> v
i L

Operating System
Reference Manual
for the Lisa

What's Inside

This binder contains seven docurnents about the Lise™ system software faor
programmers’ reference. The manuals &re, in order:

» Qoerating System Reference Manual for the Lisa.

The QEMSyscall Unit.

The Standsrd Apple Nurneric Emcironment. (5A/l/ é)
The 63X Assermnbiy-L anguage SANE.

The Statnit.

The Froglomm Unit.

The @uickFort Frogrammer's Guide.

In addition, elsewhere in this package of books and media, there is a copy of
Motorola's MSRXXY 15:32 Bit Microprocessor Frogrammer’s Reference Manual.

Future Releases
A few features of the Lisa Operating System will be changed In future
releases:

* Pipes will not be supported.
* Timed events will not be supported.
* Conflguration System Calls will be changed.

If you want your software to be upward-compatible, please take these changes
into consideration. More Information is provided In the appropriate sections
of the manual.

Contents
-
Frefoce
Chapter 1
Introduction
1.1 The MaIn FUNCUIONS ...t rres s e e s s s sanass 1-1
1.2 Using the 0S FUNCLIONS.....ciiieiiei s rancnn e rea s s easssana e 1-1
1.3 The Flle SYSUBM ... rraerrare e e s e s an s e e e s s s sansrrnsses 1-2
1.4 Process Managemmentc..cciiiiiiiicreriittanistnicer s teesasreatansessassarssens 1-3
1.5 Memory ManagemeNtcccciiiceieiiiititerricrasirreeeneeererassasnennsesnnsennee 1-4
1.6 EXCEPONS and EVENLS.....ccciiceeeceenceenccensenntemessssernssnsseasnsssaseansssaneee 1-5
1.7 Interprocess CommUNICatioN.cccciiiiiicriiiciiiric et resrene s rnesenenens 1-5
1.8 USING the 0S INLEITACE ...cccoiiiiiiiicitiitrccerecerr e s anseranscsaresserennsanane 1-6
1.9 Running Programs under the 05cccccciiciiieiimneresiimninienesrenserenseanens 1-6
1.10 writing Programs That Use the OSccicciiciiiineininnsntesssiaensen 1-6
Chapter 2
The File System
2.1 FH18 NBMES .. . ciiiiicieiiirteceantrersassantesmesanstasaassasseessssassssserassaassassassen 2-1
2.2 The WOTKING DITECLOTY ...cvviiiiriiiiniiieiienciinniersssseensstisaseirassserassees 2-2
2% S .~) U= PPN 2-3
2.8 StOrage DEVICES ...cciiiiiiiriiiicir ettt e e e 2-3
25 The Volume Calalog......cccciiiieieiiiiicititaittiiiirotataetetstssssaransesasnnssacesss 2-4
7 T T o N 2-4
2.7 Loglcal and Physical ENG OF FLIB...oooomoooomsomoeeeomseessesersseesrreeeeserreree 2-4
2.8 FIIB ACCESS «.ccvuriitieiiinnectirenirienieraessesascessassrsessstnsssasnssssnssssssssssssssses 2-5
P B o | 4= P 2-6
2.10 Fl1E SYSLem CallS..ciiiiuiiiinsiienitimesienssinnsinriesiiessssrsssseresssssasssssasssaes 2-7
Chapter 3
Processes
3.1 Process SUUCIUTE ...iiuuireirsiitstestnisssrsessstsstastasssessssresssssansanssans R 4
3.2 PIOCESS HIBIAICRY ...iierieieiririraeranssartersaseessaesanssestansassrassassasssassansanses 3-2
3.2 Process Creatlon . oiiiciiiccicicrie ettt ecer s er s s s eaes eeesrrersarenens 3-3
3.4 PIOCESS CONLIOL o..iiiieeiiiirnetiirncerannrerasssrsenresnssessssranassssssssssenssasasssnnnss 3-3
3.5 Process SCheUIINGiuu i rreecrensteaenseeresstrasssasssssennsssenssssenes 3-3
3.6 Process Terminationcccccieiiieiccireicreee e e e eam e eene e ane e e ennanes 3-q
3.7 A Process-Handling EXAMPLEccciieeiiiririiiniecciinnnrieassesasssesannes 3-5
3.8 Process System Calls.........cceevriimnirniistniinirecineetenssannniessess crereerens 3-7

(Qperating System Reference Marvial Contents

Chapter 4

Memory Management
8.1 D38 SBOMBNLS . i rirriicitetattriset e tarettr s e et setasectasatassaarar e narasan 4-1
4.2 The Logical Data Segment NUMDBEY ...c.iciriiiieciitiecssrentranitsessssassssases a-1
8.3 Shared Datad SegmeNLs........cicceiiiiaiiieiiintttiessiratreesaestrassiasessssssane 4-2
4.4 Private Data Segmentscoiiieiietniniiitinrii e e e as e sanas 4-2
0.5 CO0B SEQIMENTS tuteieuuuessrestereerassnemesstterrassessieeteenssssssstaiserearansssssesses 4-2
LRSI ¢ o) [[N 4-2
4.7 Memory Management System Calls.....ccoiviiiiiininreniiinnecnnnn. 4-3

Chapter S5

Exceptions and Events
1230 T 2= 61 L o - PP S5-1
5.2 Systemn-Defined EXCeptions......ccciicireiaiiiiaiiiccrree s ecernerecen e eenesnens 5-2
5.3 Exception HaNGIersciiiciiiiiiiici ittt e raessessanassesssenssnsaseas 5-2
31 B AV = o RS 5-5
55 EVENt Chanels oottt terete s st s ns e ae s sasasasasnsnsasasnna 5-5
5.6 The SYSTeM ClIOCKccceviiiiiiiiieniieiinii st s e e 5-10
5.7 Exception Management System Callscceiiieiiiiieriarcernaineniesesenane 5-10
5.8 Event Management System CallS......cccoivimiiiiiiininiiininiininene .. 5-17
5.9 Clock SYstem Callsccciciiiiiieiireratitiittarenseeneracasesceraseesnsesasmaranes 5-27

Chapter 6

Configuration
6.1 Configuration System CallS........ccceeiiiiriiiiieicririnee et se s e s seeeeens 6-1

Appendixes
A Operating System Interface Unit......ccooiiiiiiiiiiiiinirccincnnnniciniassnseneas A-1
B System-Reserved EXCEption NamMes....coiiiiciiieniiiicerieierrssesennsssnsessannne, B-1
C System-Reserved EVENt TYPeS ...iviiiiiiiiiiiiteiinstreersiesiennesssnsesssisasses C-1
D EYTOT MESSAGES cuureutinciraeennrennteitatrottesensesssaserasmassassansancasssassessnssssassnens D-1
E FS INFO FIEIUS ..oureiiniiieertareiinciotensnsresassesentastareesassnsossessssassansasersnsens E-1

Index

Preface

The Contents of This Manual
This manual describes the Operating System service calls that are available to
Pascal and assembler programs. It Is written for experienced Pascal
prograrmnmers and does not explain elementary terms and programming
techniques. Wwe assume that you have read the [/sg8 Owners Guige and
workshop Users Gulde for the (/s and are famillar with your Lisa system.

Cnhapter 1 is a general introauction to the Operating System.

Chapter 2 describes the Flle System and the avallable Flle Systern calls. This
Includes a agescription of the interprocess communication faclility, pipes, and
the Operating System calls that allow processes to use pipes.

Chapter 3 describes the calls available 10 control processes, and also describes
the structure of processes.

Chapter 4 describes how processes can control their use of available memory.

Chapter S describes the use of events and exceptions that control process
synchronization. 1t also describes the use of the system clock.

Chapter 6 describes the calls you can use to find out about the configuration
of the system,

Appendix A contalns the source text of Syscall, the unit that contains the
type, procedure, and function definitions discussed in this marwual.

Appendix B contains a list of system-reserved exception names.
Appendix C contalns a list of systern-reserved event names.

Appendix DO contalns a list of error messages that can be produced by the
calls documented in this manual.

Appendix E contains a description of the information you can obtaln from the
Operating Systern about files and devices.

Type and Syntax Conventions
Bold-face type is used in this manual to distinguish programming keywords and
constructs from English text. For example, FLUSH is the name of a system
call. System call names are capitalized in this manual, although Pascal does
not distinguish between lower and upper case characters, /&/cs inuicate a
new term whose explanation follows.

3 R 3
< .
5

Chapter 1
Introduction
1.1 The Maln FUNCUONS.........coo oo ccccmceemccercccncecccenceeena s on e nnsnanmasann 1-1
1.2 USINg the 0S FUNCHIONSccccceeeececsicemsessncessnnesssassssnsnssnnesssnsessssnssssess 1-1
13 The FI1e SYSteM........coiiocceeccmrememc e eonocastesennscessasssnnssasscsanasssasanes 1-2
LA Process ManagemMBNLeoecccieecesmeennesanensessirsennssssanssssassssesnssnsnsssnnes 1-3
15 MemOry MBNagBITIENL ..ciccciciirrieeiceasessisnsessisnsensnrssessssssssssssssssssssnsans 1-4
16 Exceptons and EVENS ... ciiriiiiriccinettie it ess et es s se e s e s ensnnnnes 1-5
1.7 Interprocess COmMMUNICAtION......cccccciecieneiinntenttercestretsesencessssesanssnssnsae 1-5
18 5ing the 0S INEITACE ..iccceerireeiencremmenrrrinsentstaensissanssnsastessssassnnnsnsees 16
19 Running Programs under the 05cccccieccieememnrensennsmanssanssessenssanssens 1-6

CHANGES/ADDITIONS

Cperating System 30 Notes Introduction

Chapter 1
Introduction

Using the SYSCALL Unit

If a Psscal program contains Operating System user-interface procedure
calls, then the program's USES clause must specify the SYSCALL unit,
contained in the SysCall.Obj file:

Program MyProg;
USES {$U SYSCALL 0BJ} SysCall;

Notes 1-1

Introduction

The Operating System (0S) provides an environment in which multiple processes
can coexist, communicate, and share data. It provides a flle system for 1/0
and information storage, handles exceptions (software interrupts), and performs

memory management.

1.1 The Main Functions
This chapter describes the four maln functional areas of the 0S: the Flle
System, process management, memory management, and event and exception
handling. '

The File System provides Input and output. The Flle System accesses devices,
volumnes, and files. Each object, whether a printer, disk file, or any other type
of object, is referenced by a pathname. Every 1/0 operation is performed as
an uninterpreted byte stream. Using the File System, all 1/0 is device
Independent. The File System also provides device-specific control operations.

A process consists of an executing program and its assoclated data. Several
processes can execute concurrently by multiplexing the processor between
them. These processes can be broken into segments which are automatically
swapped into memory as needed.

Memory management routines handle data segments. A data segment Is a file
that can be placed in memory and accessed directly.

Exceptions and events are process-communication constructs provided by the
0S. An event is a message sent from one process to another, or from a
process to itself, that is dellvered to the recelving process only when the
process asks for that event. An exception is a speclal type of event that
forces itself on the recelving process. There Is a set of system-defined
exceptions (errors), and programs can define thelr own. System errors such as
division by zero are examples of system-defined exceptions. You can use the
system calls provided to deflne any exceptions you want.

1.2 Using the 0S Functions
Both bullt-in language features and explicit OS system calls can access 0S
routines to perform desired functions. For example, the Pascal writeln
procedure is a bullt-in feature of the language. The code to execute writeln
is supplied in IOSPASLIB, the Pascal run-time support routines llbrary. This
code, which {s added to the program when the program is linked, calls 0S
File System routines to perform the desired output.

You can also call 0S routlnes explicitly. This 1s usually done when the
language does not provide the operation you want. 0S routines allow Pascal
programs, for example, Lo create new processes, which could not otherwise be
done, since Pascal does not have any bullt-In process-handling functions.

1-1

qpergting Systerm Reference Marxial Introawction

All calls to the 0S are synchronous, which means they do not returmn until the
operation Is complete. Each call returmns an error code to indicate if anything
went wrong during the operation. Any non-zero value indicates an error or
waming. Negative error codes indicate wamings. For a list of error codes
and thelr meaning, see Appendix D.

