO000A07F 02D40000A04102AC0000A07F 020400),
. " 00AD0OD02AC0000A08082D40000A0F F82AC0000A00002D400")
. "00A00002ACO000BFFFFED4A0000800000ACO000BFFFFED4D0"),
], ' 00AOD002ACO000AD7F 02D40000A04102AC0000A07F02D400")
], ' DOADDODZACO000ANB082D40000A0FF 82AC0000A00002D800")

]. “00A00002B00000BF FFFEEO0000800000C00000F FFFFFB000")

]. 1 000000000000000000000CVNU0O0UD0VV0D0V0U0V0VOC000");
. *00");
, '00");
], ' 001FFFFFFO")
], '0000380000300000680000700000080000D0003FFFFFF1B0");
. "00200000135000200000168000201FE01050002010201AB0")
, "00201FE01560002000001AC0002000001580002020101800");
], ' 00203FF01600002000001C00002000001800003FFFFFF000"),

E-93

Pascal Rererence Mamsal QulckDraw

PROCEDURE DrawIcon(whichIcon, h, v: INTEGER),
VAR srcBits: BitMap;
srcRect, dstRect: Rect:
BEGIN
srcBits.baseAddr: =a3icons[whichIcon];
srcBits.rowBytes:=6;
SetRect(srcBits.bounds. 0, 0, 48, 32).
srcRect :=srcBits.bounds;
dstRect:=srcRect;
Of fsetRect(dstRect, h, v);

CopyB1its(srcBits, thePort”.portBits, srcRect, dstRect, srcOr, Nil);
END;

PROCEDURE DrawStuff;

VAR 1: INTEGER;
tempRect: Rect;
myPoly: PolyHandle;
myRgn: RgnHandle;
myPattern: Pattern;

BEGIN o
StuffHex(amyPattern, ' 8040200002040800°); .

tempRect := thePort”.portRect;
ClipRect(tempRect);
EraseRoundRect (tempRect, 30, 20);
FrameRoundRect (tempRect, 30, 20);

{ draw two norizontal lines across the top }
MoveTo(O, 18);

LineTo(719, 18);

HoveTo(0, 20);

LineTo(719, 20);

{ draw divider lines }
HoveTo(0, 134);
LineTo(719, 134);
MoveTo(0, 248);
LineTo(719,248);
HoveTo(240, 21);
L1neT0(240, 363);
HoveTo(480, 21);
LineTo(480, 363);

E-94

I

Pascsl Reference Mensl! QuickDraw

{ draw title }

TextFont(0);

MoveTo(210, 14);

DrawString('Look what you can draw with QuickOraw');

{--——---- draw text samples --------- }
HoveTo(80, 34); DrawString('Text');

TextFace([bold]);
HoveTo(70,55); DrawString('Bold");

TextFace([italic]);
MoveTo(70, 70); DrawString('Italic');

TextFace([underline]);
MoveTo(70, 85); DrawString('Underline‘);

TextFace([outline]);
MoveTo(70,100); DrawString('Outline’);

TextFace([shadow]);
HoveTo(70, 115); DrawString(‘Shadow');

TextFace([]). { restore to normal }

{ == draw 1ine samples --------- }
MoveTo(330, 34); DrawString('Lines’);
MoveTo(280,25); Line(160, 40);

PensSize(3,2);
HoveTo(280,35); Line(160, 40);

PensSize(6, 4);
HoveTo(280, 46);: Line(160, 40);

PenSize(12, 8);
PenPat(gray),
MoveTo(280,61); Line(160, 40);

E-95

Pascal Reference Marnusl uickDraw

PenSize(15, 10);
PenPat(myPattern);
HoveTo(280,80); Line(160, 40);
PenNormal;

{ -~ draw rectangle samples --------- }
MoveTo(560, 34); DrawString('Rectangles’);

SetRect (tempRect, 510, 40, 570, 70);
FrameRect(tempRect);

OffsetRect(tempRect, 25, 15);
PenSize(3,2);
EraseRect(tempRect);
FrameRect(tempRect);

0ffsetRect(tempRect, 25, 15);
PaintRect(tempRect);

OffsetRect(tempRect, 25, 15);
PenNormal;
FillRect(tempRect, gray).
FrameRect (tempRect);

Of fsetRect(tempRect, 25, 15);

