
I~

I ,.,.-.,

I
;

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

"
. \

Operating System
Reference Manual

for the Lisa

I
,

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

- ---

This binder contains seven documents about the Lisa" system software for
programmers' reference. The manuals are, in order:

• Operating System Reference f.1snusl for the Lisa..

• The OEf.1SyscslJ Unit.

• The st8rtdard Apple Numeric Environment.

• The 6&..'t't1 ~embJJl-L8flguage SANE.

• The StdUnit.

• The ProgComm l.lnit.

• The t;luickPort Programmer's Guide.

In addition, elsewhere in this package of books and media, there is a copy of
Motorola's ,..16[£10) 16/}i2 Bit f.1icroproces..t;;or Progrsmmer's Reference f.1anua1.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Future Releases
A few features of ttIe Usa q>erating System wlll be Cha"lged in fUture
releases:

• Pipes "1111 not be ~rted.
• Tlmetl events wUl not be ~rted.
• conflguratlon system calls wlll be changed.

If you WCIlt your software to be upward-COf'T1Xltible, please take ttlese changes
Into conslderatlcn I'1ore Information Is provided In the appropriate sections
of the manual.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Olapter 1
Ir1t.l't'xU::Um

Contents

1.1 The MaIn Functions ... 1-1
1.2 using the OS Functions.. 1-1
1.3 The FIle Systet1l .. 1-2
1.4 Process Management ... 1-3
1.5 f'1emOry Management .. 1-4
1.6 Exceptions and Events... 1-5
1.7 Interprocess Cornrnunicatlon ... 1-5
1.8 UsIng the OS Interface 1-6
1.9 Running Programs under the OS ... 1-6
1.10 WIlting Programs That Use the OS ... 1-6

~ter2
The File System

2.1 File Names ... 2-1
2.2 The WOrKlng Directory .. 2-2
2.3 Devices .. 2-3
2.4 Storage Devices .. 2-3
2.5 The Volume Catalog .. 2-4
2.6 Labels .. 2-4
2.7 Logical and PhysIcal Ero of Flle ~ 2-4
2.8 FHe ,A,ccess .. 2-5
2.9 Pipes ... 2-6
2.10 File Syste1Tl Calls .. 2-7

0'qJter 3
Prooesses

3.1 Process Structure .. 3-2
3.2 Process Hlerarcny ... 3-2
3.3 Prooess Creation 0 o. o •• 0 0 0 3-3
3.4 Process contrOl 0 ... 3-3
3.5 Process SCtledullng oo .. 3-3
3.6 Process TerminatIon .. 3-4
3.7 A Process-Handllng Exafll)le ... 3-5
3.8 Process systet1l calls... 3-7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

qJeIBtJng system Reference ManiJal COntents

~ter4
Memory t""IaI""n<:~""""""'Il8I:wII,t

4.1 Data segments.. 4-1
4.2 The Logical Data segment f\lUrnber .. 4-1
4.3 Shared Data Segments ... 4-2
4.4 Private Data segments .. 4-2
4.5 COde segments ... 4-2
4.6 Swapping .. 4-2
4.7 t1ernory Management System Calls ... 4-3

~rS
Exceptlms am Events

5.1 Exceptions .. 5-1
5.2 system-Defined Exceptions .. 5-2
5.3 Exception Handlers ... 5-2
S.4 Events .. S-S
5.S Event Channels ... 5-5
5.6 The System Clock .. 5-10
5.7 Exception Management System calls ... 5-10
5.8 Event Management System Calls ... 5-17
5.9 Clock system Calls .. 5-27

Olapter6
COOfl~tlm

6.1 configuration System calls .. 6-1

~xes

A qJerating System Interface Ulit ... A-1
B System-Reserved Exceptlon Names ... B-1
C System-Reserved Event Types .. C-1
o Error JYlessages .. 0-1
E FS_lI\IFO Fields ... E-l

Index

~--" "

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Preface

1h! cootents of ThIs MalJal
This manual describes the ~ratlng System service calls that are available to
Pascal and assembler programs. It is written for experienced Pascal
programmers and does not explain elementary terms and programmIng
teChniques. We assume that you have read the Lisa owner's Guide and
WO!1<slJOp User's Guide for tIJe Lisa and are fammar with your Usa system.
ctlapter 1 Is a general Introauctlon to the ~eraUng system.
Chapter 2 describes the File System and the available File system calls. This
InclUdes a description of the Interprocess communication facll1ty, pipes, and
the ~erating System calls that allow processes to use pipes.
Chapter 3 describes the calls avaUable to control processes, and also descrioes
the structure of processes.
Chapter 4 describes how processes can control their use of available memory.
Chapter 5 descrioes the use of events and exceptions that control process
synchronlzatlon. It also deScribes the use of the system Clock.
Chapter 6 describes the calls you can use to find out about the configuration
Of the system .

.Appendix A contains the source text Of Syscall, the unit that contains the
type, procedure, and function definitions discussed in this manual.
.Appendix B contains a llst of system-reserVed exception names.
Appendix C contains a 115t of system-reserved event names.
.Appendix 0 contains a list of error messages that can be produced by the
calls documented in this manual.
Appendix E contains a description of the Information you can Obtain from the
~erat1ng System about files and devices.

Type end Syntax conventlom
Bold-face type Is used in this manual to distinguish programming keywords and
constructs from EngUSh text. For example, FLUSH is the name of a system
calL System call names are capitalized in this manual, although Pascal does
not dIstlnguIsh between lower and upper case cnaracters. ItSI/CS Inctlcate a
new term whOse explanatlon follows.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Chapter 1
Introduction

1.1 TI'e t-1aIn FlIlCUCIlS .. 1-1

12 ~ U'I! m FlIlCU(JI1:S .. 1-1

1.3 TI'e FUe system ... 1-2
1.4 PI0C8SS 1'1aIlaget181t .. 1-3

1.S 1"-"6'01"1 t""B~'Blt .. 1-4

1.6 ExcepU(JI1:S and Events .. 1-5

1.7 Interp~ OlrTITUl1~UClfl ••••••••••••••••••••••••••••••••• " •••••••••••••••••••••••••••• 1-5

La l..tslr'wJ UlE!: (E Interta:::e ... 1-6

1.9 RtM'Tllng Progi8i lIS l.Ilder Ule m .. 1-6

1.10 wrttlng PlogldllS That lise U'I! m .. 1-6

I
I .'-~')

I

I
,: .. ~};

I
I
I
I
I
I
I
I
I
I
I
I
I
I

;:

I
I

CIIAN6ES/AI>PITI(JNr

Operating S}·'S'tem ..:t.O Nates

Using the SYSC~ Unit

Chapter 1
Introduction

Introduction

If a Pascal program contains Operating System user-interface procedure
calls, then the program's USES clause must specify the SYSCALL unit,
contained in the SysCall.Obj file:

Progrl!lll ttyProg;
l5ES {SU SYSCAll.CBJ} SysCall;

Nates 1-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Introduction

The ~rating System (OS) provldes an envIronment in whiCh multiple processes
can coexist, communicate, and share data. It provideS a file system for I/O
and information storage, handles exceptions (software Interrupts), and performs
memory management

Ll TIle Maln FlJ'lCt1ons
Th1s chapter descrIbes the four main functional areas of the os: the FHe
system, process management memory management, and event and exception
handlIng.
The File System provides Input and output. The FHe system accesses devices,
volumes, and files. Each object, whether a printer, dIsK fUe, or any other type
of object, is referenced by a pathname. Every I/O operation is performed as
an untnterpreted byte stream. Using the File System, all lID Is device
Independent. The File system also provides deVice-specIfic control operations.
A process cons1sts Of an executing program and its assoc1ated data Several
processes can execute concurrently by multiplexing the processor between
them. These processes can be broken Into segments Which are automatically
swapped Into memory as needed.
Memory management routines handle data segments. A data segment Is a fUe
that can be placed In memory and accessed directly.
Exceptions and events are process-communlcatlon constructs provided by the
os. HI event Is a message sent from one process to another, or from a
process to Itself, that Is dellvered to the receIvIng process only When the
process asks for that event. HI exception Is a specIal type Of event that
forces itself on the receIving process. There Is a set Of system-defined
exceptions (errors), and programs can define theIr own. system errors SUCh as
dIvisIon by zero are examples of system-defined exceptions. You can use the
system calls provIded to define any exceptions you want

1.2 UslrYJ U1e OS FlJ'lCtlons
Both built-tn language features and explicit OS system calls can access OS
routines to perform desired functions. For example, the Pascal writeln
procedure Is a built-In feature of the language. The code to execute wrtteln
is supplied In IOSPASLlB, the Pascal run-time support routines library. This
code, which Is added to the program when the program Is linked, calls OS
File System routines to perform the desired output.
You can also call OS rouUnes expUcltly. Thls \s usually dOne when the
language does not provIde the operation you want. OS routines allow Pascal
programs, for example, to create new processes, whIch could not otherwIse be
done, since Pascal does not have any buIlt-in prOCeSS-handllng functions.

1-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

All calls to the OS are Synchronous" 'WhIch means they do not return lI'ltll the
operation Is corfl)lete. Each call returns an error code to Indicate if anything
went wrong OUring the operatlon. My non-zero value Indicates an error or
warning. Negative error codes indicate warnings. For a list of error COdes
ana their meaning. see .t\ppenCttx D.

1.3 The FUe System
The FHe System performs all 110 as lI'linterpreted byte streams. These byte
streams can go to files on diSk or to other devices Sld'l as a printer or an
alternative console. In all cases, the device or f1le has a File System name.
Except for device-control functlons, the FHe system treats devices and flIes
In the same way.
The File System allows snarlng of all types of objects.
me FlIe System provideS for naming Objects (devices, flIes, etc.~ A nMle In
the FHe System is called a patJna"ml A complete patnname consists Of a
directory ncme and a flle M"ne. The me nCYne is mecr1lngful only for storage
devIces (deVices that store byte strecms for later use .. such as dlskS~

Each process haS a working directory associated with It. This allows you to
reference objects with an Incomplete pathname. To access an object In the
wor1<.lng directory, you specify Its flle name. To access an Object In a
different directory, you specify its complete pathname.

Before a device can be accessed, it must be mounted. Devices can be
mounted using the Preferences tool or by using the f'o"O..NT call. see Chapter
2 fOI an explanation of this call and other FHe System calls. If the device Is
a storage device, the rnDlIlt operation makes a volune name avallable. A
volume name Is a logical rwne for a disk., and is saved on the disk itself. The
mount operation logically connects the volume to the system, so that the files
on the voll.lTle may be acceSsed. The volume name can replace a device name
In a pathname usea to access an object on the disk. The voll.lTle naTIe allows
you to access a flle with the same pat.hname no matter where the drive Is
actually connected.
A device can be accessed if it is specified In the configuration llst created by
the Preferences tooL is physically connected to the Usa and is mounted.
There are some operations that can be perfonned on unmounted devices. Two
excrnples are ~CE_CXNTR(L calls and scavenging. Logically mounting a
voltrne on a device makes file access to the volume poSSible. For storage
devices, a voll.XTle Is an actual magnet1c medium that can contain recorded
fUes. For non-storage devices, volumes and fUes are concepts used to
maintain a lI'llform Interface. Files on non-storage devices suCh as prInters
do not store data but act as ports for performing I/O to the devices.

1-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

qJe18t/ng system Reference I'18nt.I8J IntnJt:U;t/a?

me basic operatIons provIded by the FIle system are as follows:
ITJOlI'lt and LnTlOlI"Jt - make a vollrne accessIble/Inaccessible
open and close - make a1 Object accessible/Inaccessible
reaa cn:1 write - transfer InformatIon to and from an object
CleVice control fumtloos - control oevice-specific functions

Some operatlons apply only to storage devIces:
allocate and deallocate - specify size of an object
manipulate catalog - control namIng of objects and creation and

destruction of objects
rT'\a'11pulate attributes - look at or change the Characteristics of

the object
In addition to the data In an object, the object Itself has certain
characterlstlcs called attrJ/)(jtes, such as the length and creation oate of a
file. Calls are available to access the attributes of any FHe System object. In
addItion to Its system-defined attrIbutes, an Object on a storage cJevlce can
have a J8lJeJ. The label is avallable for programs to store information that
they can lnterpret
Non-storage devices sUCtl as prlnters are accessed with a llmited set of
operations. They must be mounted and opened before they can be acceSSed.
Sequential read and/or write operations are avallable as appropriate for the
device. Device-control flllCtions are available to perform any C1evlce
specIfIc ftxlCtions needed. The flle-name portion of the complete patnname
for anon-storage C1evlce Is not used by the FUe System, although you do have
to provide one when you open the device.
For storage devices, the same sequentlal read and wTtte operations are valld
as for non-storage devices. Storage devices also rrust be mounted, and
particular fUes opened, before the fUes can be used. They have appropriate
device-control flllCtions available.
When writing to a disk fUe, space for the flle is allocated as needed. Space
for a flle does not need to be contiguous, and in some cases this automatic
allocation can reSUlt In a tragmentea file, wnlCtl may Slow fUe access. To
insure rapid access, you can pre-allocate space for the flle. Pre-allocating
the file also ensures that the process wm not run out Of space on the disk.
Four types of objects can be stored on storage devices. These are fUes, pipes,
oata segments .. and event Channels. Flies .. already dIscussed .. are simply arrays
Of stored data Pipes are Objects that provide Interprocess communication.
Data segments are special cases of fUes that are 10adeO Into memory along
with program code. Event Ctlcr.nels are pipes with a specialiZed structure
Imposed by the system.

lA Process Mel a;JBIll8I It
A process Is an executing program and the oata associated with it. several
processes can exist at one time, and they appear to run SimultaneouSly
because the CPU is multiplexed among them. The Scheduler decides What

1-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(JJerat/ng System Reference M8ntJaJ Int.l1J(U;t/on

process stlOUld use tne CPU at S"ly ()"'Ie Urne. It uses a generally non
preempUve schedUl1ng algorium. ThIs means that a process wlll not lose the
CPU L.nless It OlOCf<S. me OIOCf<ecJ state Is explained later In tnis secUon.
A process CCV1 lose tne CPU When one of the following happens:

• The process calls ~ Qlerating system procedure or function.
• The process references one of Its code segments that is not currenU y in

memory.
If neither of these occur, the process 'vIUl not lose the CPU.

Every process Is started by another process. The neWly started process is
called the son process. The prooess tnat startecJ It Is called its father process.
The resulting structure is a tree of processes. See FIgure 3-2 for an
Ulustratlon of a process tree.
When any process terminates, all its son processes and their descendCrlts are
also termlnatecJ.
When the OS is booted, It starts a slleJ/ process. The shell process starts any
other processes desired by the user.
Every ne'vlly createa process nas tile same system-stanOara attr1bUtes and
Capab1l1Ues. These C8'l be Changed by usIng system calls.
My processes coo suspend, acUvate, or k1ll any other process for whict1 the
glObal 10 Is known, as long as the otner process does not protect ltself.
The memory accesses of 8'l executing process are restrIcted to Its own
memory address space. Processes CCV') communicate wi tn otner processes Oy
using snarea files, pipes, event channels, or shared cJata segments.
A process coo be in one of three states: ready, rurning, or blOCked. A .ready
pnx:ess is waiting for the SCheduler to select It to run. A llIYIing pmcess Is
currenuy using tne CPU to execute its code. A lJltXJket1 PJ'lJCeSS Is walUng for
some event, SUCh as the completion Of 00 110 operation. It \tIl11 not be
scheOUlecJ until the event occurs, at \tIhlct1 poInt it becomes ready. A
tennlnatet:1 p.rooess haS finiShed executing.
Each process has a prIorIty from 1 to 255. The higher the number, the hlg,er
the prIorIty of the process. PrIorltles 226 to 255 are reservecJ for system
processes. The SChedUler always IU'lS the ready process wltn the highest
prlorlty. A process Ca1 cnange its own priority, or the priority of S"ly other
process, \¥hUe It Is executing.

1.5 'flUiDly 'B .. agellleill
Memory managment Is concerned with what is In physical memory at any one
lime. Each process can use up to 128 memory segments. Each segment can
contain up to 128 Kbytes. Memory segments are of two types: code segments
and data segnents. The total amotIlt of memory used by any one process can
exceect the avallable RAI'1 of the Usa The (l)eraling System wlll swap code
segments in and out of memory as they are needed. To aId the q>eraUng

1-4

I
I
I
I
I
I
I
I
I
I I

I
I
I
I
I
I
I
I
I

qJersting system Reference Ha7lJ8J

system In swappIng Clata segments, oalls are provided to give prognrns the
abl11ty to define wtliCh Clats Segnerlts rrust be In memory wtlUe a particular
part of the progrcm Is exeoutlng.
YOU nave oontrol of hOw your program Is divIded up. For executable code
segnents, you use the segnentation commands of the Pascal compUer to Oreal<
the prognm In pIeces.
In addition to reSiding In memory, data segments oan be stored permanently
on disk. TIley oan be acoessed wIth calls simUar to FHe System calls. This
allows you to use a cJata segment as a dlreot-access fUe--a flle that Is
accesseo as part Of your memory space.
calls are provided for making, Kllllng, opening, and Closing data segments.
You can also change the size of a data segment and set Its acoess ITlOCJe to
read-only or read-write. In addItion, you can maKe a pennanent disK copy of
the contents of a data segment at any time. other calls give you alJlUty to
force the contents of the data segnent to be SWapped Into main memory so
they can be accessed by your process.

1.6 ExcepUom md Events
An exception is an LI"Iexpectea condition in the execution of a process (an
Interrupt~ An event Is a message from anomer process.
M exception can be generated either by the system or by an executing
program. System exceptions are generated oy various sorts of errors such as
divide by zero, megal Instruction, and lllegal address. System exception
t'lanOlers are supplied that terminate the process. You can write your own
exceptlon ha"ldlers for any of these exceptions If you want to try to recover
from the error.
user exoeptIons can be declarea ana exception hanCf1ers oan be wri tten to
process them. Your progrcm oan then signal thIs new exoeption.
Events are messages sent from me process to another. They are sent through
event channels.
A process that expects a message from an event channel executes a call to
walt for an event on that Char'lrel. This will give It the next message~ If one
exists, or blOCk the process untll a message arrives.
If a process wants to know when an event arrives, but does not want to walt
for it, It can use crl event-oall Channel. This Is set up by associating a user
exception with the event charTlel when It is opened. The ~rat1ng system
wUl then invoke the correspondlrg user excepUon handler whenever a message
arrives in the event char 1181.

1.7 lnterprocess COfmU'llcaUm
There are four methOds for Interprocess communication: shared files, pipes,
event ohannels, and shared data segments.

1-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

cperatJng System Reference Manual

snarea flIes are used for nl~ volLrne transfers of Information. It Is necessary
to coordinate the processes sornet'lOW to prevent tnem from overwrltlng each
otner's Information.
Pipes are used for communication between processes wltn an unlnterpretea
byte stream. (Note that pipes wlll not be sL4JPOrted in future releases of the
~ratlng System.) The pipe mechanism provides for the needed
synchrOllizatlCX1; a process wlll block. if it is trying to read from an empty
pipe or write to a full one. A read from a pipe constrnes the information, so
it is no longer available. O'lly one process can read from a given pipe.
Event Cnat'lneIS are slmllar to pIpes, except Ulat event channels transmlt snort ..
structured messages instead of uninterpreted bytes.
A Shared data segment CCIl be used to trCl1smit a large amount of data
rapidly. Having a shared data segment means that this data segment Is in the
memory address space of all the processes that want to use it All the
processes can then directly read and write information In the data segment.
It is necessary to provide some sort of synchronization to keep one process
from overwrl ling CYlOtner's information.

1.8 USing the (l) Interface
The Interface to all the system calls Is provided In the syscen Lnlt .. f()l..lrl(j in
,A,ppencllx A This Lnlt C<rI be used to provIde access to the calls. see the
WOrkSIJqJ LISer's GlIICkJ for the Lisa for more Information on using Syscan.

1.9 RlIl'llng programs l.hler tile m
Progrcrns can be written and run by using the WOrkshOp, Which provides
program development tools SUCh as editing and debUgglng facHllles.

1.10 wr1Ung prognms That use the (l)
You can wrIte a program that calls (l) routines to perform needed functIons.
This program uses the Syscen unit and then calls the routines needed.

1-6

\
i

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CHANtiES/ApPITlIJ# r

Operating System 3.0 Notes

Chapter 2
lhe File System

New Hierarchical File system

The File S)..'Stem

Each mounted disk volume now has a hierarchically arranged directory
structure_ The root directory of 8 volume is always present, and
subdirectories ma:y be created to contain collections of files that are
logically related.

Path Names (See Section 2.1)
A particular file or directory is specified to the file system with a path
nsme. A path name is a sequence of directory names, separated by dashes
(-t ending in a file or directory name. For example, the path name

-lower-memos-conference.text

specifies that the root directory of the disk volume lower be searched for
the directory memos.. and then memos be searched for the file
conference.text. File and directory names are limited to 32 characters in
length, and are truncated to 32 characters if too long.

The \ItIo"king Oirectmy (see Section 1.2)
A working directory is associated with each process in the system. When a
process is created, its working directory is the root directory of the boot
disk volume. A process may reassign its working directory through the
SET_WORKING_DIR calL The GET_WORKING_DIR call returns the path
name of the working directory in a printable string. A path name submitted
to the fUe system by a process may be specified relative to the process's
working directory. This is done by omitting the initial dash from the path
name. Suppose that the working directory is -lower-documents-memos in
the directory hierarchy shown below. The path name msii-nett-fail.te;~t
speCifies that the working directory be searched for the dIrectory mail,. and
then mail be searched for the file nett-fail. text. The path name
conference.text specifies that the working directory be searched for the file
conflN'ence.te:rt.

The plus delimiter (+) ma:y be substituted for the dash within a path name to
indicate that the next directory in the path name is the parent of the
preceding directory. The plus delimiter is typically used to trace a path by
moving upward in the directory tree relative to the working directory. Again
suppose that the working directory is -iower-documents-memos. The path
name +documents-book-chsp3 specifies that the parent directory of the
working directory be searched for the directory book, and then book be
searched for the file chsp3. The path name +docl.Jments+Jower-gsmes traces
a path up through directory documents to the root directory of disk volume
lower and then down to find directory games. S1nce the parent directory of

NottlS 2-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Operating S}·stem .. :'(.0 Notes The File S}·'Stem

any given file or directory is unique, the name following a plus delimiter
within a path name may be omitted. For exemple, the path nerne H-gtunf!lS'
is equivalent to Idocuments.,./ower-games, and the path name .,. is equivalent
to Idocuments.

mollusk.text conference.text mall chapl chap2 chap3

~
netMail.t.ext localMeiLtext

Directcxy Tree

Pipes (See Section 2 .. 9)
The pipe facility ha<s: been removed. MAKE_PIPE ha<s: been deleted, and arry
ettempt to OPEN an old pipe object will return an error number 948. All the
inter-process communication (IPC) features provided by pipes are also
provided by event chennels.

MAKE_CATALOG File System Call

HAKE_CATALOG (ver eeode : integer;
ver path : pathname;

label_size : integer)

ecode: Error indicator
path: Name of the new catalog
label_size: Number of bytes for the catalog's label

HAKE_CATALOG creates a catalog (also called a directory) with the specified
pathname. label_size specifies the initial size in bytes of the label. It must
be less than or equal to 128 bytes. The label can grow to contain up to 128
bytes no matter what its initial size. Any error indication is returned in
ecode.

Notes 2-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Operating Sjlstem .. :~_O Notes

QUICK-LOOKUP File System C811

QUICK_LOOKUP (ver ecode : integer;
ver path : pathname;
var InrORec : Q_Inro)

ecode: Error indicator
path: Name of the object to lookup
InfoRec: Information returned about the object

The File S}"Stem

OUICK_LOOKlP returns information about a file or directory_
QUICK_LOOKUP is significantly fester than LOOKUP (about five times), but
returns a subset of the information available through LOOKUP.
QUICK_LOOKUP is not applicable to a disk volume or device, only to files
or directories. The definition of the Q_Inf'o record is shown below; note that
many of the fields are not defined when QUICK_LOOKUP is applied to a
directory.

O_Info = RECORD
naMe
etype
DTC
DTM
size
psize
fs_overhead
lIaster
protected
sarety
left_open
scavenged
closed_by_OS
nreaders
ntfriters
level

e_mllle;
entrytype;
longint;
longint;
longint;
longint;
integer;
boolean;
boolean;
boolean;
boolean;
boolean;
boolean;
integer;
integer;
integer;

EHD;

nEllle:
etype:
Ole:
DlM:
size:
psize:
fs_overhead:

master:

Name of the file or directory.
Type of object (either fileentry or catentry).
Date/time the file or directory was created.
Date/time the file was last modified.
Number of data bytes in the file (LEOF).
P~ical size of the tile in bytes.
Number of disk pages used by the file system to store
control information about this file.
Flag set if this file is a master.

Notes 2-J

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

protected:

safety:
left_open:
scavenged:

The File ~·'Stem

Flag set if this file is protected (refers to software theft
protection, not password protection).
Flag set if the file safety switch is on.
Flag set if this file was left open during a system crash.
Flag set b'y the Scavenger if this file has been partially or
totally rebuilt.

closed_by _OS: Flag set if this file was last closed by the Operating

nreaders:
rMI'i ters:
level:

E j..frtt No I eJ' :

System.
Number of processes with this file open for reading.
Number of processes with this file open for writing.
Level of the file or directory within the directory tree.
This field has valid contents only when the Q_Info record
is returned by LOOKUP _NEXT_ENTRY.

• TAe !'Ie (l,leM eel" c,,,1'lI'n a /'u f l1.tJO ",Ie ~h-lr"e! /:"

tt C (;. f 4/ bJ . I r -fhe CA fa I J &e ''''11 tH .f',. II err-IIY (Sf
l-es~I-I, .

Notes 2-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Chapter 2
The File System

2.1 File Names .. _.......... 2 .. 1

2..2 The Working Directory _•............................. 2-2

2.3 Devices __ .. _ _ . _ _ _ • 2-3

2.4 storage Devices " ".................................. 2-3

2...5 The Volume catalog•. ___ .. _ ... _•...•••..•..........• _. 2-4
2_6 l.al)els. _______ ._ .. __ _ _ __ .. _ .. ___ ._ ... _. ___ . _____ _. 2-4

2.7 l.ogical and Ptr:/sical End of File _. __ 2--4
2.6 File Access _. _. __ . _____ . _. _. ____ _.......... 2-5

2.9 Pipes•........•... _ 2-6

2.10 File system ColJs _________ ow __ •• _ ••••••••••••••••••• __ • ___ ••••••••••••• 2-7

2.10.1
2.10.2
2.10.3
2.10.4
2.10.5
2.10.6
2.10.7
2.10.8
2.10.9
2.10.10
2.10.11
2.10.12

2.10.13
2.10.14
2.10.15
2.10.16
2.10.17
2.10.18
2.10.19

2.10.20

MAKE FILE and MAKE PIPE 2-8
KILLj5BJECT -: ... 2-10
UNKILL_FILE ... 2-11
RENAME_ENTRy ... 2-12
LOOKUP " 2-13
INFO ... 2-16
SET FILE INFO ... 2-17
OPEN ... -:-.. 2-18
CLOSE OBJECT .. 2-19
READ_DATA and WRITE_DATA 2-20
READ_LABEL and WRITE_LABEL 2-23
DEVICE_CONTROL ... 2-24
2.10.12.1 Setting Device-Control Information 2-24
2.10.12.2 Obtaining Device-Control Information 2-29
ALLOCATE .. 2-34
COMPACT ... 2-3'
TRUNCATE ... 2-36
FLUSH , , "'" 2-37
SET SAFETy .. 2-38
SET:=WORKING_DIR and GET_WORKING_DIR 2-39
RESET_CATALOG, RESET_SUBTREE, GET_NEXT_ENTRY;
and LOOKUP _NEXT_ENTRy 2-40
MOUNT and UNMOUNT ... 2-41

I
I
I
I
I
I
I
I
I
I
I
l
I

I
I
I
I
I
I
I
I

.-.1

2.1

The File System

The File System provides device-independent 110, storage with access
protection, and uniform file-naming conventions.
Device Independence means that all 110 Is performed In the same way,
whether the ultimate destination or source Is dIsk storage, another program, a
prInter, or anythIng else. In all cases, I/O Is perfOrmed to or from flIes,
although those flles can also be devices, data segments, or programs.
Every me is an uninterpreted stream of eight-bit bytes.
A file that Is storea on a block-structured device, such as a disk, is I1sted In
a eatalog(also called a dlmetorA and has a name. For each such file the
catalog contains an entry describIng the file's attributes, Including the length
of the file, its pOSition on the disk, and the last backup copy date. Arbitrary
appllcatlon-deflned information can be stored In an area called the file label.
Each file has two associated measures Of length, the Logical End of File
(LEtT) and the Pl7yslcal End of File (PEa=) The LECF Is a pOinter to the last
byte that has meaningful data. The PEOF is a count Of the number of blocks
allocated to the file. The pointer to the next byte to be read or wrItten Is
called the ffle maJ'ker.

Since 110 is device independent, application programs do not have to take
account of the physical characteristics of a device. However, on block
structured devices, programs can make 110 requests in whole-block increments
in order to improve program performance.
All input and output is synchronous in that the 110 requested is performed
before the call returns. The actual lID, however, Is asynchronous, in that
processes may block when performing 110. See Section 3.5, Process SCheduling,
fOT more information on blOCking.
To reduce the impact uf an error, the File System maIntains distributed,
redundant information about the files on storage devices. Duplicate copies of
critical information are stored in different forms and in different places on
the media. All the files are able to identify and describe themselves, and
there are usually several ways to recover lost information. The Scavenger
utility is able to reconstruct damaged catalogs from the information stored
with each file.

FUe Names
All the flIes known to the ~erat1ng system at a particular time are organized
Into catalogs. Each disk volume has a catalog that lIsts all the files on the
dIsk.
Any object catalogued in the File system can be named by specifying the
volume on which the file resides and the file name. The names are separated

2-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

qJel8t1ng System Reference Ma?tI8.I me FIle system

oy tf'le CMracter "-". Because tf'le top catalog In tf'le system has no name, all
complete pauYlames Deg!n wIth "_".

For example,
-LISA-FORMAT. TEXT

refers to a file natred FORMAT. TEXT on a volUlOO nafOO(j LISA. Tne fUe
naTte CCl1 contain ~ to 32 Characters. If a longer name Is specified, tne
name is truncated to 32 cnaracters. Accesses to sequential devices use an
arbitrary c1lITrny fllename that is ignored but must be present In the
path1ame. For example, the serial port patmame

-RS2328
is insufficient, but

-RS2328-XYZ
Is accepted, even thoUgh the - XYZ portlon is ignored. Certain device names
are predefined:

RS232A serlal Port A
RS232B serial Port B
PARAPORT Parallel Port
SlOTxCHANy serial ports: x is 1, 2, or 3 ~ Y 1s 1 or 2
HAINCONSaE 1l'1teln CV1CJ rea1ln deVice
AI... TCONSOLE writel" and reaJln device
UPPER Upper DiSKette drive (Drive 1)
LOWER Lower DisKette drive (Drive 2)
BITBKT Bit bUCket: data is thrown away when directed here

see Chapter 6 for more InformaUon on device names.
Upper ~ lower case are not sl(J)lflcant in patnnames: ·TESTW...· Is the scme
Object as ·TestVol'. My ASCII character is legal in a patnname, IncludIng
non-printing characters and blank spaces. HOwever, use Of ASCII 13,
REl1.RN, In a patJYlame Is strorgly dIscouraged.