13 The Flle System
The File System performs all 1/0 as uninterpreted byte streams. These byte
streams can go to flles on disk or to other devices such as a printer or an
alternative consple. In all cases, the device or flle has a File System name.
Except for device-control functions, the File System treats devices and files
in the same way.

The Flle System allows sharing of all types of objects.

The File System provides for naming objects (devices, flles, etc.) A name In
the File System Is called a pal/mamne A complete pathname consists of a
directory name and a flle name. The file name is meaningful only for storage
devices (devices that store byte streams for later use, such as disks)

Each process has a working directory assoclated with it. This allows you to
reference objects with an Incomplete pathname. To access an object in the
working airectory, you specify Its file name. To access an object in a
different directory, you specify its complete pathname.

Before a device can be accessed, it must be mounted. Devices can be
mounted using the Preferences tool or by using the MOUNT call. See Chapter
2 for an explanation of this call and other Flle System calls. If the device Is
a storage device, the mount operation makes a wo/ume name avallable. A
volume name is a logical name for a disk, and is saved on the disk itself. The
mount operation logically connects the volume to the system, so that the flles
on the volume may be accessed. The volume name can replace a device name
In a pathname used to access an object on the disk. The volume name allows

you to access a file with the same pathname no matter where the drive is
actually connected.

A device can be accessed If it is specified in the configuration list created by
the Preferences tool, Is physically connected to the Lisa, and Is mounted.
There are some operations that can be performed on unmounted devices. Two
examples are DEVICE_CONTROL calls and scavenging. Logically mounting a
volume on a device makes flle access to the volume possible. For storage
devices, a volume Is an actual magnetic medium that can contaln recorded
flles. For non-storage devices, volumes and flles are concepts used to
maintain a uniform Interface. Flles on non-storage devices such as printers
do not store data but act as ports for performing 1/0 to the devices.

™

perating System Referernice Maial Introaetion

The basic operations provided by the Flle System are as follows:

mount and unmount - make a volume accessible/Inaccessible
open and close - make an oObject accessible/Inaccessible
reaqg and write - transfer Informatlon to and from an object
device control functions - control device-specific functions

Some operations apply only to storage devices:

allocate and deallocate - specify size of an object

manlpulate catalog - control naming of objects and creation and
destruction of objects

manipulate attributes - look at or change the characteristics of
the object

In addition to the data in an object, the object itself has certain ‘
characteristics calleq attritx/ites such as the length and creation date of a
file. Calls are avallable to access the attributes of any File System object. In
aadition to its system-defined attributes, an object on a storage device can
have a /abel The label is avallable for programs to store information that
they can interpret.

Non-storage devices such as printers are accessed with a limited set of
operations. They must be mounted and opened before they can be accessed.
Sequential read and/or write operations are avallable as appropriate for the
device. Device-control functions are avallable to perform any device-
specific functions needed. The flle-name portion of the complete pathname
for a non-storage device is not used by the File System, although you do have
to provide one when you open the device.

For storage devices, the same sequential read and write operations are valld
as for non-storage devices. Storage devices also must be mounted, and

particular files opened, before the flles can be used. They have appropriate
device-control functions avallable.

when writing to a disk flle, space for the flle Is allocated as needed. Space
for a flle does not need to be contiguous, and In some cases this automatic
allocation can result In a fragmented flle, which may slow flle access. To
insure rapid access, you can pre-allocate space for the file. Pre-allocating
the flle also ensures that the process will not run out of space on the disk.

Four types of objects can be stored on storage devices. These are files, pipes,
data segments, and event channels. Flles, already discussed, are simply arrays
of stored data. Plpes are objects that provide interprocess communication.
Data segments are speclal cases of files that are loaded into memory along
with program code. Event channels are pipes with a specialized structure
Imposed by the system.

1.4 Process Management
A process Is an executing program and the data associated with it. Several

processes can exist at one time, and they appear to run simultaneously
because the CPU |s multiplexed among them. The Scheduler decides what

Operating System Reference Maal Introaetion

process should use the CPU at any one time. It uses a generally non-
preemptive scheduling algorithm. This means that a process will not lose the
CPU unless it blocks. The blocked state is explained later in this section,

A process can lose the CPU when one of the following happens:
¢ The process calls an Operating System procedure or function.

* The process references one of ity code segments that is not currently in
memory.

If nelther of these occur, the process will not lose the CPU.

Every process is started by another process. The newly started process Is
called the sa process The process that started it Is called its /ater process
The resulting structure Is a tree of processes. See Figure 3-2 for an
fllustration of a process tree.

when any process terminates, all its son processes and thelr descendants are
also terminated.

when the OS s booted, it starts a s/e// process The shell process starts any
other processes desired by the user.

Every newly created process has the same system-standard attributes and
capabilities. These can be changed by using system calls.

Any processes can suspend, activate, or kill any other process for which the
global ID Is known, as long as the other process does not protect itself.

The memory accesses of an executing process are restricted to its own
memory aadress space. Processes can communicate with other processes by
using shared flles, pipes, event channels, or shared data segments.

A process can be in one of three states: ready, running, or blocked. A reagy
process is walting for the Scheduler ta select It to run. A suming process is
currently using the CPU 0 execute Its code. A blacked process is walting for
some event, such as the completion of an 1/0 operation. It will not be
scheduled untll the event occurs, at which point it becomes ready. A
tenninated process has finished executing.

Each process has a priority from 1 to 255. The higher the number, the higher
the priority of the process. Priorities 226 o 255 are reserved for system
processes. The Scheduler always runs the ready process with the highest
priority. A process can change its own priority, or the priority of any other
process, while it Is executing.

15 Memory Management
Memory managment is concemed with what Is In physical memory at any one
time. Each process can use up to 128 memory segments. Each segment can
contaln up to 128 Kbytes. Memory segments are of two types: code segments
and data segments. The total amount of memory used by any one process can
exceed the avallable RAM of the Lisa. The Operating System will swap code
segments in and out of memory as they are needed. To aid the Operating

1-4

Qperating System Refererce Maxial! Introoetion

System in swapping gata segments, calls are provided to give programs the
abllity to define which data segments must be in memory while a particular
part of the program Is executing.

You have control of how your program is divided up. For executable code
segments, you use the segmentation commands of the Pascal cornpller to break
the program in pleces.

In addition to residing In memory, data segments can be stored permanently
on disk. They can be accessed with calls similar to File System calls. This
allows you to use a data segment as a direct-access flle--a file that is
accessed as part of your memory space.

Calls are provided for making, killing, opening, and closing aata segments.
You can also change the size of a data segment and set its access mode to
read-only or read-write, In addition, you can make a permanent disk copy of
the contents of a data segment at any time. Other calls give you abllity to
force the contents of the data segment to be swapped Into maln memory so
they can be accessed by your process.

1.6 Exceptions and Events
An exception Is an unexpected condition in the execution of a process (an
Interrupt). An event IS a message from another process.

An exception can be generated either by the system or by an executing
program. System exceptions are generated by varlous sorts of errors such as
divide by zero, illegal instruction, and lllegal address. System exception
handlers are supplied that terminate the process. You can write your own
exception handlers for any of these exceptions If you want to try to recover
from the error.

User exceptions can be declared and exception handlers can be written to
process them. Your program can then signal this new exception.

Events are messages sent from one process 10 another. They are sent through
event channels.

A process that expects a message from an event channel executes a call to
walt for an event on that channel. This wlll give it the next message, if one
exists, or block the process untll a message arrives.

If a process wants to know when an event arrives, but does not want to walt
far 1t, it can use an event-call channel. This Is set up by assoclating a user
exception with the event channel when it Is opened. The Operating System
will then invoke the corresponding user exception handler whenever a message
arrives in the event channel.

17 Interprocess Communication
There are four methods for Interprocess communication: shared flles, pipes,
event channels, and shared data segments.

1-5

perating System Reference Manal Introauction P

Snared files are used for high volume transfers of Information. It iIs necessary
to coordinate the processes somehow to prevent them from overwriting each
other's Information.

Pipes are used for communication between processes with an uninterpreted
byte stream. (Note that pipes will not be supported In future releases of the
Operating System.) The pipe mechanism provides for the needed
synchronization; a process will block if it is trying to read from an empty
pipe or write to a full one. A read from a pipe consumes the Information, so
it Is no longer avallable. Only one process can read from a glven pipe.

Event channels are simllar to plpes, except that event channels transmit short,
structured messages instead of uninterpreted bytes.

A shared data segment can be used to transmit a large amount of data
rapidly. Having a shared data segment means that this data segment Is in the
memory address space of all the processes that want to use it. All the
processes can then directly read and write information in the data segment.
It s necessary to provide some sort of synchronization Lo keep one process
from overwriting another's information.

1.8 Using the OS Interface
The interface to all the systemn calls Is provided In the Syscall unit, found In
Appendix A. This unit can be used to provide access to the calls. See the
workshop Users Guloe for the Lisa for more Information on using Syscall. @~ .

1.9 Running Programs Under the 0S
Programs can be written and run by using the workshop, which provides

program development tools such as editing and debugging facilities.

110 writing Programs That Use the 0S
You can write a program that calls 0S routines to perform needed functions.
This program uses the Syscall unit and then calls the routines needed.

CHANGEs /ADDITION ¥

Qperating S\stern 3.0 Notes The File Systemn

Chapter 2
The File System

New Hierarchical File System
Each mounted disk volume now has & hierarchically arranged directory
structure. The root directory of a volume is always present, and
subdirectories may be created to contain collections of files that are
logically related.

Path Names (See Section 2.1)
A particuler file or directory is specified to the file system with a pat#
name. A path name is a sequence of directory names, seperated by dashes
(-), ending in a file or directory neme. For example, the path name

-lower-memaos-conference.text

specifies that the root directory of the disk volume /ower be searched for
the directory mernos, and then rmemaos be searched for the file
conference.text. File and directory names are limited to 32 characters in
length, and are truncated to 32 characters if too long.

The warking Directory (See Section 2.2)
A working directory is associated with each process in the system. When a
process is created, its working directory is the root directary of the boot
disk volume. A process may reessign its working directory through the
SET_WORKING DIR call. The GET_WORKING_DIR call returns the path
name of the working directory in a printaeble string. A path name submitted
to the file systemn by a process may be specified relative to the process's
working directory. This is done by omitting the initial dash from the path
name. Suppose that the working directory is -lower-docurmnents-mermos in
the directory hierarchy shown below. The path name mail-netMail.text
specifies that the working directory be searched for the directory mail. and
then mail be seerched for the file netAailtext, The path name

conference.text specifies that the working directory be searched for the file
conference.text.

The plus delimiter {+) may be substituted for the dash within & path name to
indicate that the next directory in the path name is the parent of the
preceding directory. The plus delimiter is typically used to trace a path by
moving upward in the directory tree relative to the working directory. Again
suppose that the working directory is -lower-docurnents-memas. The path
name *docurments-book-chaps specifies that the parent directory of the
working directory be searched for the directory book and then bock be
searched for the file chap® The path name sdocurnentstiower-gares traces
a path up through directory documents to the root directory of disk volume
lower and then down to find directory games. Since the parent directory of

Notes 2-1

Cperating System 3.0 Notes The File System

any given file or directory is unique, the name following a plus delimiter
within a path name may be omitted. For example, the path name #»-games
is egquivalent to +documents+lower-gsarnes, and the path name » is equivalent
to +docurnents.

N AN

mollusk.text conference.text chapl chap2 chap3

netMailtext localMail.text

Directory Tree

Pipes (See Section 2.9)
The pipe facility has been removed. MAKE_PIPE has been deleted, and any
attempt to OPEN an old pipe object will return an error number 948. All the
inter-process communication (IPC) features provided by pipes are also
provided by event channels.

MAKE_CATALOG File System Call

MAKE_CATALOG (var ecode : integer;
var path - pathname;
label_size : integer)

ecode: Error indicator
path: Name of the new catalog
label_size: Number of bytes for the catalog’'s label

MAKE_CATALOG creates a catalog (also called a directory) with the specified
pathname. label size specifies the initial size in bytes of the label. It must
be less than or equal to 128 bytes. The label can grow to contain up to 128
bytes no matter what its initial size. Any error indication is returned in
ecode.