FillRect(tempRect, myPattern);
FrameRect(tempRect);

{ ——--- draw roundRect samples --------- }

MoveTo(70,148); DrawString('RoundRects');

SetRect (tempRect, 30, 150, 90, 180);
FramoRoundReot (tempReoct, 30, 20),

OffsetRect(tempRect, 25, 15);
PenSize(3,2):
EraseRoundRect(tempRect, 30, 20);
FrameRoundRect(tempRect, 30, 20);

Of fsetRect(tempRect, 25, 15).
PaintRoundRect (tempRect, 30, 20);

E-96

Pascal Referernce Marnsl

OffsetRect(tempRect, 25, 15);
PenNormal;

FillRoundRect(tempRect, 30, 20, gray);
FrameRoundRect(tenpRect,30,20?;

Of fsetRect (tempRect, 25, 15);
FillRoundRect(tempRect, 30, 20, myPattern);
FrameRoundRect(tempRect, 30, 20);

{ ~==mmm=- draw bit image samples --------- }
MoveTo(320,148); OrawString('Bit Images');

Drawlcon(0, 266, 156);
DrawIcon(1, 336, 156);
DrawIcon(2, 406, 156);
DrawIcon(3, 266, 196);
Drawlcon(4, 336, 196);
DrawIcon(5, 406, 196);

{ ~—-—-—--- draw Wedge samples --------- }
HoveTo(570, 148); DrawString('¥edges'),

SetRect(tempRect, 520, 153, 655, 243);
FillArc(tempRect, 135, 65, dkGray),;
FillArc(tempRect, 200, 130, myPattern);
FillArc(tempRect, 330, 75, gray);
FrameArc(tempRect, 135, 270);

Of fsetRect(tempRect, 20, 0);
PaintArc(tempRect, 45, 90);

{ ----~---- draw polygon samples --------- }

HoveTo(80,262); DrawString('Polygons');
myPoly: =0OpenPoly;

MoveTo(30, 290);

LineTo(30, 280),

LineTo(50, 265);

LineTo(90, 265);

LineTo(80, 280);

LineTo(95, 290);

LineTo(30, 290);
ClosePoly; { end of definition }

E-97

QuickDraw

Pascal Referernce Mamsg! uickDraw

FramePoly(myPoly);

0f f setPoly(myPoly, 25, 15);
PenSize(3, 2);
ErasePoly(myPoly);
FramePoly(myPoly);

OffsetPoly(myPoly, 25, 15).
PaintPoly(myPoly);

0f fsetPoly(myPoly, 25, 15);
PenNormal.
FillPoly(myPoly, gray);
FramePoly(myPoly?;

Of fsetPoly(myPoly, 25, 15);

FillPoly(myPoly, myPattern);
FramePoly(myPoly);

KillPoly(myPoly),

{ —-—---- demonstrate region clipping --------- }
HoveTo(320,262); DrawString('Regions’');
myRgn: =NewRgn,
OpenRgn;
ShowPen;

SetRect(tempRect, 260, 270, 460, 350);
FrameRoundRect (tempRect, 24, 16);

HoveTo(275, 335); { define triangular hole }
LineTo(325, 285);
LineTo(37S. 335);
LineTo(275, 335);

SetRect(tempRect, 365, 277, 445, 325); { oval hole }
FrameOval(tempRect);

HidePen;
CloseRgn(myRgn), { end of definition }

SetClip(myRgn);

E-98

Pascal Reference Msrnual

FOR i:=0 T0 6 DO { draw stuff inside the clip region }
BEGIN
MoveTo(260, 280+12%1);
DrawString(‘Arbitrary Clipping Regions‘);
END;

ClipRect(thePort” .portRect);
DisposeRgn(myRgn);

{ —----m--- draw oval samples --------- }
MoveTo(580, 262); DrawString('Ovals’);

SetRect(tempRect, 510, 264,570, 294);
FrameOval(tempRect);

OffsetRect(tempRect, 25, 15);
PenSize(3, 2);
EraseOval(tempRect);
FrameQval(tempRect),

OffsetRect(tempRect, 25, 15);
PaintOval(tempRect);

O0ffsetRect(tempRect, 25, 15);
PenNormal;
Fill0val(tempRect, gray),
FrameQval (tempRect),