2.2 The WOl1d.rYJ Directory
It is someUmes inconvenient to specify a complete pathname, especIally when
\<IOrking with a group of fUes in the same volume. To alleviate this prOblem,
the (l:Ieratlng system maintains the name Of a wondng Olrectory for eacn
process. When a pathname is speCified withOUt a leading "-", the name refers
to an object in the WOrking directory. For example, If the working directory
is ~LISA the name FCRMA T. TEXT refers to the same file as
-LISA-fCRMAT.TEXT. The default wOrking directory name is the name of the
boot volt.me directory.
You coo find out what the working olrectory ts with GET_~_OlR.
You can change to a new working olrectory with SET_~_DIR

2-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

[perot/ng System Reference f'18I1U81 TIle FIle System

2.3 DeV100$
Device names follow the SMle conventions as fUe names. Attributes l1Ke baud
rate are controlled by using the CEVICE_a:NTRG.. call wltn tne appropriate
pathname.
Each device has a permanently assigned priority. From hlglest to lowest, the
priorities are:

Power onloff bUtton
serial port A (RS232A)
Serial port B (RS232B ... the lcftfoost port)
110 slot 1
110 slot 2
1/0 slot 3
Keyboard, mouse, battery-po~ered clock
10 ms system timer
CRT vertical retrace interrupt
Parallel port
Diskette 1 (UPPER)
D1Skette 2 (LOWER)
Video screen

The device driver associated with a device contains information about the
device's physical Characteristics such as sector size and interleave factors for
diSks.

2.4 storage Dev100$
en storage devices such as disk drives, the File System readS or writes file
(Jata In terms of pages. A page Is the same sIze as a blOCK. Any access to
data In a flle ultimately translates Into one or more page accesses. When a
program requests an amount Of (Jata tnat C10es not fit evenly Into some
runber Of pages, the File system reads the next highest number of whole
pages. Similarly, data Is actually wrJtten to a flle Only In wnole page
increments.
A file does not need to occupy contiguous pages. The FHe System Keeps
tracK Of the locaUons of all the pages tnat make up a flle.
Each page on a storage device Is self-identifying; the page c/eS'Crlptoris stored
wltn the page contents to reduce the destructive Impact of an 110 error.
The eight cOf1llOl18l1ts of the page descriptor are:

Version f'lUIltler
Volume identifier
File identifier
ArooLrlt of data on the page
Page n8lOO
page posit1on 1n the file
Forward link
BacK war(J link

2-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

t:peJatlng System Reference f\1an.J8J me File System

Each vo11xfle haS a fvtldltm Descriptor Data File ~Whlcn deScrtbeS the
various attribUtes of the med1t.m such as Its size, page length, blOCk layout,
and the s1ze of the boot area. The t-1DIJF Is created When the volt.rne Is
tnt tlal1ze(1.
The File System also maintains a record of Which pages on the medium are
currently allooated, and a catalog of all the flles on the volt.rne. Each flle
contains a set of fUe hints .. Which describe and ~lnt to the actual fUe data

2.S ~ VOltme catalog
01 a storage devlcel the volume catalog provideS access to the files. The
catalog Is itself a f1le that maps user names Into the Internal flle IdentifIers
used by the ~rat1ng System. Each catalog entry contains a variety of
Information abOUt each file InclUding:

Nafoo
Type
Internal file number and aC1C1ress
Size
Date and time created, last modified, and last accessed
File identifier
safety switch

The safety switch Is used to avoid accidental deletions. While the safety
swItch Is on, the fUe cannot oe deleted. The other fields are descrIbed under
me LCO<l".f) FUe System oall.

The catalog can be located anywhere on the medil.m
2.6 Looels

M appllcatlon can store Its own Information abOUt a flle In an area called
the flle label The label allows an appllcatlon to keep the fUe data separate
from Information maintained abOUt the me. LabelS can De used for any
Object In the FHe System. The maximum label size Is 128 bytes. lID to labels
Is hanctled separately from flle data 110.

2.7 Logical lI"'D Physical Em of File
A file contaIns some number Of Oytes of data recorded In some number of
physiCal pages. Ac1c11Uonal pages which cIO not contain any flle data can be
allocated to the flle. There are, therefore, two measures of the end of the
fUe. The Logical End of FHe (LECF) Is a polnter to tne last stored oyte that
has meaning to the appllcation. The Physlcal End of Flle (l'ECF) is a count of
the runber of pages allocated to the flle.
In addlUon" each open file haS a pointer callao the file maJkerWhICh points
to the next byte In the flle to be read or written. When the me is openao,
the file marker points to the first Oyte (oyte number O~ The me marker can
be posltloned automatloally or expUolUy uslng the read and write calls. For
excmple, when a program writes to a fUe opened with ~ access, the flle
marker Is automatically positioned to the end of the flle before new data are
wrltten. The fUe marker cannot be positioned past LE(F except by a write

2-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

,,,,, .. ' .. ~,

q;eratfng system Reference Hanual TtJe File system

operation tnat appends data to a flle; in thIs case the flle marker Is
positioned one byte past LECF.
When a file Is created., an entry for it is made in the catalog specified in its
pattYIame, bUt no space Is allocated for the fHe Itself. When the flle is
opened by a process, space can be allocated explicitly by the process, or
automatically by the qJerating System. If a write operation causes the file
marKer to oe poslt1oneO past the LECF marker; LECF (and PECF if necessary)
are automatically extended. The new space Is contiguous If possible.

2.8 FHe Access
The FHe System provides a devIce-Independent bytestream Interface. AS far
as an appHcatlon program Is concerned, a specified number of bytes Is
transferred eltner relative to the me marker or at a specIfied byte location
in the file. The physical attribUtes of the device or file are not important to
the appllcatlon, except tnat devices that dO not support positloning can
perform only sequential operations. Programs can someUmes Improve
performance, however, by taking advantage of a device's physIcal
characteristics.
Programs can request any amount of Oata from a fUe. The actual I/O,
hOwever, Is performed in Whole-page increments when devices are blOCk
structured. Therefore, programs can optimIze I/O to such devices by setting
the file marker on a page bOUndary and making I/O requests in whole-page
Increments.
A file can be open for access by more than one process concurrently. All
requests to write to the file are completed before any other access to the file
Is permltteo. When one process writes to a flle. the effect of the wrIte
operation Is ilTll'Tledlately available to all other processes reading the file. The
other processes may, however, have accessed the me In an earlier state.
Data already obtained by a program are not changed. The programmer must
ensure that processes maIntain a consIstent view Of a snared file.
When you open a flle, you specify the kind of access allowed on the file.
When the file Is openea, the QJerating System allocates a file marKer for the
call1ng process and a run-Ume identification number called the refntlm The
process I1l.JSt use the refnum in sUbsequent calls to refer to the f1le. Each
operation using the refnum affects only the file marker assocIated wIth that
refrun.
Processes can share tne same flle marker. In glOlJa/ access ~ each
process uses the same refnum for the file. When a process opens a file in
glObal access mOde, the refrKJlll 1 t gets back can be passea to any other
process, and used by any process. Note that any number of processes can
open a file wlth GlobaCRefrUn. bUt each time the CPEN call Is used a
different refnum is prodUced. Each of those refnums can be passed to other
processes, and each process usIng a particular refum shares the same f1le
marker with other processes with the same refum. Processes using different

2-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

cperatfng System Reference M817t18l TIJe File system

refnums~ howe veL always have different me markers, Whetrter or not tnose
refnums were obtained with GlcDal_RefrUn
A flle can also be opened in pri vate mode~ which speci fles that no other [pEN
calls are to be allowed for that fHe. A me can be opened with
GlooaJ._Retrun and prlvate~ whIch opens the me for g1OO81 access~ but allows
no other process to open that file. By usIng this call~ processes can control
Which other processes have access to a flle. The opening process passes the
glooal reflllJTl to any other process that Is to haVe access~ and the system
prevents other processes from openIng the fIle.
Processes using global access may not be able to make any assumpUons about
the location of the file marker from one access to the next.

2.9 Pipes
Because the ~erating system supports multiple processes, a mechanism \s
provIded for Interprocess cornrrulIcaUon. ThIs mechanism Is called a pipe.
Pipes are simllar to the other objects in the FHe System -- they are named
according to the same rules, and they can have labels.

f\IJTE

PIpes will not be supported in future releases of the q,eratlng System.
Do not use the pipe rnechCllism if you want your software to be
upward-compatible.

As wIth a flle, a pipe is a byte stream. With a pipe, however, information is
queued in a first-in-flrst-out marner. Also, a pipe can have only one reader
at a time, and once oata Is reao from a pIpe 1 t Is removeO from the pipe.
A pipe can oe accessed only In sequential mode. Although only one process
can read data from a pipe, any rK..tIlll')er of processes can write data into it.
Because the data reao from the pIpe Is consumed, the file mal1<.er Is always at
zero. If the pIpe is empty and no processes have it open for writing, ECF (End
Of FHe) is returned to the readlng process. If any process has the pipe open
for wrIting, the readIng process Is suspended until enough data to satiSfy the
call arrives in the pipe .. or until all writers close the pIpe.
When a pipe Is createcl, Its sIze Is 0 bytes. U1l1ke with ordinary fUes, the
Inltlallzlng program must allocate space to the pipe Defore trying to write
data into it. To avoid deadlOCkS oetween the reading process and the writers,
the Cperating System does not allow a process to read or write an amount of
data greater than half the physical size of the pipe. For this reason .. you
shOUld allocate to the pipe twice as much space as the largest amount of data
In any planned read or write operation
A pipe is actually a circular buffer with a read pointer and a wrIte pointer.
All writers access the pipe through the same write poInter. Whenever eIther
pointer reaches the end Of the pipe .. it wraps back around to the first oyte. If
the read pointer catches up with the write pointec the readIng process Olocks

2-6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

[JJelCJting System Reference Mantlsl TI7e File system

unUl aata are wrItten or untU al1 the wrIters close the pIpe. Simllarly, If the
write poInter catches up with the read pointer, a wrIting process blockS until
the pipe reader frees up some space or until the reader closes the pipe.
Because pipes have this structure, there are restrictions on some operations.
These restrictions are dIscussed wI th the relevant FHe system calls.
Processes can never make read or wrIte requests bIgger than half the size of
the pipe because the q>eratlng System always fully satisfies eactl read or
write request before returning to the program. In other words, if a process
asks for 100 bytes of data from a pIpe, the ~ratlng System walts untll there
are 100 bytes of data in the pipe and then completes the call. Similarly, If a
process trIes to write 100 bytes of data lnto a pipe, the qJeraUng System
walts Lntll there Is room for the full 100 bytes before wrIting anythIng lnto
the pIpe. I f processes were allowed to make wrl te or read requests for
greater than half Of a partiCUlar pipe, It would be poSSible for a reader and a
wrl ter to deadlock, wi th nei thar having room In the pipe to satiSfy its
requests.

2.10 File System Galls
ThIs section descrIbes all the (fIeratlng System calls that pertain to the FHe
System. A sl.MTffiary of all the (l:IeraUng System calls can be found In
Appendix A The following special types are used In the FHe System callS:

Pattl'laloo = STRINi[Max_Patf'lla'OO]; (If Max_PattYlcllB = 255 If)
E_toE = STRIr«;(t1ax_EflCIIE); (If t1ax_ENaIE = 32 If)
Accesses = (Dreac:1, Dwr1te, ~, pr1vate, GlODal_RefrUTl);
t1Set = SET IF Accesses;
Ictt:Jde = (AbSOlute, Relative, ~t1al);

1t1e FS_InfO record and Its aSSOCiated types are described under the U]J<LP
call. The Dctype record is descrIbed under the C£VICE_a:NTRCL call.

2-7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

cperetlng System RefererKJe I'1iYIU8I

2.10.1 MAKE_FILE all MAKE_PIPE Flle system Calls

MAKE_FILE (var ECOde:Integer;
Var Path:Patt'llCl1E;

Label_slze:Integer)

MAKEj>IPE (Var ECOde:lnteger;
Var Path ;P8ttT1aIre;

Label_Slze:Integer)

EcOde: Error indication
Path: Narre of new object

me Flle System

Label_Size: NUmber of bytes for the object's label

MAKE_FILE and MAKE_PIPE create ttle specified type of Object wltn me
given name. If the pathname does not specify a directory name (more
specifically, if tne patnname does not begin witn a dastl) .. ttle working
directory is used. Label_Size specifies the initial size in bytes of the label.
It rrust be less tnan or equal to 128 bytes. The label can grow to contain up
to 128 bytes no matter what its initial size. My error indication Is returned
In ECOde.

Pipes w111 not be supported In future releases of the QJerating system.
00 not use tne pipe mecnanlsm If you want your software to be
upward-corTl'atlble.

The MAKE_FILE example on the next page checKs to see wnether the
specified file exists before opening it

2-8

/

I
;

I
I
I
I
I

;

I
I
I
I
I
I
I
I
I
I
I
I
I

QJeratlng system Reference /'1atva1

(IN)T flle£X1sts = 890;
YM flleReftu11, ErrorCode: INlEGER;

flleN<JIe :Pa~;
Happy: 800...E~;
ReSJn1se: ()M;

EEGIN
HcWy: =fAlSE;
-'ILE tilT HaWy 00
EEGIN

The File system

REPEAT (* get a file name *)
IRlTE('Flle name: .);
REAOLN(FlleName};

UNTIL LENGTH(flleName»O;
HAKE_FILE (ErrorDode, FileName, 0); (-no label for this file*)
If (ErrorDode<>O) THEN (* ODes fIle already exIst? *)
IF (ErrorCode=flleExlsts) THEN (* yes .)
EEGIN
,,"ITE(flleNare,' already exists. overwrite?');
REAOLN(Respmse);
HaWy; = (Response IN [. y', • Y' J); (*gO ahead ald overwr i te*)

Etf)

ELSE ""1 TELN(• Error ., ErrorCode,' 1IIh1le creating file. •)
ELSE Happy:=TRUE;

EN>;
£PEN(Errol1n1e, flleNcJoo, flleRefttln, [Owr1 te J);

00;

2-9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

cperat/ng System Reference MantI8l

2.102 KILLJBECT File system C8l1

KILL_re.:ECT (Var Ecode:Integer;
Var Path: Pattl'lallB)

Ecode: Error indicator
Path: Nan'e Of Object to be deleted

me File system

KILL_rn.:ECT deletes the object given in PaUl from the File System. ClJjects
with the safety switch on cannot be deleted. If a file or pipe is open at the
time of the K1LL_rn.:ECT call; its actual deletion is postponed until it has
been closed by all processes that have it open. During thIs perIod no new
processes are allowed to open It. The object to be deleted need not be open
at the Ume of the KILL m..:ECT call. A KILL C6.ECT call can be reversed
by IN'<D...L_FILE; as 10n9 as the object is a file and is still open.
The fOllowing program fragment deletes flIes until RETURN Is pressed:

CONST FileNotFound=894;
VM FlleN<Jre:Pattt9re;

ErrorCOCJe: IN1£GER;
EEGIN

REPEAT
.uTECf"ile to delete: ');
REAOlN(fileName);
IF (fileName<>") THEN

BEGIN
KlLL_OBJECT(ErrorDode,FlleName);
IF (ErroI'Code<>O) THEN
If (ErroI'Code=flleNotF(UJ1) THEN
.uTELN(FlleNam,· rot found. ')

ELSE IRlTELN('Error ',ErroI'Code,' fh1le deleting f1le.')
ELSE .uTELN(FileName,· deleted,');

EN>
UNTIL (FileName=");

00;

2-10

" \

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

cperatJng system RefeJ1Jnc8 MantIal

2.10.3 Lt+<ILLJ71LE File System Call

lH<Ill_fILE (Var Ecc:xle:lnteger;
ReftUl:Integer;

Var Newnare:e_nane)

Ecode; Error inclicator
RefNum: Refnum of tne Killed and open file
Newname: New name for the file being restored

Tile File System

l.N'<lLL_FILE reverses the effect Of KILL_w..I:CT as long as the Killed
object Is a file that Is still open. A new catalog entry Is created for the me
with the name given in Ne'WnaTIe. Newrane is not a full pathnarne: the
resurrected f1le remains in the same directory.

2-11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

QJeratJng System Refe.rence M8nt18l

2.1ll" RENAtvE_ENTRY Flle System Call

REtwt::_ENTRY (var Ecode:lnteger;
Var Path :PattTBIE;
Var Nelll'lClE: E _Nate)

Ecode: Error indicator
Path: Object I sold nare
Nemama: Object I s new nama

me File System

RENAfvE_ENTRY changes tne name of an object In tne File system.
Newncrne cannot be a full pathname. The narne of the object Is changed, bUt
the object remains In the same dIrectory. The following program fragment
changes the file name of FIFMATTER.LlST to NEWFCPMAT.TEXT.

YAR Ol(tl(JOO: Patttare;
NewNa1E:E N<Joo;
ErrorDode:INTEGER

fEGIN
OldName:=t-LlSA-FORNATTER.LISr t;
NewName:= 't£WfORNAT .lEXT';
RENAME_ENTRY (ErrorCode, OldName, NewName);

EN);

The fHe's full pathname after renamIng is

-LlSA-NEWFCRMAT. TEXT

Volume names can be renamed by specifying only the volume name In Path.
Here is a sal1ll1e program fragment wnlcn cnanges a volume name. Note that
the leadIng dash (-), given in CDc1\Icrne, Is not gIven In NewI\Hne.

VAR OlcJ&E: PathNan'e;
Ne~:E NcfIE;
ErrorDode:INTEGER

E£GIN
OlOName:='-thomas';
Ne~: =' stearns' ;
RENAt'£ _ENTRY (Errorcode, Olc.tele, NeINmE);

EN);

2-12

\

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

cperatlng system Reference Manual

2.10.5 L£D<lP File system Call

lOO<\P (Var Ecode:Integer;
Var Path: PattJ'ale;
Var Attrloutes:fs_InfO)

Ecode: Error indicator
Path: Object to looKup
Attributes: Information returned abOut path

me File system

L£D<lP returns InformaUon atxJut an ooject In the fUe system. For devices
and mounted volumes, call L£D<lP with a pathname that names the device or
volume withOUt a flle name component:

DeVNcIJB:='-lJ!PER'; (* DISkette drive 1 *)
LOOKUP(ErrorDode,DevName,InfoRec);

If the device is currently mounted and is block structured, all of the record
fieldS of Att.r1rutes contain meaningful values; otherwise, some values are
undefined.

The Fs Info record Is def1ned as followS. The mean1ngs of the Information
fieldS are gIven in AppendIx E.

FS_InfO = REcmD
rl'CIIte : e nat1I!;
deVrUn: INTEGER;

CASE OType:1nfo_type (F
deVl~ t, voIlIIe t:

(lci:ncrllel: fNTEGER
oevt: oevtype;
slot 00: INTEGER;
fs sIze: LlKlINT;
vol size: L(H;INT;
bloCkstrootu:red,
RDlJ'lted: f'J(Xl.EAN;
~iCru1t: l~INT;
prlvatedeV,
renute,
lock~: EUl..EAN;
IID.I1t .J8'l11ng,
l.fIID.I1t J)eI'lding: OOl....EAN;
VOIJ'Bll!,
paSSWOrd: eJan9;
fsversim,
vol1d,
volrua: IN11:GER;

2-13

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

cperating System Reference Manual me Fjle System

00;

OlOCf<S!Ze ..
dataslze,
clUstersize,
filecount: INTEGERi(*Number of files on vol*)
freeca.nt: LIHiINT; (*tUItler of free blocks *)
OTVC, (* oate Volll1E Created *)
OTVSI (* Date Voll.lTe last Backed ~ *)
OTVS:LONGINT;(* Date Volll1E last ~ *)
Machine_ill
OWl'fOOl.llt _stoop,
master_~~y_ld: LONGINT;
privileged,
wrl te -protected: BOO...EAN;
master,
~y,

scavenge _flag: BOO..EAN);
roject_t: (

size: LONGINT; (*aCtual no of oytes written *)
pslze: LIHiINT; (*Physical sIze In bytes *)
lpsize: INlEGER; (*logical page size in bytes *)
ftype: filetype;
etype: entrytype;
OTC,
OTA ...
om
OTB: LCNlINT;
refnum: INTEGER;

(* oate Created *)
(* Date last Accessed *)
(* Date last ModIfIed *)
(* Date last Backed ~ *)

fmarK: LONGINT; (- file marker -)
8CfllJde: mset; (* access IOOde it)
nreaders, (* tultJer of readers *)
nwriters, (* NUmber of writers *)
rusers: INTEGER; (* tultJer of users *)
fUId: uld; (* unique IdentIfier *)
eof... (* ElF erlC(Ultered? *)
safety_~ (* safety swItch setting *)
Kswltch: BOO..EAN; (* has file been Killed? *)
prIvate, (* file opered for prIvate access? *)
lOCKed, (- Is file locked? *)
protected:BOO...EAN);(* fIle copy protected? *)

2-14

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

t:peratfnq system Reference Manual me File system

UI0 = INTE~
Info_Type = (oevice_t, vollllE_t, ooject_t);
Devtype = (OISk(JeV, pascaltxt seqOev ... blW<t, JULIo);
Filetype = (undefined, HOOFFile, rootcat, freelist,

b<dllOd<s .. sySdata SPOOl.. exec, usercat.. p1pe ...
bootflle, s~ta" swapoode, raEp, userflle,
killeot1Jject);

Entrytype. (emptyentry, C8tentry, linkentry, fileentry,
plpeentry,eoentry ... kl11edentry);

Tne eat fleld of the FS_InfO recora Is set after an attempt to reao more
oytes tnan are avallable from the file marker to the logIcal end of tne file, or
after an attempt to write When no disk space Is ava1lable. If the flle marker
Is at the twentletn byte of a twenty-five byte me, for example .. you can
reao up to 5 bytes wltrlOUt settlng eof, bUt if you try to reacl 6 byteS.. the
FUe System gIves you only 5 bytes of data and eat Is set
The following program reports how malY byte~ of data a g1ven rue has:

VAR Inf~:Fs_Info; (*lnformatioo retUI'f'leO by UXI<lP cn:J Itf='O*)
Fll~ :Pattl4c.fre;
Errorcooe: INTE~;

OCGIN
IRlTE('F11e: e);
REAOLN(Fl1eName);
LOOKUP(Errorcooe,FlleName,Inf~);
IF (Errorcooe<:>O) Tl£N

IRlTELN('camt lCO<l() ' .. FlleNam)
ELSE

MUTElN(FlleName,' has '" Inf~.Slze .. • bytes of data ••);
EM>;

2-15

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

t:.pemtJng system Reference M817t181

2.10.6 IN=O Flle System Gall

Itt='O (Var Eoode:lnteger;
Rem..R: Integer;

Var Reflnfo:fs_Info)

Ec()(Je: Error indicator

me File system

RefNum:
Refinfo:

Reference nuflt)er of object in FUe System
Information returned about RefNum's object

Ir'-FO serves a function simllar to that of UIKLP bUt is appllCable only to
Objects in the FUe System that are open. The definition of the FS_Info
record Is given under U::O<l.P and in Appendix A.

2-16

\

I
I "

1
;: ~"

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

t:peratlng system Reference Ha17U81

2.10.7 SET J"ILE_If'.FO File system Call

SET_FILE_INFO (Var Ecode:lnteger;
ReffUn : Integer;
fsi :fs_Info)

Ecode: Error indicator

Tile FIle system

RefNum:
fsi:

Reference nunt:ler of object 1n FHe System
New information about the object

SET_FILE_If'FO changes the status information associated with a given Object.
This call works In exactly the opposite way that UD<.LP and II'FO work, In
that the status Information is given by your program to SET _FILE_lf'Fo. The
Fsl argument Is the same type of Information record as that returned by
U:o-q,p and If'.Fo. The Object must be open at the time this call Is made.
The fOllowing flelds Of the InformatIon report may be changed:

flle_scaverlge(l
file_closed by_OS
file_left_open
user_type
user_stJltype

2-17

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

tpemtJng System Reference M8I7tI8i

2.10.8 {PEN File system Call

(FEN (Var Ecole: Integer;
Var Path: PattY'lale;
Var RefNUM:Integer;

tB11p:MSet)

Ecode: Error indicator
Path: Name of object to be opened
RefNum: Reference number for object
Manip: set of access types

TI7e File system

The (PEN call opens an object so that it CCJl be read or wrltten to. W1len
you call (FEN, you spec1 fy the set Of accesses tnat wlll be allowed on that
me or sequential device. The available access types are:

• Dread -- AllOWS you to read the file
• OWrlte -- Allows you to write in the flle (to replace exist1ng

data)
• AWeOO -- Allows you to add on to the end of the file
• Pr1vate -- Prevents other processes from opening the file
• Global_Refrun -- Creates a refnum that can be passed to other

processes
Note that you can give any number of these modes simultaneously. If you
specify Dwrtte and ~ In the same CPEN call, Dwrtte access wlll be used.
See Section 2.8 for more Information on GlObal ReftUn and Private access
modes. -

If the OO.\ect opened already exists and the process calls WRITE_DATA
wiUlOut having specified Append access, the object can be overwritten. The
q>eratlng System does not create a temporary fUe and wait for the
a..OOEJIU:CT call before deCidIng What to 00 wIth the old file.

HI object can be opened by two separate processes (or more than once by a
single process) slmultaneously. If the processes write to the flle without using
a global refnum, they must coordinate their file accesses so as to avoId
overwritlng each other's data.
P1peS cannot be openeo for OWI1te access. You must use ~ if you want
to write Into the p1pe. To set up a prIvate pipe, the reader process opens the
pipe first, specifying Dread mode; the wrIter process then opens the pipe wIth
~ Pl1vate access mode.

2-18

'~ .. '."",:
'., .~ .'/}

, -",,*

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

t:perating system Refetenee Hanual

2.10.9 QOOEJE,ECT Flle System Call

ll.OSEJll.:ECT (Var ECOde:Integer;
ReflOn: Integer)

(COde: Error indicator
RefNum: Reference number of object to be olosed

me File System

If RetN.rn Is not glObal, QOOEJRECT terminates any use of Refl'Un for 110
operatlons. A FLUSH operatlon Is performed automatically and the fUe is
saved In Its current state. If RetN.rn Is a global refnum and other processes
have the flle open, RefN.m remains valid for these processes and other
processes can sUll access the file using RefN.In

The fOllowing program fragment opens a file, reads 512 bytes from It, and
then closes the file.

TYPE Byte"'-128 •• 127;
VAP. FlleNcloo :Pattlbe;

Errorcode,FileRefNUm:lnteger;
ActualBytes:longInt;
Buffer:ARRAY[O .. 511] (F Byte;

EEGIN
(JlEN(ErroI'COOe, FlleNcllB, F lleReftoU1\. [mead]);
IF (ErrorGode>O) TI£N
~ITElN('Ga'nJt ~ ., flleNare)

ElSE
El:GIN

READ_DATA (ErrorCode,
F ileReflUn,
0004 (iilBJffer),
512 ..
ActualByteS,
~t1al..
0);

If (ActualByteS<512) THEN
~ITE('(l11y read " ActualBytes,' bytes from ., FlleNane);

ClOSE_OBJECT(Errorcooe,FlleRefNUm);
00;

EttJ;

2-19

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

qJeratlng system Reference MantlaJ

2.10.10 READ_DATA and WRITE_DATA File System calls

READ_DATA (Var Ecode:lnteger;
RefttIR : Integer;
oata_AOar:Longlnt;
Cturt: loogInt;

Var Actual:loogInt;
Node: IoI1ode;
Offset:looglnt);

.uTE_DATA (Var Ecode:Integer;
ReftUn: Integer;
Data_AdOr:longlnt;
CW1t :loogInt;

Var Actual : LongInt;
ttJde: I at:Jde;
Offset:looglnt);

EcOde: Error indicator

T/7e FIle system

RefNum:
Data Addr:
Count:
Actual:

Reference number of object for 1/0
Address of data (source or destination)
Number of bytes of data to be transferred
Actual number of bytes transferred

Node: 110 lTlJde
Offset: Offset (abSOlute or relative modes)

RE,AO_DATA reads information from the Clevice, pipe, or file specified by
R~ and WR.1TE DATA writes Information to It. oata AItt Is the
address for the destination or source of CCUlt bytes of data. The actual
number of bytes transferred Is returned In Actual.

Mlde can be absolute .. relative, or sequential. In absolute mode, Offset
specifies an absolute byte Of the file. In relative mOde ... Offset specifies a
byte relative to tne flle marker. In sequentlal mode" Offset Is Ignored
(assumed to be zero); transfers occur relative to the file marker. sequential
mode (Whim Is a special case Of relative mode) Is tne only access mode
allowed for reading or wr! ting data In pipes or sequenUal (non-disK) devices.
NOn-sequentlal modes are valid only on dev1ces that support positioning. The
first byte Is numbered O.
If a process attempts to write data past the Physical End of File on a disk
fUe, the ~rat1ng System automatically allocates enough additional space to
contain the data. This new space, may not be contiguous with the previous
blocks. You can use the ALLOCATE call to ensure that any newly allocated
blocks are located next to eaCh other, although they may not be located near
the rest of the file.

READ_DATA from a pipe that dOes not contain enough data to satisfy CCUlt
suspends tne call1ng process lI'ltll tne data arrives In the pIpe. If there are no

2-20

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

t:pemtJng System Reference ManlJaI me File system

writers, the end-of-fUe Indication (error 848) Is retUrned In ECO<le. Because
pIpes are cIrcular, WRITE_DATA to a pipe wIth insufficient room suspendS the
call1ng process (the writer) untU enough space Is avaUable (until tne reader
has consumed enough cJata~ If no process has the pipe open for reading and
there Is not enougn space In the pipe, tne end-Of-f1le Indication (848) Is
returned in ECOde.

READ DATA from the MAINC()\JSCl..E or AL TC()\JSCl..E devIces must
specIfy COlflt :: 1.

The following program caples a f1le. Note that you must supply the correct
location for Syscall in the second line of the program.

PROORAt1 Copyf 11e;
USES (*Syscall.Obj*) Syscall;
TYPE By te= -128 .• 127;
VAR 0IdFl1e,NewFl1e:PathName;

Olc:fleftun, NelReftUn: INTEGER;
BytesRead,BytesWrltten:lONGINT;
ErroTCode: INTEGER;
Response :a-M;
Buffer:ARRAY [0 •• 511] CF Byte;

BEGIN
IRlTE('flle to copy: ');
READLN(OldFlle);
CPEN(Erro1'Code, Ol<File, Ol~ [DRead]);
IF (Erro~o) ll£N
BEGIN

WRITELN('Error ',Errorcooe,' .nile opening ',OldFile);
EXIT (Cqlyf lle);

EN>;
WRlTE('Ne' f11e JlCIIE: ');
REAOLN(Newflle);
HAKE FIlE(ErrorGode,Newfile,O);
ll'EN(Errol'Code, NeIF lIe, NelReftt.ln. [DWrl te]);
REPEAT

REAO_OATA(ErroTCode,
01c:fleftUQ,
(R)4(i8.rffer),
512, BytesRead, secp:!ntial, 0);

IF (Errol'Code=O) AN) (BytesRead>O) Tl£N
WRITE_DATA (ErrorGode,

Ne~flUfI,

0004(ilIBUffer),
BytesRead,Byteswrltten,S9quentlal,O);

lMIL (BytesRead=O) m (BytesWI'ltten:O) m (ErrorClx:E>O);

2-21

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

qJe.f8ting System Reference H8I7i/8l me File system

IF (Errol'Code>O) 1l£N
~ImN('FUe copy encou1tered error ' .. ErrorCOde);

QOSEJR:f:CT(Errol'Code .. Ne~fttn);
Cl..OSEJIU::CT (ErrorCode, 01(fleflUl);

00.