Notes 2-2

Cperating System 3.0 Notes The File Systemn

QUICK-LOOKUP File Systern Call

QUICK_LOOKUP (var ecode : integer;
var path : pathnanme;
var InfoRec : Q_Info)

ecode: Error indicator
path: Name of the object to lookup
InfoRec: Information returned about the object

QUICK_LOOKUP returns information about a file or directory.

QUICK _LOOKUP is significantly faster than L OOKURP (about five times), but
returns a subset of the information available through LOOKUP.
QUICK_LOOKUP is not applicable to a disk volurne or device, only to files
or directories. The definition of the Q_Info record is shown below; note that
many of the Tields are not defined when QUICK_LOOKUP is applied to a

directory.

Q_Info = RECORD

name : e_name;

etype : entrytype;

DTC - longint;

DTHM = longint;

size - longint;

psize = longint;

fs_overhead : integer;

master : boolean;

protected - boolean;

safety : boolean;

left_open : boolean;

scavenged : boolean;

closed_by 0OS : boolean;

nreaders : integer;

nwriters : integer;

level : integer;

END;

name: Name of the file or directory.
etype: Type of object (either fileentry or catentry).
DTC: Date/time the file or directory was created.
DTM: Date/time the file was last modified.
size: Number of data bytes in the file (LEOF).
peize: Physical size of the file in bytes.

fs_overhead: Number of disk pages used by the file system to store
control information about this file.
master: Flag set if this file is a master.

Notes 2-X

Operating System 3.0 Notes The File System

protected:

safety:
left_open:
scavenged:

closed_by 0S:
nreaders:

mriters:
level:

[: xtra No 1[e: :

Flag set if this file is protected (refers to software theft
protection, not password protection).

Flag set if the file safety switch is on.

Flag set if this file was left open during a systern crash.
Flag set by the Scavenger if this file has been partially or
totally rebuilt.

Flag set if this file was last closed by the Operating
System.

Number of processes with this file cpen for reading.
Number of processes with this file open for writing.
Level of the file or directory within the directory tree.
This field has valid contents only when the Q_Info record
is returned by LOOKIUP_NEXT_ENTRY.

o The file fyf/em can contarn a bant 1200 file entries

4 ca‘/'a/o .
,'CSu/‘/S. j

IE the ca/a/y becomes Lull error §5§¢

Notes 2-4

21
22
23
24
25
26
27
28
29
2.10

Chapter 2
The File System

File NamMIes e ecmieeccacr e me e ———aan 2-1
The Working Directory ecaeaaas 2-2
I (o 2-3
Storage DevICes e eeaca—an 2-3
The Volume Catalog crecaeceeaan 2-4
LA e e ——————— 2-4
Logical and Physical End of File oo iiee 2-4
File BCCESS e meeecammeeame—mae—nan 2-5
PP e em e —— e mameem——————a- 2-6
File System Calls e 2-7
2.10.1 MAKE_FILE and MAKE_PIPEo ieeeaaeas 2-8
2.10.2 KILL _OBIE CT ittt eeer e 2-10
2103 UNKILL _FILE ..oiaiiiii ittt 2-11
2.104 RENAME _ENTRY ..ot e ettt 2-12
2.10.5 LOOKUP Lottt e 2-13
2.0 6 INF O s 2-16
2107 SET_FILE _INFO .. o et 2-17
2108 OPEN e 2-18
2.109 CLOSE _OBJECT ..ottt ceieeee e eeeaeeans 2-19
2.10.10 READ_DATA and WRITE_DATA ... 2-20
2.10.11 READ_LABEL and WRITE_LABELcoviiiiiin.... 2-23
2.10.12 DEVICE_CONTROL ...ttt e e i 2-24

2.10.12.1 Setting Device-Control Information............... 2-24

2.10.12.2 Obtaining Device-Control Information 2-29
2.30.13 ALLOCATE .ot e et 2-34
21014 COMPACT L e 2-35
21015 TRUNCATE . ittt e e et e eeaeaaaenaas 2-36
2.10.06 FLUSH e 2-37
2.10.17 SET _SAFETY Lot e e 2-38
2.10.18 SET_WORKING_DIR and GET_WORKING DIR 2-39
2.10.19 RESET_CATALOG, RESET_SUBTREE, GET_NEXT_ENTRY,

and LOOKUP_NEXT_ENTRY ..o eeeee e 2~-40
2.10.20 MOUNT and UNMOUNTo iiieieieeennns 2-41

The File System

The File System provides device-independent 1/0, storage with access
protection, and uniform file-naming conventions.

Device independence means that all 1/0 Is performed In the same way,
whether the ultimate destination or source is disk storage, another program, a
printer, or anything else. In all cases, 1/0 Is performed to or from /7es
although those flles can also be devices, data segments, or programs.

Every file is an uninterpreted stream of elght-bit bytes.

A file that is stored on a block-structured device, such as a disk, Is listed in
a catalog(also called a ofrectory) and has a name. For each such file the
catalog contalns an entry describing the file's attributes, Including the length
of the file, its position on the disk, and the last backup copy date. Arbltrary
application-defined information can be stored in an area called the FAle /abel
Each flle has two associated measures of length, the Lagical End of File
LEGF) and the Aysical Eno or File (PEGF] The LEOF is a pointer 1o the last
byte that has meaningful data. The PEOF is a count of the number of blocks

allocated to the file. The pointer to the next byte to be read or written Is
called the Fle marker

Since 1/0 is device independent, application programs do not have to take
account of the physical characteristics of a device. However, on block-
structured devices, programs can make 1/0 requests in whole-block increments
in order to improve program performance.

All input and output is synchronous in that the 1/0 requested is performed
before the call returns. The actual 1/0, however, Is asynchronous, in that
processes may block when performing 1/0. See Section 3.5, Process Scheduling,
for more information on blocking.

To reduce the impact uf an error, the File System maintains distributed,
redundant information about the files on storage devices. Duplicate copies of
critical information are stored in different forms and in different places on
the media. All the files are able to identify and describe themselves, and
there are usually several ways to recover lost information. The Scavenger

utility is able to reconstruct damaged catalogs from the information stored
with each flle.

2.1 Flle Names

All the files known to the Operating System at a particular time are organized
Into catalogs. Each disk volume has a catalog that lists all the flles on the
aisk.

Any object catalogued in the Flle System can be named by specifying the
volume on which the file resides and the file name. The names are separated

2-1

Querating System Refererve Marial The Flle System

by the character “-". Because the top catalog in the system has no name, all
complete pathnames begin with “-".

For example,
-LISA-FORMAT. TEXT

refers to a file named FORMAT.TEXT on a volume named LISA. The file
name can contain up to 32 characters. If a longer name Is specified, the
name Is truncated to 32 characters. Accesses to sequential devices use an
arbitrary dumnmy filename that Is ignored but must be present in the
pathname. For example, the serlal port pathname

-RS2328
is insufficient, but
-R$232B-XYZ

is accepted, even though the -XYZ portion Is ignored. Certaln device names
are precgefined:

RS232A Serial Port A

RS2328 Serial Port B

PARAPORT Parallel Port

SLOTXCHANy Serial ports: x is1, 2, or 3andy is 1 or 2
MAINCONSOLE writeln and readln device

ALTCONSOLE writeln and readln device

UPPER Upper Diskette drive (Drive 1)
LOWER Lower Diskette drive (Drive 2)
BITBKT Bit bucket: data Is thrown away when directed here

See Chapter 6 for more information on device names.

Upper and lower case are not significant in pathnames: 'TESTVOL' is the same
object as 'Testvol'. Any ASCII character is legal in a pathname, including
non-printing characters and blank spaces. However, use of ASCII 13,
RETURN, In a pathname Is strongly discouraged.

22 The Working Directory

1t 15 sometimes Inconvenient to specify a complete pathname, especially when
working with a group of flles In the same volume. To alleviate this problem,
the Operating System maintains the name of a working directory for each
process. when a pathname Is specified without a leading "-*, the name refers
to an object in the working directory. For example, if the working directory
is -LISA the name FORMAT.TEXT refers to the same flle as
-LISA-FORMAT.TEXT. The defaull working directory name Is the name of the
boot volume directory.

You can find out what the working directory is with GET_WORKING_DIR.
You can change to a new working directory with SET_WORKING_DIR.

2-2

Qperating System Reference Markisl/ he Flle Systerm

2.3 Devices
Device names follow the same conventions as flle names. Attributes like baud

rate are controlled by using the DEVICE_CONTROL call with the appropriate
pathname.

Each device has a permanently assigned priority. From highest to lowest, the
priorities are:

Power on/off button
Serial port A (RS232A)

Serial port B (RS2328, the leftmost port)
I/0 siot 1

I/0 slot 2

I70 slot 3

Keyboard, mouse, battery-powered clock
10 ms system timer

CRT vertical retrace interrupt
Parallel port

Diskette 1 (UPPER)

Diskette 2 (LOWER)

video screen

The device driver assoclated with a device contains information about the

device's physical characteristics such as sector slze and interleave factors for
disks.

2.4 Storage Devices
On storage devices such as disk drives, the File System reads or writes file
data In terms of pages. A pageis the same size as a block. Any access to
data In a file ultimately transiates into one or more page accesses. when a
program requests an amount of data that does not fit evenly into some
number of pages, the File System reads the next highest number of whole
pages. Simllarly, data Is actually written to a flle only in whole page
increments,

A flle does not need to occupy contiguous pages. The File System keeps
track of the Jocations of all the pages that make up a flle.

Each page on a storage device Is self-identifying: the page descriptoris stored
with the page contents to reduce the destructive Impact of an 1/0 error.

The eight components of the page descriptor are:

version number

Volume identifier

File identifier

Amount of data on the page
Page name

Page position in the flle
Forward 1ink

Backward 1link

2-3

Qperating System Referernce Maxial The Flle System

Each volume has a Meailun Descriptor 0Data Flle (MOOF) which describes the
various attributes of the medium such as its size, page length, block layout,
and tnle size of the boot area. The MDDF is created when the volume is
initialized.

The File Systemn also maintains a record of which pages on the medium are
currently allocated, and a catalog of all the flles on the volume. Each flle
contains a set of flle hints, which describe and point to the actual file data.

25 The Volume Catalog
On a storage device, the volume catalog provides access to the files. The
catalog Is itself a file that maps user names Into the intermnal file identifiers
used by the Operating System. Each catalog entry contains a variety of
Information about each file including:

Name

Type

Internal file number and address

Size

Date and time created, last modified, and last accessed

File identifier
Safety switch

The safety switch Is used to avold accldental deletions. While the safety

switch Is on, the flle cannot be deleted. The other flelds are described under
the LOOKUP File System call.

The catalog can be located anywhere on the medium.

26 Labels
An application can store its own information about a file in an area called
the Ale /abel The label allows an application to keep the flle data separate
from Information maintained about the file. Labels can be used for any
object In the Flle System. The maximum label size is 128 bytes. 1/0 to labels
Is handled separately from flle data 1/0.

2.7 Logical and Physical End of Flle
A flle contains some number of bytes of data recorded In some number of
physical pages. Additional pages which do not contain any file data can be
allocated to the flle. There are, therefore, two measures of the end of the
flle. The Logical End of File (LEOF) is a pointer to the last stored byte that
has meaning to the application. The Physical End of Flle (PECF) iIs a count of
the number of pages allocated to the flle.