Of fsetRect(tempRect, 25, 15);
FillOval(tempRect, myPattern);
FrameQval(tempRect);

END; { DrawStuff }

E-99

QuickOraw

Pascal Reference Marndl QuickDraw

BEGIN { main program }
{ Initialization - Gereric to all applications using QuickDraw }
QDInit(@heapBuf, aheapBuf([10000], aHeapFull); { Must do this once at

beginning }
OpenPort(amyPort);
PaintRect(thePort” .portRect); { Paint grey background }

InitIcons;

DrawStuff;

Tone(2000, S00); { Beep tone of (1/2000)*10°6 == SO0 cycles/sec for
500 milliseconds }

ReadlLn; { Wait until RETURN entered before terminating program }
END .

E-100

.

Pascal Reference Manua! QuickOraw

E.12.2 Boxes

The program Boxes (in the file QD/Boxes.TEXT) uses the Graf3D routines to
draw random three-dimensional boxes on a grid, as shown in Figure E-27.

Figure E-27

The file QD/M/Boxes.TEXT is an exec file that can be used to rebuild this

sample program. Dlsregard any warning messages from the linker about name
conflicts.

E-101

Pascal Reference Manusl QuickDraw ¢ E Jj

PROGRAM Boxes;

{ Sample program illustrating use of the Graf3D unit by drawing random
3D boxes on a grid. }

USES
{$U QD/QuickDraw.08J } QuickDraw,
{$U QD/Graf30D.08J } Graf3D,
{$U QD/QDSupport.08J } (QDSupport,

CONST boxCount = 15;
TYPE Box3D=RECORD

pti: Point3D;
pt2: Point3D;

dist: REAL;
END;
VAR
heapBuf : ARRAY[0..8192) OF INTEGER; {16k bytes}
GPorti: GrafPort;
GPort2: Port3d;
myPort: GrafPtr;

myPort3D: Port3DPtir;

boxArray: ARRAY[O..boxCount] OF Box3D;
nBoxes: INTEGER;

i: INTEGER;

FUNCTION HeapError(hz: QDPtr; bytesNeeded: INTEGER): INTEGER;
{ this procedure gets called when the heap zone is full }
BEGIN

WRITELN('The heap is full. The program must now terminate! ');
HALT;
END;

FUNCTION Distanoe(pti, pt2: POINT3D): REAL;
VAR dx, dy,dz: REAL;
BEGIN

dx:=pt2.X - pt1.X;

dy:=pt2.Y - ptl.Y;

dz:=pt2.Z - pti.L;

Distance:=SQRT(dx*dx + dy*dy + dz*dz);
END;

E-102

Pascal Reference Marnmsl QuickDraw

PROCEDURE MakeBox;

VAR myBox: Box3D;
1 Jnv: INTEGER;
pl,p2: Point3D;
myRect : Rect;

testRect: Rect:

BEGIN
pl.x:=Random mod 70-15;
pl.y:=Random mod 70 -10;
pl.z:=0.0;
p2.x:=pl.x + 10 + ABS(Random) MOD 30;
p2.y:=pl.y + 10 + ABS(Random) MOD 45;
p2.z:=pl.z + 10 + ABS(Random) MOD 35;

{ reject box if it intersects one already in list }
SetRect (myRect, ROUND(p1.x), ROUND(p1.y), ROUND(p2.x), ROUND(p2.Y));
FOR i:=0 TO nBoxes-1 DO
BEGIN
¥ITH boxArray(i] DO
SetRect(testRect, ROUND(pt1.x), ROUND(ptl.y),
ROUND(pt2.x), ROUND(pt2.y));
IF SectRect(myRect, testRect, testRect) THEN EXIT(MakeBox);
END;

myBox.pt1:=p1;
myBox.pt2:=p2;

{ calc midpoint of box and its distance from the eye }
pl.x:=(pl.x + p2.x)/2.0;

pl.y:=(pl.y + p2.y)/2.0;

pi.z:=(pl.z + p2.2)/2.0;

Transform(pl, p2);

myBox.dist:=Distance(p2, myPort3D".eye); { distance to eye }

i:=0;
boxArray{nBoxes] .dist:=myBox.dist; { sentinel }
WHILE myBox.dist > boxArray(i].dist DO i:=i+1; {insert in order of dist}
FOR j:=nBoxes DOWNTO i+1 DO boxArray[j]:=boxArray(j-1);
boxArray[1i]:=myBox;
nBoxes: =nBoxes+1;