2-22

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

cperatJng system Reference MantIal

2.10.11 REffi_LABEL and WRITE_LABEL FHe system Calls

READ_LABEL (Var Ecode:Integer;
Var Path:PattTam;

Data_Addr:Longlnt;
CI:U1t: ltrgInt;

Var Actual:LongInt)

.uTE_LAIR. (var Ecode:lnteger;
Var Path:PattTam;

Data_Addr:Longlnt;
COlIlt : Longlnt;

Var Actual:LongInt)

Ecode:
Path:
Oata_Mdr:
Count:
Actual:

Error indicator
Name of object containing the label
Source or destination of 1/0
Number of bytes to transfer
Actual number of oytes transferred

rfle File system

These calls react or write the label Of an Object in the FHe System. I/O
always starts at the beglmlng of the label. COUlt Is the number Of bytes the
process wants transferred to or from Data_M1r~ and Actual Is the actual
number of bytes transferred. M error is returned if you attempt to read
more than the maximum label slze~ 128 bytes.

2-23

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

OperlJting System Referf!!'nCe MIJIUJ81

2.10.12 DEVICE_CONTROL File System Call

IEVICE_a:tmU... (Var Ecode: Integer;
Var Path:Pathname;
Var (PBI1I:Dctype)

Ecode: Error indicator
Path: Device to be controlled

The File System

CParm: A record of information for the device driver

DEVICE_CONTROL is used to send device-specific information to eo device
driver or to obtain device-specific information from a device driver.

Regardless of whether you are setting device-control parameters or
requesting information; you always use a record of type Dct.Vpe. The
structure of Dct.ype is:

Dctype e t£lllI)

dcVersion: I~;
deCode: INl'ELER;
ddJata: mRRY[O .• 9] Of l.CNiINT
EH>;.

dcVersion: currently 2
deCode: control code for device driver
dcData: specific control or data parameters

2.10_12..1 Setting Device-Control Information
Before you use a device; you call DEVICE_CONTROL to set the device
driver. Once you begin using the device, you call DEVICE_CONTROL as
necessary.

Table 2-1 shows which groups of device-control functions must be set before
using each type of device. Table 2-2 shows which characteristics are
contained in each group. For example, you must set Group A for RS-232
input. As you see in Table 2-2, Group A indicates the type of parity used
with the device. Each ~oup requires a separate call to DEVICE_CONTROL,
and you can set only one characteristic from each ~oup. If you set more
than one from the same group for e. particular device, the last one set will
apply.

2-24

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Operat ing System Reference Manusl

Table 2-1
DEVICE_CONTROL Functions: Required

berm-e lking a Device

The File S),·stem

Device Type Device Name Required Groups

Seri a.l RS232 for
input

Serial RS232 for
output or printer

ProFile

Parallel printer

RS232A or RS2328 A, C, 0, E,
F, G, L, M, N

RS232A or RS232B AI BI CI G,
HI I, MI N

SLOTxCHANy (where J
x and y ere numbers)
or PARAPORT

SLOTxCHANy (where I
x and y ere numbers)
or PARAPORT

Console screen and MAINCONSOLE or I
keyboard A LTCONSOLE

Diskette drive UPPER or LOWER J

Here is a sample program that shows how a device-control parameter is set.
This program sets the parit.y attribute for the RS232B port to "no parity."
Note that the parity attribute requires only that you set cp8I"m.dccode and
cparmdcdab(Ol Other parameters require that you also set cparm.dcdats[1]
and cparm.dcdat.a(21 They are set in a similar manner.

vm
cpara: dctype;
exTn ... : integer;
path: pathmne;

IEiI"
path: =' -RS232B' ;
cp8I1I. dcVersion: ""2; (. always set this value .)
cp8I1I. decode: = 1;
cp8ID.dcdata[O]:= 0;
IEVlCE_CDfJA)l.(er:TrMII, path, cpam);

EJt);

2-25

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Operating System Reference Manila} The File System

Table 2-2 shows how to set cpann.dccode/ cparm.dcdatE(ol cparm.dcdotE4:tl
and cpmm.dcd8U(2] for the variolls available attributes. Not.e that any
values in cp&rm.dcdata past cpann.dcdau(2] are ignored when you are setting
attributes documented here.

Table 2-2
DEVICE_CONTROL Output Functional Groups

FU£IIm .decode .dcdatEiol .dcdatEil1 .dcdatci21

Group A, Pari ty :
No parity, 8 bits

of data 1 0
Odd parity, 7 bits

of data 1 1
Even parity, 7 bits

of data 1 3
8 bits of data plus
ninth bit odd parity 1 5

No parity/ input
stripped to 7 bits 1 6

Groop B, Output Handshake:
None 11
OTR handshake 2
XONIXOFF handshake 3
delay after CR" LF 4 ms delfrY

Group eL, Baud rate:
5 baud

Group D, Input waiting during Res(CDats:
wei t for Count bytes 6 0
return whatever ree' d 6 1

Group E2, I nput handshake:
no handshake 7

9 -1
OTR handshake 7
XONlXOff handshake 8

Group f3, Input typeahead buffer:
flush only 9 -1
flush and resize 9 bytes
flush" resize,
and set threshold 9 bytes

2-26

-1 32767

-2 -2
-2 -2

low hi

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Operating Sj.·stem Reference Manllal The File S).·~tem

Table 2-2 (continued)

FlI'CTI(tf .decode .dcdatlio] .dcdat.lil1 .dcdatli21
Group G, Disconnect Detection:
none 10 0 0
ER::AK detected
means disconnect 10 0 nonzero

Group H, Timeout on output (handshake interval):
no timeout 12 0
timeout enabled 12 seconds

Group I, Automatic linefeed insertion:
disabled 17 0
enabled 17 1

Group ~, Disk errors (set to 1 to enableJ to 0 to disable):
enable sparing 21 sparing rewrite reread

Group KS, Break coornand (never required, available only on serial
RS232 devi ces) :

send break 13

send break 13
while lowering OTR

Group L, Timeout on Input:
No timeout 14
Timeout enabled 14

millisecond
duration

millisecond
duration

o
seconds

Group H .. BREFf< during Close_Object:
enabled (default) 25 nonzero
di sabl ed 25 0

o
1

Group tf5, Set Modem Timeouts (Int'l r-o:e1 A driver only):
Set timeouts 22 recovery carrier connect

Group P, Wait until modem connects (Int'l t1DEM A driver only)
Wai t 24
(returns wi th
errm.m=645
if no connect)

2-27

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Operating S),'Stem Reference Manual The File S).'S'tem

l."Using Group C, you can set baud to arty standard rate. However" 3600,
7200, and 19200 baud are available only on the RS232B port.

2. In Group E, to specify no input. handshake, flrst make the call with the
device control code 7, then call again with the device control code 9, as
shown.

3. Lolt' and Hi under Group F set the low and high threshold in the typeahead
input buffer. When Hi or more bytes are in the input buffer, XOFF is sent
or OTR is dropped. When Low or fewer bytes remain in the typeahead
buffer, XON is sent or DTR is reasserted. The size of the typeahead buffer
(bytes) can be any value between 0 and 1024 bytes inclusive.

4. In Group J, enabling disk sparing lets the device driver to relocate blocks
of data from areas of the dlsl< that are found to be bad. Enabling disk
rewrite allows the Operating System to rewrite data that it had trouble
reading, but finally managed to read. This condition is referred to as a soft
error. Enabling disk reread tells the Operating System to read data after
they are written to make certain that they were written correctly.

5. When sending a break command, as shown in Group K, any device control
from Group A removes the break condition even if the allotted time has not
yet elapsed. Also, sending a break will disrupt transmission of any other
character still being sent. If you want to make certain that enough time has
elapsed for the last character to be transmitted, call WRITE_DATA with a
single null character (equal to 0) just prior to calling DEVICE_CONTROl. to
send the break.

6. In Group N, recovery is the minimum number of milliseconds required by
the modem between calls. Carrier is t.he number of milliseconds without
carrier detect, before the driver disconnects from the line. Connect is the
maximum number of seconds t.he driver will wait when Group P
Device_Control is subsequently issued.

2-28

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Operating S),·'Stem Reference Manusi The File S),·'S'tem

Table 2-3 gives a list of mnemonic constants that you can use in place of
explicit numbers when setting Decode. These mnemonics ere provided in the
SysCaU unit for convenience.

Table 2-3
Decode fv'tlemonics

Decode rtlemortic Dccode Mnemonic

1 dvParity 14 no mnemonic
2 dvOutDTR 15 dvErrStat
3 dVOutXON 16 dvGetEvent
4 dVOutDelery 17 dvAutoLF
5 dv8aud 18 no mnemonic
6 dvlnWai t 19 no mnemonic
7 dvlnDTR 20 dvDiskStat
a dvlnXON 21 dvDiskSpare
9 dvTypeahd 22 no mnemonic

10 dvDiscon 23 no mnemonic
11 dVOutNoHS 24 no mnemonic
12 no mnemonic 25 no mnemonic
13 no mnemonic

2.10.12.2 Obtaining Oevice-Control Jr#orrnation
To use DEVICE_CONTROL to find out about the currelJt state of a particular
device, simply give the pathname for the pBrticular device along with a
function code for the type of information you need. The record of type
Octype that you supply is returned filled with information.

There are three types of information requests you can make. Note that each
type applies only to some of the available devices. The request types and
the returned information are described 1n Table 2-4.

Table 2-5 shows the error code provided in response to a Dccode=15
information request. This code is given in cparm.dcd8tf(O). The code, a long
integer, is shown in Table 2-5i the bits and bytes are numbered from the
right, counting from O. The meaning assigned to the bit applies if the bit is
set (equals 1).

Here is a program fragment that uses DEVICE_CONTROL to get information
about the lower disket.te drive.

VM
Cp8I1I: dctype;
errntft: INTEllER;
path: puthncne;

EEGIN
path: = '-l..CHR , ;
cp8I1I.dcversion:=2; (* always set this value *)

2-29

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
,

I
I

Operating System h.'efeA"'ence Manual The File S),.stem

cp8l1l. decode : = 20;
IEVlCEJDfllD .. (ennUi" path" CpBIll);
WIllt Cp8I1l 00
~TEUH (dcdata[O]"dcdata[l]"dcdata[2],dcdata[3]"

dcdata[4]" dcdata[5]" dedata[6])

Table 2-4
Device IrIorl'11f&ion

Decode Devices Returned in Dcdata

15

16

ProFiles

Console Screen
and Keyboard

[0] contains disk error status on last
hardware error (see Table 2-')
[1] contains error retry count
since last system boot

[0] contains ntJllbers 0-10,
which indicate events:

o = no event
1 = upper diskette inserted
2 = upper diskette button
3 = lONer diskette inserted
4 = lower diskette button
6 '" mouse button dOr'ln
7 '" mouse plugged in
8 = power button
9 = mouse button up

10 '" mouse unplugged
[1] contains the current state of certain
~~eys, indicated by set bits (if the bit is
1, the key is pressed) (bits are numbered
from the right)

o == caps lock I<ey
1 = shift key
2 = option key
3 '" coomand key
4 = mouse button
5 = auto repeat

[2] contains X and Y coordinates of mouse,
X in left 2 bytes, Y in right 2 bytes
[3] contains timer value in milliseconds

2-30

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Operating ~.stem Reference Msnusl The File System

Table 2-4 (contirued)

Decode Devices Returned in Dcdata

18 RS232~ Modem A Read and clear input error counters
[0] contains count of framing errors
[1] contains count of parity errors
[2] contains count of overrun errors
[3] is count of buffer overflow errors

19 RS232~ Modem A [0] returns last value passed in
Group A~ Ocdata[O]
[1] returns last value passed in decode
for Group B~ or negative value of 'ms
delay' if 'delay after CR,LF' was selected
[2] returns baud rate
[3] upper 16 bits: returns last value

from dcdata[O], Group 0
lower 16 bits: returns last value

from decode.. Group E
[4) returns value from 'bytes' Group F
[5] upper 16 bits: value from 'low' ..

Group f
lower 16 bits: value from 'hi' I

Group F
[6] returns 'seconds' from group H
[7] upper 16 bits: value from

dcdata[l] Group G
lower 16 bits: value from

dcdata[O] Group I
[8] returns value from dcdata[01..
Group L
[9] returns number of characters waiting
in driver's input buffer

2-31

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Operating Sj/stem Reference Manual The File Sj.·'S'tem

Table 2-4 (continued)

Decode Devices Returned in Dedata

20 Profile or [0] contains;
Diskette Drive o = no disk present

1 = disk present (but not
accessed yet)

The following indicate that a disk is
present and has been accessed at
least once.

2 = bad block track appears
unformatted

3 = disk formatted by some
program other than the
Operating System

4 = OS-formatted disk
[1] contains:

o = no button press pending
1 = button press pending;

disk not yet ejected
[2] contains number of available spare

blocks, 0-16, meaningful only when
Ocdata[O] = 4 and for a diskette

[3] contains;
o = both copies of the bad-block

directory OK
1 = one copy is corrupt

(meaningful only when
Dcdata[O] .. 4)

[4] contains:
o = sparing disabled

[']
1 = sparing enabled

contains:
o = rewrite disabled
1 = rewrite enabled

[6] contains:
o = reread disabled
1 = reread enabled

23 Modem A lO] returns 'recovery', Group N
1] returns 'carrier', Group N

12] returns 'connect', Group N
3] returns:

o .. not connected
1 .. connected

2-32

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I·

Operating ~·'Stem Reference MMU81 The File ~·'S'tem

Table 2-5
Disk I-H'd-Errm Codes

Byte 3
7 = Profile received <> 5' to its last response
6 • Write or write/verify aborted because more than 532 bytes of

data were sent or because Profile could not read its spare
table

5 = Host's data is no longer in RAM because Profile updated its
spare table

4 = SEEK ERROR -- unable in 3 tries to read 3 consecutive headers
on a track

3 = ORe error (only set dur1ng actual read or ver1fy of
write/verify~ not while trying to read headers after seeking)

2 = TIMEOUT ERROR (could not find header in 9 revolutions)-- not
set while trying to read headers after seeking

1 • Not used
o = Operation unsuccessful

Byte 2
7 = SEEK ERROR -- unable in 1 try to read 3 consecutive headers on

a track
6 & Spared sector table overflow (more than 32 sectors spared)
5 .. Not used
4 = Bad block table overflow (more than 100 bad blocks in table)
3 • ProFile unable to read its status sector
2 = Sparing occurred
1 = Seek to wrong track occurred
o = Not used

Byte 1
7 = ProFile has been reset
6 - Invalid block number
5 .. Not used
4 = Not used
3 = Not used
2 = Not used
1 = Not used
o = Not used

Byte 0
This byte contains the number of errors encountered when rereading a
block after any read error_

2-33

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Q:Jelatlng syitem Reference MarKJa/

2.10.13 ~_U:X:~A TE FUe system Call

N..lIX'A TE (Var Ecode : Integer;
~:Integer;
D:m1Ql1lUS :1DJ1ea1,;
CWlt: lc:n;Jlnt;

Yar ActlRII: Integer)

Ecode: Error indicator

TlJe F/Je System

RefNl.ln: Reference t1lI1'ber of object to be allocated space
COntiguous: True = allocate contiguously
COU1t: Nlmler of blOCks to be allocated
Actual: tt.Jrt)er of blOCks actually allocated

use AU.OCATE to increase the space allocated to an Object If possible,
AU.OCAlE adds the requeSted I'UTlber of blOCkS to the space avallable to the
Object referenced by RefN.In The actual ruTlber of blocks allocated Is
returned In Actual. If cmtl\J.D.IS Is true, tne new space Is allocatei:l In a
Single, unfragmented space on the disK. This space Is not necessarily adjacent
to any extstlrg flle blOCkS.
AU.OCATE applies only to objects on blocK-structured devices. M atterTl>t to
allocate more space to a pipe Is successful only If tne pipe's read pointer Is
less than or equal to Its write pointer. If the write pointer has wrapped
arOltld but tne read polnter tlas not, an allocatlon would cause ttle reader to
read Invalid and \XllnltlaUzed data, so the Flle system returns error 1186 In
ttlls case.

2-34

I
I
I
,

I
I

;

; ,
I
I
I
I
I
I
I
I
I
I
I
I
I

.....
i . \ I

cperatlng system Reference M8t"K.181

2.10.14 cavPACT File System Call
C(H>ACT (var Ecode:Integer;

ReftUA: Integer)

[code: Error indicator

Tile FIle system

RefNum: Reference number of object to be compactea

cavPACT changes the Physical End of FUe to deallocate any blocks after the
block that contains the Logical End of FHe for the file referenced by Reft\lrn.
(See Figure 2-1.) a:J""PACT appl1es only to Objects on block-structured
devices. As in the case of AlLOCATE, compacUon of a pipe Is legal only if
the read pointer Is less than or equal to the write pOinter. If the write pointer
has wrapped around, but the read pointer has not, compaction could destroy
data In the pipe. The File System returns error 1188 In this case.

2-35

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

q;eratlng system Reference H8I7lIai

2.10.15 lRU'CA TE FUe System call

TRlN!ATE (Var Ecode:lnteger;
ReflUll: Integer)

Ecode: Error indicator

TI7e File system

RefNum: Reference number of object to be truncated

TRLNCATE sets the Logical End of FHe 1nd1cator to the current pos1tion Of
the file marker. My data beyond the flle marker are lost TRLNCATE
applles only to blocK-structured devIces. Truncation of a pIpe can destroy
data that have been written bUt not yet read. p.;s the diagram shOws;
TRl...N'.;ATE Changes amy LEa=-. c:cJ"'PACT, on the other hand, changes only
PECF.

r-TRLNCATE

new
LECF

t
File Harker

Figure 2--2

I CfJVP N::; T

I
new

PECF

~~

old
PEeF

The RelatlOl'lShip of c::::t:JvPACT arlO TRLNCATE

In this figure the boxes represent bloCl<.s Of data. Note that LECF can point to
any byte In the fUe bUt PECF always points to a block boUndary. Therefore,
TR~ATE can reset LECf' to any byte In the fUe, but a:J'1'>ACT can reset
PECF only to a block boundary.

2-36

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

qJe18t1ng System Reference I'1I!nJ8l

2.10.16 FLUSH File system call

FLUSH (Var Ecode : Integer;
ReflUI: Integer)

Ecoae: Error lnalcator
ReflUn: Reference I"U1tler of destination of I/O

The FIle System

FLUSH forces all bUffered information deStined for tne object Identified by
Retf\Un to be written out to that object.
A side effect of FLUSH Is that all FS buffers ana data structures are flusheC1
(as 'Well as the control information for the referenced fUe~ If Reft.Un is -1",
only the glooaI FHe System Is flusnea. This Is a methOd by WhiCh an
appllcatlon can ensure that the FHe system Is conslstent.

2-37

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

qJerating system Reference t1lYK.IaJ

2.10.17 SET_SAFETY File SyStem call
SET_SAFETY (var ECOda: Integer;

var Path : Path GE;
O"Loff :bllEm)

Ecode: Error lnaicator
Path: Name of object contain1ng safety switCh
O1_Off: set safety switch:

tl1 • true
Off = false

me FIle System

Each object In the flle System haS a "safety swltctl" to help prevent accidental
deletlon. If the safety switch Is on, the Object carYlOt be deleted.
SET_SAFETY turns the switCh on or Off for the object ldentifleo by patti.
Processes that are Shartng an object ShOUld cooperate with each other wnen
setting or Clearing the safety switch.

2-38

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

t:perating system Reference Mantlal TIle File System

2.10.18 SET_W£RKD\G_DIR <J"Kl GET_wt:RKIr-G_DIR File System Calls

SET_\(ft(Jt«J_OIR (Var Ecode:lnteger;
Var Path:PatmanE)

GET_\(ft(Jt«J_OIR (Var Ecode:Integer;
Var Path: PattTlane)

EcOde:
Path:

Error indicator
Working directory name

The ~rat1ng System uses the WOrKing directory name to resolve partIally
specified pathnames into complete pathnames. GET _ W£RKD\G_DIR returns the
current working directory name in Path. SET _ ~_DIR sets the wOrking
directory name.
me fOllowing program fragnent reports the current name of the W011<lng
directory and allows you to set It to somethIng else:

VM ~1rY;J)lr :Patr18le;
ErrorCOde: INTEG:R;

BEGIN
GET_.aRKING_DIR(ErrorCode,¥orklngOir);
If (Error(XJde<>O) MN
~ITElN("camot get the current working directory!")

ELSE IRlTElN("TIle rurrent IOrking directory Is: ", ~lrg:>lr);
WRITE("Ne. WrkirYJ directory raoo: ");
REAI1N(Wm1<:lrqlir);
SET_IORKlt«J_OIR(ErrorQode,~rklrg:>lr);

ENJ;

2-39

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Operating System Reference Manual The Flle S}·stem

2.10.19 RESET_CATALOG, RESET_SlA3TREE, GET_NEXT_ENTRY, and
LOOKUP _t.EXT_ENTRY File System Calls

RESET_CATALOG (ver ecode : integer;
ver path : pathname)

RESET_SUBTREE (ver ecode : integer;
ver path : pathname)

GET_NEXT_ENTRY (ver ecode : integer;
var prefi x : e_"ame;
var entry : e_na.e)

LOOKUP_NEXT_ENTRY (var ecode : integer;

ecode:
path:
prefix:
entry:

var prefi x : e_"ame;
var InfoRec : C_Info)

Error indicator
Name of the directory to be scanned
Find names beginning with this substring
Name of the next object (with matching
prefix) in the directory

These procedures are used to enumerate the objects contained in a
dIrectory. RESET_CATALCXi instructs the file system that the directory
named in path is to be scanned. GET_t.EXT_ENTRY returns the name of the
next object in the directory. Only names beginning With the substring Jref'ix
will be found. If prefix is the null string, then all names in the directory
will be found. If there are no more objects in the directory, an end-of -file
error (848) is returned. RESET_SUBTREE is equivalent to RESET_CATAlOG,
but indicates that the subtree rooted at the direct.ory named in path is to be
scanned. Subsequent calls to GET_NEXT_ENmV will return names from the
subtree according to a pre-order traversal. LOOKUP _NEXT J:NTRY
combines the actions of GET_NEXT_ENTRY and QUICK_LOOKUP into one
operation, and is considerably more efficient than those two procedures
called serially. When traversing a subtree by calling LOOKUP _NEXT_ENTRY,
the level field of the Q_Inl"o record indicates the level of the object within
the directory hierarchy. Objects in the root directory of a disk volume are
at level zero.

2-40

I
I
I
I
I
I
I
I
I
I i

I
,

I
I
I
I
I
I
I
I

t:pe11JtJng System Refemnce I'1I!¥ItIa/

2.10.20 Ml..NT and l..N'1l..fIIT FDe System cans

I1lJO" (var ECOde:Integer;
var VNaIIe: E Name;
Var Password:E taRe
Var Devnl:IIe: Eji.e)

lNO..NT (var Ecode:IntegBr; (
Var Vt'l8IIe: E-"l8III9) • ,.

EcDOe: Error Inaicator
Vncrne: Volllre ncrne
Password: Password for devIce (currently ignored)
DevI"laII:! : Device naroo

me FIle system

t1l..NT ana l..N'1l..fIIT nanOle access to sequenUal devlces or blOCK-structUred
devlces. For blOCk-structured devices, Ml..NT logIcally attaches the volt.rne's
catalog to the Flle system. The name of the volt.me fTlCU"lted is returned In
the \marne parameter.
l..N'1l..fIIT detaches the spec1fled volt.rne from the FHe System. No object on
that volume can be opened after l..N'1l..fIIT has been catlett me volt.rne
cannot be UI'V'JlOIA"lted untll all the Objects on the volume have been closed by
wI processes using them.

DEM'Bne Is the name of the device on wnicn a volume is being mounted.
Devname should be given without a leading dash (-~

vrane Is the nane Of tile volume that was sUCCessfully mounted, and Is
returned.

2-41

I
I

.~

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

"\
'-

"

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

!

Chapter 3
Processes

~ stJuctln'e •• 3-2

Process creation .. 3-3

PlOOe'S$ <:!c:Jltrol ... 3-3

~~ .. 3-3

Process Tenn1naUm •.••••••••••••••.•...•.•..•••.•••••.•.•••.•••••••.•••••••••.••.••••.•••••• 3-4

A PIlX:ess-f-fcrll1llng ExarT1Jle •• 3-5

Process system C8lls ••• 3-7

3.8.1 M.AJ'<E PROCESS .. 3-8
3.8.2 TERMiNATE PROCESS ... 3-9
3.8.3 If'.F'O_PROCESS .. 3-11
3.8.4 KILL PROCESS•.••..••.••.••.••. 41 .. 3-13
3.8.5 SLlSPEf\I) PROCESS ... 3-14
3.8.6 ,A.C;TIVATE PROCESS .. 3-15
3.8. 7 SETPRIrniTY PROCESS ... 3-16
3.8.8 YIELD CPU .::•...•..•..... 3-17
3.8.9 MY _10-: •..••.•......•..............•..•.•.•..•.••...•••••..••••••••.••.•.....•.•..•••••. 3-18

Processes

A process is an entity in the Lisa system that performs work. When you ask
the QJerating System to run a program .. the OS creates a specific instance of
the program and its associated data. That instance is a process.
The Lisa can have a number of processes at anyone time; they appear to be
runnIng sImultaneously. Although processes can share code and data each
process has its own stack.
O1ly one process at a time can use the CPu. The Scl7eo(Jler determines
Which process is active at a particular time. The Scheduler allows each
process to run until some condition that would slow execution occurs (an 110
request .. for example~ At that Ume, the running process is saved in its
current state. The SCheduler then checks the pool of ready-to-run processes.
When the original process later resumes execution, It plCkS up wnere it left
Off.

The process sCheClullng state has three posslOlll tIes. A luning PIPClJSS Is
actually executing Instructions. A.ready process Is ready to execute but Is
oeing held Oack oy the ScheCluler. A blOCked P1DCeSS Is IgnoreCl oy the
Scheduler. It cannot continue Its execution until somethIng causes it to
Oecome ready. Processes commonly become Olocked whlle awaiting
complet1on of 110 ... although there are a numOer of other likely causes.

3-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3.1 PICJCe$$ StI\I}ture
A process can use up to 16 data segments and 106 code segments.
The layout of the process address space for user processes Is shown in Figure
3-1.

Seg#
+--------o I unavailable
+--------
1 I User Code Segments

I
I
I
I

106 I
+--------

107 I LOSN 1
I
I (data segments)
I
I

122 I LDSN 16
+--------

123 I Stack
+--------

124 I Shared Intrinsic Uni~ Data
+--------

125 I Screen
+--------

126 I Reserved
+--------

127 I Reserved
+--------
Fl~ 3-1

Prooess Address Space Layrut

Each process has CIl associated priority, an integer between 1 and 255. The
SCtleCIUler usually executes the hIghest-prIority reacty process. The higher
priorities (226 to 255) are reserved for the ~rating System.

3.2 PICJCe$$ HIerarchy
When the system is first started, several system processes exist At the base
of the process hierarchy .. Shown In Figure 3-2, Is the root process .. which
hnles various internal ~rating system functions. It has at least two sons:
the I'-1emory Manager process and the shell process.
The fvBnor}' fvf8n8ger process handles code and data segment swapping.

3-2

\

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

cperatJng system Refel8l7Ce H8I1tI8l Processes

The shell process Is a user process that Is automatically started when the os
is initialized. It is typically a command Interpreter .. bUt It can be any
program. The OS sImply lOOKs for the program called SYSTEM.SHELL and
executes it

Root Process

Memory Manager
process

Shell
Process

I
User

Process

/1\
Other User Processes

Fi~ 3-2
Prcx:ess Tree

other

MY other system process (the network. control process~ for example) is a son
of the root process.

3.3 Process creat1m
When a process Is created, it Is placed in the ready state with a priority equal
to that of the process that created it. All the processes created by a given
process can De thought of as existing In a SUbtree. Many of the process
management calls affect the entire subtree of a process as well as the process
itself.

3.4 Process COOtrol
Three system calls are provided for explicit control of a process. These calls
allow a process to k1ll, suspend (block), or activate any other user process in
the system as long as the process IdentifIer Is known. Process-handl1ng calls
are not allowed to control ~ratlng System processes.

3.5 Pnx:ess SChetlJllng
Process scheduling Is based on the prlorlty establlshed for the process and on
requests for QJeratlng System services.
The SchedUler generally executes the h1ghest-prlorlty ready process. O1ce a
process Is executing, it loses the CPU only under certain circumstances. The
CPU 1s lost When there Is some specifIc request for the process to walt (for
an event .. for example~ when there Is an I/O request, or when there Is a
reference to a code segment that Is not 1n memory. A process that makes

3-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

{jJtHating System Refe113l]Ce f\1anlIaJ Processes

any cperatlng System call may lose the CPU. The process gets the CPU back
when the q:>erating system is finished; except under the following conditions:

• The running process requests input or output. The Scheduler starts the
next hIghest-prIorIty process runnIng whlle the first process walts for the
110 to complete.

• The runnIng process lowers Its prIority below that of another ready process
or sets another process's prIority higher than Its own.

• The running process explicitly yieldS the CPU to another process.
• The running process activates a hlgner~pr1orlty process.

• The running process suspends itself.
• A higher-priority process becomes ready.
• The running process needs code to be swapped into memory.
• The running process executes an event -wal t call.
• The running process calls DELAY _T1rvE.

Because the QJeratlng System cannot seIze the CPU from an executing
process except In the cases noted above, bacKground processes ShouW be
llberally sprInkled with YIELD_CPU calls.
When the Scheduler Is Invoked, it saves the state of the current process and
selects Ule next process to run by examining the pool Of ready processes. If
the new process requires that code or data be loaded into memory; the
Memory Manager process Is launched. If Ule Memory Manager Is already
working on a process, the Scheduler selects tI1e highest priority process in the
ready queue that does not need anythIng swapped.

3.6 Process Tennlnatlm
A process termInates under one of the followIng condl tlons:

• It calls TERMINATE PROCESS.
• It reaches an 'ENJ: statemenl
• It is referred to in a K1LLJ>Rcx:::;ESS call.

• Its father process terminates.
• It runs Into an abnormal condition.

When a process begIns to terminate, a SYS _TERMINATE exception condl tlon 1s
signaled to the terminating process and all of the processes I t has created.
By means of the DEQARE_EXCEP _H1. call (described 1n Chapter 5), any
process can create an exception handler to catCh the termInate exception and
clean up before terminating. The SYS_ TERMINATE exception handler wlll be
executed only once. If an error occurs wtllle the handler Is executIng, the
process terminates Immediately.

3-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
i

I
I
I
I
I

qJel8t1ng system RerellJflCB fvlEnJal PJ'l)C8sses

A process can call KlLL_PJ:U:O:SS on any user process whose Proo_Id Is
known. TERMlf'.IATE_PROCESS~ on the other hand; term1nates the process that
called it (and Its descendants~ TERMINATE_PROCESS also allows an event to
be sent to the father of the terminating process if a local event channel was
specifIed In the MAKE_PROCESS call.
TermInation involves the following steps:

1. SIgnal the SYS _TERMINATE exception on the terminating pIOcess.
2. Execute the user's exception handler,. if any.
3. Instruct all sons of the current process to terminate.
4. Close all open flIes, data segments,pIpes,. and event channels left open by

the user process.
5. Send the sys_sa't TERM event to the father of the termInatIng process

1 f a local event channel exists.
6. Wait for all the sons to finish termination.

3.7 A Process-HandlIng Example
The fOllowing programs illustrate the use of many of the process-management
calls described in thIs Chapter. The program Father, belolJJ, creates a son
process and lets it run for a while. It then gIves the user a chance to
activate; suspend; kill, or get Information about the son.