In addition, each open file has a pointer called the /7/e marker which points
to the next byte in the flle to be read or written. when the flle Is opened,
the file marker polnts to the first byte (byte number 0} The flle marker can
be positioned automatically or explicitly using the read and write calls. For
example, when a program writes to a flle opened with Append access, the flle
marker is automatically positioned to the end of the flle before new data are
written. The file marker cannot be positioned past | EOF except by a write

Qperating System Reference Marnasl he Flle System

operation that appends data to a file; In this case the flle marker is
positioned one byte past LEOF.

when a flle is created, an entry for it Is made in the catalog specified in its
pathname, but no space Is allocated for the flle itself. when the file Is
opened by a process, space can be allocated explicitly by the process, or
automatically by the Operating System. If a write operation causes the flle
marker to be positioned past the LLEOF marker, LEOF (and PEOF If necessary)
are automatically extended. The new space is contiguous if possible,

2.8 Flle Access

The Flle System provides a device-Independent bytestream Interface. As far
as an application program Is concemed, a speclfied number of bytes is
transferred elther relatlve to the file marker or at a specified byte location
in the file. The physical attributes of the device or flle are not Important o
the application, except that devices that do not support positioning can
perform only sequentlial operations., Programs can sometimes Improve
performance, however, by laking advantage of a device's physical
characteristics.

Programs can request any amount of data from a file. The actual 1/0,
however, Is performed In whole-page Increments when devices are block
structured. Therefore, programs can optimize 1/0 to such devices by setting
the file marker on a page boundary and making 1/0 requests in whole-page
increments.

A file can be open for access by more than one process concurrently. All
requests to write to the flle are completed before any other access to the file
Is permitted. when one process writes to a file, the effect of the write
operation is immediately available to all other processes reading the flle. The
other processes may, however, have accessed the file in an earller state,

Data already obtained by a program are not changed. The programmer must
ensure that processes maintain a consistent view of a shared flle.

when you open a flle, you specify the kind of access allowed on the file.
when the flle Is opened, the Operating System allocates a file marker for the
calling process and a run-time identification number called the reffusm The
process must use the refnum in subsequent calls to refer to the flle, Each
operation using the refnum affects only the file marker assoclated with that
refnum.

Processes can share the same flle marker. In glabal access mode each
process uses the same refnum for the file. when a process opens a file in
global access mode, the refnum it gets back can be passed to any other
process, and used by any process. Note that any number of processes can
open a flle with Global_Refrum, but each time the OPEN call Is used a
different refnum Is produced. Each of those refrums can be passed to other
processes, and each process using a particular refum shares the same flle
marker with other processes with the same refum. Processes using different

2-5

Qperating System Rererence Maial he Flle System

refnums, however, always have different file markers, whether or not those
refnums were obtained with Global_Refrum.

A flle can also be opened in private mode, which specifies that no other DPEN
calls are o be allowed for that file. A flle can be opened with
Global_Refrum and private, which opens the flle for global access, but allows
no other process to open that file. By using this call, processes can control
which other processes have access to a file. The opening process passes the
global refnum to any other process that is to have access, and the system
prevents other processes from opening the flle.

Processes using global access may not be able to make any assumptions about
the location of the file marker from one access to the next.

2.9 Pipes
Because the Operating System supports multiple processes, a mechanism is
provided for Interprocess communication. This mechanism is called a pjpe
Plpes are similar to the other objects in the File System -- they are named
according to the same rules, and they can have labels.

NOTE

Pipes will not be supported in future releases of the Operating System.
Do not use the pipe mechanism if you want your software to be
upward-compatible.

As with a flle, a plpe is a byte stream. Wwith a pipe, however, Information is
queued In a first-in-first~out manner. Also, a pipe can have only one reader
at a time, and once data Is read from a pipe It is removed from the plpe.

A plpe can be accessed only In sequentlal mode. Although only one process
can read data from a pipe, any number of processes can write data into it.
Because the data read from the pipe is consumed, the file marker Is always at
zero. If the pipe is empty and no processes have it open for writing, EOF (End
Of File) Is returned to the reading process. If any process has the pipe open
for writing, the reading process is suspended until enough data to satisfy the
call arrives in the pipe, or until all writers close the pipe.

when a pipe Is createq, its size is D bytes. Unlike with ordinary flles, the
initializing program must allocate space to the pipe before trying to write
data into it. To avold deadlocks between the reading process and the writers,
the Operating System does not allow a process to read or write an amount of
data greater than half the physical size of the pipe. For this reason, you
should allocate to the pipe twice as much space as the largest amount of data
In any planned read or write operation,

A plpe is actually a clrcular buffer with a read polnter and a write pointer.
All writers access the pipe through the same write pointer. Whenever either
pointer reaches the end of the plpe, It wraps back around to the first byte. 1If
the read pointer catches up with the write pointer, the reading process blocks

2-6

Qperating System Reference Mamus! The Flle System

untll data are written or untll all the writers close the pipe. Similarly, iIf the
write pointer catches up with the read polnter, a writing process blocks until
the plpe reader frees up some space or untll the reader closes the pipe.
Because plpes have this structure, there are restrictions on some operations.
These restrictions are discussed with the relevant Flle System calls.

Processes can never make read or write requests bigger than half the size of
the pipe because the Operating System always fully satlsfles each read or
write request before returning to the program. In other words, if a process
asks for 100 bytes of data from a pipe, the Operating System walts untll there
are 100 bytes of data in the pipe and then completes the call. Similarly, If a
process tries to write 100 bytes of data into a pipe, the Operating System
walts until there Is room for the full 100 bytes before writing anything into
the plpe. If processes were allowed to make write or read requests for
greater than half of a particular pipe, it would be possible for a reader and a
writer to deadlock, with nelther having room in the pipe to satisfy its
requests.

2.10 Flle System Calls
This section describes all the Operating System calls that pertain to the Flle
System. A summary of all the Operating System calls can be found In
Appendix A. The followlng speclal types are used in the File System calls:

Pathname = STRING[Max_Pathname]; (» Max Pathname = 255 *)
E_Name = STRING[Hax Ename]; (*» Hax_EName = 32 =)
Accesses = (Dread, Dwrite, Append, Private, Glogal _Refrum);
HSet = SET OF Accesses;

Iodode = (Absolute, Relative, Sequential);

The Fs_Info record and its assoclated types are described under the LOOKUP
call. The Dctype record is described under the DEVICE_CONTROL call.

2-7

Qperating System Reference Marnsal The File System

2.10.1 MAKE_FILE and MAKE_PIPE Flle System Calls

HAKE FILE (var Ecode:Integer;
var Path:Pathname;
Label_Size:Integer)

HAKE PIPE (var Ecode:Integer;
var Path:Pathname;
Label_Size:Integer)

Ecode: Error indication
Path: Name of new object
Label Size: Number of bytes for the object's label

MAKE_FILE and MAKE_PIPE create the specified type of object with the
given name. If the pathname does not specify a directory name (more
specifically, if the pathname does not begin with a dash), the working
directory is used. Label_Slze specifies the initial size In bytes of the label.
It must be less than or equal to 128 bytes. The label can grow to contaln up
to 128 bytes no matter what its initial size. Any error indication is returned
in Ecode.

NOTE

Pipes will not be supported in future releases of the Operating System.
Do not use the plpe mechanism if you want your software to be
upward-compatible,

The MAKE_FILE example on the next page checks to see whether the
specified flle exists before opening it.

Operating System Rererence Mandl The Flle System

CONST FlleExists = 890;
VAR FileRefNum ErrorCode: INTEGER;
F1ileName :PathiName;

Happy : =FALSE:
WHILE NOT Happy DO
BEGIN
REPEAT (= get a file name *)
WITE('File name: °);
READUN(F 11eName);
UNTIL LENGTH(F1leName)>0;
HAKE_FILE(ErrorCode, FileName, 0); (*no label for this file»)

IF (ErrorCode<>0) THEN (* does file already exist? *)
IF (ErrorCode=FileExists) THEN (» yes =)
BEGIN
WITE(FileName, ' already exists. Overwrite? ');
READLN(Response);

Happy:=(Response IN ['y’,'Y']). (*go ahead and overwrite»)
END

ELSE WRITELN('Error ‘,ErrorCode, ' while creating file.')
ELSE Happy:=TRUE;
END;

OPEN(ErTorcode, FileName, F11eRefNum, [Dwrite]);
END;

perating System Rererence Marxidl Tne Flie System

2.10.2 KILL_OBJECT Flle System Call

KILL_OBXCT (var Ecode:Integer;
var Path:Pathname)

Ecode: Error indicator
Path: Name of object to be deleted

KILL_0BJECT deletes the object given in Path from the File System. Objects
with the safety switch on cannot be deleted. If a flle or plpe is open at the
time of the KILL_OBJECT call, its actual deletion s postponed until it has
been closed by all processes that have it open. During this period no new
processes are allowed to open it. The object to be deleted need not be open
at the time of the KILL_UBJECT call. A KILL_UBJECT call can be reversed
by UNKILL_FILE, as long as the object Is a flle and Is still open.

The following program fragment deletes files untll RETURN is pressed:

CONST FileNotFound=894;
VAR FileName:PathName;
ErrorCode:INTEGER;
BEGIN
REPEAT
WRITE('File to oelete: ‘),
READUN(F 11eName);
IF (FileName<>'') THEN
BEGIN
KILL_ 0BJECT(ErrorCode, FileName);
IF (ErrorCode<>0Q) THEN
IF (ErrorCode=F1leNotFound) THEN
WRITELN(FileName, ' not found.')
ELSE WRITELN('Error ', ErrorCode, ' while deleting file.*)
ELSE WRITELN(F1leName, ' deleted.");
END
UNTIL (FlleName='");
END;

Qperating System Referernce Mkl The File System

2103 UNKILL_FILE File System Call

UNKILL FILE (var Ecoge:Integer;
RefNum:Integer:
var Newame:e_name)

Ecode: Error indicator
RefNum: Refnum of the killed and open file
Newname: New name for the file being restored

UNKILL _FILE reverses the effect of KILL OBJECT as long as the killed
object s a file that Is stlll open. A new catalog entry Is created for the file
with the name glven in Newname. Newname is not a full pathname: the .
resurrected file remains In the same directory.

2-11

(perating System Reference Mamial he File System

2.10.4 RENAME_ENTRY Flle System Call

RENAME_ENTRY (Var Ecode:Integer;
var Path:Pathname;
var Newname:E_Name)

Ecode: Error indicator
Path: Object's old name
Newname: Object's new name

RENAME_ENTRY changes the name of an object In the Flle System.
Newname cannot be a full pathname. The name of the object s changed, but
the object remalns In the same directory. The followlng program fragment
changes the file name of FORMATTER.LIST to NEWFORMAT.TEXT.

VAR OldName :PathiName;
NewhName :E_Name;
ErrorCode : INTEGER

BEGIN
OldName:="-1LISA-FORMATTER,.LIST .
NewName : = ‘NEWFORMAT . TEXT *;
RENAME_ENTRY(ErrorCode, O1dName, NewName) ;

END;

The flle's full pathname after renaming is
~LISA-NEWFORMAT.TEXT

volume names can be renamed by specifylng only the volume name In Path
Here Is a sample program fragment which changes a volume name. Note that
the leading dash (-), glven in OldName, Is not given In NewiName.

VAR OldName :PathName;
NewName :E_Name;
ErrorCode: INTEGER
BEGIN
OloName:="-thomas”®;
NewName : =" stearns”;
RENAME ENTRY(Errorcode, 01dName, NewNaine) ;
END;

2-12

qperating System Reference Manal The File System

2.10.5 LOOKUP File System Call

LOOKUP (var Ecode:Integer;
var Path:Pathname;
var attributes:Fs Info)

Ecode: Error indicator
Path: Object to lookup
Attributes: Information returned about path

LOOKUP returns Informatlon about an object in the flle system. For devices
and mounted volumes, call LOOKUP with a pathname that names the device or
volume without a file name component:

DevName:="-UPPER"; (* Diskette drive 1 »)
LOOKUP(ErrorCode, DevName, InfoRec);

1f the device is currently mounted and s block structured, all of the record
flelds of Attributes contaln meaningful values; otherwise, some values are
undefined.

The Fs_Info record s defined as follows. The meanings of the Information
flelds are glven in Appendix E.