END;

E-103

Pascal Reference Marwal QuickDraw

PROCEDURE DrawBox(pti,pt2: Point3D);
{ draws a 3D box with shaded faces. }
{ only shades correctly in one direction }

VAR tempRgn: RgnHandle;
BEGIN

E

tempRgn: =Newkgn,
OpenRan;

an;

HoveTo3D(ptl.x ptl.y,pt1.z); { front face, y=yl }

LineTo3D(pt1.x, ptl.y, pt2.z)

LineTo3D(pt2.x, ptl.y, pt2.2);

LineTo3D(pt2.x, ptl.y, ptl.z);

LineTo3D(ptl.x, ptl.y, pt1.z);
CloseRgn(tempRgn).
FillRgn(tempRgn, white);

OpenRan;
MoveTo3D(ptl.x, pti.y,pt2.z); { top face, z=22 }
LineTo3D(ptl.x, pt2.y,pt2.2);
LineTo3D(pt2.x, pt2.y, pt2.z);
LineTo3D(pt2.x, ptl.y, pt2.2);
LineTo3D(ptl.x, ptl.y,pt2.z);
CloseRgn(tempRgm).
FillRgn(tempRgn, gray);

OpenRgn; _
MoveTo3D(pt2.x, ptl.y,ptl.z); { right face, x=x2 }
LineTo3D(pt2.x, ptl.y, pt2.2);
LineTo3D(pt2.x, pt2.y,pt2.2);
LineTo3D(pt2.x, pt2.y, pti.z);
LineTo3D(pt2.x, ptl.y, pt1.z);
CloseRgn(tempRgn),;
FillRgn(tempRgn, black);

PenPat(white);
HoveTo3D(pt2.x, pt2.y,pt2.zg; { outline rignt }
LineTo3D(pt2.x pt2.y,ptl.z);

LineTo30(pt2.x, ptl.y, pti.2);
PenNormal,;

NgisposeRgn(telTDRm);

N
~

E-104

Psscal Reference Marna! QuickDraw

BEGIN { main program }
{ Initialization - Generic to all applications using QuickDraw }
QDInit(®heapBuf, ®heapBuf(8192], @heapError); { Must do this once at

beginning)

myPort := aGPorti;
OpenPort(myPort);
myPort3D := ¥GPort2;
Open3DPort (myPort3D);

ViewPort(myPort" .portRect); { put the image in this rect }
LookAt(-100, 75, 100, -75); { aim the camera into 3D space }
ViewAngle(30), { choose lens focal length }
Identity; Roll(20); Pitch(70); { roll and pitch the plane }

PenPat(white);
BackPat{(black);
EraseRect(myPort " .portRect);

FOR i:=-10 TO 10 DO
BEGIN
HoveTo3D(i*10, -100, 0);
LineTo3D(i%#10, +100,0);
END;

FOR i:=-10 TO 10 DO
BEGIN
MoveTo3D(-100, 1#10, 0);
LineTo3D(+100, i*10, 0);
END;

nBoxes:=0;

REPEAT MakeBox; UNTIL nBoxes=boxCount,

FOR i:=nBoxes-1 DOWNTO O DO
DrawBox(boxArray[i].pt1, boxArray[i].pt2);

Tone(2000, 500); {Beep tone of (1/2000)*10°6 == 500 cycles/sec for

500 milliseconds }
Readln; { Wait until RETURN entered before terminating program }

END.

E-105

Pascal Rererence Manual QulckDraw

E.15 QOSupport
The QDSupport unit (in the flle QD/QDSUpPOrt. TEXT) provides the
initialization that you need to use QuickDraw in the QDInit procedure, as well
as procedures for simplified access to mouse tracking, the mouse button, and
sound generation, and useful definitlons of font numbers. For more detalled
Information on mouse-handling routines and sound, refer to Appendix F,
Hardware Interface,

UNIT QDSupport;