PRaiRAI1 Father;
USES (tt$U Source:syscan.(I)j-) Sy5Can;
VAR ErrorOode:INTEGER;(*error returns from system calls *)

proc_id:LONGINT; (* process global identifier -)
progl8me:Pattl'l<lOO; (* progran file to execute *)
run : Na'lEstring; (- progrClll entry point -)
Info_Rec:ProclnfoRec; (* information about process *)
i : INTEGER;
Ans.er : (}tAR;

3-S

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Q:Jeratfng System Reference Hanu8J Processes

f£GIN
Pr~:=·~.OOJ·; (* this progrlD 1s defIned belOW-)
ttJl1:=' ';
t1AKEJ)'~SS(ErroI'Code, Proc_Id .. ~, tlJll, 0);
IF (Errol'COde<>O) 11£N

IRITELH(• Error ", ErrorCOde, I wr1rYJ process lID agena It. I);
FOR 1:=1 TO 15 00 (* 1dle for a.nlle *)
BEGIN

IRlTELN("Father executes for a moment. ");
VIElOJlltJ(Erro1'Code, FALSE); (* let soo IUl *)

EN);
IRITE("K(ill S(Uspend A(otivate l(nfo·);
RENl..H(Msler);
CASE MSler (F

'K', 'k': KIllJ'R(XESS(ErroI'Code, Proc_Id);
·5·, ·s·: SUSPEtIl_PROO::SS(Errol'COde,Proc_Id, TRlE (* SUspend

fanlly *»;
'A', ·a': N:;l1VATE_PJ«n::SS(ErrorCode, Proo_Id, TRlE (* Cl::tivate

fanlly *»;
" 1', '1': BEGIN
INFO_PROCESS (E rrorGode, Proc_Id, Info_Rec);
IRITElH('SOCI"s naoo 1s ' .. Info_Rec.Prt:g>att1&re);
00;

EN).

IF (Errol'COde<> 0) 1lEN
IRITElH('Error " ErrorCOde,' tlIl'1rYJ process RalagenEflt .•);

EtIl.

The program 5a1 is:

PRtliRAM SOO;
USES (-to Souroe:SySCall.(l)j*) SySCall;
VAR ErroI'Code: INTEGER;

rull : NcIlEString;
BEGIN

HlE TRlE 00
BEGIH

~naN("Son executes for a moment.');
YIElD_CPU(Errorcude,FALSE);(*let father process run*)

EN);
ftt).

3-6

I
I ---~

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

)
Q:Jemtlng system Reference /'1an(JaJ Processes

3.6 Process system Galls
This section describes the qleraUng System calls that pertain to process
control. A summary of all the (l>eraUng System calls can be fOll'lt1 in
Appendix A The follo'Ning special types are used tn process-control calls:

PatlTBle = STRIt«j(255);
Namestrlng = STRING(20);
P s eventblock "" AS eventblock;
s-eVentblod< = T event text;
T=:event_text = may [0 .. size_etext] Of 1(J'JJ1nt;
Proclnfotec = record

p~ttTlcIIe : pattTlclle;
glObal_ld : longint;
father_ld : longint;
priority : 1 •• 255;
state : (pcI]t1 ve, psu1C!l"lspetlal'V'tllded:wi, pM1 tlng);
data_in : boolea'l
end;

3-7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

cperating System Refe.ren(.'e Manual

3.8.1 MAKE_PRc:x::::ESS Process System Gall

t1AKE-'J'~SS (Var Errt-Un:lnteger;
Vat Proc_Id:Longlnt;
Var ~lle:PatmanB;

Plucesses

Vat EntryNcItE:NmEStrlng; (it NmEStrirg = STRlt«i[20] it)
Evnt_Chn_RefNum:lnteger)

ErrNum:
Proc Id:
ProgFile:
EntryNarre:
Evnt_Chn_RefNum:

Error indicator
Process identifier (globally unique)
Process file name
program entry point
Communication channel between calling
process and created process

A son process is created when another process .. the father process, calls
MAKE_PROCEss. The son process executes the program identified by the
pathname in PrtJif'lle. If Proif'lle is a null character string,. the program name
Of the father process Is used. A globally unique identifier for ttle son process
is returned in Proc_Id.
Evnt_DTl_Ref1\lrn Is a lOcal event channel suppIled by the father process.
Event channels are discussed In Chapter 5. The ~eraUng System uses the
event channel ldentIfled by Evnt_DTl_Ref1\lrn to send trle father process
events regarding the son process (for example, SYS_S(J\J_ TERM~ If
Evnt_O'rl_ReftUn Is zero .. the father process Is not Informed when such
events are produced.
EntryNcrne, if non-null, specifies the program entry point where execution is
to begin. Because alternate entry points have not yet been defined for
Pascal, this parameter is currently ignored.
My error encountered durIng process creatlon Is reported In EJl'f\km

3-8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

{peIatlng system Refel'8l?Ce 1'-1an(Jal

3.8.2 TERMINATE_PR£'o:SS Process System Gall

TERMINATE -')f~nSS(Var ErrtUJ : Integer;
Event_ptr:P_s_eventblk)

ErrNum: Error indicator
Event_Ptr: Information sent to process's creator

Pfo(}eSSes

A process can be ended by TERMINATE_PROCESS. This call causes a
SYS _TERMINATE exception to be sIgnaled for the call1ng process and for all
of the processes it has created. The process can declare its own
SYS_ TERMINATE exception handler to handle whatever Cleanup It needs to do
before It Is actually terminated by the system. When the tenninate exception
handler Is entered~ the exception information block contaIns a lCTlg1nt that
describes the cause of the process termination:

ExcepJJaU'{O] - 0 Process called TERMINATE_PROCESS.

1 Process executed the 'EN): statement.
2 Process called KILL_PRecESS on Itself.

3 Some other process called KILL_PROCESS on the
terminating process.

4 F ather process Is termInating.
5 Process made an Invalid system call (that Is, an

unknown call~
6 Process made a system call wI th an Invalld Errt\km

parameter address.
7 Process aborted due to an error while tryIng to swap

In a code or data segment.

8 Process exceeded its maximum specified stack size.
9 Process aborted due to pOSSible lockup of the system

by a data space exceeding physical memory size.
10 Process aborted due to a parity error.

There are an additional twenty-six errors that can be sIgnaled. The entire llst
is shown at the beginning of Appendix A.

If the terminating process was created with a communication channet a
SYS_SCN_ TERM event Is sent to the terminatlng process's father. The
terminating process can specify the text of the SYS_SCN_ TERM with the
Event_Ptr parameter. Note that the first (O'th) longlnt of the event text Is
reserved by the system. When the event Is sent to the father, the OS places
the termination cause Of the son process In the first lorg1nt ThIs Is the same
termInation cause that was suppUed to the tennlnating process itself in the

3-9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

t:pemtJry system Refemnce I'1ln.JaJ Processes

SYS _ TERMINATE exception Information block. My user-suppl1ed data in the
first lorgtnt of the event text 1s overwritten.

If a process specifies an event to be sent in the TERMINATE_PRCCE:SS call
but the process was created without a local event channel, no event is sent to
the father.

If the process was created with a local event channel, an event Is sent to the
father if the process calls TERMiNATE_Pf:UO::SS with a nU Event_PU or if
the process termInates by a means other than call1ng TERMlNATE_PRCCESS.
The event contaIns the termination cause in the first longlnt and zeroes in the
remalnlng event text
p _s_evet1tblk. is a pointer to s_evet1tblK, defined as:

a:H)T size_etext = 9; (* event text size - 40 byteS *)
TYPE t_event_text = ARRAY [0 .. slze_etext] (F Lalglnt;

s_eventblJ< = t_evertt_text;

If a process calls TERMINATE_PRo:::;ESS twice, the ~erating System forces it
to terminate even if it has disabled the terminate exception.

3-10

I
I
I
I
I
I
I
I
I
I
I
I

i

I
I
I
I
I
I
I

t::perating system Reference Mamal

3.8.3 IN=OJ'Ro:ESS Process System Gall

IW"O_PRf:Xl:SS (Var ErrtUn:lnteger;
Proc_Id:Longlnt;

Var Proc_InfO:ProcInfoRec);

ErrNum: Error indicator
Global identifier of process

processes

Proc Id:
proc)nfo: Information about the process identified by

Proc_Id

A process can call II\FOJ'Ro::::eSS to get a variety Of information about any
process known to the qJerating System. Use the function MY _10 to get the
Proc_ld of the calling process.

ProclnfoRec Is defined as:
lYPE ProcInfORec = RECOOO

Pr0g>8ttTa1E: PattTalE;
Global_id : Longint;
Priority :1. .255;
State :(PActlve,PSu~~,Pwaltlng);
oata 1n :Boole<J'l

Ettl; -

Data_In IndIcates wnetner tile data space of tile process Is currently In
memory.

The procedure on the next page gets information about a process and displays
some of It.

3-11

----------_ .. _._ _ .. _---------------

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

rperatfng System Reference Manual

PROCEDURE Oisplay_Info(Proc_Id:LONGINT);
VAA Errol'COOe:INTEGER;

Info Rec:PrOClnf~;
BEGIN -

INFO_PROCESS(Errol'COOe,Proc_Id,InfO_Rec);
IF (ErrorGode=100) THEN

~ITELN('Attempt to d1splay info abOUt nonexistent
process. ')

ELSE
BEGIN

WITH Info Rec DO
BEGIN -

WUTELN(' program rlCI1E:
WRlTELN(I global id:
~ITELN(' priority:
~ITE(' state:
CASE state (F

" Pnx;1>attte'le);
" Global_id);
., priority); .);

PActlve: 'lRlTELN('active');

Et«>
EN)

Et«>
EN);

PSuspended: 'lRITElN(' suspended');
Pwaitlng: 'lRITELN('waitlng')

3-12

Processes

I
I
I

'.

I
I
I
I
I
I
I

(

I
I
I
I

;

I
I
I
I
I

cperatfng System Reference Manual

3.8.4 KlLL_PRI:CESS Process System Call

KILLJJR(Xl:SS (Var ErrtUn:lnteger;
Proc_Id:Longlnt)

ErrNum:
PfOC_Id:

Error indicator
Process to be killed

Processes

KlLL_PRo:::ESS kills the process referred to by Proc_Id and all of the
processes in its SUtltree. The actual termination of the process does not occur
until the process Is in one of the following states:

• Executing in user mode.
• Stopped due to a SUSPENJ _ PRCCESS call.
• Stopped due to a ~AY _ TIf'-'E call.

• Stopped due to a WAIT_EVENT_CH\t or SENJ_EVENT_CH\t call, or
READ_DATA or WRITE_DATA to a pipe.

3-13

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

t:peratJng System Reference M8I7()81

3.8.5 SlJSPEf'\O_PRoc::ESS Process System Gall

SI.JSPEN) J')f~n:SS (Var ErrtUn : Integer;
Proc_IO:Longlnt;
SUspjfaml1y:Boolean)

ErrNum: Error indicators

Processes

Proc 1d: Process to be suspended
Susp:Family: If true, suspend the entire process subtree

SlJSPEf'\O _PRo::::ESS allows a process to suspend (blOCk) any process In the
system. The actual suspension does not occur until the process referred to by
Proc_Id Is In one of the followIng states:

• Executing In user mode
• Stopped due to a DELAY _ TII"E call

• Stopped due to a WAIT_EVENT _a-N call
Neither expiration Of the delay Ume nor receipt of the awaited event causes
a suspended process to resume execution. SlJSPEf\I) _PRCCESS 1s the only
direct way to blocK a process. Processes, however, can become blocKed during
1/0, by the timer (see I:l:LAY _ TIf"E), or for many other reasons.
If SUSp_FCITlllY Is true, the (l.leraUng system suspends both the process
referred to by Proc_ld and all of its descendents. If SUSp_FcmUy Is false,
only the process Identified by Proc_Jd Is suspended.

3-14

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

cperatJng System Reference HS17U81

3.8.6 ACTIVATE_PRo:::ESS Process System Gall

ACTIVAl£JJROCESS(Var ErrtUn: Integer;
Proc_Id:Long[nt;
Act_Faml1y:BOOlean)

ErrNum: Error indicator
Proc Id: Process to be activated

Processes

Act_Family: If true, activate the entire process subtree

To awaken a suspended process, call AC:llVATEJ:'I~oc::Ess. A process can
activate any other process In the system. Note that AC::;llVATE_PRoc::ESS can
awaken only a suspended process. If the process is blocked for some other
reason, AC::;TIVATE_PRoc::ESS camot unblock It. If Act_Fcmily Is true,
ACTIVATE_PRo:::ESS also activates all the descendents of the process referred
to by Proc_Id.

3-15

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

qJerating System Reference Manual

3.8.7 SETPRI(JUTY _PRecESS Process System Call

SETPfUOOI TV JlR(ffSS(Var ErrtUn: Integer;
Proc IO:longlnt;
Ne __ Prlorlty:lnteger)

ErrNum: Error indicator
Proc Id: Global id of process
New_Priority: Process's new priority number

Processes

SETPRIlRITY _PRecESS changes the scheduling priority of the process
referred to by Proc_IO to New_Priority. The priority value must be between 1
and 225. (~eratlng System processes execute with priorities between 226
and 255.) The higher the priority .. the more likely the process is to be allowed
to execute.

3-16

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

QJeraUng System Reference Manual

3.8.6 YIELD_CPU Process System Call

VIElD_cpu(Var ErrNum:lnteger;
To_Any:Boolem)

ErrNum: Error indication
TO_Any: Yield to any process, or only higher or equal

priority

Processes

Background processes should use YIELD_CPU often to allow other processes to
execute when they need to. Successive yields by processes of the same
prIority result in a "round robin" scheduling of the processes. If To_Any Is
true" YIELD_CPU causes the call1ng process to yield the CPU to any other
ready process. If To_Any is false, YIELD_CPU causes the calling process to
give the CPU to any other ready-to-execute process with an equal or higher
priority. If no process meets the To_Any criterion, the calling process simply
continues execution.

3-17

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

t:peratfng System Reference M8I7I.Jsl

3.8.9 MY _ID Process system call

t1V_IO:Longlnt

Processes

MY _10 Is a function that returns the unique global identifier (a l~nt) Of the
call1ng process. A process can use MY _10 to perform process handllng calls
on itself.

For example:

setPrlori ty _Process(ErrfUlt, My _Idl 100)

sets the priorlty of the call1ng process to 100.

3-18

I
I
I
I
I
I
I
I
I

,

I
I
I
I
I
I
I
I
I
I

ill

4.2

4.3

4A

4.5

4.6

4.7

Chapter 4
Memory Management

()ata ~ts ••.•••••••••••••••••••••••••••••••• 4-1

1l1e Logical [)ata 8egI. e It N.ITtJer .. 4-1

Shared ()ata Se(Jnents ••• 4-2

PrIvate [)ata ~u .. " 4-2

c:ocle ~ts ... 4-2

~ ..•..•..........•..•....•...........••.....••...........••....•.....••................... 4-2

IVIernory r-1ar.agel' e ,t system ()a}ls .. 4-3

4.7.1 M,A.t(f OAT ASEG ...•....••..••...•..•..••......••.•.•..•••..••..•.••••••.••.•••••.• 4-4
4.7.2 KJLL DATASEG ... 4-6
4.7.3 Cl'EN-OATASEG .. 4-7
4.7.4 CLOSE DATASEG ... 4-8
4.7.5 FLUSI-fOATASEG .. 4-9
4.7.6 SIZE DATASEG .. 4-10
4.7.7 II'FO-OATASEG ... 4-11
4.7.8 If'.F'O-LOSI\I .. 4-12
4.7.9 II\FO-~ESS .. 4-13
4.7.10 I'1EM-If\F"O ... 4-14
4.7.11 SET~CESS DATASEG ... 4-15
4.7.12 BIND_OATASEGand UNBII'D_OATASEG 4-16

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CNANt;ES/ A /)1>1711J/tIS

Operating System }.t,') Notes Memory f.1tJnsgement

Chapter 4
Memory Management

Mammy-Resident Data Sc¥nents (See Section 4.1)
There is a limitation on the usage of memory-resident data segments. A
data segment created USing Make_DatMeg with 0 disk space cannot have its
disk size subsequently increased with a Size_DatMeg call. If you want to be
able to assign disk space to a memory-resident data segment, create the
segment initially with some disk space (e.g., one paget then reduce the disk
size immediately to 0 using Size_Oatoseg. Later, you can increase the disk
size of the memory-resident segment using Size_Dataseg.

Notes 4-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

IO"~:":\
" d

I
I

Memory Management

Every process has a set of code segments and data segments which are in
physical memory when they are used. The logical address used by the process
must be translated into the physical address used by the memory controller.
This function is handled by the memory management unit (MMU~

4.1 oata segnents
Each process has a data segment that the C\:lerating System automatically
allocates to it for use as a stacK. The stacK segment's internal structures are
managed by the hardware and the C\:lerating System.
A process can acquire additional data segments for uses such as heaps and
lnterprocess communIcation. These additional data segments can be private
(or local) data segments or shared data segments. Private data segments
can be accessed only by the creating process. When the process terminates,
any private data segments still in existence are destroyed. SlJared data
segments can be accessed by any process that opens tnose segments.
The cperatlng System requires that data segments be in pnysical memory
before the data are referenced. The SCheduler automatically loads all of the
data segments that the program says it needs. It is the responsib111ty of the
programmer to ensure that the program declares all Its needs by assocIating
itself with the needed data segments before they are needed.
This process of association is called binding. A program can bind a data
segment to itself in several ways. When a program creates a data segment by
using the MAKE_DATASEG call; the segment is automatically opened and
tlound to Ule program. If a program needs to open a segment that was
created by another program, the CPEN_DATASEG call is used. That call binds
the segment to the calling process, as well as opening the segment for the
process. Since there may be times when a process needs to use more data
segments than can be bound at one time, the LN3INJ_DATASEG call Is
provided to unbind the data segment without closing it. The program can then
use BIf\I) _OAT ASEG to bind another data segment to the program.
The cperating System views all data segments except the stack as linear
arrays of bytes. Therefore, allocation, access, and interpretation Of structures
within a data segment are the responsibll1ty of the program.

42 1l1e Logical Data ~t f'UrtJer
The address space of a process allows up to 16 data segments bound to a
process at the same time, in addition to the stack. Each bound data segment
is associated with a spec1f1c region of the address space by means of a
Logical Data Segment Number (LDSN~ See Figure 3-1 for an illustration of
the address space Of a process. While a data segment Is bound to the process,
it Is said to oe a member Of me WOrking set of the process.

4-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

:1

cperaUng System Reference Manual MernolY Management

The process associates a data segment wIth a specIfIc LDSN In the
MAKE_DATASEG or CFEN_DATASEG call.
The LDSN~ which has a valld range of 1 to 16, is local to the calUng process.
The process uses the LDSN to keep track of where a gIven data segment can
be found. More than one data segment can be associated wIth the same LDSN~
but only one such segment can be bound to a gIven LDSN at any Instant and
thus be a member of the working set of the process.

4.3 Shared Data 5egnents
Cooperating processes can share data segments. Shared segments cannot be
larger than 128 Kbytes In length. As wtth local data segments, the segment
creator assigns the segment a FHe System pathname. All processes that share
that data segment then use the same pathnarne. If Ule shared data segment
contains address pointers to data within the segment .. the cooperating
processes must also use the same LDSN wIth the segment. ThIs ensures that
all logical data addresses referencing locations within the data segment are
conslstent for the processes SharIng the segment. A shared data segment Is
permanent until explicitly killed by a process.

4..4 Private Data Sf3911ents
Data segments can also be private to a process. In this case~ the maximum
size of the segment can be greater than 128 Kbytes. The actual maximum
size dependS on the amount of physical memory In the maChine and the
number of adjacent LDSNs available to map the segment. The process gives
the desired segment size and the base LDSN to map the segment. The
Memory Manager then uses ascending adjacent LDSNs to map successive 128
Kbyte chunks of the segment. The process must ensure that enough
consecutive LDSNs are available to map the entire segment.
Suppose a process has a data segment already bound to LDSN 2. If the
program tries to bind a 256 Kbyte data segment to LDSN 1, the ~eratlng
system returns an error because the 256 Kbyte segment needS two consecutive
free LDSNs. lnstead~ the program should bind the segment to LDSN 3 and the
system automatically also uses LDSN 4.

4.5 COde Segnents
Division of a program into multiple COde segments (swapping units) Is dictated
by the programmer through commands to the Compiler and Linker. The MMU
registers can map up to 106 code segments.

4.6 ~lng
When a process executes~ the following segments must be in physical memory:

• The current code segment
• All the data seaments In the process workIng set (the stack and all bound

data segments)
The qJeratlng System ensures that this minimum set Of segments is In physical
memory before the process is allowed to execute. If the program calls a
procedure in a segment not in memory, a segment swap-in request is initiated.

4-2

\
)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I~"
G

I
I

ljJefating System Refefence Mamal MemolJl Management

In tne slmplest case, tnls request only requ1res tne system to allocate a blOCK
of physical memory and to read in the segment from the disk. In a worse
case, tne request may requIre tnat other segments be swapped out fIrst to
free up sufficient memory. A clock algorithm Is used to determine which
segments to swap out or replace. ThIs process Is InvIsIble to the program.

4.7 fv1emory JV1aIagement System Galls
This sect10n describes all the ~erat1ng System calls that pertain to memory
management. A summary of all the ~erat1ng system calls can be found In
Appendix A. The fOllowing special types are used in memory management
calls:

Pat.tvlalre = SllUNi[2SS];
TOstype = (OS_snaIeO, OSjprlvate);
OsInfoRec = Record

mem_slze:longlnt;
disc_size:longint;
numb_open:lnteger;
LOSN: integer;
boI..J1(f=' : boolecJ'l;
presentf:boOlean;
creatorf:boolean;
rwaocess:boolean;
seg:>tr: longlnt;
volrare : e rare;

~; --
E_rare = string (32);

4-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Q,Jemting System Reference Hanual

4.7.1 MN'<E_DATASEG Memory Management system Call
HAKE_DATASEG (Var ErrtUn:Integer;

ErrNum:

Var seg klle: PattT1cl'le;
Hem_Size, Disk_Size:Looglnt;

Var Reft-Un:lnteger;
Var SegPtr:LongInt;

Ldsn : Integer
Dstype:Tdstype)

Error indicator
SegnanE: PathnanE of data segment

Hemol)' Management

Hem Size:
Disk Size:
RefNum:

Aytes of nennry to be allocated to data segnent
Bytes on disk to be allocated for swapping segment
Identifier for data segment

SegPtr
Ldsn:
Dstype:

Address of data segment
Logical data segment number
Type of dataseg (shared or private)

MAKE_DATASEG creates the data segment identified by the path name ..
8eg1a'ne; and opens it for immediate read-write access. 8eg1a'ne Is a FHe
System pathname.
The parameter Mem_Slze determines how many bytes of main memory are
allocated to the segment. The actual allocation takes place in terms of
512-byte pages. If the data segment Is private (Dstype Is ds.J)rtvate),
t-01en,-Slze can be greater than 128 Kbytes, but you must ensure that enough
consecutlve LDSNs are free to map the enUre segment.
Disk_Slze determines the number of bytes of swapping space to be allocated
to the segment on disk. If Disk_Size is less than Mem_Slze, the segment
cannot be swapped out of main memory. In this case the segment is memory
resident until it is kllled or untll its size In memory becomes less than or
equal to its DIsk_Size (see SIZE_DATASEG~ The appllcatlon programmer
should be aware of the serious performance implications of forcing a segment
to be memory resident. Because the segment cannot be swapped out, a new
process may not be able to get all of its WOrking set into memory. To avoid
thraShIng ... each application should ensure that all of 1 ts data segments are
swappable before it relinquishes the attention of the processor.
The call1ng process associates a LogIcal oata segment Number (LDSN) wIth
the data segment. If this LDSN is bound to another data segment at the time
of the calL the call returns an error.
Refl\Un Is returned by the system to be used in any further references to the
data segment. The q:>erating System also returns SegPtr; an address pointer to
be used to reference the contents of the segment. ~r points to the base
of the data segment.
My error concJltlons are returnecJ In ErIl'Un.

4-4

I
I
I
I
I
I
I
I
I
I::

~l..........-~' .

I
I
I
I
I
I
I

t ,
\.....,-'

I
I

cperatfng System Reference Hanual HemolY /'-1anagement

When a data segment Is created, it Immediately becomes a member of the
'Working set of the call1ng process. You can use l.J',B11\[)_DATASEG to free
the LDSN.

4-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

QJeratlng System RefeIence HanlIal

4.7.2 KILL_DATASEG Memory Ma1agement System Call

KILL __ OATASEG (Var Ernun:lnteger;
Var ~ ale: Pattr'lCJle)

ErrNum: Error indicator
SegnatlE: NalOO of data segrrent to be deleted

Memory Management

When a process is flnished wIth a shared data segment it can issue a
KILL_DATASEG call for that segment. (KILL_DATASEG cannot be used on a
private data segment.) If any process, including the calling process, still has
the data segment open, the actual deallocation of the segment is delayed until
all processes have closed it (see CLOSE_DATASEG~ During the interim period,
however, after a KILL_DATASEG call has been issued but before the segment
is actually deallocated, no other process can open that segment.
KlLL_DATASEG does not affect the memberShip of the data segment In the
working set of the process. The Ref1'.lrn and ~tr values are valId until a
O-OSE_DATASEG call Is issued.
Ole important note: normally, when a data segment is closed, the contents
are written to disk as a file with the pathname associated with the data
segment. If, however, the program calls KILL_DATASEG on the data segment
before closing it, the contents of the data segment are not written to disk and
are lost when the segment is closed.

4-6

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
C

I
I

[perating System Refemnce Manual

4.7.3 CPEN_DATASEG Memory Malagement System Call

CPEN_DATASEG (Uar ErrtUn:Integer;
Uar ~:PatlTBlE;
Var RefNUm:lnteger;
Var SegPtr:Longlnt;

ErrNum:
Segname:
RefNum:

Ldsn: Integer)

Error indicator
Name of data segment to be opened
Identifier for data segment

MernolY Ma//agement

Segptr
Ldsn:

Pointer to contents of data segment
Logical data segment number

A process can open an existing shared data segment with CPEN_DATASEG.
The calling process must supply the name of the data segment (3eg1Crne) and
me Logical Data segment Numoer to oe associated wim It. The LDSN given
must not have a data segment currently bound to it. The segment's name is
determined by the process that creates the data segment; it cannot be null.
The qJeratlng System returns both Ret1\lLrn, an Identifier for the call1ng
process to use In future references to the data segment and ~tr, an
address pointer used to reference the contents of the segment.
When a data segment is opened, it immediately becomes a member of the
working set of the calling process. The access mode of the newly opened
segment is Reada11y. You can use SETACCESS_DAT~G to change the
access rights to Readwrlte. You can use U\l)JN:)._DATASEG to free the
LDSN.
You cannot use CPEN on a private data segment, since call1ng QOOE on a
private (jata segment aeletes 1 t.

4-7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

tpel"Btlng System Refemnce fvlanual

4.7.4 a...rnE_DATASEG I"1emory Mcrlagement System Call

CUJSE_DATASEG (Var ErrtUn:lnteger;
Reft«.In: Integer)

ErrNum: Error indicator
RefNulll: Data seglTEnt identifier

QOSE_DATASEG termInates any use of Refl\lrn for data segment operations.
If the data segment is bound to a Logical Data Segment Number,
QlJSE:_DATASEG frees that LDSN. The data segment Is removed from the
worKing set of the call1ng process. Reft\i.m Is made invalid. My references
to the data segment using the original ~tr wlll have unpredictable results.
If RefNlrn refers to a prIvate data segment, QOSE_OATASEG also K1lls the
data segment, deallocatlng the memory and disk space used for the data
segment. If RefJ\lrn refers to a shared data segment, the contents of the
data segment are written to diSK as if FLUS CDATASEG had been called. (If
KILL OAT ASEG Is called before CLOSE OAT ASEG, the contents of the data
segment are thrown away when the lase process closes the data segment.)
Tne fOllowIng procedure sets up a heap for LlsaGraf usIng the memory
management calls:

PROCElXH: In1toat~orllsaGraf (var ErrofCode:lnteger);
CONST HeapSlze=16384; (* 16 KBytes for g~lcs heap *)

D1SkSlze=16384;
VAR HeapBuf:LONGINT; (* pointer to heap for LisaGraf *)

Grafl~ap : Patrl*Vre; (it data segnBlt patti t"lCfOO it)
Heap_Refrun:INTEGER; (* refrun for heap data seg *)

BEGIN
GrafHeap:= 'gratneap';
OPEN_DATASEG(ErrorCOde,GrafHeap,Heap_Ref~HeapBuf,l);
IF (ErrorOOde<>O) THFN
BEGIN

IIfUTELN('lllaOle to ~. I Grafheap" 'Error 1s " ErrorCOde)
EM)
ELSE

EtI>;

InltHeap(POINTER(HeapBuf),POINTER(HeapBuf+UeapSlze)1
iiHe~rror);

4-8

)

I
I
I
I
I
I
I
I
I
I
I
I'
I
I
I
I

:0
I

t:peratlng system Refe.rence Manual

4.7.5 FLUSrCOATASEG Memory Mooagement system Call

FLUSI-COATASEG (Var Errt«.ln:lnteger;
Reftul: Integer)

ErrNum: Error indicator
RefNum: Data segment identifier

Memoty Management

FLUSt-CDATASEG writes the contents of the Clata segment lC1entlfleCl by
RefNLm to the disk. (Note that QOSE_DATASEG automatically flushes the
Clata segment before closing it, unless KILL_OATASEG was called first.) This
call has no effect upon the memory residence or bInding of the data segment.

4-9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

t:peratJng System Reference Manual

4.7.6 SIZE_DATASEG Memory Mcrlagement System call

SI1E_OATASEG (Var ErrNum:Integer;

ErrNum:
RefNum:

Refrun: Integer;
DeltaMemSlze:LongInt;

Var NelMemSlze:Longlnt;
Delta01SkS1ze:longlnt;

Var NelDiskSlze:longlnt)

Error indicator
Data segment identifier

Memory Management

DeltaHemSize: Aroount in bytes of change in meroory
allocation

NewHemSize:
DeltaDiskSize:
NeIl/DiSk.Size:

New actual size of segment in meroory
Aroount in bytes of change in disk allocation
New actual disk (swapping) allocation

SIZE_DATASEG changes the memory and/or disk space allocations of the data
segment referred to by Refl\lm Both Deltav1emSize and DeltaOiskSlze can
be either positive~ negative~ or zero. The changes to the data segment tak.e
place at the high end of the segment and do not destroy the contents of tne
segment unless data are lost In shrInking the segment. Because the actual
allocation Is done In terms of pages (512-byte blocks), the NewMemS1ze and
NeWOiSkStze retumea by SIZE_DATASEG may be larger than the old sIze plus
delta size of the respective areas.

If the Ne\oIDlskS1ze is less than the NewMemS1ze, the segment cannot be
swapped out Of memory. The appl1catlon programmer should be aware of the
serious performance implications of forcing a segment to be memory resident.
Because the segment cannot be swapped out, a new process may not be able
to get all Of its 'Working set into memory. To avoid thrashIng, each
application should ensure that all of its data segments are swappable before it
rellnquishes the attention Of the processor.

If the necessary adjacent LDSNs are available, SIZE_DATASEG can increase
the size of a private data segment beyond 128 Kbytes.