Fs_Info = RECORD
name : e_name;
dgevium: INTEGER;
CASE OType:info_type OF

device t, volume_t:
(iochannel: INTEGER
devt: devtype;
slot_no: INTEGER;
fs_slze: LONGINT;
vol_size: LONGINT;
blockstructured,
mounted: BOOLEAN;
opencount: LONGINT
privatedev,
remote,
lockeddev: BOOLEAN;
mount_pending,
unmount_pending: BOOLEAN;
volname,
password: e_name;
fsversion,
volig,
volnum: INTEGER;

2-13

I

Qoerating System Reference Marnual The File System

blockslze,
datasize,
clustersize,
filecount: INTEGER; (*Number of files on vol®)
freecount: LONGINT; (*Number of free blocks *)
DTVC, (» Date Volume Created)
DTVB. (= Date Volume last Backed up *)
DTVS:LONGINT; (* Date Volume last scavenged *)
HMachine_id,
overmount stamp,
master _copy_id: LONGINT;
privileged,
vrite protected: BOOLEAN;
master,
copy.
scavenge flag: BOOLEAN);

objJect_t: (
size: LONGINT; (=actual no of bytes eritten =)
psize: LONGINT: (=physical size in bytes)
1psize: INTEGER; (*Logical page size in bytes =)
ftype: filetype:
etype: entrytype;

DTC, (» Date Created ")
DTA, (* Date last Accessed *)
DT, (» Date last Hogified =)
DTB: LONGINT; (* Date last Backed up *)

refnum: INTEGER;

fmark: LONGINT; (= flle marker =)

acmode: mset; (= access mode *)
nreaders, (* Number of readers *)

neriters, (* Number of writers =)

nusers: INTEGER; (* Number of users =)
fuld: uid; (" unique 1ldentifier =)
eof, (» EOF encountered? =)
safety on, (= safety switch setting =)
kswitch: BOOLEAN; (* has file been killed? =)
private, (* Flle opened for private access? *)
locked, (= Is flle locked? =)
protected:BOOLEAN); (» File copy protected? =)

Z2-14

Qperating System Rererence Marxsal The Flle System

Uid = INTEGER:

Info_Type = (device_t, volume_t, object t);

Devtype = (diskdev, pascalbd, seqdev, bitbkt, non_io).

Filetype = (undefined, MDDFFile, rootcat, freelist,
badblocks, sysdata, spool, exec, usercat, pipe,
bootflle, swapdata, swapcode, ramap, userfile,
killedobject):

Entrytype = (emptyentry, catentry, linkentry, fileentry,
pipeentry, ecentry, killedentry);

The eof fleld of the Fs_Info record is set after an attempt to read more
bytes than are avallable from the flle marker to the logical end of the file, or
after an attempt to write when no disk space s avallable. If the flle marker
Is at the twentleth byte of a twenty-flve byte flle, for example, you can
read up to 5 bytes without setting eof, but If you try to read 6 bytes, the
File System glves you only 5 bytes of data and eof Is set.

The following program reports how many bytes of data a glven flle has:

VAR InfoRec:Fs_Info; (*Information returned by LOOKUP and INFO*)
F1leName :PathName;
ErrorCode:INTEGER;

BEGIN
WITE('Flle: °);
READLN(Fi1eName);

LOOKUP(ExrorCode, F11eName, InfoRec).
IF (ErrorCode<>0) THEN
WRITELN('Cannot lookup °,FlleName)
ELSE
WRITELN(FlleName, ' has ‘. InfoRec.Size, * bytes of data.');
END;

2-15

perating System Refererce Marnal e Flle Systern

2.10.6 INFO File System Call

INFO (var Ecode:Integer;
RefNum: Integer;
var RefInfo:Fs_Info)

Ecoge: Error indicator
RefNum: Reference number of object in Flle System
Refinfo: Information returned about RefNum's object

INFO serves a function similar to that of LODKUP but Is applicable only to

objects in the File System that are open. The definition of the Fs_lnfo
record is given under LOOKUP and in Appendix A

2-16

Qerating System Reference Marxial The Flle System

2107 SET_FILE_INFO Flie System Call

SET_FILE _INFO (var Ecode:Integer;
RefNum:Integer;

Fsi:Fs_Info)
Ecode: Error indicator
RefNum: Reference number of object in Flle System
Fsi: New information about the object

SET_FILE_INFO changes the status Information assoclated with a glven object.
This call works in exactly the opposite way that LOOKIUP and INFO work, in
that the status information is glven by your program to SET_FILE_INFO. The
Fsl argument Is the same type of Information record as that returmned by
LODHUP and INFO. The object must be open at the time this call is made.

The followlng fields of the Informatlon report may be changed:

file_

file_closed by 0S
file_left_open
user_type
user_subtype

2-17

|

Qperating System Reference Marnal Tne Flle System

2.108 OPEN File System Call

OPEN (var Ecoode:Integer;
var Path:Pathname;
var RefNum:Integer;

Manip:HSet)
Ecode: Error indicator
Path: Name of object to be opened
RefNum: Reference number for object
Hanip: Set of access types

The OPEN call opens an object so that it can be read or written to. wnen
you call OPEN, you specify the set of accesses that wlll be allowed on that
flle or sequentlal device. The avallable access types are:

* Dread -- Allows you to read the file

* Dwrite -- Allows you to write in the file (to replace existing
data)

* Append -- Allows you to add on to the end of the file

* Private -- Prevents other processes from opening the file

* Global_Refrnum -- Creates a refnum that can be passed to other
processes

Note that you can glve any number of these modes slmultaneously. If you
specify Dwrite and Append in the same OPEN call, Dwrite access will be used.
See Section 2.8 for more information on Global_Refrwam and Private access
modes.

If the object opened already exists and the process calls WRITE_DATA
without having specified Append access, the object can be overwritten. The
Operating System does not create a temporary file and wait for the
CLOSE_0BJECT call before deciding what to do with the old file.

An object can be opened by two separate processes (or more than once by a
single process) stmultanecusly. If the processes write to the file without using
a global refnum, they must coordinate thelr flle accesses so as to avold
overwriting each other's data.

Plpes cannot be opened for Dwrlte access. You must use Apperd if you want
to write Into the pipe. To set up a private pipe, the reader process opens the
plpe first, specifying Oread mode; the writer process then opens the pipe with
Apperdd, Private access mode.

2-18

|

tperating System Reference Mamial The Flle Systermn

2.10.9 CLOSE_OBJECT Flle System Call

CLOSE_DBJECT (var Ecode:Integer;
RefNum:Integer)

Ecode: Error ingicator
RefNum: Reference number of object to be closed

If RefNum s not global, CLOSE_OBJECT terminates any use of RefNum for 1/0
operations. A FLUSH operation Is performed automatically and the flle Is
saved In its current state. If ReftNum Is a global refnum and other processes
have the flle open, RefNum remalns valld for these processes and other
processes can still access the flle using ReflNum.

The following program fragment opens a flle, reads 512 bytes from it, and
then closes the file.

TYPE Byte=-128..127;
VAR F1lleName:PathName;
ErrorCode, FileRefNum:Integer;
ActualBytes:Longlint;
Buffer:ARRAY[0..511] OF Byte;
BEGIN
OPEN(ErrorCode, F1leName, F11eRefNum, [DRead]);
IF (ErrorCode>0) THEN
WRITELN('Cannot open °, FileName)
ELSE
BEGIN
READ_DATA(ErrorCode,
FilleRefNum,
ORDA(aBuffer),
512,
ActualBytes,
Sequential,
0).;
IF (ActualBytes<512) THEN
WRITE(‘Only read °‘, ActualBytes, ' bytes from °,FlleName);
CLOSE_OBJECT(Errorcode, FileRefNum);
END;
END;

2-19

Qperating System Reference Manal The Flle System SN

St

2.10.10 READ_DATA and WRITE_DATA Flle System Calls

READ DATA (var Ecode:Integer;
RefNum:Integer;
Data_Aadr:LongInt;
Count :LongInt;

var Actual:LongInt;
Hode : IoHode;
offset:LongInt);

WRITE DATA (var Ecode:Integer;
RefNum: Integer,
Data_aadr:Longint;
Count :LongInt;

var Actual:LongInt;
Hode : ITotHode;
Offset:LongInt);

Ecode: Error indicator
RefNum: Reference number of object for 1/0
Data Addr: Address of data (source or destination)

Count: Number of bytes of data to be transferred
Actual: Actual number of bytes transferred

Hode: 1/0 mode

Offset: Offset (absolute or relative modes)

READ DATA reads information from the device, pipe, or flle specified by
RefNum, and WRITE_DATA wrlites Information to it. Data_aadr is the
address for the destination or source of Count bytes of data. The actual
number of bytes transferred Is returned In Actual.

Mode can be absolute, relative, or sequential. In absolute mode, Offset
speclfies an absolute byte of the flle. In relative mode, Offset specifies a
byte relatlve to the flle marker. In sequential mode, Offset Is ignored
(assumed to be zero); transfers occur relative to the file marker. Sequential
mode (which iIs a special case of relative mode) is the only access mode
allowed for reading or writing data in pipes or sequential (non-disk) devices.
Non-sequential modes are valld only on devices that support positioning. The
first byte Is numbered 0.

If a process attempts to write data past the Physical End of Flle on a disk
file, the Operating System automatically allocates enough additional space to
contaln the data. This new space, may not be contiguous with the previous
blocks. You can use the ALLOCATE call to ensure that any newly allocated
blocks are located next to each other, although they may not be located near
the rest of the flle.

READ_DATA from a pipe that does not contain enough data to satisfy Count
suspends the calling process untll the data arrives in the pipe. If there are no

2-20

perating System Reference Maridl The Flle System

wrlters, the end-of-file Indication (error 848) is returned in Ecode. Because
pipes are clrcular, WRITE_DATA to a pipe with insufficient room suspends the
calling process (the writer) until enough space is avallable (until the reader
has consumed enough data). If no process has the pipe open for reading and

there 1s not enough space In the pipe, the end-of-file indication (848) is
returned in Ecode.

NOTE

READ_DATA from the MAINCONSOLE or ALTCONSOLE devices must
specify Count = 1.

The following program coples a file. Note that you must supply the correct
locatlon for Syscall in the second line of the program.

PROGRAH CopyFile;

USES (*Syscall.Obj*) SysCall;

TYPE By te=-128..127;

VAR 0ldFlle, NewF1le:PathName;
01dRefNum, NewRefNum: INTEGER;
BytesRead, BytesWritten:LONGINT;
ErrorCode : INTEGER;

. Response:CHAR;
: Buffer:ARRAY [0..511] OF Byte;
BEGIN
WITE('File to copy: ');
READLN(O1dFi1e);

OPEN(ErrorCode, 010File, O1dRefNum, [DRead]);

IF (ErrorCode>0) THEN

BEGIN
WRITELN('Error ‘,ErrorCode, ' while opening °,0ldFile);
EXIT(CopyFile);

END;

WRITE('New file name: ');

READLN(NewFile);

HAKE_FILE (Errorcode, Newfile, 0);

OPEN(ErrorCode, Newr 11e, NewRefNum, [D¥rite]);

REPEAT
READ_DATA(ErrorCode,
O1dRefNum,
ORDA(aBuffer),

512, BytesRead, Sequential, 0);
IF (ErrorCode=0) AND (BytesRead>0) THEN
WRITE_DATA (ErrurCode,
NewRefNum,
ORDA(@Buf fer),
BytesRead, Bytes¥ritten, Sequential, 0);
UNTIL (BytesRead=0) OR (BytesWritten=0) OR (ErrorCode>0);

2-21

persting System Rererence Manigl The Flle Systemn

IF (ErrorCode>0) THEN
WRITELN('File copy encountered error ', ErrorCode);
CLOSE_DOBJECT(ErrorCode, NewRefNum);
CLOSE_0BJECT(ErrorCode, 01dRefNum);
END.

2-22

-

perating system Rererence Ml ne Flie system

2.10.11 READ_L ABEL and WRITE_L ABEL Flle System Calils

READ LABEL (var Ecode:Integer;
var Path:Pathname;
Data_Addr :Longint;
Count:LongInt;
var Actual:LongInt)

WRITE_LABEL (var Ecode:Integer;
var Path:Patiname;
Data_Addr :Longint;
Count:LongInt;
var Actual:lLongInt)

Ecode: Error indicator

Path: Name of object containing the label
Data_Addr: Source or destination of 1/0

Count: Number of bytes to transfer

Actual: Actual number of bytes transferred

These calls read or write the label of an object in the Flle System, 1/0
always starts at the beginning of the label. Count Is the number of bytes the
process wants transferred to or from Data_Addr, and Actual Is the actual
number of bytes transferred. An error is returned if you attempt to read
more than the maximum label size, 128 bytes.