INTERFACE
USES
{$U Q0/UnitStd.08J } UnitSta,
{$U QD/UnitHz.0BJ } Unithz,
{$U QD/Hardware.0B1 } Hardware,
{$U QD/Fontmgr.0BJ } Fontmgr,
{$U Q0/QuickDraw.08J } QuickDraw;
CONST
{-—-------- Font Numbers ---------- }
FTilei2 = 4; {proportional}
FTile18 = 5; {proportional}
FTileza = 6; {proportional}
FP15Tile = 7; {Monospaced - 8 1lines/inch & 15 chars/inch}
FP12Tile = 8; ({Monospaced - 6 lines/inch & 12 chars/inch}
FP10Tile = 9; {Honospaced - 6 lines/inch & 10 chars/inch}
FCent12 = 10; {proportional}
FCent18 = 11; {proportional}
FCent24 = 12; {proportional}
FP12Cent = 13; {Monospaced - 6 lines/inch & 12 chars/inch}
FP10Cent = 14; {Honospaced - 6 liness/inch & 10 chars/inch}
FP20Tile = 19; {Honospaced}

E-106

5

\'4,,’;‘&“

|

[1

AR EE B A U S O AR Oy S AR R & .

Pascal Reference Msmual QuickDraw

PROCEDURE QDInit(startPtr, limitPtr: QOPtr; ErrorProc: QDPtr);
{ QDInit: Initializes QuickDraw unit by setting up its heap

zone, global vars, cursor, and the Font Manager it
calls on. }

PROCEDURE GetHouse(VAR pt: Point);
{ GetMouse: Returns the current mouse lecation in the local
coordinates of the current grafPort. }

FUNCTION HMouseButton: BOOLEAN;
{ MouseButton: Returns TRUE if the mouse button is currently held
down, otherwise FALSE. }

PROCEDURE Tone(waveLength, duration: LonglInt);

{ Tone: Produces 3 square wave tone of the specified
wavelength (microseconds) for the specified duration
(milliseconds). }

E-107

Pascal Reference Maris! QuickOraw

E.16 Glossary

bit image: A collection of bits in memory that have a rectilinear represen-
tation. The Lisa screen is a visible bit image.

bitmapx A pointer to a bit image, the row width of that image, and its
boundary rectangle.

boundary rectangle: A rectangle defined as part of a bitmap, which encloses
the active area of the bit image and imposes a coordinate system on it. Its
top left comer is always aligned around the first bit in the bit image.

camera eye: A concept in three-dimensional graphics: the point of view and

the viewing angle in which an object appears, independent of the object's
coordinates.

character style: A set of stylistic variations, such as bold, italic, and
underline. The empty set indicates normal text (no stylistic variations)

clipping Limiting drawing to within the bounds of a particular area
clipping regior Same as clipRgn.
clipRgre The region to which an application limits drawing in a grafPort.

coordinate plane: A two-dimensional grid. In QuickDraw, the grid coordinates

are integers ranging from -32768 to +32767, and all grid lines are infinitely
thin.

cursor: A 16-by-16-bit image that appears on the screen and is controlled by
the mouse,

cursor level: A value, initialized to 0 when the systemn is booted, that keeps
track of the number of times the cursor has been hidden.

empty: Containing no bits, as a shape defined by only one point.
font: The complete set of characters of one typeface, such as Century.
frame: To draw a shape by drawing an outline of it.

global coordinate system: The coordinate system based on the top left comer
of the bit image being at (0,0).

Graf3D: A three-dimensional graphics unit that calls QuickDraw routines.

rt: A complete drawing environment, including such elements as a
bitmap, a subset of it in which to draw, a character font, patterns for drawing
and erasing, and other pen characteristics.

grafPtr: A pointer to a grafPort.

handle: A pointer to one master pointer to a dynamic, relocatable data
structure (such as a region).

hotspot: The point in a cursor that is aligned with the mouse position.
kerre To stretch part of a character back under the previous character.

E-108

‘ ¥
Pyl

Pascal Reference Marxal QuickDiraw

local coordinate syster: The coordinate system local to a grafPort, imposed
by the boundary rectangle defined in its bitmap.

missing symbol: A character to be drawn in case of a request to draw a
character that is missing from a particular font.

pattermme An 8-by-8-bit i , used to define a repeating design (such as
stripes) or tone (such as gray

pattem transfer mode: One of eight transfer modes for drawing lines or
shapes with a pattemn.

picture: A saved sequence of QuickDraw drawing commands (and, optionally,
picture comments) that you can play back later with a single procedure call;
also, the image resulting from these commands.

picture comments: Data stored in the definition of a picture which does not
affect the picture’s appearance but may be used to provide additional
information about the picture when it's played back.

picture frame: A rectangle, defined as part of a picture, which surrounds the
picture and gives a frame of reference for scaling when the picture is drawn.

pixel: The visual representation of a bit on the screen (white if the bit is 0,
black if it's 1)

point: The intersection of a horizontal grid line and a vertical grid line on
the coordinate plane, defined by a horizontal and a vertical coordinate.

polygorr A sequence of connected lines, defined by QuickDraw line-drawing
commands.

port: GrafPort or Port3D.