4-10

-------- -----------

. I

I
I
1',-

I
I
I
I
I
I
I
I
I
I
I
I
I
I,
IL

I

t:pemtlng System Refenmce Hanual

4.7.7 IN=O_DATASEG Mefoory Mcfragemellt System Call

ltEO_OATASEG (\far Errtbl:Integer;
RefIUn: Integer;

Var Oslnfo:OSlnfoRec)

ErrNum: Error indicator
RefNum: Identifier of data segrent
Dslnfo: Attributes of data segment

II\FO_DATASEG returns information about a data segment to the calling
process. The structure of the OSInf~ record Is:
REIlRl
t1em_Size:Longlnt (* Bytes of IlERDry allocated to data SEgIBlt *);
01sc_Slze:L(lYJInt (* ByteS of dISk space allocated to segBlt *);
~:Integer (* current rudJer of processes with ~t open *);
Ldsn:Integer (* LDSN for seonent birK1ifYJ *);
Br:lultF:Boolean (* True if segRBlt is txuld to LOSN of calling proc *);
Presentf:Boolecrl (* True if se(JlBlt Is present In nemry *);
Creatorf:Boolecnn (* True if the calling process Is the creator *)

(* of the segJBlt * l:
RWAccess:Boolefl1 (* True if the calling process has write access *)

(~ to segment *)
(1);

4-11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

[perat/ng System RefefBnce Manl1al

4.7.8 II'FO_LDSN Merrory Ma'lagement system Call
IN="O_LDSN (Var ErrtUII:lnteger;

Ldsn : Integer;
Var Ref tuft: Integer)

ErrNum: Error indicator
Ldsn: Logical data segrrent nl.Jl1tJer
RefNum: Data segment identifier

MemoIY Management

II'FO _ LDSN returns the refnum of the data segment currently bound to Ldsn
You can then use U"FO_DATASEG to get information about that data segment.
If the LDSN specified is not currently bOund to a data segment, the refnum
returned is -1.

4-12

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I "~ \ .G
I

cperatlng System Reference Hanual

4.7.9 It'FO_~SS Memory Ma1ageilleflt system Call

Itf=O_AlDlESS (Var ErrtUn:Integer;
Address:Longint;

Var Ref tun: Integer)

ErrNum: Error Inalcator

MemoIY Management

Address: The address about which the program needs information
RefNum: Data segrrent identifier

This call returns the refnurn of the currently bound data segment that
contains the address given.
If no aata segment that contains the address given 1s currently bound to the
call1ng process~ an error Inalcation Is returned in ErIN.m

4-13

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

cperatlng system Reference fvllnl8l

4..7.10 f'-IEM_II'FO Memory Mooagement System Call

HEM_INFO (var ErrNum:lnteger;
Var S~space;

oataspace;
cur cooes1ze;
Max=cooeslze:Longlnt)

ErrNUffi: Error indicator
Swapspace: Amount, in bytes, of SlIIappable system rrermry

available to the calling process
Dataspace: Amount, 1n bytes, of system mermry that the

calling process needs for its bOUnd data areas,
including the process stacK and the Shared
intrinsic data segment

Cur codesize: Size, in bytes, of the calling segment
Hax:codesize: Size, in bytes, of the largest code segment

within the address space of the calling process
This call retrieves information about the memory resources used by the call1ng
process.

4-14

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

qJeratfng System Reference Manual MemolY Management

4.7.11 SET AC:CESS_DAT ASEG I'1emory M<n:igefTIent System Gall

SETACCESS_OATASEG (var ErrtUn:lnteger;
RefttJn : Integer;
RecOJ11 y : Boolecrl)

ErrNum: Error indicator
RefNum: Data segment identifier
Readonly: Access mode

A process can control the kinds of access it is allowed to exercise on a data
segnent with the SETACCESS_DATASEG call. Refrun is the identifier for
the data segment. If Readonly 1s true, an attempt by the process to write to
the data segment results in an address error exception condition. To get
readwrlte access, set Reado11y to false.

4-15

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

QJeratlng System Reference Manual MemOlY Management

4.7.12 BINJ_DATASEG cnl LN3INJ_DATASEG f'o1erOOry I'1CJlagement system Calls

6INO_OATASEG{Var ErrNUm:lnteger;
RefttJn: Integer)

lH3INO_DATASEG(Var ErrtUn:Integer;
RefttJn: Integer)

ErrNum: Error indicator
RefNum: Data segment identifier

BINJ_DATASEG binds the data segment referred to by RefI\Un to its
associated LogIcal Data segment Number(s). U'-eINJ_DATASEG unbinds the
data segment from its LDSNs. BINJ _ DA T ASEG causes the data segment to
become a member of the current working set. At the time of the
BINJ_DATASEG call ... the necessary LDSNs must not be bound to a different
data segment. LN3INJ_DATASEG frees the associated LDSNS. A reference to
the contents of an unbound segment gives unpredictable results.
(pEN OAT ASEG and MAKE OAT ASEG define WhiCh LDSNs are associated
w1 tn a g1 ven data segment. -

4-16

I
I
I
I
I
I
I
I
I
I,

I
I
I
I
I
I
I ~. "
IV

I

Chapter 5
Exceptions and Events

5.1 Exceptions•....•......•...•.•....••..•.•..•....•..................... 5-1

5.2 Sy-stern-f)eftne Exceptions•......•...•.•..••••...••.•••.• 0 •••••••••••••••• 5-2

5.3 Exceptlon t-Bldlers••...............•...................... 0.0.0 •• 0 ••••••••• 5-2

5.4 Events ..•.......•...........•...........•...•.. 0 ••••••••••• 5-5

5.5 Event O&lnels•........•........... 0 •• 5-5

5.6 TIle system Clc:x;k ••••••• 0 ••••••••••••••••••••••••••••••••••••••• 0 •••••••••••••••••••••••••• 5-10

5.7 Exceptlon t 1anagemellt system Calls ... 5-10

5.7.1 IJE.CLAAE EXCEP ru ... 5-11
5.7.2 DISf\BLE EXCEP .:: .. 5-12
5.7.3 EN.ABLE -EXCEP .. 5-13
5.7.4 II\IfO EXCEP ... 5-14
5.7.5 SIGf\iA.L_EXCEP ... 5-15
5.7.6 FLlJSH_EXCEP .. 5-16

5.8 Event I'1cI tageC I lei It System calls ... 5-17

5.8.1 M,AJo<E_EVENT _CI-If'.J ... 5-18
5.8.2 KILL EVENT C~.............. 5-19
5.8.3 I:PEN- EVENT-~ .. 5-20
5.8.4 ClosE" EVENT C~ ... 5-21
5.8.5 INFO EVENT CI-fI\J ... 5-22
5.8.6 WAIT EVENT Crt-J .. 5-23
5.8.7 FLusFi EVENT Ct-f\/ .. 5-25
5.8.8 SEI'D_EVENT_~ .. 5-26

5.9 Cloct< System catls .. 5-27

5.9.1 ()ELAY TII"'I: .. 5-28
5.9.2 GET TIiVE ... 5-29
5.9.3 SET LOC,A,l TltvE DIFF .. 5-30
5.9.4 co\iVe:RT _ TIIVIE .. : ... 5-31

I
I
I
I
I
I
I
I
I
I,

I
I
I
I
I
I
I,·
Ll
I
I

Operating System 3.0 Notes

Chapter 5
Exceptions and Events

Event Channels (See Section 5.5)
Timed event channels have been removed.

Exceptions- 8I1d E~"ents

Event channels ere now memory-besed rather than disk-based. This mee.ns
that event channels are not preserved across system activations. If the
~tem is shut down, all event channels are deleted. Any data that must be
preserved should be read from an event channel and stored in a file until
needed the next time the system is booted.

In the example on page 'j-7, the boolean receiver is mistakenly set to TRUE
and then FALSE--it should be FALSE then TRUE.

SET_LOCAL_TlME_DIFF (See Section 5_9_31
The SET_LOCAL_TlME_DIFF clock system call has been removed.

Notes '-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I ",-,"<,

V I '.

I

5.1

Exceptions and Events

Processes have several 'Ways to keep informed about the state of the system.
Normal process-to-process communication and synChronization employ plpes~
shared data segments, or events. .A.bnormal conditions, InclUding those your
program may define~ employ exceptions (lnterrupts~ Exceptions are signals to
'Which the process can respond in a variety of ways under your control.

Exceptions
Normal execution of a process can be 1nterrupted by an except10nal condition
(SUCh as division by zero or reference to an invalld address~ Some error
condltlons are trapped by the hardware and some by the system software. The
process itself can define and signal exceptions of your choIce.
When ~ exception occurs~ the system first checks the state of the exception.
The three exception states are:

• Enabled
• Queued
• Ignored

If a system-defined exception is enabJet1, the system looks for an associated
user-defined handler. If none Is found~ the system inVOkes the default
exception handler, 'Which usually aborts the process that generated the
exception. If a user-defined exception is enabled~ the system invokes the
associated user-defined exception handler. You create a ne'W exception by
declaring and enabling a handler for it.
If the state of the exception Is qllt?llt?lt the exceptIon Is placed on a queue.
When the exception Is subsequently enabled, the queue Is examined and the
appropriate exception handler is invoked. Processes can flush the exception
queue.
If the state of the exception is ignoret1, the system detects the occurrence of
the exception~ but the exception is neither honored nor queued. Note that
ignoring a system-defined exception has uncertain effects. Although you can
cause the system to ignore even the SYS _ TERMINATE exception, that
capability is provided so that your program can clean up before terminating.
You cannot set your program to ignore fatal errors.
Invocation of the exception handler causes the Scheduler to run, so it is
possIble for another process to run between the slgnal1ng of the exception and
the execution of the exception hancHer.

5-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

{jJerating System Reference Manual Exceptions and Events

52 System-Deflned ExceptIons
Certain exceptions are predeflned by the Q:>erating System. These include:

• DIvisIon by zero (SYS_ZERO_DIV). The default handler aborts the process.
• Value out of bounds (that Is" range checK error) or 111egal string index

(SYS_ VALUE_oce~ The default handler aborts the process.
• Arithmetic overflow (SYS_OVERFLOW~ The default handler aborts the

process.
• Process termination (SYS _ TERMINA TE~ This exception is signaled when a

process termInates, or when there Is a bus error, address error, megal
instruction, prlvllege violation, or 1111 emulator error. The default handler
does nothIng. ThIs exceptton Is different from the other system-deflned
exceptions in that the program always terminates as soon as the exception
occurs. In the case of other (non-fatal) errors" the program Is allOWed to
oontinue until the exoeption is enabled.

Except where otherwise noted" these exceptions are fatal if they occur within
(llerating System code. The hardware exceptions for parity error, spurious
interrupt" and power failure are also fatal.

5.3 Exceptlm Hcnners
A user-defined exception handler can be declared for a specific exception.
Tnis exceptlon nanaler Is coaea as a proceaure out must fOllOW certaIn
conventions. Each handler must have two input parameters: Envlrorment_Ptr
and Data_Ptr. The ~erating system ensures that these pointers are vaUd
when the handler Is entered. Envirorvnent_ptr points to an area in the stack
containing the interrupted environment: regIster contents, condItion flags, and
program state. The handler can access this environment and can mOdify
everything except the program counter, register A7, and the supervisor state
bit in the status register. Data_Ptr points to an area in the stack containing
Information about the specifIc exception.
Each exception handler must be defined at the glObal level of the process"
must return", and cannot have any EXIT or glObal GOTO statements. Because
the ~erating System disables the exception before call1ng the exception
handler, the handler should re-enable the exception before it returns.
If an exceptlon handler for a given exception already exIsts when anotner
handler is declared for tnat exception, tne old handler becomes dissociated
from the exception.
An exception can occur during the execution of an exception handler. The
state of the exception determines whether it Is honGred,placed on a queue, or
Ignored. If the second exception has the same name as the exception that is
currently being handled and its state is enabled, a nested call to the exception
handler occurs. (The system always disables the exception before call1ng the
exception handler", however. Therefore", nested handler call1ng occurs only if
you explicItly enable the exception.)

5-2

I
I
I
I
I
I
1
I
I
I,

I
I
I
I
,I

I
I
I"-..J

I

t:perating system Reference Hanual Exceptions and Events

Tnere Is an exception-occurred flag, Ex_OCCUrrecl_f.. for every declared
exception; it is set whenever the corresponding exception occurs. This flag
can be examIned and reset usIng tne II'FO_EXCEP system call. once tne flag
is set it remains set untn FLUSI-LEXCEP is called.
The following program fragment gives an example of exception handllng.

PR~ I-Bder (Envlnnnent_Ptr:p_env_olk;
Dataytr.p _eX_data);

VAA El'l1'Ull:INTEGER;
BEGIN
(ttfnvlrorment_ptr points to a record contaIning tne progrcm ttl
(*COlI1ter cn:1 all registers... Data_ptr points to an array of 12 *)
(*longlnts that contain the event tleader cn:1 text If this hanaler ttl
(-is associated with an event-call ChCn1e1 (see belOW) *)

.
Ef'V;

BEGIN (-Main prognmtt)

ExcepJone:-'EndJfOoc';
OEQAAE_EXCEP _H1(errrun.excepJaneJilHCr1C1ler);

.
SI~_EXCEP(erflTUn..excepJlC:lne..excep_oata);

At the time the exception handler Is invoked for a SYS_ TERMINATE
exception, the stack Is as shown 1n Figure 5-1.

5-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

cperatlng System Reference Mant/8J Exceptions and Events

low add Tess
Un!<

Program Counter

Data_Ptr r----

r-- Envlronment_ptr

Terminate Flag

Exception Kind ~

Function Code (fc)

ACcess Address (aa) Exc epUon Data Block

Instruction Register (SY S _ TERMINATE Exception)

StaUJS Register
Program counter

...
~ Program Counter Exc eptlon EnvIronment Block

Status Regi steT
00-07 and AO-A7

Link

Program Counter

high address

Ft~ 5-1
Stack at Exceptlm Hc;n:21er Invooatlm

The Exception Data Block given here reflects the state of the stack upon a
SYS_TERMINATE exception. The Tenn_Ex_Data record (described in Appendix
A) gives the various forms the data block can take. The ExcepJ<lnd field (the
first" or Oth, ID1Qlnt) gives the cause of the exception. The status register and
program counter values in the data block reflect the true (current) state of
these values. The same data in the Environment block reflects the state of

5-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I

:1
I
I ,

'---I
I

tpef8tlng System Reference Manual Exceptions and Events

these values at the tlme the exception was slgnaled .. not the values at the
time the exception actually occurs.
For SYS_ZERO_DIV; SYS_ VAL UEJll3; and SYS_OVERFLOW exceptions, the
Hard_EX_Data record described in Append1x A g1ves the various forms that
the data block can take.
In tne case of a bUS or address errOL the PC (program counter) can be 2 to 10
bytes beyond the cunent instruction. The PC and A7 cannot be modified by
the exception handler.
When a dlsabled exception Is re-enabled; a queued exception may be signaled.
In this case .. the exception environment reflects the state of the system at the
time the exception was re-enabled, not the time at whiCh the exception
occurred.

5.4 Events
M event is a piece of information sent by one process to another" generally
to help couperatlng processes synChronIze their activities. An event Is sent
through a kind of pipe called an event channel. The event is a fixed-size
data block consistlng of a header and some text. The header contains control
information" the identifier of the sending process" and the type of the event.
The header Is wrItten by the system .. not the sendee and Is readable by the
receiving process. The event text Is written by the sender; its meaning Is
deft ned by the sending and receiving processes.
There are several predefined system event types. The predefined type "user" Is
assigned to all events not sent by the qJeratlng System.

5.5 Event c:tlaITlel'S
Event channels can be viewed as higher-level pipes. O1e important difference
Is that event channels require fIxed-size data blOCKS .. whereas pipes can
handle an arbitrary byte stream.
M event Channel can be defined globally or locally. A global event channel
has a glObally defined pathnarne catalogued in the FUe System and can be
used by any process. A local event channel, however, has no name and Is
known only by the ~ratlng System and the process that opened it. Local
event channels can be opened by user processes only as recelvers. A local
channel can be opened by the father process to receive system-generated
events pertaining to Its son.
There are two types of global and local event Channels: event-walt and
event-call. If the receIvIng process Is not ready to receive the event" an
event-walt type of event cnannel queues an event sent to It. An event-call
type of event channel, hoWever, forces its event on the process, In effect
treating tne event as CV1 exception. In that case, an exception name must be
given when the event-call event channel is opened, and an exception handler
for that exceptlon must be declared. If the process reading the event-call
channel Is suspended at the time the event Is sent" the event is delivered
when the process oecomes active.

5-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

cperstJng system Reference /'18ntJaJ Exceptions 8I7CI Events

wnen an event channel Is created, the qleratlng System preallocates enougtl
space to the channel for typ1cal Interprocess communication. If
SENJ_EVENT_c.::t-t-.Its called when the Channel dOes not have enough space for
the event, the call1ng process is blocKed until enough space is freed up.
If WAlT_EVENT_~ Is called When the channel Is empty, the Call1ng process
Is blOCked unUI a1 event arrives.

The followIng cOde fragments use event -walt channels to handle process
synchronization. ~rat1ng System calls used In these program fragments are
OOCllTleOted later In ttlls Chapter.

Process fl..:.

.
ctTI I"BIB := °event eta.el 1°;
e><ciption: ="; - -
racei ver : = :fflt:£; J;Ats"
tFEN_EVENT_Clfo4 (err1nt, ctYUUII!, refrual, exception, rece1ver);
ctTI __ I"BIB := 'event_da.el_Z';
receiver := FAlSE;
m:N_EVENT_Clfo4 (err1nt, arLrlCIIe, refrutl, ~tim, receiver);
wi tl1st .1EnJth : = 1;
waitlist.refnum[O] :; refnuRd;
REPEAT

event 1 Jrtr'" . [0] : = agree(C tp:J"L value;
interval.sec := 0; (it send event illllEdiately it)
interval.fIISeC : = 0;
SEN) _EVENT _~ (errint, reftuR2, eventl""ptr, interval, clktil1B);
WAIT_EVENT_~ (err1nt, waitl1st, refruD_sig1al1rlJ, event2""ptr);

.
(it processirYJ perfoI11l3d here it)

5-6

)
'--

I
I
I'\~--:

I
I
I
I
I
I
I
I
I
I
il
il

I
I ",,c;.,

I
L}

I

cperatlng System Reference ManuaJ Exceptions anCI Events

Process B:

ctIl IlCIIe : = 'event chcn1el 2';
excBptim: = "; - -
receiver :=.:JRE: fALSE.
CPfN _EVENT _ Cffi (errint, GtTUlCIll::, reflUltl, exreptlm., recel ver);
Ctrl raIE : = 'event chcn1el 1';
race1 ver : = -fN::SE;--r JZ.U E. -
{llEN_EVENTJBI (err1nt .. CtrlJI8E, refrunl,except1~ receiver);
wa1t11st.length := ~
waitlist.refnum[O] := refnum1;
REPEAT

event2 for" . [0] : = agreed _l.pl'l_ value;
interval.sec := 0; (* serl1 event iRlEdiately *)
interval. msec : = 0;
WT_EVENT_ctfl (errlnt, waitl1st .. refrUl,-sl~ling, eventl,...Ptr):

.
(* processing perfonred here *)

.
SEN>_EVENT_t:::tfl (errlnt .. refl'UltZ, event2Jltr, interval .. clktitE);

~TIL AllflC:X'E:

The order Of executlon of the two processes 1s the same regardless of the
process prtortties. Process swItCh always occurs at the WAlT_EVENT_~
call.
In the following example using event-call channels, process switCh may occur
at different places. in the programs. Process A calls YIELD_CPU, which gives
the CPU to Process B only if Process B Is ready to run.

5-7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

t:peratJng System Refe.rence MInIaI

Process A:

PROO:IXft: HEnller(ErNJ)tr :p_f:l'N_blk;
DataJ)tr :p_ex_data};

.
BEGIN

event2J)tr A

• [0] := agreed_l4Dl_Wlue;

.
(* processirlJ perfol'Ed here *)

.
Interval.sec := 0; (* serd 8\W1t t.Ed1ately *)
interval.1ISf!IC =. 0;
SEN)_EVENT_~ (errtnt, refrIa2.., event2...Ptr, interval, Clkt1E);
to_any :- true;
VlElDJJllJ (enInt, to_any);

ENl;

[£f1fft:_Exa:F _JO.. (errint .. excep_~_l .. ilHaMler);
ctrl_t'laE : = 'event_dlCJ'YlEH_l";
except1oo: .. excep_flCIRB _1;
recei ver : = TRt.E;
lFEN _EVENT J)fl (errint, ctTLI"laIE, refrunl, eXlleptlon, receiver);
ctrl naIIe : = 'event cta'Ilel 2';
receiver : .. FILSE; - -
exception:= ":
CJlEN _EVENT _ ()f4 (err1nt .. Ch"UlMe" reff1.lltZ., e)CDflJ)tlc:JO, rece1 ver);
SENl_EVENT_Dtf (entnt, refrIa2.., event2...,Ptf,,1ntervaL clkt1E);
to_any :. true;
YlEl03PU (errInt .. to_any);

5-8

I
I
I
I
I
I
I
I
I
I,
I
I
I
,I
,I
I
I.
I

f

~;

,I

t:per8tJng System Reference Manual Exceptions and Events

Process B:

fIfIXBUlE HBndler(EovJ)tr :p_env _blk;
DBtaytr :p_eliLdata);

.
fEGIN

eveot2...ptr'" . [01 : = agree«:U.4J(ll_ value;

.
(. processlrg perfOl'Ed here .)

.
interval.sec := 0; (* send event immediately *)
Interval.mseo := 0;
SEND_EVENT_CHN (errlnt,refnuml,event2...ptr,intervaL clktlme);
to a'ly ::: true;
YIELD_CPU (errlnt,to_a'lY);

EIt);

.
BEGIN (*Haln progran *)

OEClARE_EXCEP_HDl (errint,excep_namBj_l,aHandler)
em·f'l(JII} : = • event chaTle 1 1'·
exception: .. excepjlane_l; - II

receIver -= FAlSE;
exception;;:; ";
(Jl£N_EVENT -CHN (errlnt, em3laE, refnuml, exceptim .. rece1ver):
em I'\fIIE : :: • event ChCrYlel 2';
receiver := TRl£; - -
(Jl£N_EVENT_Df4 (errlnt .. em_l'lCIE .. refruQ .. exception" receiver);

END.

5-9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

t:peI8tlng system Reference Hantl8J Except/ens tn1 EventS'

7
5.6 TIle System Cloa< ~ •

A process can read the system clock time, convert ItJ .. ocal time, or delay
its own continuation untll a given time. The year![flOrl_ day, hour, minute,
second, and millisecond are available from the clocK.'"'""The system clocK is set
up tnrough the WOrKsnop Shell. For more information, see tne WO.rkS'/JqJ US'er's
Guide for tile LIS'a.

5.7 ExcepUm M<:J I8gellle"t system calls
This section describes all the q>eraUng system calls that pertain to exception
management A St.II1ll1ary of all the CperaUng System calls can be found In
~lx A. The following special types are used in exception management
calls:

T _ex_rae = STRINi[16];
Lorgm = "l~lnt;
T_eX_data = Array [0 .. 11] Of l~lnt;
T ex sts = Record
- - ex occurred f:bOOlea1;

ex-state:t ex state;
M_excep: Integer;
hdl_ adr : l«:ngadr;

end;
T _ e~ state = (eralled, (JJeUed, i~red);

5-10

I
I
I
I
I
I
I
I
'I
I~

I
I
I
" I
,I
j

il
I

II r""
ii\....;'

I 11

{jJerating System Reference Manual Exceptions and Events

5.7.1 a:QARE_EXCEP _H:l... Exceptlon Management System Call
I:ECLARE_EXCEP In.. (Var Erl1tJn:lnteger;

Var E:xcep _ NcJoo : t _ex JalE;
Entry_Polnt:LongAdr)

ErrNum: Error indicator
Excep_Name: Name of exception
Entry_point: Address of exception handler

a:CLARE_EXCEP J-o. .. sets the ~erat1ng system so that the occurrence of
the exception referred to by E:xcep_Ncme causes the execution of the
exception handler at Entry _Polnt
E:xcepJ"-ane Is a character str1ng name with up to 16 characters that Is
locally defIned in the process and known only to the process and the (lleratlng
System. If Entry_polnt is nll and ExcepJ".Jane speclfies a system except1on~
the system default exceptIon handler Is used. Any prevIously declared
exception handler Is dissociated by this call. The exception itself is
automatically enabled.
If any Excep_Name exceptions are queued at the time of the
Dfa..ARE_EXCEP -,-0.. call, the exception is automatically enabled and the
queued exceptions are handled by the newly declared handler.
You can call DECLARE_EXCEP _HJL with an exception handler address of nil
to dissoc1ate your handler from the except1on. If there Is no system handler
deflned~ the program that signals the exception receives an error 201.

5-11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

qJefBtlng System Refel8l7Ce M8I7Ual

5.7.2. DISABlE_EXCEP Exceptlm Mall8gefT'leflt System Call

DISAa.E_E)((E' (Var ErrttJl:lnteger;
Var Excep NcJne:t ex name;

Queue :Booleal)" -

ErrNum: Error indicator

Exceptions and Events

Excep_Narne: Narre of exception to be disabled
Queue: Exception queuing flag

A process can expllclUy diSable the trapping of an exceptlon by call1ng
OI5.68...E_EXCEP. Excep_NcJne is the name of the exception to be disabled.
If QJeue is true and an excepUon occurs, the excepUon Is queued and Is
hcn:Jled when It Is enctJled again. If Queue is false, the exception is Ignored.
When an exceptlon handler Is entered, the state Of the exceptlon In questlon
Is automaUcally set to queued.
If an exceptton hanOler IS assoclatea tnrougn lPEN_EVENT_~ Wltn an
event channel and DISABLE_EXCEP Is called for that excepUon, tnen:

• If Queue Is false, and if an event Is sent to the event channel by
SEN) EVENT a-N, the SEJ\D EVENT a-N call succeeds, but It Is
equlvciient to not call1ng SENJ_EVENf_a--N at all.

t If Q.JeUe 1$ true, and If an event Is sent to the event chamel by
SEN) EVENT ct-N" the SEN) EVENT a-N call succeeds and a call to
WAlT:EVENT:()-tII receives the event:" thUS dequeulng the exceptlon.

5-12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
,I
I

II"
~;

I
I

q;emtJng system Refereme fv1ln.I8l

5.7.3 ENABLE_EXCEP Exceptloo Mall8gefnellt System Call

ENAR£_Exa::P (uar ErrtUl:lnteger;
Var Excep-flCllE:t_ex_tKIII!)

ErrNum: Error indicator

ExceptJoos WId Events

Excep_Name: Name of exception to be enabled

EN.ABLE _ EXCEP causes an exception to be handled again. Since the
ClJerating System automatically disables an exception when its exception
handler is entered (see DISABLE_EXCEP), the exception handler ShOuld
explicitly re-enable the exception before it returns to the process.

5-13

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Q:JeJatlng System Refe.rence Manila}

5.7.4 IN=O_EXCEP ExcepUOO Mauagemeflt system Call
IN='O_E>«l:P (var ErrtbD:lnteger;

Var Excep_NiJle:t_ex_raE;
Vat Excep_status:t_9x_stS)

ErrNum: Error indicator
Excep J6Te: Hatre of exception
Excep_Status: Status of exception

Exceptions and Events

IN=O_EXCEP returns informatIon atlOut the exceptIon specified by
Excep_Ncme. The parameter Excep_status is a record contalning information
abOUt the exception. ThIs record contains:

t_ex_sts = REIXH) (. exceptl00 status .)
Ex_ocrurl'e(1_f:BOOlem; (-exceptl00 ocrurred flag *)
Ex_state:t_ex_state; (- exception status -)
ttJIL9xcep:lnteger; (-00. Of exceptions (J.8Jed *)
Hdl_adr:LCIlgadr; (-exceptl00 t'8XIler"s address .)

EN>;

cnce EX_OCCl.D'led_f has been set to true, only a call to FLUSH_EXCEP can
set It to false.

5-14

I
I
1\,-

I
I
I
I
'I
1
I
I
I
I

:1

I
I
I .,
l) "

I'
I

"

t:pel'8ting System Reference M8ntI8J

5.7.5 SIGNAL_EXCEP Exceptloo Management system call
SIlM.._EXCEP (var ErrtUl:Integer;

Var Excep _ NaIIe: t _ex _ f"Be;
Var Excep_Data: t_ex_data)

ErrNUm: Error indicator

Exceptions and Events

EXC8P_name: Name of exception to be signaled
Excep_Data: Information for exception handler

A process can sIgnal the occurrence of an exception by calling
SIGNAL_EXCEP. The exception h<I'lCJler associated with ExcepJ'iBne Is
entered. It Is paSSed Exa!P_Data a data area contalnlng Information aboUt
the nature a1d cause of the exception. The structure of this information area
Is:

array[O .. slze_exdata) of U:nglnt

SIGNAL_EXCEP can be used for user-defined exceptions and for testing
exception handlers defined to handle system-defined exceptions.

5-15

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

qJeratJng System Reference I'18nlI8J

5.7.6 FLl&i_EXCEP ExcepUon Management System Call
FlUSl-CE)((El (Var ErrtUR:lnteger;

Var Excep JBIe: t _ ex_l'liIIE)

ErrNum: Error indicator

ExceptJCK1S I!Y1C1 Events

ExcepJ~ame: Name Of exception WhOse queue 1s flushed

FLU9'CEXCEP clears rut the ~ associated with the exceptlon
E)«(~:U'8ne and resets 1 ts "exception occurred" flag.

5-16

)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
:1

II
i

:1 r"C

"
I ~" II ""
i

1.1

cpel7:1t/~ system Reference /V/inJal Except/ens tn1 Events

5.8 Event Management system Cans
This secUon describeS all the qJerattng system calls that pertain to event
management A st.mnary of all the q>eratlng System calls can oe found In
Appendix A. The following special types are used In event management calls:

Pat.l'1"H1E = SlRltli[255];
T_ex_naIIe = STRltIi[16]:
T em sts = Record
- - cIYl_type:ctrl_kind;

rUII_ events: integer;
open_recY : integer;
open_send:lnteger;
ec_~ :path1ame;

end;
ctrl_kind = (wait_ee, call_ee):
T waltllst = Record
- lergth : integer;

refrun:array [0 .. 10] of integer;
erKl;

P r eventblk = "r eventblk;
R:=eVentblk = RecOTd

event header: t eI'1ecI:Er;
event-text: t eVent text;

end; - - -

T eheader = Record
- senDjpid:longlnt;

event_type:longlnt;
end;

T _event_text = array [0 •. 9] Of longint;
P s eventblk = "s eventblk;
S eVentblk = T event text;
TIllEstllfl_lntenial = Rerord

Tine Tee ;; Record

sec: longlnt;
1ISeC:0 •• 999;

end;

- year: Integer;
day: 1. .366;
hour:-23 .. 23;
lI1J1Jte: -59 . .59;
second:O •• 59;
msec:O •. 999;

erK1;

5-17

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

QJeratlng System Reference ManiJaJ Exceptions and Events

5.8.1 MAKE-'~VENT_a-N Event M<rlagement system Call

t1AKE_EVENT_Dfl (Var ErrtUl:lnteger;
Var Event _ D'Il_Nane :Pattnc:JtB)

ErrNum: Error indicator
Event_Chn_Name: Pathname of event channel

MAKE_EVENT_D-I'I creates an event channel with tne name given In
Event_OTl_Ncsne. The name must be a File System pattlnarne; it CarnJt be
null.

5-18

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I U

I

QJemtlng System Reference Manual

5.8.2 KILL_EVENT_CI-f\I Event Ma'lagement System Call

KILL_EVENT_Ctfl (var ErrtUn:Integer;
Var Event_ 011_ Ncme: PattTalE)

ErrNum: Error indicator

Exceptions and Events

Event_Chn_Name: Pathname of event channel

To delete an event channel, call KILL EVENT a--f\t The actual deletion Is
d~layed until all processes usIng tne event cnannel nave closed 1t. In the
perIOd between the KILL_EVENT_Q-I\I call and the channel's actual deletion,
no processes can open it. A channel can be deleted by any process that
knows the channel's name.