2-25

Cerating S)stem Relerence Manual The File System

21012 DEVICE_CONTROL File System Call

DEVICE_CONTROL (Var Ecode:Integer;
var Path:Pathname;
Var CParm-Dctype)

Ecode: Error indicator
Path: Device to be controlled
CParm: A record of information for the device driver

DEVYICE_CONTROL is used Lo send device-specific information to a device
driver or to obtain device-specific information from a device driver.

Regardless of whether you are setting device-control parameters or
requesting information, you always use a record of type Dctype. The
structure of Dctype is:

Dctype = RECORD

dcversion: INTEGER;

dcCode: INTEGER;
dcData: ARRAY[0..9] OF LONGINT
END,

’

dcversion: currently 2
dcCode: control code for device driver
deData: specific control or data paremeters

210121 Setting Device-Control Information

Before you use a device, you call DEVICE_CONTROL to set the device
driver. Once you begin using the device, you call DEVICE_CONTROL as
necessary.

Table 2-1 shows which groups of device-control functions must be set before
using each type of device. Table 2-2 shows which characteristics are
contained in each group. For example, you must set Group A for RS-232
input. As you see in Table 2-2, Group A indicates the type of parity used
with the device. Each group requires a separate call to DEVICE_CONTROL,
and you can set only one characteristic from each group. If you set more
than one from the same group for a particular device, the last one set will

apply.

2-24

Operating Sysiermn Reference Marial The File s)ystem

Table 2-1
DEVICE_CONTROL Functions Required
before Using a Device

Device Type Device Neme Required Groups
Serial RS232 for RS232A or R523ZB R,C,D E,
input F,G,L,M,N
Serial RS232 for RS232A or R5232B R,B,C,G,
output or printer HIMN
ProFile SLOTxCHANy (where J

x and y are numbers)

or PARAPORT
Parallel printer SLOTxCHANy (where I

x and y sre numbers)

or PARAPORT
Console screen and MAINCONSOLE or I
keyboard ALTCONSOLE
Diskette drive UPPER or LOWER J

Here is a sample program that shows how a device-control parameter is set.
This program sets the perity attribute for the RS232B port to "no parity."
Note that the parity sttribute requires only that you set cparm.dccode and
cparm.dcdatdg0] Other parameters require that you also set cparm.dcdataf1]
and cparm.dcdate[Z] They are set in a similar manner.

YAR
cparm: dctype;
errnum: integer;
path: pathnome;

BEGIN
path:='-R82328";
cparm._dcversion:=2; (* always set this value *)
cpamm .dccode:-= 1;
cparm dcdata[0]:= O;
DEVICE_CONTROL (exrnum, path, cparm);
END;

2-25

CQpereating System Reference Manual The File System Y

Table 2-2 shows how to set cparm.dccode, cparmudcdate]0] cparmudcdate[1]
and cparm.dcdate{2] for the various available sttributes. Note that any
values in cparm.dcdata past cparm.dedate[2] are ignored when you are setting
attributes documented here.

Table 2-2
DEVICE_CONTROL Output Functional Groups

FUNCTION decode .dedetel0] .dedete[1]l .dedetof 7]
Group A, Parity:

No perity, 8 bits

of data 1 0 - -
Odd parity, 7 bits

of data 1 1 - —
Even perity, 7 bits

of data 1 3 - -—
8 bits of data plus

ninth bit odd parity 1 5 - -
No parity, input

stripped to 7 bits 1 6 -— -
Group B, Output Handshake:

None 11 — — -
DTR handsheke 2 - -— —
XON/ZXOFF handshake 3 - - -
delay after CR, LF 4 ms delay - -
Group Ci, Baud rate:

) baud - -

Group D, Input waiting during Read_Data:

wait for Count bytes 6 0 - -
return whatever rec'd 6 1 - -

Group EZ, Input handshake:

no handshoke 7 - -— -
9 -1 -1 32767
DTR handshake 7 - - -
XON/XOFF handshake 8 -— -— -
Group F3, Input typeahead buffer:
flush only 9 -1 -2 -2
flush and resize 9 bytes -2 -2
flush, resize,
and set threshold 9 bytes low hi

2-26

Coerating System Reference Manual The File System

Table 2-2 (cortinued)

FUNCTION decode dodatel0] _dedetall] dcdetafZ]
Group G, Disconnect Detection:

none 10 0 0 -
BREAK detected

means disconnect i0 0 nonzero -

Group H, Timeout on output (handshake interval):
no timeout 12 0 - _
timeout enabled 12 seconds —_ -

Group I, Automatic linefeed insertion:
disabled 17 0 - -
enabled 17 1 - -
Group P, Disk errors (set to 1 to ensble, to O to disable):
enable sparing 21 sparihg rewrite reread

Group K5, Break command (never required, available only on serial
RS232 devices):

send break 132 millisecond 0 -
duration
send break 13 millisecond 1 -
while lowering DTR duration
Group L, Timeout on Input:
No timeout 14 0] - -
Timeout ensbhled 14 seconds - -

Group M, BREAK during Close_Object:

enabled (default) 25 nonzero — —
disabled 25 0 - -
Group N6, Set Modem Timeouts (Int'l MODEM A driver only):

Set timeouts 22 recovery cerrier connect
Group P, Wait until modem connects (Int'l MODEM A driver only)
Wait 24 — — -
(returns with

errnum=645

if no connect)

2-27

Cperating S\vstem Reference Manual The File System

1.-Using Group C, you can set baud to any standard rate. However, 3600,
7200, and 19200 baud are available only on the RS232B port.

2. In Group E, to specify no input handshake, first make the call with the
device control code 7, then call again with the device control code 9, as
shown.

3. Low and Hiunder Group F set the low and high threshold in the typeahead
input buffer. When Hi or more bytes are in the input buffer, XOFF is sent
or DTR is dropped. When Low or fewer bytes remain in the typeahead
buffer, XON is sent or DTR is reasserted. The size of the typeahead buffer
(bytes) can be any value between O and 1024 bytes inclusive.

4. In Group J, enabling disk sparing lets the device driver to relocate blocks
of data from areas of the disk that are found to be bad. Enabling disk
rewrite allows the Operating Systermn to rewrite data that it had trouble
reading, but finally managed to read. This condition is referred to as a sont
error. Ensbling disk reread tells the Operating System to read data after
they are written to make certain that they were written correctly.

5. When sending a bresk command, as shown in Group K, any device control
from Group A removes the break condition even if the sllotted time has not
yvet elapsed. Also, sending a bresk will disrupt transmission of any other
character still being sent. If you want to make certain that enough time has
elapsed for the last character to be transmitted, call WRITE_DATA with a
single null character (equal to 0) just prior to calling DEVICE_CONTROL to
send the break.

6. In Group N, recovery is the minimum number of milliseconds required by
the modem between calls. Carrier is the number of milliseconds without
carrier detect, before the driver dizconnects from the line. Connect is the
maximum number of seconds the driver will wait when Group P
Device_Control is subsequently issued.

2-28

Cwerating S\ystem Relference Manual

The File System

Table 2-3 gives a list of mnemonic constants that you can use in place of
These mnemonics are provided in the

explicit numbers when setting Dccode.

SysCall unit for convenience.

Table 2-3
Dccode Mnemonics

Dccode Mnemonic Dccode Mnemonic

1 duParity 14 no mnemonic

2 cvOutDTR 15 dvErrStat

3 dvOutXON 16 dvGetEvent

4 dvOutDel ay 17 dvAutolLF

5 dvBaud 18 no mnemonic

6 dvinWait 19 no mnemonic

7 dvInDTR 20 dvDiskStat

8 dvInXON 21 dvDiskSpare

9 dvTypesahd 22 no mnemonic
10 dvDiscon 23 no mnemonic
11 dvOutNoHS 24 no mnemonic
12 no mnemonic 25 no mnemonic
i3 no mnemonic

2.10.122 Obtaining Device-Control Infarmation
To use DEVICE_CONTROL to find out about the current state of a particular
device, simply give the pathname for the particular device along with a
function code for the type of information you need. The record of type
Dctype that you supply is returned filled with information.

There are three types of information requests you can make. Note that each
type applies only to some of the available devices. The request types and
the returned information are described in Table 2-4.

Table 2-5 shows the error code provided in response to a Dccode=15
information request. This code is given in cparm.dcdatef0]. The code, a long
integer, is shown in Table 2-5; the bits and bytes are numbered from the
right, counting from 0. The meaning assigned to the bit applies if the bit is
set (equals 1).

Here is a program fragment that uses DEVICE_CONTROL to get information
about the lower diskette drive.

VAR
cparm: dctype;
exrnum: INTEGER;
path: pathname;
BEGIN
path:='-LOWER';
cparm_dcversion-=2; (* always set this value *)

2-29

Operating System Refersnce Msnual The File System

cparm. dccode := 20;
DEVICE_CONTROL(exxnum, path, cparm);
WITH cparm DO
WRITELN (dcdata[0], dedata[1], dcdata[2], dedata[3],
dcdata[4], dcdata[5], dcdata[6])
END;

Table 2-4
Device Informetion

Dccode Devices Returned in Dcdata

15 ProfFiles [0] contains disk error status on last
hardware exrror {see Table 2-5)
[1] contains error retry count
since last system boot

16 Console Screen [0] contains numbers 0-10,
and Keyboard which indicate events:
0 = no event

upper diskette inserted
upper diskette button
lover diskette inserted
lower diskette button
mouse button down
mouse plugged in
power button
mouse button up

10 = mouse unplugged
[1] contains the current state of certain
keys, indicated by set bits (if the bit is
1, the key is pressed) (bits are numbered
from the right)
caps lock key
shift key
option key
tommand key
mouse button
auto repeat
[2] contains X and Y coordinates of mouse,
X in left 2 bytes,Y in right 2 bytes
[3] contains timer value in milliseconds

OO0 O DN

R U8 mown o g

nmnun

BN CO

Operating S\stem Reference Manusal The File Sysitem

Table 24 (continued)
Dccode Devices Returned in Dcdata

18 RS232, Modem R Read and clear input error counters
[0] contains count of freming errors
1] contains count of parity errors
2] contains count of overrun errors
[3] is count of buffer overflow errors

19 RS232, Modem A [0] returns last value passed in
Group A, Dcdata[0]
[1] returns last value passed in dccode
for Group B, or negstive value of 'ms
delay' if 'delay after CR,LF' was selected
[2] returns baud rate
[3] upper 16 bits: returns last value
from dcdata[0], Group D
lower 16 bits: returns last value
from dccode, Group E
4] returns value from 'bytes' Group F
[5] upper 16 bits: velue from 'low’,
Group F
lower 16 bits: value from 'hi’,
Group F
6] returns 'seconds’' from group H
7] upper 16 bits: value from
dcdata[1] Group G
lower 16 bits: value from
dcdata[0] Group I
[8] returns value from dcdata[O],
Group L
[9] returns number of characters waiting
in driver's input buffer

2-31

Qperating System Relerence Manual The File S)stem

Table 2-4 (continued)

Dccode Devices Returned in Dcdata
20 Profile or [0] contains:

Diskette Drive no disk present

disk present (but not

accessed yet)

The following indicate that a disk is

present and has been accessed at

1

least once.
2 = bad block track appears
unformat ted

3 = disk formatted by some
program other than the
Operating System

4 = OS-formatted disk

[1] contains:

0 = no button press pending

1 = button press pending,
disk not yet ejected

[2] contains number of available spare
blocks, 0-16, meaningful only when
Dedata[0] = 4 and for a diskette

[3] contains:

0 = both copies of the bad-block

directory OK

1 = one copy is corrupt
(meaningful only when
Dedata[0] = 4)

[4] contains:

0 = sparing disabled

1 = sparing enabled

[5] contains:

0 = rewrite disabled

1 = rewrite enabled

[6] contains:

0 = reread disabled
1 = reread enabled
23 Modem A [0] returns ‘recovery’, Group N

[1] returns ‘cerrier’', Group N
2] returns ‘connect', Group N
3] returns:

0 = not connected

1 = connected

2-32

e

Cperating Systern Relerence Manual

Table 2-5
Disk Hard-Error Codes
Byte 3
7 = Profile received <> 35 to its last response
6 = Write or write/verify sborted because more than 532 bytes of
data were sent or because ProFile could not read its spare
table
5 = Host's data is no longer in RAM because Profile updated its
spare table
= SEEK ERROR — unable in 3 tries to read 3 consecutive headers
on a track
3 = CRC error (only set durlng actusl read or verify of
write/verify, not while trying to read headers after seeking)
2 = TIMEOUT ERROR (could not find header in 9 revolutions)-- not
set while trying to read headers after seeking
1 = Not used
0 = Operation unsuccessful
Byte 2 .
7 = SEEK ERROR — upable in 1 try to read 3 consecutive headers on
a track
6 = Spared sector table overflow (more than 32 sectors spared)
5 = Not used
4 = Bad block table overflow (more than 100 bad blocks in table)
J = ProFile unable to read its status sector
2 = Sparing occurred
1 = Seek to wrong track occurred
0 = Not used
Byte 1
7 = ProFile has been reset
6 = Invalid block number
5 = Not used
4 = Not used
3 = Not used
2 = Not used
1 = Not used
0 = Not used
Byte O

This byte contains the number of errors encountered when rereading a
block after any read error.