Port3D: A data structure in Graf3D that maps three-dimensional coordinates
into a two-dimensional QuickDraw grafPort.

Port3DPtr: A pointer to a Port3D.
portBits: The bitmap of a grafPort.
portBits.bounds;: The boundary rectangle of a grafPort’s bitmap.

portRect: A rectangle, defined as part of a grafPort, which encloses a subset
of the bitmap for use by the grafPort.

regionr An arbitrary area or set of areas on the coordinate plane. The
outline of a region should be one or more closed loops.

row widthh The number of bytes in each row of a bit image.
scale: To shrink or expand by a specified factor.
solic Filled in with any pattem.

source transfer mode: One of eight transfer modes for drawing text or
transferring any bit image between two bitmaps.

E-109

style: See character style.
thePort: A global variable that points to the current grafPort
thePort3D: A global variable that points to the current Port3D.

transfer mode: A specification of which boolean operation QuickDraw should

perform when drawing or when transferring a bit image from one bitmap to
another.

translate: To move in three-dimensional space by a specified amount.
transformation matrix Same as xForm matrix

viewing pyramid: The portion of three-dimensional space that a camera eye

can see. The pyramid's apex Is the point of the camera eye; its base is the
viewRect in a Port3D.

visRgn: The region of a grafPort which is actually visible on the screen.

xForm matrix: A 4x4 matrix that holds an equation to transform points
plotted in three-dimensional coordinates into two-dimensional screen
coordinates.

E-110

Appendix F
Hardware Interface

F1 TREeMOUSE ... aiataecccaceana e asematonseatmas s e smnranamasmasmnsaasaass F-1
F.11 MouseLocation ... F-1
F.1.2 MouseUpdate FTEQUENCYociiiiuiirmiiciiir i erree e F-1
F.1.3 MousESCAlINGcoooiic et F-1
F.1.8 MOUSE O0OMEETiuieeiiiiii i ce i ceearem e m e e e an reaa e e mearmaa s naann F-2

L 1 =0 P - 1. G, F-2
F.2.1 Cursor/Mouse Tracking.........euceeimmiiimmiiiiiicirii e F-3
F.22 ThEBUSY CUISOTcieoieiciaiia e rtaceesaean e senssansssanaannnaneansanansn F-3

F.3 TheDisplay SCIBEN.co i iimaiieeoccetraesamaesancececaesamnessmnanammanscssss F-4
F.3.1 ScreenContrast. ...t e F-a
F.3.2 Automatic ScreenFading ... F-4

FAA TReSPEEKET ... ceeee e e e e e ee s s eeeas e e e s eemnnnen e F-5

FS5 TheKeYDOAIU. iiiicaemetetenemm et teean oo e teceres s mte e mmnerenannas F-S
F5.1 Keyboard Identification ... F-7
F.5.2 Keyboard State.... ..ottt r v e s me e naes F-8
F5.3 KeyboardEVENES..... ...ttt eese e eenen F-8
F.5.4 DeadKeyDIaCHtiCalst F-10
F5.5 REPEALS.... ittt mn et eraet s rata e e tannee s e e caneann F-11

F6 TheMIicrosecond THMer cemecce e s e e se e e s o ecanan F-11

F.7 TheMillisecond TIMeT .. i cincvaneama e e taanemacnnnanaeas F-12

F8 Dateand THme . .ot ccc et emcrcceetasanesan e vasacnamnesmnasss F-12

L T 110 =1 o U F-12

F.10 Interface of the Hardware Uit ... ceeeees F-13

CHANGES JADOI T7ION S

Fascal Reference 3.0 Noles Hardweare interfece

Appendix F
Hardware Interface

Link to New File

Programs using the Hardware unit should still be compiled against the file
QRD/Hardware.0OBJ, but should now be linked to the file SysiLib.OBJ (not
QD/HWIntL.0BJ).