5-19

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Q.JeratJl7g System Reference Manual

5.8.3 CPEN_EVENT_CH'.I Event Ma1agement System Gall

(llEN_EvENTJ:n~ (var ErrNlm:lnteger;
Var Event DTI Name: PattTlaflB;
Var RefnUm:lnfeger;

Excep _ NanE : t _ex _.Ik:IIE;
Rece1ver:Boolean)

ErrNum: Error indicator

Exceptions and Events

event Cnn Name: Patnname of event cnannel
RefNum: - Identifier of event channel
Excep_Name: Exception name, if any
Receiver: Access mode of calling process

(PEN_EVENT _0-1\1 opens an event channel and defines its attributes from ttle
process point Of view. Reft\Un is returned by the ~erattng System to be
used in any furtner references to the channel.
Event_Ch'1_Name determines whether the event channel Is locally or globally
defined. If It Is a null string, the event channel Is locally defIned. If
Event_Gm_N<:Ine is not null, it Is the File System pathname of the ct)annel.

ExcepJ~Clne determines whet.tler the channel is an event-wait or event-call
channel. If it is a null string, the channel is of event-wait type. Otherwise,
the channel is an event-call channel and EXCep_Ncme is the name of the
exception that is signaled when an event arrives in the channel. ExcepJ'ane
must be declared before Its use In the CPEN_EVENT_a-t\I call.
Receiver 1s a Boolean value Indicating Whether the process 1s opening the
Channel as a sender (Receiver Is false) or a receiver (Receiver is true~ A
local Channel (one wIth a null pathname) can be opened only to receive
events. Also, a call-type channel can only be opened as a receiver.

5-20

}

I
I
I
I
I
I
I
I
I
1\
I
I
I
I
I

I
I

,:'
~'

t:perating system Reference /'-'/a?tIal Exceptions and Events

5.8.4 aJlSE_EVENT_a-N Event Mmagement System Call

CUlSE_EVENT_Dfl (Var ErrttJn:lnteger;
Refrt.ln: Integer)

ErrNum: Error indicator
RefNum: Identifier of event channel to be closed

QOSE_EVENT_Q-I\I closes the event chamel associated with Refl\km. Arly
events queued in the channel remain there. The channel cannot be accessed
until it is opened again.
If the channel has previously been k1lled with KILL_EVENT_~, you cannot
open It after It has been closed.
If the channel has not been ktlled, it can be opened by (PE~CEVENT_a-N.

5-21

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

C/Jeratjng System Reference Manual

5.8.5 IN=O_EVENT_CH\I Event M<r1agement System can
UFO_EVENTJ)·f,I (var Errt«Jn:lnteger;

Renun: Integer;
Var Chn_Info:t_Chn_sts)

ErrNum: Error indicator
RefNum: Identifier of event channel
Chn_Info: Status of event channel

Exceptjons and Events

It\FO_EVENT_a-N gives a process information about an event channel. The
qJerating System returns a record~ cm_Info~ with information pertaining to
the channel associated with Refl\Un

The definition of the type of the CtyUnfo record is:
t em sts :::;
- -RECOOO (it event Charrlel status it)

Chn_type:Chn_kind; (it wait_ec or call_.ec it)
NLlILevents:lnteger; (it I'Ultler of queued events it)
(~)erLrecv:lnteger; (it ruJtJer of processes reading chcn1el it)
Open_sem:lnteger; (it 00. of prooesses semlng to tnls

chaTlel it)
Ec JlCII1e : pathrlarre; (it event Charrlel narre it)
Etl);

5-22

I
I
I
I
I
I
I

I
I
I
I
I
I
I
I

L;

t:perating System Reference Manual

5.8.6 WAIT_EVENT_a-f'J Event MCrlagement System Call

.AIT_EVENT_CHN (var ErrNUm:lnteger;
Var ~it list:t waitlist;
Var RefNUm:lnteger;

Event_ptr:p_f_eventblk)

ErrNum: Error indicator

Exceptions and Events

Wait_List:
RefNum:
Event_Ptr:

Record with array of event channel refnums
Identifier of channel that had an event
Pointer to event data

WAIT_EVENT_Q-f\I puts the call1ng process In a waiting state pending the
arrival of an event in one of the specified channels. Walt_List Is a pointer to
a list of event channel identifiers. When an event arrives in any of these
channels" the process is made ready to execute. RefNJn Identifies whIch
channel got the event" and Event_Ptr points to the event itself.
A process can walt for any Boolean combination of events. If it must walt
for any event from a set of channels (an CR condition)" It should call
WAlT_EVENT_Ct-N with Walt_list containing the list of event channel
Identifiers. If. on the other hand" It must walt for all the events from a set
of channels (an AN) condition)" then for each channel in the set"
WAIT_EVENT_Q-I\J should be called w1th Walt_list containing just that
channel identifier.
The structure of t_waltlist is:

RECOOD
Length : Integer;
Refnum:Array[O .. slze_waltllst] of Integer;

EI'-();

Event_ Ptr is a painter to a record containing the event header and the event
text. Its definition is:

P r eventblk = ~r eventblK;
(~eVentblk = Recoro

event header: t eheader;
event=text:t_event_text;

end;
T etleOOer = Record
- sen(tPld: longlnt;

event_type:longlnt;
end;

T_event_text = array [0 .. 9] of longlnt;
senctpid is the process id of the sender.

5-23

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

cperatfng system Refemnce Manual ExceptIons and Events

Currently ~ the possIble event type values are:
1 Event sent by user process
2 Event sent by system

When you receIve the SYS_SCN_ TERM event, the first longlnt of the event
text contains the termination cause of the son process. The cause Is same as
that gIven In the SYS_ TERMINATE except10n given to the son process. The
rest Of the event text can be f1lled by the son process.
If you call WAIT_EVENT_a-t\I on an event-call channel that has queued
events, the event Is treated just like an event In an event-walt channel. If
WAIT_EVENT_Q-I\t Is called on an event-call channel that does not have any
queued events" an error 1s returned.

5-24

I
I
I
I
I
I
I
I
I

.1
il
1 I' , :. ,-,.
!I

t:pefalfng system Refefence I'-1cn.Ial

5.8.7 FLUSH_EVENT_D--I'J Event Ma1agement System Call
FlUSH_EVENT_CHN (Var ErrNum:Integer;

Reftt.ln: Integer)

ErrNum: Error indicator

£weplfons and Events

RefNum: Identifier of event channel to be flushed

FLUSI-LEVENT_D--I'J clears out the specifted event channel. All events
queued in the channel are removed. If FUJSt-LEVENT_ct-I\I is called by a
sender, 1 t has no effect.

5-25

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

cpef8ting System Reference Manual

5.8.8 SE~_EVENT_a-N Event MCJ'lagement system Gall

SEf'lLEVENT_~ (Var ErrfUn:lnteger;
Ref~:Integer;
Event_ptr:p_s_eventblk;
Interval:Timestmp_interval;
Clktime:Time rae)

ErrNum:
RefNum:
Event Ptr:
Interval:
ClktilOO :

Error indicator
Channel for event
Pointer to event data
Tirer for event
Time data for event

Exceptions and Events

SE~_EVENT_Q-I\I sends an event to the channel specified by Refl\lrn.
Event_ptr points to the event that is to be sent. The event data area
contains only the event text; the header is added by the system.

If the event is Of the event-walt type, the event is queued. otherwise the
~erat1ng System signals the corresponding exception for the process receIvIng
the event.

If the channel is opened by several senders, the receiver can sort the events
by the process identifier, which the (),:leratlng System places in the event
header. Alternatively, the senders can place predefined identifiers, which
Identi fy the sender, in the event text.

The InteJVal parameter indicates whether the event Is a timed event.

NJTE

Timed events wllI not be supported In future releases of the ~erat1ng
System. The Interval and CIKtime parameters wm be Ignored In future
releases. If you want your software to be upward-compatlble, always
set both fieldS of the Interval parameter to zero.

Tlrnestn'lJ_lnterval is a record containing a second and a millisecond field. If
both fIelds are 0, the event Is sent Immediately. If the second given Is less
than 0, the mlll1second field Is ignored and the Time_reG record is used. If
the time in the TlmeJec has already passed, the event Is sent immediately.
If the mlllisecond field is greater Ulan 0, and the second field Is greater than
or equal to 0, the event is sent that number of seconds and mllliseconds from
the present

A process can time out a request to another process by sending 1 tsel f a timed
event and then waiting for the arrival Of either the timed event or an event
Indicatlng the request has been served. If the Umed event Is received f1rst,
the request has timed out. A process can also time Its own progress by
perIodIcally sendIng Itself a Umed event through an event-call event channel.

5-26

I
I
I;

I
I
I
I
I
I
I
I
I
I
I
I
:1
I
.'-'
I

t:peIating System RefeIenCe f'vlanuaJ Exceptions and Events

5.9 ClOCk System callS
This section describes all the ~erating System calls that pertain to the clock.
A summary of all the ~erat1ng system calls can be found in Appendix A.

The following special types are used in clock calls:

Timestmp_lnterval = Record

Time rec = Record

sec: longlnt;
msec:O •• 999;

end;

- year:lnteger;
day:!. .366;
hoUr: -23 .. 23;
mirute: -59 .. 59;
second: o .. 59;
msec:o . . m;

erd;
Hour_range = -23 .. 23
Hlrute _r~ = -59 .. 59;

5-27

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

QJemting System RefeJ'ence M8I7lJai

5.9.1 l:l:LAY _TII"E ClOCk System Call

DELAV _THE (var ErrtUn: Integer;
Interval:Timestmp interval;
Clktime:Time_rec)-

ErrNum: Error indicator
Interval: Delay timer
Clktime: Time information

Exceptions and Events

l:l:LA Y _ TIl'1.: stops execution of the calUng process for the number of seconds
and m1lliseconds specified in the Interval record. If this time perIod is zero~
l:l:LAY TIl'1.: has no effect If the period 1s less than zero~ execution of the
process 1s delayed until the time specified by Clktlme.

5-28

I
I
I
I
1
1
1
1
1
I,

1
1
I
I
I
I
~I ~' ,

,I L/
i

:1

cperating System Reference M8f7()sl

5.9.2 GET _ TIr-£ ClOCk System Gall

GET_TItt: (var ErrttJn:lnteger;
Var Sys_Tlme:Tlme_rec)

ErrNum: Error indicator
Sys_Tlme: Time information

Exceptions and Events

GET_lll"E returns the current system clock time in the record Sys_T1me. The
rnsec field of Sys_ Time always contains a zero on return.

5-29

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

t:pefiitfng system Reference Hamal

5.9.3 SET_LOCfiL_TItvE_OIFF Cl()Ck. system Call

SET _LOCAL_ TltE_DIFF (Var Errnun: Integer;
tbJr : tbJr _ IC:Ilge;
Hlnute:Hlnute_range)

ErrNum: Error indicator

Exceptions and Events

Hour: Number of hours difference from the system clOCK
Minute: Number of minutes difference from the system clocK

SET _LOCAL_ TIfvE_DIFF informs the ~erat1ng System of the difference in
hours and minutes between the local time and the system clock. Hour and
Mtrute can be negative.

5-30

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

;'

'-.-/

cpemt/ng System Reference Manual

5.9.4 a::NVERT_TIM: Clod< System can

COWERT TItt: (Var ErrtUn:lnteger;
- Var Sys _TillE : TillE_rae;

Var Local TillE: TillE rae;
To_sys:Boolean)-

ErrNum: Error indicator
Sys_Time: System cloCk time
Local Time: Local time
To_sis: Direction of time conversion

Exceptions and Events

aNVERT _TIM: converts between local time and system cloCk time.
To_Sys is a Boolean value indicating in which direction the conversion Is to
go. If To_Sys Is true, the system takes the time data in Local_TIme and puts
the corresponding system time in Sys_ TIme. If To_Sys Is false, the system
taKes tne time data 1n sys_ TIme and puts the corresponding local time In
Local_Time. Both time data areas contain the year, month, day, hour; minute;
second ... and millisecond.

5-31

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I/r~h'>'
~ I"" '

I

6_1

Chapter 6
Confi9Jration

Configuration system Calls __ . _______ 6-1

6.1.1 READ PMEM _ _ .. 6-2
6.1.2 GETNXTCONFIG .. 6-3
6.1.3 MACH INFO " ______ " __ ,, ... 6-5
6.1.4 CARDS_EQUIPPED .. 6-6
6.1.5 OSBOOTVOL ... 6-7

1
1
I:"

I
1
I
I
I
1
I,
I
I
I
1
1
1
1

J

I~'

1

6.1

Confi9Jration

Every Lisa system is configured using the Preferences tooL Preferences
places the configuration state of the system in a special part of the system's
memory called PlJTl1IT1tJttIT merru'T}': Every time pm-amete.r memory is
changed~ a copy of the new data is made on the boot disk. If the contents
of parameter memory are lost~ this disk copy is automatically restored to
parameter memory.

Several calls ere provided that allow programs to request information about
the configuration of the system.

Conriguration System C81ls
This section describes all the Operating System calls that pertain to
configuration. A summary of all the Operating System calls can be found in
Appendix A. Special data types used by configuration calls are defined along
with the calls.

6-1

1
1
1
1
1
1
I
1
I
1
1
1
I
1
I
1
1
I
,I

Configuration

6..1.1 READ_PfIIEM Contipation system Call

1£fI)JftJ1 (Var E:r.INta:lnteger; Var R1rec:Pl'tellRec)

ErrNlI1l: Error code
PHrec: Contents of parameter memory

READ_Pfl.tEM returns the contents of parameter memory 1n PMrec. The
contents of PfVk-ec are not to be interpreted by the caller. This routine
exists for the purpose of obtaining PMrec so that FM'ec can be passed to
the other configuration procedures described in this chapter.

6-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
G' I

I

Operating System Reference Manus}

6.1.2 GETNXTCONFIG Configta"ation System Call

~flG (Var Er.rN1.n:lnteger;
Var NextEntry:Longint;
Var Prtrec :flt'IeIIRec;
Var Config:ConfigDev)

ErrNum: Error code
NextEntry: Enumeration index
PMrec: Contents of parameter memory
Config: Configuration entry

Configuration

GETNXTCQN=IG is used to enumerate device configuration information.
NextEntry = 0 is passed by the caller to start the enumeration. After the
first call to GETNXTCONFIG, the caller passes the previously returned value
of NextEntry on each subsequent call to GETNXTCONFIG. The Operating
System updates the value of NextErtry with each call. The enumeration is
done using the caller's copy of parameter memory (obtained by calling
READ_PMEM) which is input in PMrec. Upon return from the procedure,
Cortig holds the next configuration record that was extracted from the copy
of parameter memory. ErrNlnl = 799 1s returned when no more configuration
entries are available.

The Coriig record contains:

pos; cd-positioni
nExtWords: byte; (*number of valid ExtWords following*)
ExtWords: array[1 .. 3] of Integer;
DriverID: longint;
DevName: e_name;

where cd_pOSition = record
slot, chan, dev: byte

end;

The pO! record of three bytes indicates the position of the device being
described. DevNarne is a character string representation of this pOSition.
The characteristics of the device can be obtained by calling LOOKUP and
passing -DevName as input. Table 6-1 shows the device names" as well as
the aliases, which may be substituted for DevName in any Operating System
call.

6-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Operl1ting System RttferlJf1Ctf Manus} ConfigurtJtion

Table 6-1
Device N8ITleS

SlQt Ch~ Dev DevNeITle Alias Descrigtio[]
1
1
1
2
2
2
3
3
3

10
10
11
12
13
14
14
15
15

0 0 111 SLOT 1 Peripheral at slot 1
x 0 #1#x SLOTICH~x at slot 1 channel x
x Y #1#xlly SLOT 1CH~xDEVy at slot 1 channel x device y
0 0 #2 SLOT2 Peripheral at slot 2
x 0 #2#x SLOT2CH~x at slot 2 channel x
x Y 112#x#y SLOT2CH~xDEVy at slot 2 channel x device y
0 0 #3 SLOT3 Peripheral at slot 3
x 0 #3#x SLOT3CH~x at slot 3 channel x
x Y #3#x#y SLOT3CHANxDEVy at slot 3 channel x device y
1 0 #10#1 RS232A Serial Port A
2 0 #10#2 RS2328 Seri a1 Port B
0 0 #11 PAR APeJH Paral1 e1 Port
0 0 #12 LPPER or PAR~T Hard disk on Lisa 2/10
0 0 #13 LOWER Sony Drive
1 0 #14111 lPPER Upper floppy on LIsa I
2 0 #14#2 LOIER Lower floppy on Lisa 1
1 0 #15#1 ALTa::tBOLE Alternate Console
2 0 #15112 MAI~LE Main Console

ExtlNm'ds contains optional extension words. If the device is a printer,
Ext.WtII"ds[l] contains the following;

I\fl1R)

printer_flag: boolean;
deffWlt_rle.g: boolean;
printerlO: 14 bits

(. = true(1) .)
(. true if it's the defCllUlt printer·)
(. unique printer 10:

32 = IlHM]tMrtter / II [I'P
33 = Daisy Mheel Printer
35 == Ink Jet Printer .)

DrivSl"JO contains the unique driver 10:

32 == Serial Cable
33 = Parallel Cable
34 == 2 Port Card
35 == Profile
36 .. Sony
37 .. Priam Card
38 .. Priem Disk
39 .. Archive Tape
40 == Console
42 .. Modem A

6-4

I
I
I
I
I
I
I
I
I
I,
I
I
I
il

I
,I
: I .
I .{'
! l

11'-1
I.

Operating system RefBTence Manual

6.1..3 MACH_INFO Configurutiun System Call

HfDCINfO (Var ErItIUI:lnteger;
Var The_info:Hinfo)

ErrNum: Error code
The_info: Type of Lisa being used

Configuration

MACH_INfO ret.urns an array, The_irI'o, showing the CPU board, 110 board
and memory board in use:

lIinfo = fEIlR)

cp'Cboard.l iO_OOm'"d, ,.:;size: longint
00;

cP'cboard always returns O. mem_size returns the number of bytes in
memory. io_board returns:

o = Lisa 1
1 = Lisa 2/10
2 = Lisa 2, Lisa 2/"j, or Lisa 1 upgraded t.o use micro diskettes.

6-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Operating SJ,·'Stem Reference Manual

6.1.4 CARDS_EQUIPPED Config..-ation System Call

CfHlS_UUIPfIED (Ver E:nfUI:lntegeri
Ver In_Slot:Slot_array)

ErrNlI1\: Error code
In_Slot: Identifies the types of cards configured

Configuration

CARDS_EQUIPPED returns an array showing t.he types of cards which are in
the various card slots.

The definition of Slot._BlT&Y is:

slot_8lTay = 8lTay [1. .3] of integeri

where the array values may contain:
o = no card present
2 = 2-port parsHel card
5 = Priam card

6-6

I
I
I~·

I
I
I
I
I

I
I
I
I
I
I
I
I
I

.......

l

~/

Operating S),.'Stem Reference f..1a.nual

6_1.5 OSBOOTVOL Cortig..-aion System Call

CfBlJlV(L (Var E:nHta:Integeri var VolHale: e_rNIIe);

ErrNum: Error code

Configuration

VolName: Identifies the device name for the boot volume

OSBOOTVOL returns the device name of the boot volume. This port might
not be the port configured for the boot volume, since it is possible for the
user to override the default boot volume. Characteristics about the device
can be obtained by calling LOOKUP and passing VolN8me.

6-7

I
I
I·,

I
I
I
I
I
I
I
I
I
I
I
I
I
I J,.j ."-'
,I

Appendixes

A (lJeratlng system Interface Ullt ... A-l

6 Systefn-ReseJVed Exceptlm ~ ... 00.. 6-1

C Systenl-Reserved Event Types 0 •••••••• 00. 0 •• 0 ••••••••••• 0 ••••••••••• 0 C-1

o Error t-1essageS .. 0-1

E FS_'fN=O FIelds ... E-l

I
I
1<·
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L;

I

Appendix A
Operating System Interface Unit

ooT syscall;
INTRINSIC;

INTERfACE

C(l.BT

max ~ = 32-- ,

(* system call definitions unit *)

(* IlilXinun 1et'YJUl Of a file system ooject raIB *)
maxJlatt'llcllB = 255; (it naxinun lergth of a file system patt'Ylale *)
max label size = 128;
lerCexname = 16;

(* maximum size Of a file label, in bytes **)
(* lergth of exception I1CfIe)

size _ extlata :; 11; (* 48 bytes, exception data bIro< stwll1 haVe the
~ size as r_eventblk, received avant bIro< *)

size etext = 9; (it event text size - 40 bytes it)
slze=waitlist = 10; (* size of wait list - should be ~ as reqptr_Iist *)

(it exception kim definitions for 'SYS_TERt1INATE" exception -)
call_term = 0; (- process called terminate Jlrooess -)
erDed = 1; (- process executed I end' statenEnt *)
self_killed = 2; (to process called killJlrocess on self to)
killed = 3; (tt process was killed by Cl'K)ther process it)
fthr_tenn = 4; (- proceSS'S father is terminatirYJ -)
bad _ syscall = 5; (* process made invalid sys call - stbcode bad *)
ta:cernun = 6; (it process paSsell bad adl1ress for ernun pann *)
swap_error = 7; (it process ooorted we to CO(je swap-in error it)
stk_overflow = 8; (- process exceeded max size (+T 1"fYl) Of stac:k *)
data_overflol ::; 9; (to process tried to exceed max data space size *)
parity_err = 10; (it process got a parity error while executirYJ *)

def div zero
def-valUe cdJ
oof-OVfI -
def=rmi_key
def_range
def_str_irJ:Jex

= 11;(* default handler for div zero exception was called *)
= 12; (it • for vallE cdJ exceptim *)
= 13; (it • for overflow exception it)
= 14; (* • for NHI key exceptim *)
= 15; (* • for 'SYS_VAllE_(XBI excep we to value range err *)
::; 16;(* • for "SYS_VAlUE_(XB' excep we to string indeX err *)

A-l

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

:1

cperatJng System Reference Manl.JaJ cperatJng system Interface LJ7lt

rus error = 21;
addf error = 'l2;
IUq:Inst = 23;
priv_violation • 24;
Une 1010 = 26;
l1ne:=l111 .. 27;

(* rus error occurm
(* cDtt'ess error occurm
(* Illegal Instnx;tlm trap occurred
(- privilege violation trap ooourred
(* l1ne 1010 emulator occurred
(* line 1111 em.Jlator occurred

Wlexpected_ex .. 29;

div zero :; 31;

(* M IIlexpected exception occurred

valUe oob = 32;
(* exception Kind definitions for hardWare exception

ovfw - • 33;
rJIIIJ<ey = 34;
value_range ,. 35;
str_Index = 36;

(* excep Kind for value rarYJe Md strirYJ 1n1ex error
(- ttlte that these tw caJse "SVS_VAll£_lXE" excep

(tffVI~_~TRtl.. flf'Cttms*)

dVParlty = 1; (*RS-232*)
dVrutOTR :; 2; (*RS-232*)
dVOUtXON = 3; (*RS-232*)
dVOJtDelay :: 4; (*RS-232*)
<M8.KJ ;;; 5; (*RS-232*)
dVlnfalt = 6; (*RS-232, CONSOlE-)
dvIrtHR = 7; (*RS-232*)
dVInX~ ... 8; (*AS-232*)
dVTypeahd = 9; (*RS-232*)
dVOiscon .. 10; (*RS-232*)
dVflJtIbiS = 11; (*AS-232*)
dVErrStat = 15; (-PRtf"ILE-)
lNGetEvent = 16; (~E*)
dVAutolf .. 17; (*RS-232, cnm.£, PARAlLEL PRINTER-) (-rot yet*)
dvOlsKstat '" 20; (*DISKETTE, PfU"ILE*)
dVOisKSpare ... 21; (-DISKETlE, PRlFILE *)

TVPE
pattnlOO = str1rvJ [1IBXJ)8ttn1JE);
e_name .. str11'YJ (lIBX_et'laIE);
naaestrlrYJ = strll'YJ (20);
prootnfoRec • record
pl'O(JlattnlOO : pattYall!;

glcbal_id : lCllQint;
father_ld : longlnt;
priority : 1. .255;
state : (~ttve .. psuspeOOecl .. pwaltirvJ);
data_in : boOlem

ern;

A-2

I
I
I\~··>'

I
I
I
I
I
I
I
I
I
I
I
I
I
I .. -
.0
I

cperatfng System Reference Mantlal cperating System Interface UnH

Tdstype = (ds_Shared, dSjprivate); (* types of data segments *)

dslnfORec = record
mem_slze : longint;
disc_size: longlnt;
numb_open : integer;
ldsn : integer;
tJoundF : 000 lean;
presentF : boolean:
creatorF : boolean;
rwaccess : boolean;
segptr : longlnt;
volnane: e_narJE;

end;

t_ex_name = strIng [len_exname];
longadr = ~longlnt;

*)

t __ ex_state = (enabled, queued" ignored);
p_ex_data = ~t_eX_data;

(* exception name

(* exception state

t_ex_data = array [O .. size_eXdata] of longint;
t_ex __ sts = record

(* exception data blk *)
(* exception status *)

ex occurred f : boolean;
ex-state; t ex state'
M_excep : Integer; ,
hen_adr : longadr;
end;
p_enV_blk = Aenv_hlk;
env blk = record

- pc longlnt;

end;

sr integer;
dO long1nt;
dl longint;
d2 long!nt;
d3 longint;
d4 longlnt;
d5 longint;
d6 longint;
d7 longInt;
aO longlnt;
a1 longint;
a2 longint;
a3 longlnt;
a4 longlnt;
as longlnt;
a6 longlnt;
a7 longint;

(.. exception occurred flag ..)
(M eXL~tlon state *)
(* flLIfftler of exceptions q' ecJ *)
(* handler address *)

(* environment block to pass to handler *)
(* program counter *)
(* status register *)
(* data registers 0- 7 *)

(* address registers 0 - 7 *)

A-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

t:perating System Reference Manual t:perating System Interface Unit

p_term_eX_data :;: "term_eX_data;
term ex data = record (* terminate exceptioo data block tt)

(]ase excep_kind : longint of
call term..
encteCi,
self Killed,
killed,
fthr term..
oo«(syscall,
DOO_errrun..
swap_error"
stK overflow,
data overflow,
parity_err : (); (* dUe to process terminatl00 tt)

l11(Llnst,
priv_violation,

line 1010,
line -1111,
def di v zero"
aef - valUe 000,
def-OVfW,-

(* dUe to illegal instruction, privilege
violation

(* dUe to 11ne 1010, 1111 emulator

def=:rIIli_Key (* terminate dUe to default handler for hardware
exception tt)

: (sr : integer;
pc : longint); (tt at the tiRE of occurrence

«lef _rCl1ge,
def_str_inoex (it term1nate dUe to default har"KHer for

'SVS_VALlEjX)f3' excep for value rCJ1Q8 or string
index error tt)

: (value_.check : integer;
upper _ bOl.nd integer;
lower_bOUnd integer;
returnJPC longint;
caller_a6 longlnt);

bus error,
addr error (* dUe to bus error or address error

(fLll_fleld : paci<ed record (.. one integer
filler: 0 .. S7ff; (tt 11 bits
r_w_flag : booleCV1;
l_n_flag : bOolean;

fun_code: 0 .. 7; (* 3 bits tt)
end;

A-4

tt)
-)
ttl

1
1
I,

I
I
I
I
I
1
1
I
I
I

:1

I
;1

I
I
I

/' :

~)

QJefBting System Reference Mantlal

end;

accesS_adr : long1nt;
inst_register : integer;
sr_error : 1nteger;
pc_error : longlnt);

p_haro_eX_data = Mhard_eX_data;

QJefBting System Interface unit

hard ex data = record (. hard.are exceptioo data block
-case excep_klnd : longlnt of

div zero, value rob, OVfw
: (sr : integer;

.)

end;

pc : lCllglnt);
value_range, str_lndex
: (value_check : integer;
l()per Jnnl : 1nteger;
lower_tJolIld : integer;
retum.J)C : longlnt;
caller_a6 : longint);

accesses '" (dread, dwi te, append, private, global_refrun);
mset = set Of oocesses;
iOlllX1e • (abSOlute, relative, sequential);

UID - record (*Unique id*)
ab: looglnt

end;

timestmp_interval = record
sec : loog1nt;
msec : o .. 999;

end;

(* time interval .)
(* rumer of seccnls it)
(* number of milliseconds within a second *)

tnfo_type = (t1eVlce_t, vollJOO_t, C1lject_t);
deVtype = (disk.deV, pascaltxJ, seqdeV, b1tbkt, 1'0',-10);
fl1etype = (undefined, HOOffile, rootcat, freelist, badblOCks,sysdata

spool, exec, usercat, pipe .. tlootfile .. swapdata swapcode, rarIIlp,
userfl1e, kl11edobject);

entrytype= (enptyentry, catentry, l1nkentry, flleentry, plpeentry .. ecentry,
kl11edentry);

A-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

QJerating System Reference M8I7lIal

fS_lnfo = record
t'lC:lIre : e t'lC:lIre;
«llrJl8tn -: pattmll!;
machIne_Id : longInt;
fS_oveI'tJea(1 : 1nteger;
result_scavenge: integer;
case otype : Info_type of
devlce_t, voillre_t: (
10Char nH : integer;
devt : deVtype;
slot_no : integer;
fs_size : longInt;
vol_s1ze : long1nt;
bIOCkstIU:}tured, ID.Ilted : boolea1;
operlCOlIlt : longint;
privatedeV, retOOte, lookeddev : boole<l1;
ID.Ilt.J)eM1ng, lI1IIJl.fltJ)eMlrg : bOOlea1;
voll"lClOO, passlIKlrd : e3aoo;
fsverslon, volrun : 1nteger;
volid : UIO;
baCk~_VOl1«l : UIO;

cperatlng System Interface unit

blOCksize, dataslze, cluster size, filecount : integer;
label_SIze : Integer;
freeGOUlt : longInt;
OTVC.. OTCC.. OTVB.. OTVS : longInt;
mster_copy_Id, copy_thread: longint;
overlD.llt_stalp : UID;
boot_code: Integer;
ooot_env1rm : Integer;
privileged, write"'protected : ooolecrl;
Raster .. copy .. copy_fl~ scavm.;Je_flag : OOOlecrl;
VOl_left_mounted : boole<l1);

object_t : (
s1ze : long1nt;
psize : longint; (* physical file size in bytes *)
Ips1ze : 1nteger; (* log1cal page sIze 1n bytes for th1s fHe *)
ftype : filetype;
etype : entrytype;
OTC, OTA, Om. 018, OTS : long1nt;
refrun : integer;
fnark : longint;
acnDde : mset;
nreaclers, nwriters .. rosers : integer;
fu1«l : UID;
user_type ~ integer;
user_stbtype : integer;

A-6

1
I
I
I
I
I
I
I
1
I:,

I
I
I
I
I
I
I ,' ~' "

/.