2-33

The File System

Qoerating System Reference Marial The Flle System

2.10.13 ALLOCATE Flle System Call

ALLOCATE (var Ecode:Integer;
RefNum:Integer;
Contiguous:Boolean;
Count:Longint;

Var Actual:Integer)

Ecode: Error indicator

RefNum: Reference number of object to be allocated space
Contiguous: True = allocate contiguously

Count: Number of blocks to be allocated

Actual: Number of blocks actually allocated

Use ALLOCATE to increase the space allocated to an object. If possible,
ALLOCATE adds the requested number of blocks to the space avallable to the
object referenced by ReftNum. The actual number of blocks allocated is
retumed in Actual. If Contiguous s true, the new space Is allocated in a
single, unfragmented space on the disk. This space is not necessarily adjacent
to any existing flle blocks.

AL OCATE applles only to objects on block-structured devices. An attempt to
allocate more space to a plpe Is successful only if the plpe's read pointer is
less than or equal to its write pointer. If the write pointer has wrapped
around but the read polnter has not, an allocation would cause the reader to
read invalid and uninitialized data, so the Flle System returns error 1186 In
this case.

2-34

Qerating System Reference Marxial The Flie System

2.10.14 COMPACT Flie System Call

COMPACT (var Ecode:Integer;
RefNum:Integer)

Ecode: Error indicator
RefNum: Reference number of object to be compacted

COMPALCT changes the Physical End of Flle to deallocate any blocks after the
block that contalns the Loglcal End of Flle for the flle referenced by ReffiNum.
(See Figure 2-1) COMPACT applies only to objects on block-structured
devices. As in the case of ALLOCATE, compaction of a pipe Is legal only if
the read pointer Is less than or equal to the write pointer. If the write pointer
has wrapped around, but the read pointer has not, compaction could destroy
data In the plpe. The File System retums error 1188 In this case.

2-35

Qperating System Reference Mamal The Flle System ‘.

21015 TRUNCATE Flle System Call

TRUNCATE (Var Ecode:Integer;
RefNum:Integer)

Ecoge: Error indicator
RefNum: Reference number of object to be truncated

TRUNCATE sets the Loglcal End of Flle indlcator to the current position of
the flle marker. Any data beyond the flle marker are lost. TRUNCATE
applies only to block-structured devices. Truncation of a pipe can destroy
gata that have been written but not yet read. As the dlagram shows,
TRUNCATE changes only LEOF. COMPACT, on the other hand, changes only

PEOF.
I-— TRUNCATE r COMPALCT —
new new
LEOF PEOF

File Marker old old
LEOF PEOF
Figure 2--2

The Relationship of COMPACT and TRUNCATE

In this flgure the boxes represent blocks of data. Note that LEOF can polnt to
any byte in the flle but PEOF always polnts to a block boundary. Therefore,
TRUNCATE can reset LEQF to any byte In the flie, but COMPACT can reset
PEOF only to a block boundary.

Qperating System Reference Manual The Flle System

2.10.16 FLUSH Flle System Call

FLUSH (var Ecode:Integer;
RefNum:Integer)

Ecooe: Error ingicator
RefNum: Reference number of destination of 1/0

FLUSH forces all buffered Information destined for the object identified by
RefNum to be written out to that object.

A slde effect of FLUSH Is that all FS buffers and data structures are flushed
(as well as the control information for the referenced flle). 1f ReffNum is -1,
only the global Flle System Is flushed. This Is a method by which an
application can ensure that the File System is consistent.

2-37

Qperating System Reference Markial The Flle System

2.10.17 SET_SAFETY Flle System Call

SET_SAFETY (var Ecode:Integer;
var Path:Pathname;
On_off :Boolean)

Ecoge: Error inaicator
Path: Name of object containing safety switch
On_Off: Set safety switch:

on = true

Off = false

Each object In the Flle System has a “safety switch” to help prevent accidental
deletion. If the safety switch is on, the object cannot be deleted.
SET_SAFETY turns the switch on or off for the object identified by path,
Processes that are sharing an object should cooperate with each other when
setting or clearing the safety switch.

2-38

perating Systerm Reference Marn/al he Flle System

2.10.18 SET_WORKING_DIR and GET_WORKING_DIR File System Calls

SET_WORKING DIR (var Ecode:Integer;
var Path:Pathname)

GET_WORKING_DIR (Var Ecode:Integer; o ‘
- var Path:Pathname) e;(uh)"e- -H)2

Ecode: Error indicator
Path: Working directory name

The Operating System uses the working directory name to resolve partially
specified pathnames into complete pathnames. GET_WORKING_DIR returns the
current worklng directory name In Path. SET_WORKING_DIR sets the worklng
directory name.

The following program fragment reports the current name of the working
directory and allows you to set 1t to something else:

VAR workingDir :PathName;
ErrorCode:INTEGER;
BEGIN
GET_WORKING_DIR(ErrorCode, Workingdir);
IF (ErrorCode<>0) THEN
WRITELN('Cannot get the current working directory!‘)
ELSE WRITELN('The current working directory is: °,WorkingDir);
WRITE('New working directory name: ');
READI N(WorkingDiT);
SET_WORKING_DIR(ErrorCoce, orkingDir);
END;

2-39

Cpereting S\stem Reference Manusl The File Syvstem

21019 RESET_CATALOG, RESET_SUBTREE, GET_NEXT_ENTRY, and
LOOKUP_NEXT_ENTRY File System Calls

RESET_CATALOG (var ecode : integer;
var path : pathname)

RESET_SUBTREE (var ecode : integer;
var path : pathname)

GET_NEXT_ENTRY (var ecode : integer;
var prefix : e_name;
var entry : e_name)

LOOKUP_NEXT_ENTRY (var ecode : integer;
var prefix : e_name;
var InfoRec : O_Info)

ecode: Exror indicator

path: Name of the directory to bhe scanned

prefix: Find names beginning with this substring

entry: Neme of the next object (with matching
prefix) in the directory

These procedures sre used to enumerste the objects contained in a

directory. RESET_CATALOG instructs the file system that the directory
named in path is to be scanned. GET_NEXT_ENTRY returns the name of the
next object in the directory. Only names beginning with the substring prefix
will be found. If prefix is the null string, then all nemes in the directory
will be found. If there are no more objects in the directory, an end-of-file
error (848) is returned. RESET_SUBTREE is equivalent to RESET_CATALOG,
but indicates that the subtree rooted st the directory named in path is to be
scanned. Subsequent calls to GET_NEXT_ENTRY will return names from the
subtree according to a pre-arder traversal. LOOKUP_NEXT_ENTRY
combines the actions of GET_NEXT_ENTRY and QUICK _LOOKUP into one
operation, and is considerably more efficient than those two procedures
called serially. When traversing a subtree by calling LOOKUP_NEXT_ENTRY,
the /eve/ Tield of the Q_Info record indicates the level of the object within
the directory hierarchy. Objects in the root directory of a disk volume are
at level zero.

Qoersling System Refererice Marnial The Flle Systemn

2.10.20 MOUNT and UNMOUNT Flle System Calls

MOUNT (var Ecode:Integer;
var VName:E_Name;
var Password:E_Name
Var Devname:E_Name)

UNHOUNT (Var Ecode:Integer; A
(Vu VM:E_m) (gr ‘(‘(\,l'(G WL Clin l)(u,(d\

Ecode: Error indicator

vname : volume name

Password: Password for device (currently ignored)

Devname: Device name

MOUNT and UNMOUNT handie access 10 sequential devices or block-structured
devices. For block-structured devices, MOUNT logically attaches the volume's
catalog to the Flle System. The name of the volume mounted is retumed in
the Vname parameter.

UNMOUNT detaches the specifled volume from the Flle System. No object on
that volume can be opened after UNMOUNT has been called. The volume
cannot be unmounted until ail the objects on the volume have been closed by
all processes using them,

Devname s the name of the device on which a volume is belng mounted.
Devname should be glven without a leading dash (-}

vname Is the name of the volume that was successfully mounted, and Is
returneqd.

2-41

31

33
3a
35
36
3.7
3.8

Chapter 3

Processes
PTOCESS SUIUCTUTE.. ... oo ceiccmacoatereasemntentessareasmncastassssnsssssanasansassannan 3-2
PTOCESS HIBKANCHTY cvuveecnnieniiaimctentneenimarencetneressetneensnsansnnsansasnnssasanees 32
Process CTEALIONcciccevieereemerionrmmnsemesnnssmnssmcssssnsensscsansennsannsenasansnses 33
PTOCESS CONWIOLcoceiiiiiciiaientnncseteteesemarasascssesasensacsserastensnesnanasnsnnans 3-3
PTOCEsS SChEAUIING ..o ettt ceese et ee e es e eneeeees 33
Process TeImMANatON. ... ettt ceencsscennescensracetesensesssssrasasns 3-4
APTOCESS-HANOIINGEXAMPILccieeceeeeirecetenne et e e ee s e n e e neanes 35
PrOCESS SYSIM CALLS ...eceanieeiiieniitetiteerittenes e stesetsnnentatannsssensesassnene 37
3.8.1 MAKE_PROCESSccieeserseesceersessmsseessessessnsssnessessesssssnssassnsenns 3-8
3.8.2 TERMINATE_PROCESS ...cctteioitceraciataasosmesnessssnssassssessosssrassasnnas 3-9
3.8.3 INFO_PROCESS ...cccuierieeeeesrersseesersasaessnressssssessasensesnssssesseassnas 3-11
3.8.8 KILL_PROCESScitiitiinecrterutieisersinatassessasessnsressssnssnstonasssssone 3-13
3.8.5 SUSPEND _PROCESSccceciitrererteccernteesuescesnnsareassassonsesanssssansans 3-14
3.8.6 ACTIVATE _PROCESS....cccttrenrreeteeriacesransansrassassesctoemosanssansanse 3-15
3.8.7 SETPRIORITY_PROCESS ..ccciotiiiinirtinmieissresassnsstscessasciecssssvosaans 2-16
3.8.8 YIELD CPU ..ciiciieiiirnsenieressesssenssasssssssnnssasssarsesssassnssnsesensene 3-17
3.8.9 MY _ID ciriiiiiiiiiirteciitieetectiranesietttannessasesesantnasasstsannansassnnasanaas 3-18

Processes

A process s an entity In the Lisa system that performs work. Wwhen you ask
the Operating System to run a program, the 0S creates a specific instance of
the program ana its associated data. That instance is a process.

The Lisa can have a number of processes at any one time; they appear to be
running simultaneously. Although processes can share code and data, each
process has its own stack.