Notes F-1

Hardware Interface

The hardware interface software provides an interface for accessing and
controlling several parts of the Lisa hardware. The hardware/software
capabilities addressed include the mouse, the cursor, the display, the contrast
control, the speaker, both undecoded and decoded keyboard access, the micro-
second and millisecond timers and the hardware clock/calendar.

This appendix contains Pascal procedure and function declarations interleaved
with text describing them. Pascal type declarations and a summary of the

function and procedure declarations can be found in Section F.10, Interface of
the Hardware Unit.

Programs using this unit should be compiled against the file QD/Hardware.08J
and linked to the file QD/HWINtL.0BJ.
F.1 The Mouse
F.1.1 Mouse Location

Procedure Mousel_ocation (var x Pixels; var y: Pixels);

The mawse is a pointing device used to indicate screen locations.
Mouset_ocation retums the location of the mouse. The X-coordinate can range

from 0 to 719, and the Y-coordinate from 0 to 363. The initial mouse
location is 0,0.

F.12 Mouse Update Frequency
Procedure MouseUpdates (delay: MilliSeconds)

Software knowledge of the mouse location is updated periodically, rather than
continuously. The frequency of these updates can be set by calling
MouseUpdates. The time between updates can range from 0 milliseconds
(continuous updating) to 28 milliseconds, in intervals of 4 milliseconds. The
jnitial setting is 16 milliseconds.

F.1.3 Mouse Scaling

Procedure MouseScaling (scaleBoolean);
Procedure MouseThresh (threshold: Pixels);

The relationship between physical mouse movements and logical mouse move-
ments is not necessarily a fixed linear mapping. Three altematives are
available: 1) unscaled, 2) scaled for fine movement and 3) scaled for coarse
movement. Initially mouse movements are unscaled.

wWhen mouse movement is wasca/eq a horizontal mouse movement of x units

yields a change in the mouse X-coordinate of x pixels. Similiarly, a vertical
movement of y units yields a change is the mouse Y-coordinate of y pixels.

These rules apply independent of the speed of the mouse movement.

Pascal Reference Marwia! Haroware lnterface

when mouse movement is sca/ed horizontal movements are magnified by 3/2
relative to vertical movements. This is to compensate for the 2/3 aspect
ratio of pixels on the screen. when scaling Is in effect, a distinction is made
between Ane (small) movements and coarse (large) movements. Fine move-
ments are slightly reduced, while coarse movements are magnified. For scaled
fine movements, a horizontal mouse movement of x units yields a change in
the X-coordinate of x pixels, but a vertical movement of y units ylelds a
change of (2/3)*y pixels. For scaled coarse movements, a horizontal movement
a x units yields a change of (3/2)*x pixels, while a vertical movements of y
units yields a change of y pixels.

The distinction between fine movements and coarse movernents is determined
by the sum of the x and y movements each time the mouse location is
updated. If this sum is at or below the #wves/o/qd the movement is considered
to be a fine movement. Values of the threshold range from 0 (which yields all
coarse movermnents) to 256 (which yields all fine movements). Given the
default mouse updating frequency, a threshold of about 8 (threshold's initial
setting) gives a comfortable transition between fine and coarse movements.

MouseScaling enables and disables mouse scaling. MouseThresh sets the
threshold between fine and coarse movements.

F.1.4 Mouse Odometer

Function MouseOdometer: ManyPixels;

In order to properly specify, design and test mice, it's important to estimate
how far a mouse moves during its lifetime. MouseOdometer retumns the sum
of the X and Y movements of the mouse since boot time. The value returned
is in (unscaled) pixels. There are 180 pixels per inch of mouse movement.

F2 The Cursor

Procedure Cursorlmage (hotX: Pixels; hotY: Pixels; height: CursorHeight; data
CursorPtr; mask: CursorPtr);

The cwryor is a small image that is displayed on the screen. 1ts shape is

specified by two bitmaps, called abts and mask These bitmaps are 16 bits

wide and from 0 to 32 bits high. The rule used to combine the bits already
on the screen with the data and mask Is

screen <- (screen and (not mask)) xor data.