I "-j

I

t:peratjng System Reference Manual t:peratlng System Interface UnIt

system_type : 1nteger;
eof, safety_on, kswitCh : tIOOle<l1;
private, lOCked, protected, master_file : bOole<l1;
file_scavenged, file_closed_by_OS, file_left_open:bOole<l1)

end;

dctype = record
dcversion : integer;
decode : integer;
dcdata : array [0 .. 9] of longint;

end;

t waltl1st = record
- length: integer;

(* user/driver defined data

(* wait list

refrun : array [0 .. slze_waltllst] of integer;
end;

t eheader = record
- send-pId: longInt;

event_type : longint;
end;

(* event header
(* sender's process Id
(* type of event

t_event_text = array [0 •• slze_etext] Of longlnt;
p_r_eventblk = ~r_eventblk;
r _eventtnk = record

end' ,

event header : t eheader;
event=text : t_event_text;

p_s_eventblk = ~s_eventblk;
s_eventblk = t_event_text;

tIme ree = record

end;

Year : integer;
day : 1. ,366;
hoUr : -23 .. 23;
mirute : -59,.59;
second : 0 .. 59;
msec : 0,.999;

(* jUlian date *)

A-7

*)

*)

*)
*)
*)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
,I

I
I
I
I

cpe.ratfng System RefenJf7Ce I'18rK.Ial

ctTLklnd = (wait_ee, call_ee);
t em sts = record
- dv'L type : ctYlj<lnd;

rJ .. llu~vents : integer;
~_recv : integer;
open_serlO : integer;
ee.J"lCJ'OO : patl'nllB;

eR.1;

hour_range = -23 .. 23;
mlrute_lcI'lge = -59 .. 59;

{configuration stuff: }

cpe.ratfng System Interface U7/t

(- dunel status -)
(* cts'Ilel type *)
(- fUItler of events queued -)
(* number of ~s for receiving *)
(* rutler Of opens for send1ng *)
(* event cts'Ilel ncJIB *)

tports :: (~rtwig, lowertwig, parallel ..
slot11, slot 12, slot13, slot 14,
slot21.. slot22.. slot23, slot24,
slot3L slot32.. slot33.. slot34 ..
serials" serialb.. l18in console.. al t console,
t_lIIlUse, t_speaker, tjixtral, t_extia2 .. t_extra3);

cam_types = (no_cant. ~~ne_cant. nJxut_cara.. net_carQ, laser_cara);

slot_array = array [1. .3] of cam_types;

{ lisa Office system parallEter IlERDry type }

pmByteUnlque • -128 •• 127;
~ = array[1. .62] of pn6yteU1ique;

(* File System calls -)

proceaJre t1AKEJllE (var erode : integer; var patti: patf'nalle;
label_size: integer);

procetilre MAKEYlPE (var ecocIe:1nteger; var patn:pattrlallle;
label_sIze: integer);

procewre t1AKE_CATAUli (var ecode:integer; var pattl:patll'lCfle;
label_sIze: Integer);

procetilre t1AKE_LIN< (var ecode:lnteger; var path .. ref:pa1:l'ralB;
label_sIze: Integer);

A-8

I

I
I
I
I
I

I
I
I

L!~elatjng System Refe/'8oce l'/arN/a}

procedure KILLJI3.ICT (var ecode:lnteger; var path:pathnalre);

procedUre IN<ILLJILE (var ecode:lnteger; refnum:lnteger; var
new_name:e_name);

prOCedUre OPEN (var ecode:integer; var path:pathname; var refnum:integer;
manlp:mset);

procedUre CLOSE _ OOJ[CT (var ecode ; integer; refnum; integer);

procedure REM_DATA (var ecOde:lnteger; refnum:lnteger; data_addr:longlnt;
count:longint; var actual:longint; mode:iomode;
Offset:longlnt);

procedure WRITE_DATA (var ec~lnteger; refnuntlnteger; data_addr:longlnt;
count:lOng1nt; var actual:longlnt; mode:l()fJ()(1e;
offset:longlnt);

procedUre FLUSH (var ecode:lnteger; refnum:lnteger);

procedUre LOOKlP (var ecode:integer; var path:pathnalre; var
at tr lbutes:f s ~ info);

procedure Itf=O (var ecode:lnteger; refnum:integer; var reflnfO:fs_infO);

procedure ALLOCATE (var ecode:integer; refnum:integer; contiguouS;bOOlean;
count:longlnt; var actual:long1nt);

procedUre TRUNCATE (var ecode:1.nteger; refrun:lnteger);

procedure C(J1PACT (var ecOde:lnteger; refnLllTtlnteger);

procedure RENAHE~NTRV (var ecOde:lnteger; var path:patnname; var
ne~:e _ narre);

procedure READ_LABEL (var ecode:lnteger; var path:pathname;
data __ addr:longlnt; count:long1nt; vaT actual:longlnt);

procewre WRITE_LABEL (var ecOde:1nteger; var path:pathnafOO;
data_addr:longint; count:longint; vaT actual:longint);

procedUre tDJNT (var ecode: integer; var vnane : e_name; var password
e _ naoo ; var de\lf"lC:Wl'e : e _ n<JTe) ;

prOCedure lHO.Jff (var ecode: 1nteger; var \ITl8fOO : eJI8fJe);

A-9

I
I
I
I
I
I

tf..7e1a(il7{l SyY!em Il7tmface Unit

procedure SFT_IIJORKING __ DIR (var er.()('je:integP.r; var path:patt'lnalle);

pror~re GET_WORKING_DIR (var er.ode:integer; var path:pathname);

procedure SET_SAFETY (var ecode:integer;var path:pathname;on_off:bOOlean);

procedure DEVICE_CONTROL (var ecode:i.nteger; var path:pathnarre;
var cparm : det ype);

procedUre RESET_CATAlOG (var ecode:integer; var path:pattlnane);

I procedUre f:E.T}'£'XT_.ENffiV (var ecode:lnteger; var preflxJ entry:e .. nane);

I
I
I
I
I
I
I
I
I
I
I
I

procedure SETJILE_JNFO (var ecode :integer; refnum:lnteger; fsi:fs_info);

(* Process Management system calls *)

functIon Hy_ID:longint;

procedUre Info_Process (var er~lnteger; proc_ld:longlnt; var
proc _ Info:procinfoRec);

procedUre Yield_CPU (var errnum:integer, to_any:bOOlean);

procedUre SetPriority_Process (var err~integer; proc_id:longint;
nelllJlrlorl ty:lnteger);

procedUre SUSpend_process (var er~integer; proc_ld:longlnt;
susp _famil y:tJoolean);

procedure Activate_process (var err~lnteger; proc_id:longint;
act _ f amil y:ooo lean);

prOCedUre Kill_process (var errntJfTtlnteger; proc_ld:lOnglnt);

procedure lerminate_Process (var errnurrtinteger; eventJltr:p s eventblk);

procedUre Hake_Process (var errnum:lnteger; var proc_1d:longlnt; var
progfile:pathnaJre; var entrynarre:nalrestrlng;
evnt_ctlnJefnum:integer);

A-10

I
I
I
I
I
I
I
I
I
II'~ \,

I
I
I
I
I
'I

"-- ..

(* Hemory Hanagement system calls *)

procedUre make_dataseg(var errron: integer; var Segrlatre: patmaroo; rret1l_si"e,
disc_.size: longint; var refnun: integer; var segptr:
long1nt; Idsn: jnteger; dstype: Tdstype);

procedure kill_datas(~g (V8f r.rrnulTtlnteger; var segnatre:pathnooe);

procedure opcn_dQtnscg (vQr crr~~integer; var segname:pathname; var
ref~integer; var segptr:longint; lcJsn:integer);

procedure close_dataseg (var errrnJftinteger; ref~inteqer);

prOCedUre size_dataseg (var err~~jnteger; ref~~integer;
rJeltarremsize:] ongint; Vf.lf newrremsize:longint;
deltadiscsize: long1nt; var newdiscsize: longlnt);

procedure 1nfo .. dataseg (vnr errnum:1nteger; refnum:tnteger; var
dsj nfo:dslnfoRcc);

procedure setacr,ess _ datascg (var errnum: integer; refnurrt integer;
rf!adon 1 y:boo] ean);

procedure urlbir)(,t.dataseg (var errnulTtinteger; refnum:integer);

procedUre blnd_.dataseg(var errnulltinteyer; refnulTtinteger);

prOCedUre info ldsn (vaT errnUlTtinteger; Idsn ; integer; var refnum: integer);

procedUre f1ustl .. datase~}(var errnum: integer; refnum: integer);

p rocetJure nl:?1Il_1nfo(var errnum: integer; var swapspace, data space,
cur_cooesize, maxJ"odesize: longint);

procedure tnfo address(var err~JI1l: i ntc9f!r; Address: longint; var refnum:
- j nteger);

(* Exception Hanagerrent system calls .,)

procedure deClare_excepJldl (var errnufltinteger; var excep_nme:t_exJk.1fre;
entry yolnt:longadr);

procedure dlsable_cxcep (var errntJlTtinteger; var excep_nare.t_ex_natre;
queue:boolean);

A 11

I
I
I
I
I
I
I
I
I
I
I
I
I
I

Ll7el'BtilJl.7 Sy:~'tem Refel"BI1Ce 1''18171181 L17el'Bti17!l .. 'ljstem Illtefface Ulli!

procedure enable_excep (var er~lnteger; var excep_~t_ex_name);

prOCedUre slgnal_excep (var er~lnteger; var excep_n~t_ex_name;
excep_data:t_ex_data);

procedUre lnfo_excep (var er~lnteger; var excep_~t_ex_name; var
excep _ status:t _ ex_ st s);

(* Event Channel management system calls *)

prOCedure maKe_event_Chn (var err~lnteger; var event_cnn_~pathname);

procedUre kill_event_ch1 (var errnum:integer; var event_Chn_name:pathnalre);

procedure operl_event_chn (var errnum:integer; var event_chnJ\clIJe:pathname; var
refnufltlnteger; Vrlf exc;ep_nrnoo:t_ex_~;
reee i ver:bOO lean);

procedUre close_event_Chn (var errn~integer; refnum:integer);

procedUre info_event_Chn (var errnum:integer; refnum:integer; var
Chn_lnfo:t _Chn_ sts);

procedure wait_event_Chn (var errnum:integer; var wait_llst:t_waitllst: var
refrun: integer; event ...ptr:p _ r _ eventb lk);

procedure fluSh_event_chn (var errnum:lnteger; refnum:integer);

procedUre send_event_r~ (var er~lnteger; refnum:integer;
event"'ptr:p_s_eventblk; Interval:tlmestrrp_lnterval;
clktime:tirre ree);

(* Timer functions system calls *)

proceaure delay_time (var er~integer; Interval:timestmp_lnterval;
clktl~tlrre_rec);

procedure get_tiro (var errrun:lnteger; var gmt_tl~tirre_ree);

procedUre set_Iocal_tlme_diff (var errnt.fltlnteger; hOOr:hOJrJange;
mlnute:minute _ range);

A-12

I
I
I'
I
I
I
I
I
I
I
I
I
I
I
I
'I
I;

i i,

i I ,-,;l

\,

prOCedUre convert_tIme (var er~lnteger; var gmt_tl~tlme_rec; var
local_ tirre:tirre_rec; to.-!JTIt:boolecrt);

{configuration stuff}

function OSBOOTVOL(var error : integer) : tports;

procedure GET _CONFIG_NAtIE(var error:integer; devpostn:tports; var
devnaoe:e natre);

proceoure CAROS_EOUIPPED(var error:integer; var In_slot:slot_array);

IMPLEMENTATION

procedure HAKE_FILE; external;

prOCedure MAKE_PIPE; external;

procedure MAKE CATAlOG; external;

prOCedure MAKEJ_INK; external;

procedure KILL_OBJECT; external;

prOCedure OPEN; externa 1;

prOCedUre CLOSE_OB.l:CT; external;

procedure READ_DATA; external;

procedUre WRITE_DATA; external;

procedure FLUSH; external;

procedure L()()(UP; external;

procedure INFO; external;

procedure ALLOCATE; external;

prOCedure TRtH:;ATE; external;

procedUre COMPACT; external:

A-13

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

11

I
I
I

Cperating System Reference Manual

proceWre REtWE_ENTRV; external;

proceclJre READ_LABEL; external;

procewre MUTE_LABEL; external;

procewre ~T; external;

procewre ~T; external;

proceQJre SET _ WCR<IMi _ OIR; external;

procewre GET _ DOCIMi _OIR; external;

procedUre SET_SAFETY; external;

pl'OCe(1Jre DEVIa::Jl:t4TRll..; external;

procedure RESET_CATAUXi; external;

procewre GET_NEXT_ENTRV; external;

procewre GET_DEV_tWE; external;

function My_IO; external;

procedUre InfoJlrocess; external;

proce<lJre Vleld_()lU; external;

procedUre setprlorlty_P!OCess; external;

procewre SUspend_Process; external;

procewre Activate_Process; external;

procewre Kill_PrOCeSS; external;

procewre Terminate_Process; external;

procecilre Hake_Process; external;

procedUre SChed_Class; external;

1\-14

rperating System Interface Unit

----------------.-.. -----.... - .. -.....•.... --.

I
I
I"
I
I
I
I
I
I
I
I
I
I
I
I

:1
I .,0 .u
I

cpeJatfng System Reference Manual

procea..ae tmke _dataseg; external;

procewre kl11_dataseg; external;

procewre open_data:;eg; external;

procewre close _ dataseg; external;

procewre slze_dataseg; external;

procec.tlre Info_oataseg; external;

procewre setaccess _ dataseg; external;

procewre l.flblnd_dataseg; external;

procewre blnd_ dataseg; external;

procedUre Info_ldsn; external;

procewre flush_dataseg; external;

procewre REI'lL info; external;

procedUre decl8fe_excepJldl; external;

procedUre dlsaJle_excep; external;

procedUre enable_excep; external;

proceclJre slg'l81_excep; external;

procewre Info_excep; external;

prQCe()Jre flush_excep; external;

procedUre tmke _event_ctYl; external;

procedUre kill_event_ctYl; external;

procedUre operL event _ctYI; external;

procectlre close_event_ctYl; external;

A-iS

cpeJatfng System Interface Unit

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

t:peJatfng system Reference MantJal

procewre Info_event_ctrl; external;

procedlre .a1 t _event_ctrl; external;

procewre flUSll_event_ctrl; external;

procewre seM_event_ctrl; external;

procewre delay_tiRE; external;

procewre get_tiRE; external;

procedUre set_Iocal_tiRE_~iff; external;

procedUre convert_tine; external;

procewre set_file_info; external;

fll'lCtion ENAEl.EDBG; external;

fll'lCtion OSBa)TV(1; external;

procewre GET j::(N=IG_NN'E; external;

function DISK_LIKELV; external;

prooeclJre CARDS_EQUIPPED; external;

procewre Reoo-,Jt1ell\; external;

proceWre lfrite_Pt1ent external;

erlO.

A-16

QJeJatfng System Interface unit

1
1
I"
1
I
I
I
I
I
I; ..
I
I
I
I
I
I

.1
IL

I

Appendix B
System-Reserved
Exception Names

SYS_OVERFLOW CNerflo'W exception. signaled when the TRAPV instructlon is
executed and the overflow condition Is on.

SYS_ VPLl£JJE Value-out-of-OOUI1C1 except1on. signaled when the CHK
instruction Is executed and the value Is less than 0 or greater
than upper bound.

SYS_ZERO_DIV Division by zero exception. Signaled when the DIVS or DlVU
Instruction Is executed and the divisor is zero.

SYS_TERMINATE Termination exception. Signaled VJhen a process is to be
terminated.

B-1

I
I
I'
I
I
1
I
I
I
I
I
I
I
I
'I
'I

I
,;

I'''-'i

,I

Appendix C
System-Reserved

Event Types

"Son terminate" event type. If a father process has created a son
process V/ith a local event channel, this event is sent to the
father process when the son process terminates.

C-l

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

:1
:j I

Appendix 0
Error IVIessages

-6061 End of exec file input
-6Q0.4 Attempt to reset text file with typed-file type
-6003 Attempt to reset nontext file with text type
-1885 ProFile not present during driver initialization
-1882 ProFile not present during driver initialization
-1840 Packet ended in a resumable state (Archive).
-1293 Object is not password protected.
-1176 Data in the object have been altered by Scavenger
-1175 File or volume was scavenged
-1174 File was left open or volume was left mounted, and system crashed
-1173 File was last closed by the OS
-1146 Only a portion of the space requested was allocated
-1063 Attempt to mount boot volume from another Lisa or not most recent boot

volume
-1060 Attempt to mount a foreign boot disk following a temporary unmount
-1059 The bad block directory of the diskette is almost full or difficult to read
-696 Printer out of paper during initialization
-660 Cable disconnected during ProFile initialization
-626 Scavenger indicated data are questionable, but may be OK
-622 Parameter memory and the disk copy were both invalid
-621 Parameter memory was invalid but the disk copy was valid
-620 Parameter memory was valid but the disk copy was invalid
-413 Event channel wes scavenged
-412 Event channel was left open and system crashed
-321 Data segment open when the system crashed. Data possibly invalid.
-320 Could not determine si7e of date. segment
-150 Process was created, but a library used by program has been scavenged and

altered
-149 Process was created, but the specified program file has been scavenged and

altered
-125 Specified process is already terminating
-120 Specified process is already active
-115 Specified process is already suspended
100 Specified process does not exist
101 Specified process is a system process
110 Invalid priority specified (must be 1..225)
130 Could not open program file
131 File System error while trying to read program file
132 Invalid program file (incorrect format)
133 Could not get aste.cksegment for new process
134 Could not get asyslocal segment for new process

0-1

I
I
I
I
I
I
I
I
I
I
I
I

I
I

Operating Sj/stem Reference M8I1uaJ

135 Could not get sysglobal space for new process
136 Could not set up communication channel for new process
138 Error accessing program file while loading
141 Error accessing a library file while loading progr8m
142 Cannot run protected file on this machine
143 Program uses an intrinsic unit not found in the Intrinsic Librery
144 Progrem uses an intrinsic unit whose name/type does not agree with the

Intrinsic Library
145 Program uses a. shared segment not found in the Intrinsic Library
146 Program uses a shared segment whose n8me does not agree with the Intrinsic

Library
147 No space in syslocal for program file descriptor during process creation
148 No space in the shared IU data segment for the program's shared IU globals
190 No space in syslocal for program file description during List_LibFiles

operation
191 Could not open program file
192 Error trying to read program file
193 Cannot read protected program file
194 Invalid program file (incorrect format)
195 Program uses asharedsegment not found inthe Intrinsic Library
196 Program uses a shered segment whose name does not agree with the Intrinsic

Library
198 Disk 110 error trying to read the intrinsic unit directory
199 Specified libraryfUe number does not exist inthe Intrinsic Library
201 No such exception name declared
202 No space left in the system data area for Declare_Excep_Hdl or

Signal_Ex cep
203 Null name specified as exception name
302 Invalid LDSN
303 No data segment bound to the LDSN
304 Data segment already bound to the LDSN
306 Data segment too large
307 Input data segment path name is invalid
308 Oatasegment already exists
309 Insufficient disk space for data segment
310 An invalid size hes been specified
311 Insufficient system resources
312 Unexpected File System error
313 Data segment not found
314 Invalid address pMSedto Info_Address
315 Insufficient memory for operation
317 Disk error while trying to swap in data segment
401 Invalid event channel rlame passed to Make_Event_Chn
402 No space left in system global data area for Open_Event_ Chn
403 No space left in system local data area for Open_Event_ Ct.n
404 Non-block -structured device specified in pathname
405 Catalog is full in Make_EvenCChn or Open_Event_Chn

0-2

"'.

I

I
I
I
I
I

I
I
I
I
I

!

I~/;

I

Operflting S}i$tem ReferenctJ M8ntlaJ

406 No such event channel exists in Kill Event Chn
410 Attempt to open a local event channel to sind
411 Attempt to open event channel to receive when event channel has a receiver
413 Unexpected File System error in Open_Event_Chn
416 Cannot get enough disk space for event channel in Open_Event_Chn
417 Unexpected File System error 1n Close_Event_Chn
420 Attempt to wait on a channel that the calling process did not open
421 Wait_Ev e nt_ Chn returns empty because sender process could not complete
422 Attempt to call WBit_Event_Chn on an empty event-cell channel
423 Cannot find corresponding event channelflfter being blocked
424 Amount of data returned while readIng from event channel not of expected

size
425 EVent channel empty after being unblocked, Wait_Event_Chn
426 Bad request pointer error returned in Weit_Event_ Chn
427 Wait_List ha<s illegal length specified
428 Receiver unblocked because lest sender closed
429 Unexpected File System error in Wait_Event_Chn
430 Attempt to send to a channel which the calling process does not have open
431 Amount of data transferred while writing to event channel not of expected

size
432 Sender unblocked because receiver closed in Send Event Chn
433 Unexpected File System error in Send_Event_Chn - -
440 Unexpected File System error in MakB_Event_Chn
441 Event channel already exists in Make_Event_Chn
445 Unexpected File System error in Kill_Event_Chn
450 Unexpected File System error in Flush_Event_Chn
530 Size of stack expansion request exceeds limit speclfiedfor program
531 Cannot perform explicit slack expansion due to lack of memory
532 Insufficient disk space for explicit stack expansion
600 Attempt to perform 110 operation on non 110 request
602 No more alarms available during driver initialization
605 Call to nonconfigured device driver
606 Cannot find sector on floppy diskette (disk unformatted)
608 Illegal length or disk address for transfer
609 Call to nor.configured device driver
610 No more room in sysglobal for 1/0 request
613 Unpermitted direct access to spare track with sparing enabled on floppy

drive
614 No disk present in drive
615 Wrong call version to floppy drive
616 Unpermitted floppy drive function
617 Checksum error on floppy diskette
618 Cannot format, or write protected, or error unclamping floppy diskette
619 No more room insysglobal for 110 request
623 Illegal device control parameters to floppy drive
625 Scavenger indicated data are bad

0-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Operating System Reference fo.18nusJ Eaor A1esssges

630 The time passed to Delay_Time/ Convert_Time/ or Send_Event_Chn h~
invalid year

631 Illegal timeout request parameter
632 No memory available to initialize clock
634 Illegal timed event id of -1
635 Process got unblocked prematurely due to process termination
636 Timer request did not complete successfully
638 Time passed to Delay _Time or Send_Event_Chn more than 23 days from

current time
639 Illegal date passed to Set_Time, or illegal date from system clock in

Get Time
640 RS-232 driver called with wrong version number
641 RS-232 read or write initiated wit!'". illegal parameter
642 Unimplemented or unsupported RS-232 driver function
646 No memory available to initialize RS-232
647 Unexpected RS-232 timer interrupt
648 Unpermitted RS-232 initialization, or disconnect detected
649 Illegal device control parameters to RS-232
652 N-port driver not initialized prior to ProFile
653 No room in sysglobal to initialize ProFile
654 Hard error status returned from drive
655 !,AJrong call version to ProFile
656 Unpermitted ProFile function
657 Illegal device control parameter to ProFile
658 Premature end of file when reading from driver
659 Corrupt File System header chain found in driver
660 Cable disconnected
662 Parity error while sending command or writing data to ProFile
663 Checksum error or CRC error or parity error in dataread
666 Timeout
670 Bad command response from drive
671 Illegal length specified (must = 1 on input)
672 Unimplemented console driver function
673 No memory available to initialize console
674 Console driver called with wrong version number
675 Illegal device control
680 lNrong call version to serial driver
682 Unpermitted serial driver fUnction
683 No room in sysglobal to initialize serial driver
685 Eject not allowed this device
686 No room in sysglobal to initialize n-port card driver
687 Unpermitted n-port card driver function
688 !,AJrona call version to n-port card driver
690 !,AJrong call version to pMallel printer
691 Illegal parallel printer parameters
692 N-port card not initialized prior to parallel printer
693 Noroom Insysglobal to initialize parallel printer

0-4

I
I
I
I
I
I
I
I
I

I
I
I
I

11
:1
IL

I

Operating Sj/stem Reference Manual

694 Unimplemented parallel printer function
695 Illegal device control parameters (parallel printer)
696 Printer out of paper
698 Printer offline
699 No response from printer
700 Mismatch between loader version number and Operating System version

number
701 OS ex hausted its internal space during stortup
702 Cannot make system process
703 Cannot kill pseudo-outer process
704 Cannot create driver
706 Cannot initialize floppy disk driver
707 Cannot initialize the File System volume
708 Hard disk mount table unreadable
709 Cannot map screen data
710 Too many slot-based devices
724 The boot tracks do not know the right File System version
725 Either damaged File System or damaged contents
726 Boot device read failed
727 The OS will not fit into the available memory
728 SYSTEM.OS is missing
729 SYSTEM.CONFIG is corrupt
730 SYSTEM.OS is corrupt
731 SYSTEM.DEBUG or SYSTEM.DEBUG2 is corrupt
732 SYSTEM.LLD is corrupt
733 Loader range error
734 Wrong driver is found. For instance, storing a diskette loader on a ProFile
735 SYSTEM.LLD is missing
736 SYSTEM.UNPACK is missing
737 Unpack of SYSTEM.OS with SYSTEM.UNPACK failed
7'YJ Position specified is out of range.
751 No device exists at the requested position.
752 Canlt perform requested function while device is busy,
753 Specified position is not a terminal node.
754 Built-in devices cannot be configured.
755 Isolated positions cannot be configured.
756 The specified position is already configured.
757 Parallel Port doesn't exist on this type of machine.
758 No room in memory for more devices.
7r::y:"J eMit get buffer space to load configurable driver.
791 Configurable driver code file is not executable.
792 Can't get memory space for a conflgurable driver.
793 110 error reading confiaurable driver file.
794 Configurable driver code file not found.
795 Configurable driver has more than one segment.
801 IOResult < > 0 on 110 using the Monitor
602 Asynchronous 110 request not completed successfully

0-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Operating S}·'S'tem Reference Manual

803 Bad combination of mode parameters
806 Page specified is out of range
609 Invalid arguments (page, address, offset, or count)
810 The requested page could not be read in
816 Not enough sysglobal space for File System buffers
819 Bad device number
820 No space in sysglobal for asynchronous request list
821 Already initialized 110 for this device
822 Bad device number
825 Error in parameter values (Allocate)
826 No more room to allocate pages on device
628 Error in parameter values (Deallocate)
829 Partial deallocation only (ran into unallocated region)
835 Invalids-file number
837 Unallocated s-file or 110 error
838 Map overflow: s-file too large
839 Attempt to compact file past PEOF
840 The allocation map of this file is truncated.
841 Unallocateds-file or 110 error
843 Requested exact fit, but one could not be provided
847 Requested transfer count is <=0
848 End of file encountered
849 Invalid page or offset value in parameter list
852 Bad unit number
854 No free slots in s-list directory (too many s-files)
855 No available disk space for file hints
856 Device not mounted
857 Empty, locked, or invalid s-file
661 Relative page is beyond PEOF (bad parameter value)
864 No sysglobal ~pace for volume bitmap
866 Wrong FS version or not a valid Lisa FS volume
867 Bad unit number
868 Bad unit number
869 Unit already mounted (mount)/no unit mounted
870 No sysglobal space for DeB or MDDF
871 Parameter not avalids-file ID
872 No sysglobal space for s-file control block
873 Specified file is already open for private access
874 Device not mounted
875 Invalid s-file ID or s-filc control block
879 Attempt to postion past LEOF
881 Attempt to read empty file
882 No space on volume for new data page of file
883 Attempt to read past LEaF
884 Not first auto-allocation, but file was empty
885 Could not update filesize hints after a write
686 No syslocal space for I/O request list

D-6

Error Mlt$SltIJ§

I
I
I
I
I
I
I
I
I
I,
I
I
I
I
I
II
I

11
I .(""',:
lit)

II

887 Catalog pOinter does not indicate a catalog (bad parameter)
888 Entry not found in catalog
890 Entry by that name alrea~ ex im
891 Catalog is full or is damaged
892 Illegal name for an entry
894 Entry not found, or catalog is domaoed
89' Irwalld entry name
896 Safety switch is on--cannot kill entry
897 Irwalid bootdev value
899 Attempt to allocate a pipe
900 Irwalid page count or FCB pOinter argument
901 Could not satisfy allocation request
921 Pathname invalid or no such device
922 Irwalid label size
926 Pathname invalid or no such device
927 Irwalid label size
941 Pathname invalid or no such device
944 Object is not a file
94' File is not in the killed state
946 Pathname invalid or no such device
94 7 Not enough space in syslocal for File System ref db
948 Entry not found in specified catalog
949 Private access not allowed if file already open sh8fed
950 Pipe already in use, requested access not possible or dwrite not allowed
951 File is already opened in private mode
952 Bad refnum
954 Badrefnum
955 Read access not allowed to specified object
9'6 Attempt to pOSition FMARK pest LEOF not allowed
957 Negative request count is illegal
958 Nonsequential access is not allowed
959 SystemresoLaces exhausted
960 Error writing to pipe while an unsatisfied read was pending
961 Badrefnum
962 No WRITE or APPEND access allowed
963 Attempt to position FMARK too far pest LEOF
964 Append access not allowed in absolute mode
965 Append access not allowed in relative mode
966 Internal inconsistency of FMARK and LEOF (warning)
967 Nonsequential access is not allowed
968 Badrefnum
971 Pathname invalid or no such device
972 Entry not found in specified catalog
974 Bad refnum
977 Bad refnum
978 Page count is nonpositive
979 Not a block-structured device

0-7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Operating S}"Stem Reference MIJ.I?IJ8J

981 8adrefnum
982 No space has been allocated for specified file
983 Not a block-structured device
985 Badrefnum
986 No space has been allocated for specified file
987 Not a block-structured device
988 8adrefnum
989 Caller is not a reader of the pipe
990 Not a block-structured device
994 Invalid refnum
995 Not a block-structured device
999 Asynchronous read was unblocked before it was satisfied

1002 Invalid Device_Control call for device (Priam).
1003 Unable to get SysGlobal space for disk operation(Priam).
1021 Pathname invalid or no such entry
1022 No such entry found
1023 Invalid newnarne, check for '-' in string
1024 New name already exists in catalog
1031 Pathname invalid or no such entry
1032 Invalid transfer count
1033 No such entry found
1041 Pathname invalid or no such entry
1042 Invalid transfer count
1043 No such entry found
1051 No device or volume by that name
1052 A volume is already mounted on device
1053 Attempt to mount temporerily unmounted boot volume just unmounted from

this Lisa
1054 The bad block directory of the diskette is invalid
1061 No device or volume by that. name
1062 No volume is mounted on device
1071 Not a valid or mounted volume for working directory
1091 Pathname invalid or no such entry
1092 No such entry found
1101 Invalid device name
1121 Invalid device, not mounted; or catalog is damaged
1122 No space for catalog scan buffer (Reset_Catalog).
1124 No space for catalog scan buffer (Get_Next_Entry).
1128 Invalid pathname, device, or volume not mounted
1130 File is protectedi cannot open due to protection violation
1131 No device or volume by that name
1132 No volume is mounted on that device
1133 No more open files in the file list of that device
1134 Cannot find space in sysglobal for open file list
1135 Cannot find the open file entry to modify
1136 Boot volume not mounted
1137 Boot volume already unmounted

D-8

I

I
I
I
I
I
I

I
I
I
I
,I~/

1138 Caller cannot have higher priority than system processes when calling ubd
1141 Boot volume was not unmounted when calling rbd
1142 Some other volume still mounted on the boot device when calling rbd
1143 No sysglobal space for MDDF to do rbd
1144 Attempt to remount volume which is not the temporarUy unmounted boot

volume
1145 No sysglobal space for bit map to do rbd
1158 Track-by-track copy buffer is too small
1159 Shutdown requested while boot volume wes unmounted
1160 Destination device too small for track-by-track copy
1161 Invalid final shutdown mode
1162 Power is already off
1163 Illegal command
1164 Device is not a diskette device
1165 No volume is mounted on the device
1166 A valid volume is already mounted on the device
1167 Not a block-structured device
1168 Device name is invalid
1169 Could not access device before initialization using default device

parameters
1170 Could not mount volume after initialization
1171 '-' is not allowed in avolume name
1172 No space available to initialize a bitmap for the volume
1176 Cannot read from a pipe more than half of its allocated physical size
1177 Cannot cancel a read request for a pipe
1178 Process waiting for pipe data got unblocked because last pipe writer closed

it
1180 Cannot write to 8. pipe more than half of its allocated physical size
1181 No system space left for request block for pipe
1182 lNriter process to a pipe got unblocked before the request was satisfied
1183 Cannot cancel a write request for a pipe
1164 Process wwting for pipe space got unblocked because the reader closed the

pipe
1186 Cannot allocate space to a pipe while it hes data wrapped around
1188 Cannot compact 8. pipe while it has data wrapped around
1190 Attempt to access a page that is not allocated to the pipe
1191 Bad parameter
1193 Premature end of file encountered
1196 Something is still open on device--cannot unmount
1197 Volume is not formatted or cannot be read
1198 Negative request count is illegal
1199 Function or procedure is not yet implemented
1200 Illegal volume parameter
1201 Blank file perameter
1202 Error writing destination file
1203 Invalid UCSD directory
1204 File not found

D-9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Operating Sj.-stem Reference Manual

1210 Boot track program not executable
1211 Boot track program too big
1212 Error reading boot track program
1213 Error writing boot track program
1214 Boot track program file not found
1215 Cannot write boot tracks on that device
1216 Could not create/close internal buffer
1217 Boot track program has too many code segments
1218 Could not find configuration information entry
1219 Could not get enough working space
1220 Premature EOF in boot track program
1221 Position out of range
1222 No device at that position
1225 SC8:IJenger has detected an internal inconsistency symptomatic of asoftw8t'e

bug
1226 Invalid device name
1227 Device is not block structured
1228 Illegal attempt to scavenge the boot volume
1229 Cannot read consistently from the volume
1230 Cannot write consistently to the volume
1231 Cannot allocate space (Heap segment)
1232 Cannot allocate space (Map segment)
1233 Cannot allocate space (SFDB segment)
1237 Error rebuilding the volume root directory
1240 Illegal attempt to scavenge a non-OS-tormatted volume
1281 Pathname is invalid because device or object is not present.
1282 Pathname syntax is invalid.
1283 Interior pathname component does not specify a directory object.
1284 Directory cannot be deleted because 1t 1s not empty.
1285 Operation is not allowed on a volume with a flat catalog.
1286 Operation is not allowed on a directory object.
1287 Cannot allocate SysLocal space for the directory scan stack.
1288 Directory tree is inconsistent.
1289 Operation not allowed against avolume or device (Quick_Lookup)
129:) The directory that contained the file has been deleted (Unkill_File)
1294 Supplied pessword does not match the password on the object.
1295 The allocl!ltion map ot this file is damaged and cannot be react
1296 Bad string argument hes been pessed
1297 Entry name for the object is invalid (on the volume)
1298 S-list entry for the object is invalid (on the volume)
1007 No disk In floppy drive
1820 Write-protect error on floppy drive
1822 Unable to clamp floppy drive
1824 Floppy drive write error
1640 Unable to initialize disk drive (Priam).
1841 Error writing to disk (Priam) / Error reading from tepe (Archive).
1842 Error reading from disk (Priam) I Error writing to tape (Archive).