The effect is that white areas of the screen are replaced with the cursor
data. Black areas of the screen are replaced with (not mask) xor data. If the

data and mask bitmaps are identical, the effect is to or the cata onto the
screen.

The cursor has both a Jacstion and a /otspot The location is a position on
the screen, with X-coordinates of 0 to 719 and Y-coordinates of 0 to 363.
The hotspot Is a position within the cursor bitmaps, with X- and Y-coordi-
nates ranging from 0 to 16. The cursor is displayed on the screen with its

F-2

Pascal Referernce Manugl Haraware Interfece

hotspot at its location. If the cursor's location is near an edge of the screen,
the cursor image may be partially or completely off the screen.

Most cursor operations can be performed by calling the SetCursor. HideCursor.
ShowCursor, and ObscureCursar procedures defined by QuickDraw (see Section
E.9.2, Cursor-Handling Routines). Additional capabilities are provided by the

Hardware Interface routines described below.

The Cursorlmage procedure is used to specify the data bitmap, mask bitmap,
height and hotspot of the cursor. Initially the cursor data and mask bitmaps
contain all zeros, which ylelds a blank (invisible) cursor. The initial hotspot is
0.0.

F21 CursorM™ouse Tracking
Procedure Cursor Tracking (track: Boolean);
Procedure Cursoriocation (x Pixels; y: Pixels);

CursorTracking enables snd disables cursor acking of the mouse. when
tracking Iis enabled, the cursor location s changed to the mouse location each

time the mouse moves. Setting the cursor location by calling Cursoriocation
will have no effect; the cursor sticks with the mouse.

when tracking is disabled, the mouse location and cursor location are indepen-
dent. Calling Cursoriocation will move the cursor; moving the mouse will not.

when tracking Is first enabled (i.e,, on each transition from disabled to
enabled) the mouse location 1s modified to equal the cursor location. There-
fore, enabling tracking does not move the cursor; it does modify the mouse
location. Initially tracking is enabled.

F.2.2 The Busy Cursor

Procedure Busylmage (hotX: Pixels; hotY: Pixels; height: CursorHeight; data:
CursorPtr; mask: CursorPtr);

Procedure BusyDelay (delay: Milliseconds);

Applications may desire to display a &y cursor (e.g.. an hourglass) when an
operation in progress requires more than a few seconds to complete. The

Busylmage procedure is used to specify the data bitmap, mask bitmap, height
and hotspot of the busy cursor.

A call to BusyDelay specifies that the normal cursor should currently be
displayed, and that display of the busy cursor should be delayed for the
specified number of milliseconds. Subsequent calls to BusyDelay override
previous calls, postponing aisplay of the busy cursor. 1f no calls to BusyOelay
occur for the specified number of milliseconds, the busy cursor will be
displayed until the next call to BusyDelay.

Initially the busy cursor data and mask bitmaps contain all zeros, which yields
a blank (invisible) cursor. The initial hotspot is 0,0. The initial busy delay is

Pascal Reference Marwal Hardware Interface

infinite, that is, the busy cursor will not be displayed until BusyDelay is
called.

F3 The Display Screen
Procedure ScreenSize (var x: Pixels; var y: Pixels)

The display screen is a &/t magped display,: that is, each pixel on the screen
is controlled by a bit in main memory. The display has 720 pixels horizontally
and 364 lines vertically, and therefore requires 32,760 bytes of main memory.
The screen size may be determined by calling ScreenSize.

Function FrameCounter: Frames;

The screen is redisplayed about 60 times per second. A frame counter is
incremented between screen updates, at the vertical retrace interrupt. The
frame counter is an unsigned 32-bit integer which is reset to 0 each time the
machine is booted. FrameCounter returns this value. An application can
synchronize with the vertical retraces by watching for changes in the value of
this counter. The frame counter should /¢ be used as a timer; use the
millisecond and mircosecond timers instead.

F3.1 Screen Contrast
Function Contrast: ScreenContrast;
Procedure SetContrast (contrast: ScreenContrast)

The display's contrast level is under program control. Contrast values range
from 0 to 255 ($FF), with 0 as maximum contrast and 255 as minimum.
Contrast returns the contrast setting; SetContrast sets the screen contrast.
The low order two bits of the contrast value are ignored. The initial contrast
value is 128 ($80)

Procedure RampContrast (contrast: ScreenContrast);

A sudden change i