D-10

oj

I
I
I~

I
I
I
I
I
I
I
I
I
I
I
I
,I

I
~

I ~!

I

Operating S}/stem Rt!Jfertmee Manual

1843 Error controlling tape (Archive).
1844 Packet ended in a non-resumable state (Archive).
1845 Packet command had an error (Archive).
1882 Bad response from ProFile
1885 ProFile timeout error
1998 Invalid perameter address
1999 Badrefnum
6001 Attempt to access unopened file
6002 Attempt toreopen a file which is not closed using an open FIB (file info block)
6003 Operation incompatible with access mode with which file was opened
6004 Printer offline
6005 File record type incompatible with character device (must be byte sized)
6006 Bad integer (read)
6010 Operation incompatible with file type or access mode
6081 Premature end of exec file
6082 Inval id ex ec (tempor MY) file name
6083 Attempt to set prefix with null name
6090 Attempt to move console with exec or output file open
6101 Bad real (read)
6151 Attempt toreinitalize heap already in use
6152 Bad argument to NEW (negative size)
6153 Insufficient memory for NEW request
61~ Attempt to RELEASE outside of heap

Oper-ating System Enm Codes
The error codes listed below ere generated only when a nonrecoverable error

occurs while in Operating System code.

10050 Request block is not chained to 8. PCB (Unblk_Req)
10051 Bld_Req is called with interrupts off
10100 An error was returned from SetUp_Directory or a Data Segment routine

(Setup_IUlnfo)
10102 Error> 0 trying to create shell (Root)
10103 Sem_Count > 1 (Init_Sem)
10104 Could not open event channel for shell (Root)
10197 Automatic stack expansion fault occurred in system code (Check_Stack)
10198 Need_Mem set for current process while scheduling is disabled

(SirnpleScheduler)
10199 Attempt to block for reeson other then 110 while scheduUng is disabled

(SimpleScheduler)
10201 Herdwere exception occurred while in system code
10202 No space left from Sigl_Excep call in H8Td_Excep
10203 Nospe.ce left from Sigl_Excep cell in Nmi_Excep
10205 Error from Wait_Event_Chn called in Excep_ProloQ
10207 No system dataspace in Excep_Setup
10208 No space left from Sigl_Ex cep call in range error
10212 Error in Term_Oef _Hdl from Enoble_Excep
10213 Error in Force_ Term_Excep, no space in En~Ex_Data

0-11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Operating S).l$'tem Ref8T1lnCf!! ManuaJ

10401 Error from Close_Event_Chn in Ec_Cleanup
10582 Unable to get space in Freeze_Seg
10590 Fatal memory perity error
10593 Unable to move memory manager segment during startup
10594 Unable to swap in a segment during startup
10595 Unable to get space in Extend_MMlist
10596 Trying to alter size of segment that is not data or stack (Alt_DS_Size)
10597 Trying to allocate space to an allocated segment (Alloc_Mem)
10598 Attempting to allocate a nonfree memory region (Take_Free)
10599 Disk 110 error while swapping in an OS code segment.
10600 Error attempting to make timer pipe
10601 Error from Kill_Object of an existing timer pipe
10602 Error from second Make_Pipe to make timer pipe
10603 Error from Open to open timer pipe
10604 No syslocal space for head of timer list
10605 Error during allocate space for timer pipe, or interrupt from nonconfigured

device
10609 Interrupt from nonconfigured device
10610 Error from info about timer pipe
10611 Spurious interrupt from floppy drive 12
10612 Spurious interrupt from floppy drive It or no syslocal space for timer list

element
10613 Error from Read_Data of timer pipe
10614 ActUal returned from Read_Data is not the same as requested from timer

pipe
10615 Error from open of the receiver's event channel
10616 Error from 'Nrite_Event to the receiver's event channel
10617 Error from Close_Event_ Chn on the receiver's pipe
10619 No so"rsglobal space for timer request block
10624 Attempt to shut down floppy disk controller while drive is still busy
10637 Not enough memory to initialize system timeout drives

. 10675 Spurious timeout on console driver
10699 Spurious timeout on parallel printer driver
10700 Mismatch between loader version number and Operating System version

number
10701 OS exhausted its internal space during startup
10702 Cannot make system process
10703 Cannot kill pseudo-outer process
10704 Cannot create driver
10706 Cannot initialize floppy disk driver
10707 Cannot initialize the File Systemvo)ume
10708 Hard disk mount table unreedeble
10709 Cannot map screen data
10710 Too many slot-based devices
10724 The boot tracks do not know the right File System version
1072~ Either demaged File System or damaged contents
10726 Boot device read failed

0-12

I
I
I
I
I
I
I
I
I
I
I
I
'I
:1

/ .

il~'/
I
II

10727 The OS will not fit into the available memory
10728 SYSTEM.OS is missing
10729 SYSTEM.CONFIG is corrupt
10730 SYSTEM.OS is corrupt
10731 SYSTEM.DEBUG or SYSTEM.DEBUG2 is corrupt
10732 SYSTEM.LLD is corrupt
10733 Loader range error
10734 \Nrong driver is found. For instance, storing a diskette loader on a ProFile
10735 SYSTEM.LLD is missing
10736 SYSTEM.UNPACK is missing
10737 Unpack of SYSTEM.OS with SYSTEM.UNPACK failed
10738 Can't find a required driver for the boot device.
10739 Can't load a required driver for the boot device.
10740 Boot device won't initialize.
10741 Can't boot from a serial device.
11176 Found a pending write request for a pipe while in Close_Object when it is

called by the last writer of the pipe
11177 Found e. pending read request for a pipe while in Close_Object when it is

called by the (only possible) reader of the pipe
11178 Found a pending read request for a pipe while in Read_Data from the pipe
11180 Found a pending write request for a pipe while in l,Alrite_Datato the pipe
118xx Error xx from diskette ROM (See OS errors 18xx)
11901 Call to Getspace or Relspace with a bad parameter, or free pool is bad

D-13

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I " t

I\..../

I

Appendix E
FS INFO Fields

• defmed for mounted or unmounted devices
$ defined for mounted devices only

All otl7er fields are defined for mounted block-structured devices only.

DEVICE_ T~ va...UME_ T:

backup_valid
blocksize

* block structured
boot code
boot-environ
clustersize
copy
copy_flag
copy_thread
datasize

.,.. devt

.,.. dtr-path
DTCC
DT\18
DTve
DTVS
filecount
freecount
fs _overhead

fs size
fsversion

'It iochannel

label size

$ lockeddev
machlne_ID
master
master_copy _10

'It mounted
$ mount-pending
10t name
$ opencount

over mount_ stamp
password

10 of the volume of which this volume is a copy.
Number of bytes in a block on this device.
Flag set if this device is block-structured.
Reserved.
Reserved.
Reserved.
Reserved.
Flag set if this volume is a copy.
Count of copy operations inVOlving this volume.
Number of data bytes in a page on this volume.
Device type .
Pathname Of the volume/device .
Date/time volume was created If It Is a copy.
Date/time volume was last backed-up.
Date/time volume was created.
Date/time volume was last scavenged.
Count of files on this volume.
Count Of free pages on this volume.
Number of pages on this volume required to store
File System data structures.
Number of pages on this volume.
Version number of the File System under Which
this volume was inltlallzed.
Number of the expansion card channel through
which this device is accessed.
Size in bytes of the user-defined labels associated
with objects on this volume.
Reserved.
MaChine on whiCh thiS volume was inlUal1zed.
Reserved.
Reserved.
Flag set if a volume is mounted.
Reserved.
Name of this volume/device.
Count of Objects open on this volume/device.
Reserved.
Password of this volume.

E-l

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

cperatlng System Reference Manual F~JNFO Fields

$ prlvatedev
privileged

$ remote
result_scavenge
scavenge_flag

* slot_no

$ unmount....pendlng
valid
vOl_left_mounted

volname
volnum
VOl_size

writeyrotected

CBJECT_T:

acmode
dlryath
DTA
DTB
DTC
DTM
DTS
eof

etype
me _ closed_by _ os

fl Ie_scavenged

fmark
fs_overhead

ftype
fuid
kswltch
locked
Ipslze

Reserved.
Reserved.
Reserved.
Reserved.
Flag set by the Scavenger if it has altered this
volume in some way.
Number of the expansIon slot holdIng the card
through which this device Is accessed.
Reserved.
Unique ident1fier for this volume.
Flag set if this volume was mounted during a
system crash.
Volume name.
Volume number.
Total number of bloCks in the File system volume
and boot area on thiS device.
Reserved.

Set of access modes associated with this refnum.
Pathname of the directory containing this Object.
Date/time ubject was last accesseu.
Date/time Object was last backed-up.
Date/time object was created.
Date/time Object was last modified.
Date/time Object was last scavenged.
Flag set if end of file has been encountered on
this Object (through the given refnurn~
DIrectory entry type.
Flag set if this Object was closed by the q:>erat1ng
System.
Flag set if this object was open during a system
crash.
Flag set by the scavenger if this Object has been
altered in some way.
Absolute byte to which the file mark paints.
Number of pages used by the Flle System to store
control information about this Object.
OOject type.
Unique identifier for this Object.
Flag set when the object Is kllled.
Reserved.
Number of data bytes on a page.

E-2

I
I
I
I
I
I
I
I
I

I
I
I
I
I
I ~ .
• (j

I

[JJel"dtif7!-.7 System RefeJt?lll":e I'-lanual F~JNFO Ffell1s

machine 10
master file
name
nreaders

nwrlters

nusers
private
protected
psize
refnum

resul t _scavenge
safety_on
size
system_type
user_type
user_subtype

Machine on which this object may be opened.
Flag set if this object is a master.
Entry name of this object.
Number of processes with this object open for
read1ng.
Number of processes with thiS Object open for
writing.
Number of processes with this Object open.
Flag set if this Object Is open for private access.
Flag set if this object is protected.
Physical size of this Object In bytes.
Reference number for this Object (argument to
INFO~
Reserved.
Value of the safety swltch for thlS Object.
Number of data bytes in this Object (LECF~
Reserved.
User-defined type field for this Object.
user-defined SlJtJtype field for this Object.

E-3

I
I
I,

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I~/

I

Index

Please note tnat tne topic references in tnls Inaex are oy section nurnoer.

----------A----------
accessing devices 1.3, 2.8
ACTIVATE_PROCESS 3.8.6
ALLOCATE 2.10.13
Append access 2.10.8
attribute 1.3, 2.10.5

- .. ··-·-··----B··-
baud rate 2.10.12.1
binding 4.1
BIND_DATASEG 4.7.12
blocked process 1.4,

3 (introduction), 3.8.5
buffer 2.9,2.10.12.1, 2.10.16,

5.5, 5.8

----------c----------
CARDS_EQUIPPED 6.1.1
catalog 2.1, 2.5, 2.10.19
changing file size 2.10.13-2.10.15
clock 5.6
clock system calls 5.9
CLOSE DATASEG 4.7.4
CLOSE EVENT CHN 5.8.4 - -
CLOSE OBJECT 2.10.9
code segment 4.5
communication bet~een processes 1.7
COMPACT 2.10.14, 2.10.15
configuration 6 (introduction)
configuration system c211s 6.1
controlling

a device 2.10.12
a process 3.4

CONVERT_TIHE 5.9.4
creating

a data segment 4.7.1
an event channel 5.8.1
an object 2.10.1
a process 3.3, 3.8.1

----------0----------
data segment

creating 4.7.1
private 4.1, 4.4
shared 1.7, 4.1, 4.3
s~apping 4.6

Dccode mnemonics 2.10.12
Dcdata 2.10.12
Octype 2.10.12
Ocversion 2.10.12
DEClARE_EXCEP_HOL 5.7.1
DELAY_TIHE 5.9.1
deleting

Index-l

a process 3.8.2, 3.8.4
an object 2.10.2

device 2.3-2.7, 2.10.12
accessing 1.3, 2.8
control information 2.10.12
mounting 1.3, 2.10.20
names 2.1, 2.3, 2 10.12 1
priority 2.3
storage 2.4

DEVICE CONTROL 2.10.12
directory 2 (introduction)
DISABlE_EXCEP 5.7.2
disk hard error codes 2.10.12.2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

t:peRltlng System Reference MarK.JaJ

division by zero 5.2, B
Dread, Dwrite access 2.10.8

----------£----------
ENABLE EXCEP 5.7.3
end of f1le 2.7, 2.10.14, 2.10.15
eaf 2.10.5; see al::iu emJ uf file.
error

disk hard error codes 2.10.12.2
error messages D
soft error 2.10.12.1
See also exception.

event 1.6, 5.4, C
event channel 1.7, 5.5, 5.8.1
event management system calls 5.8
event types C
exception 1. 6" 5.1"5.3, B
exception handler 5.1, 5.3
exception management system calls

5.7
exception names B

----------F----------
father process 1.4, 3.6, 3.7,

3.8.t 3.8.2
file 2 (introduction)

access 2.8
attributes 2.10.5-2.10.7
changing size 2.10.13-2.10.15
label 2.6, 2.10.11
marker 2.7, 2.10.15
name 2.1, 2.10.1
private 2.8
shared 1.7, 2.8

File System 1.3, 2
File System calls 2.10
FLUSH 2.10.16

Index-2

FLUSH DATASEG 4.7.5
FLUSH EVENT CHN 5.8.7 - -
FLUSH_EXCEP 5.7.6
FS_INFD fields E

----------G----------
GET CONfIG NAME 6.1.2 - -
GET NEXT ENTRV 2.10.19 - -
GET TIME 5.9.2
GET_WORKING_OIR 2.10.18
glObal access to files 2.8
global event channel 5.S
Global_.Refnum 2.8, 2.10.8

--·--------H----------
handshake 2.10.12.1
hierarchy of processes 3.2

----------1 -------
INFO 2.10.6
INFO_ADDRESS 4.7.9
INFO DATASEG 4.7.7
INFO EVENT C~~ S.8.5 - -
INFO_EXCEP 5.7.4
INFO LO~N 4.7.8
INFO PROCESS 3.8.3
interface unit A

Index

interprocess communication 1.7, 2.9
1/0 2 (introduction)

----------K----------
KILL DATASEG 4.7.2
KILL_EVENT_CHN 5.8.2
KILL OBJECT 2.10.2
KILL_PROCESS 3.8.4

I
I
I
I
I
I
I
,I
I
I,

I
I
I
I
I
I
I

" 1'--..'

I

[pel8ting system Reference Manual

----------L----------
label, file 2.6, 2.10.11
LDSN 4.2, 4.4, 4.7.8
LEOF. See end of file.
local data segment 4.1
local event channel 5.5
logical data segment number 4.2,

4.4, 4.7.8
logical end of file. See end of

file.
LOOKUP 2.10.5

----------M----------
HAKE_DATASEG 4.7.1
MAKE EVENT CHN 5.8.1 - -
MAKE_FILE 2.10.1
MAKE_PIPE 2.10.1
MAKE_PROCESS 3.8.1
memory management 1.5, 4.1-4.6
memory management system calls 4.7
memory, parameter 6 (introduction)
HEH INfO 4.7.10
mnemonics for Dccode 2.10.12.1
HOUNT 2.10.20
mounting a device 1. 3, 2.10.20
MY 1D 3.8.9

----------N----------
naming an Object 2.1, 2.10.1,

2.10.4

----------0----------
object 1.3

creating 2.10.1
deleting 2.10.2
naming 2.1, 2.10.1
renaming 2.10.4

OPEN 2.10.8
OPEN DATASEG 4.7.3
OPEN_EVENT_CHN 5.8.3
OS interface A
OSBOOTVOL 6.1.3

----------P----------
page 2.4

index

parameter memory 6 (introduction)
parity 2.10.12.1
pathname 1.3, 2.1, 2.2
PEOF. See end of file.
physical end of file. See end of

file.
pipe 1.7, 2.9. 2.10.1, 2.10.8
priority of devices 2.3
priority of processes 3.5, 3.B.7,

3.8.8
private access to files 2.8, 2.10.8
private data segment 4.1, 4.4
process 1.4, 3

Index-3

blocked 1.4, 3 (introduction),
3.8.5

creating 3.3, 3.8.1
father 1.4, 3.6, 3.7, 3.8.1,

3.8.2
hierarchy 3.2
priority 3.5, 3.8.7, 3.8.8
queuing 3.5, 3.8.5-3.8.8
scheduling 3.5, 3.8.5-3.8.8
shell 1.4, 3.2
son 1.4, 3.7; C
starting 3.B.1, 3.8.6
stopping 3.8.2, 3.8.4
structure 3.1
termination 1.4, 3.6, 5.2, B, C

process system calls 3.8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

QJBratJng System Reference Manual

----------0----------
queuing a process 3.5~ 3.8.5-3.8.8

----------R----------
range check error 5.2, B
READ DATA 2.10.10
READ LABEL 2.10.11
refnum 2.8; see also Global_Refnum.
RENAME_ENTRY 2.10.4
renaming an object 2.10.4
RESET CATALOG 2.10.19
running a program 1.4, 1.9, 3.8.1,

3.8.6

----------S----------
safety switch 2.5, 2.10.17
Scheduler 3
scheduling processes 3.5,

3.8.5-3.8.8
SEND_EVENT_CHN 5.8.8
SETACCESS_DATASEG 4.7.11
SETPRIORITY PROCESS 3.8.7
SET_FILE_INFO 2.10.7
SET LOCAL TIME DIFF 5.9.3

- - -
SET_SAFETY 2.10.17
SET_WORKING_DIR 2.10.18
shared data segrrent 1 . 7, 4. 1, 4. 3
shared file 1.7, 2.B
shell process 1.4, 3.2
SIGNAL EXCEP 5.7.5
SIZE_DATASEG 4.7.6
soft error 2.10.12.1
son process 1.4, 3.7, C
sparing 2.10.12
starting a process 3.8.1, 3.8.6
stopping a process 3.8.2, 3.8.4
storage device 2.4
SUSPEND _.PROCESS 3.8.5

Inoex-4

swapping 4.6
Syscall unit A
system calls

clock 5.9
configuration 6.1
event management 5.8
exception management 5.7
file 2.10
meroory management 4.7
process 3.8

Index

system cloCk 5.6, 5.9
system-defined exceptions 5.2, B
SYS_OVERFLOW 5.2, B
SYS __ SON_TERM C
SYS_TERMINATE 5.2, B
SYS_VALUE __ OOB 5.2, B
SYS_ZERO_DIV 5.2, B

---------T-------
terminated process 1.4, 3.6, 5.2,

B, C
TERMINATE_PROCESS 3.8.2
timed events 5.8.8
tree, process 3.2
TRUNCATE 2.10.15

----------U----------
UNBIND_DATASEG 4.7.12
UNKILL FILE 2.10.3
UNMOUNT 2.10.20
user-defined exception handler 5.3

----------V----------
value out of bounds S.2, B
volurre catalog 2.1, 2.5, 2.10.19
volume name 1.3

I
I
I\~~·

I
I
I
I
I
I
I
I
I
I
I
I
I
I ,.

I~

I

cperatinq System Reference I'1anuaJ

----------w----------
WAIT EVENT CHN 5.8.6 - -
~orking directory 2.2
working set 4.2
WRITE DATA 2.10.10
WRITE_LABEL 2.10.11
~riting buffered data 2.10.16

----------y----------
YIELD CPU 3.8.8

Index

IndeX-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I,
IL

I

t:pel'Stiry ,System Refe.rence 1'-18f'K.I8}

Apple publications would liKe to learn about readers and what you thinK about this
manual in order to maKe better manuals in the future. Please f111 out this form, or
write all over it.. and send it t.o us. We promise to read it.

How are you using this manual?
[] learning to use the product [] reference [] both reference and learning

(]
Is it quiCK and easy to f1na the Information you need In thIs manual?
[] always [) often [) sometimes [J seldom [) never
commenU __ ___

What makes this manual easy to

What makes this manual hard to use? __________________ _

What do you like most about the manual? _______________________ _

What do you liKe least about the

Please comment on, for example, accuracy, level of detaH, number and usefulness of
examples, length or brevity Of explanation, style, use of graphics, usefulness Of the index,
organization, suitablIlty to your particular needs, readab111ty.

What languages dO you use on your Usa? (Cheek eaCh)

[) Pascal [] BASIC [) COOu.. []

How long have you been programming?

[] 0-1 years [] 1-3 [] 4-7 [] over 7 [] not a programmer
What is your jab title? ____________________________ _

Have you completed:

[) high school [) some college [] BA/BS [] MAIMS [] more
What magaz1nes do you read? ___________________ _

Other comments (please attach more sheets If necessary) __________ _

I
I
I
I
I
I, .. "",,, ,,,,,,,, .. ,, .. ,, .. ,, .. ,,, .. ,,,,,,,,,,,,,, .. ,, .. ,,,,.,,,,, .. ,,,,,,,''''','''''''''''''''''''''''', .. ,'', ... "., ,'''''''', .. ,'', ... ' FllO .. ·"" .. ,',···, .. "', .. ,·,··" ,,·,, · .. , ,,",· .. ,'''''' ,.," .. ' .. "'"', , ,,", , .. ,, .. , .. ",.,', .. ,,, ... ,''', .. , '"

I
I
I
I
I
I
I"""''",." " ,,,,, , .. ,., ,,., ,,,,, Fao ... , , ... ,., "."", , " ,,, , ... "." " ... "" .. " .. " , ,,,.

I @]
I
I
I
I
I

tFppk! computczr
POS PUblications Department
20525 MarIani Avenue
CupertIno, Callfomla 95014

TAPE tR STAPLE

I
I
I
I
I
I
I
I
I
I,
I
I
I
I
I
I

~\~ --

I
Il.,

I

The CEMSySCaII Unit

Contents

1 lntrochJctiCN1 ...•......... 1

2 ~C:~I ~out1~ •.••..•••.•••.•..••••.•.....•••..•••••••••••••••••••••••..•••••• 2
2.1 Init_Vol .. 2
2.2 EjectVol 000 ••• 0 ••• 0 0 ••••••••••• 0.' 0.' 0 0 •• 0000000000 •• 0.0. 0" 0" 3
2.3 ScavenaeVol 0" o. 0" 0 •••••••• 00 .. 0 _____________________ • ________ • __ •• _. ____ 4
2.4 VerifyVol 0 ••• 0" 0 0 0" 0 •••••••••••••••••••••••• ,

2.5 MakeSecure 0 0 ••••••••• 0 ••• 0 •• 0 0" 0" 0 •••••••• 0 •••••••••••••••••• 6
2.6 KillSecure 0000. 0 0 0 0000 •••• o ••• 0 0 0 o. 0 0 0 0 00 ••• 0 ••• 0 o •• 0 o ••• 0 •• 000 ••• 0 ••• 7
2.7 OpenSecure 0 ••••••• 00 ••• 0 •• 0 0 0 0" o. 0.000 ••• 00 •••••••• 0 ••••••••••• 0.0 ••••••••••••• 8
2.8 Rename Secure ... 9
2.9 VerifyPassword 0" 0 •••• 0 •••••••• 0 •• 0 0 0 000000 •••••••••••••• 0 ••••••••• 10
2.10 ChangePassword 0 •••• 0" 0 o ••••••••••••••••••••• 0 •••••• 0 ••••••••••••• 0 ••• 11

J 1ntert~._ _ ... _. ___ . __•............ 12

I
I
I
I
1 1

I
I
I
I
I
I
I
I
I
I
I
1

(1'-)

1

The CEMSysCall Unit

Irtroduction
The OEMSysCall unit provides interfaces to privileged procedures within the
Lisa Operating System. These privileged procedures offer facilities that fall
into two categories: disk volume management and file password protection.

Disk Volume f..18.n8.gement
The OEMSysCall unit includes procedures to

• Initialize a disk volume.
• Eject a removable disk volume.
• Scavenge a disk volume.
• Determine if two disk volumes are identical.

File Password Protection
A file may be protected from unauthorized access by associating a password
with it. Password protection prevents a file from being opened, killed, or
renamed without presentation of the proper password. other operations (e.g.,
Lookup, Read_Label, etc.) are unaffected by the presence of a password
protecting the specified file. The OEMSysCall unit includes procedures to

• Open a password-protected file.
• Delete a password-protected file.
• Rename a password-protected file.
• Change the password associated with a file.
• Verify the password associated with a file.

1-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

USB. Sj.lStems SoftWl!JTe

2 0EMSyaCa.l1 RtU:lnaa

2..1 lnit_ Vol

In1t_Vol (ver ecode : integer;
devName : e_naae;
volHa.e : e_na.e;
password : e_na.e)

ecode: Error indication (common errors are listed below)
devName: Name of the device to initialize
volName: Name to assign to the new disk volume
password: Password to assign to the new disk volume

Initialize the volume on the specified device. The volume 1s assigned the
name and pc.ssword volName and pass'lllQ'd. Volume pMSwords ere currently
not supported by the Lisa file system. The volume may not be mounted on
the device at the time of the call.
Common errors:

618 Cannot format the volume (make sure a diskette is in
the drive).

971 Device name is invalid (check configuration).
1167 Device is not a disk.
1169 Could not default mount the volume in order to

perform initialization.
1171 Volume name contains the dash, "_"# character.
1172 No space in system heap for the volume allocation

map of the new volume.
1390 Volume is mounted on the device.

1-2

I
I
I
I
I"

I
I
I
I
I
I
I
I

Lisa S}lS'tems Software

2..2 EjectVul

EjectYol (ver ecode : integer;
devNa.e : e_na.e)

OEMS}·'SCsll

ecode: Error indication (common errors are listed below)
devName: Name of the device from which to eject media

Eject the removable disk media from the specified device. The device must
support ejectable media, and the volume may not be mounted on the device
at the time or the call.

Common errors:
614 No diskette present in the drive.
971 Device name is invalid (check configuration).

1164 Device does not support ejectable media.
1390 Volume is mounted on the device.

1-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Lisa S).<s-tems Software OEMSysCt.tJJ

2..3 ScavengeVol

ScavengeVol (var ecode : integer;
devName : e_name)

ecode: Error indication (common errors are listed below)
devName: Name of the device to scavenge

Scavenge the volume on the specified device. The volume may not be
mounted on the device at the time of the call.
Common errors:

614
971

1225
1227
1231
1237
1240
1390

No diskette present in the drive.
Device name is invalid (check configuration).
Scavenger aborted.
Device is not a disk.
Scavenger heap overflow.
Unable to repair the volume directory structure.
Volume is not in a Lisa file system format.
Volume is mounted on the device.

1-4

1
1
I'
1
1
1
1
1
I
I ..
1
1
1
1
1
I
1
I\.....

I

Lisa Systems Softwsre

2..4 VarifYVol

VerifyVol (ver ecode : integer;
sourceDev : e_naae;
destinDev : e_na.e;
bufAddr : longint;
bufSize : longint)

ecode:
sourceDev:
destinOev;
bufAddr:
bufSiz8:

Error indication (common errors are listed below)
Name of the device being verified
Name of the device to verify against
Address of the buffer
Size of the buffer in bytes

Compare the volume on sourceDev with the volume on destinDev. The
volumes are compared track by track. The memory buffer used during the
comperison is supplied by the caller and is described by its starting address
bufAddr and length bufSlze. The buffer must be at least large enough to
accommodate two disk blocks of 536 bytes each (Le., 1072 bytes). Neither
the source volume nor the destination volume may be mounted at the time
of the call. The error indication ecode is zero if the volumes are identical,
and 1393 if they differ.
Common errors:

614 No diskette present in the drive.
971 Source or destination device name is invalid (check

configuration).
1167 Source or destination device is not a disk.
1390 Volume is mounted on the source or destination

device.
1392 Supplied buffer is too small (bufSize < 1072).
1393 Volumes are not identical.

1-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Lisa $)lstems Softwl!JI'e

2..5 MakeSectn

HakeSecure (ver ecode : integer;
var path ; pathna.e;
var password : 8_n_e)

ecode: Error indication (common errors are listed below)
path: Name of the new file
password: Password to be associated with the new file

Create a new file protected by the specified pssword. This procedure
behaves the same as Make_File.
Common errors:

854 Volume s-file list is full.
855 Cannot allocate disk space for the file leader.
890 file already exists.
891 Volume catalog is full.
892 file name is illegal (a file name may not contain

the dash, "_", character).
921 Pathname is invalid.

1-6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

1'-'
I

Lisa S}.:stems Software

2.6 KillSeclw'e

K111Seeure (var eeode : integer;
var path : pathnaae;
var password ~ 8_na.e)

ecode: Error indication (common errors are listed below)
path: Name of the object to be deleted
password: Password associated with the object

Delete the fUe with the specified name and password. The deletion is not
allowed it PfIiIIlS\'I«d does not match the psssword sssigned to the filB. This
procedure behaves the same as Kill_Object.
Common errors:
-1293

894
69j
896

1294

1298

Warning: the file was not password protected. The
kill operation completes normally.
File cannot be found.
file name is illegal.
File safety switch is set (the file is protected
against deletion).
Supplied password does not match the password
protecting this file.
File cannot be accessed because its s-list entry is
damaged.

1-7