Only one process at a time can use the CPU. The Scheauw/er determines
which process ls actlve at a particular time. The Scheduler allows each
process to run untll some condition that would slow execution occurs (an 1/0
request, for example). At that time, the running process is saved In its
current state. The Scheduler then checks the pool of ready-to-run processes.
when the original process later resumes executlon, it picks up wnhere 1t left
Off.

The process schedullng state has three possibllities. A suming process 1s
actually executing Instructions. A reagy process s ready to execute but is
being held back by the Scheduler. A blocked process 1s ignored by the
Scheduler. It cannot continue its execution until something causes it to
become ready. Processes commonly become blocked while awalting
completion of 1/0, although there are a number of other likely causes.

3-1

(perating System Reference Mansl Processes 4 \

3.1 Process Structure
A process can use up to 16 data segments and 106 code segments.

The layout of the process address space for user processes IS shown in Figure

3-1
Seg#
-
1] | Unavailable
tm————————
1 User Code Segments
106
o ————————
107 LDSN 1
(data segments)
122 LDSN 16

Figure 3-1
Process Address Space Layout

Each process has an assoclated priority, an integer between 1 and 255. The

Scheduler usually executes the highest-priority ready process. The higher
priorities (226 to 255) are reserved for the Operating System.

32 Process Hierarchy
when the system Is first started, several system processes exist. At the base
of the process hierarchy, shown In Figure 3-2, Is the root process, which
handles various intemal Operating System functions. It has at least two sons:
the Memory Manager process and the shell process.

The Memary Manager process handles code and data segment swapping.

operating System Rererence Manal Processes

The e// process 1s a user process that is automatically started when the 0S
Is Initlalized. It Is typlcally a command interpreter, but it can be any
program. The OS simply looks for the program called SYSTEM.SHELL and
executes it.

Root Process

Shell
Process
Memory Manager Other
Process
User
Process

Other User Processes

Figure 3-2
Process Tree

Any other system process (the network control process, for example) is a son
of the root process.

3.3 Process Creation
when a process Is created, 1t Is placed in the ready state with a priority equal
to that of the process that created it. All the processes created by a given
process can be thought of as existing in a subtree. Many of the process
;nanagement calls affect the entire subtree of a process as well as the process
tself.

3.4 Process Control
Three system calls are provided for explicit control of a process. These calls
allow a process to kill, suspend (block), or activate any other user process In
the system, as long as the process identifler Is known. Process-handling calls
are not allowed to control Operating System processes.

35 Process Scheduling
Process scheduling Is based on the priority established for the process and on
requests for Operating System services.

The Scheduler generally executes the highest-priority ready process. Once a
process is executing, It loses the CPU only under certain circumstances. The
CPU Is lost when there is some specific request for the process to walt (for
an event, for example), when there is an 1/0 request, or when there Is a
reference to a code segment that Is not in memory. A process that makes

3-3

(perating System Reference Manal Processes

any Operating System call may lose the CPU. The process gets the CPU back
when the Operating System Is finished, except under the following conditions:

* The running process requests input or output. The Scheduler starts the
next hignest-priority process running while tne first process walts for the
1/0 to complete.

* The running process lowers Iits priority below that of another ready process
or sets another process’s prlority higher than its own.

* The running process explicitlly ylelds the CPU to another process.
* The running process activates a higher—priority process.

* The running process suspends itself.

* A higher-priority process becomes ready.

* The running process needs code to be swapped into memory.

* The running process executes an event-wait call.

* The running process calls DELAY_TIME.

Because the Operating System cannot sefze the CPU from an executing
process except In the cases noted above, background processes should be
liberally sprinkled with YIELD_CPU calls.

when the Scheduler is Invoked, it saves \he state of the current process and
selects the next process to run by examining the pool of ready processes. If
the new process requires that cooe or data be loaded into memory, the
Memory Manager process Is launched. If the Memory Manager ls already
working on a process, the Scheduler selects the highest priority process In the
ready queue that does not need anything swappeo.

3.6 Process Termination

A process terminates under one of the followlng conditions:
* It calls TERMINATE_PROCESS.
* It reaches an 'END." statement.
* 1t is referred o in a KILL_PROCESS call.
* Its father process terminates.
* 1t runs Into an abnormal condition.

when a process beglns to terminate, a SYS_TERMINATE exception condition is
signaled to the terminating process and all of the processes it has created.

By means of the DECLARE_EXCEP_HOL call (described in Chapter 5), any
process can create an exception handler to catch the terminate exception and
clean up before terminating. The SYS_TERMINATE exception handler will be
executed only once. If an error occurs while the handler Is executling, the
process terminates immediately.

3-4

o~

peraling system Refrerence Manal Frocesses

A process can call KILL_PROCESS on any user process whose Proc_Id Is
known. TERMINATE_PROCESS, on the other hand, termlnates the process that
called it (and its descendants). TERMINATE_PROCESS also allows an event to
be sent to the father of the terminating process if a local event channel was
specified In the MAKE_PROCESS call.

Termination involves the following steps:

1.

2.
3.
U

6.

Signal the SYS_TERMINATE exception on the terminaling process.
Execute the user's exception handler, if any.
Instruct all sons of the current process to terminate.

Close all open files, data segmentsplipes, and event channels left open by
the user process.

Send the SYS_SON_TERM event to the father of the terminating process
if a local event channel exists.

walt for all the sons to finish termination.

3.7 A Process-Handling Example
The following programs illustrate the use of many of the process-management
calls described in this chapter. The program Father, below, creates a son
process and iets it run for a while. It then glves the user a chance to
activate, suspend, kill, or get information about the son.

PROGRAM Father:
USES (=$U Source:SysCall.Obj=) SysCall;
VAR ErrorCode:INTEGER; (*error returns from system calls =)

proc_id:LONGINT; (= process global identifier =)
progname : Pathname; (* program file to execute *)
null:NameString; (= program entry point =)
Info_Rec:ProcInfoRec; (* information about process *)
1:INTEGER;
Answer :CHAR;

3-5

tperating System Reference Marwial Processes
BEGIN
Proghame:="SON.0BJ'; (* this program is defined below=)
Nll:="";

MAKE_PROCESS(ErrorCode, Proc_Id. ProgName, Null, 0);
IF (ErrorCode<>0) THEN
WRITELN('Error ', ErrorCode, ' during process management.’);
FOR 1:=1 TO 15 DO (* 1dle for awhile =)
BEGIN
WITELN(“Father executes for a moment.").
YIELD CPU(ErrorCode, FALSE); (* let son run =)
END;
WRITE('K(i11 S(uspend A(ctivate I(nfo');
READLN(ANswer);
CASE Answer OF
'K*, "K' : KILL_PROCESS(ErrorCode, Proc_Id):
'S’, "s': SUSPEND_PROCESS(ErrorCode, Proc_Id, TRUE (* suspend
family *));
"A, "a’: ACTIVATE_PROCESS(ErrorCode, Proc_Id, TRUE (* activate

family «));
‘I*,"1': BEGIN

INFO_PROCESS(ErrorCoue, Proc_Id, Info_Rec);
WRITELN('Son""s name is °,Info_Rec.ProgPathName);
END;
END:
IF (ErrorCode<>0) THEN
WRITELN(‘Error °,ErrorCode, * during process management.®);
END.

The program Son is:

PROGRAM Son;
USES (*=$U Source:SysCall.Obj=) SysCall;
VAR ErrorCode:INTEGER:
null:NameString;
BEGIN
WILE TRUE DO
BEGIN
WRITELN('Son executes for a moment.');
YIELD_CPU(ErrorCode, FALSE); (*1et father process run)
END;
END.

3-6

J

Qperating System Reference Marn/al Processes

7.8 Process System Calls
This section describes the Operating System calls that pertain to process
control. A summary of all the Operating System calls can be found in
Appendix A. The following special types are used in process-control calls:

Pathname = STRING[255];
Namestring = STRING[20];
P_s eventblock = “s_eventblock;
S_eventblock = T_event_text;
T event_text = array [0..slze_etext] of longint;
ProcInfoRec = record
progpathname : pathname;

global 1d : longint;
father_id : longint;
priority 1 1..255;

state : (pactive, psuspended, pwaiting);
data in : boolean

end;

3-7

Querating System Rerererice Marwal Processes

3.8.1 MAKE_PROCESS Process System Call

HAKE_PROCESS (Var Errhum:Integer;
var Proc_Id:LongInt;
var ProgFile:Pathname;
var EntryName:NameString; (* NameString = STRING[20] =)
Evnt_Chn_RefNum:Integer)

Exrrhum: Error indicator

Proc_Id: Process identifier (globally unique)
ProgFile: Process file name

EntryName: Program entry point

Evnt_Chn_RefNum: Communication channel between calling
process and created process

A son process is created when angther process, the father process, calls
MAKE_PROCESS. The son process executes the program identifled by the
pathname in ProgfFile. If ProgFile is a null character string, the program name
of the father process is used. A globally unique identifier for the son process
is returned in Proc_Id

Evnt_Chn_RefNum Is a local event channel supplied by the father process.
Event channels are discussed in Chapter 5. The Operating System uses the
event channel identlfied by Evnt_Chn_RefNum to send the father process
events regarding the son process (for example, SYS_SON_TERM). If
Evnt_Chn_RefNum Is zero, the father process is not informed when such
events are produced.

EntryName, if non-null, specifies the program entry point where execution is
to begin. Because alternate entry points have not yet been defined for
Pascal, this parameter is currently ignored.

Any error encountered durlng process creation is reported in ErrmNum.

3-8

LDEIZLINY SYsLem Rererence Manial Frocesses

3.8.2 TERMINATE_PROCESS Process System Call

TERHINATE_PROCESS(Var ErrNum:Integer;
Event_Ptr:P_s_eventblk)

ErrNum: Error indicator
Event_Ptr: Information sent to process's creator

A process can be ended by TERMINATE_PROCESS. This call causes a
SYS_TERMINATE exception o be signaled for the calling process and for all
of the processes it has created. The process can declare its own
SYS_TERMINATE exception hanoler Lo handle whatever cleanup it needs to do
before it Is actually termlnated by the system. when the terminate exception
handler is entered, the exception information block contalns a longint that
describes the cause of the process termination:

Excep _Datd0] - 0 Process called TERMINATE_PROCESS.
1 Process executed the 'END.' statement.
2 Process called KILL_PROCESS on itself.

3 Some other process called KILL_PROCESS on the
terminating process.

4 Father process Is terminating.

5 Process made an invalid system call (that is, an
unknown call).

6 Process made a system call with an Invalld ErrNum
parameter address.

7 Process aborted due to an error while trylng to swap
In a code or data segment.

8 Process exceeded its maximum specified stack size.

9 Process aborted due to possible lockup of the system
by a data space exceeding physical memory size.

10 Process aborted due to a parity error.

There are an additional twenty-six errors that can be signaled. The entire list
Is shown at the beginning of Appendix A.

If the terminating process was created with a communication channel, a
SYS_SON_TERM event Is sent to the terminating process's father. The
terminating process can specify the text of the SYS_SON_TERM with the
Event_Ptr parameter. Note that the first (0°th) longint of the event text Is
reserved by the system. When the event Is sent to the father, the OS places
the termination cause of the son process In the first longlnt. This is the same
termination cause that was supplied to the terminating process itseif in the

3-9

Querating System Rererence Marial Frocesses

SYS_TERMINATE exception informatlon block. Any user-supplied data in the
first longint of the event text is overwritten.

If a process specifies an event to be sent in the TERMINATE_PROCESS call
but the process was created without a local event channel, no event is sent to
the father.

If the process was created with a local event channel, an event Is sent to the
father if the process calls TERMINATE_PROCESS with a nil Event_Ptr or if
the process terminates by a means other than calling TERMINATE_PROCESS.
The event contalns the termination cause in the first longint and zeroes in the
remaining event text

P_s_eventblk is a pointer to s_eventblk, defined as:

CONST size etext = 9; (* event text size - 40 bytes =)
TYPE t_event_text = ARRAY [0..slze_etext] OF LongInt;
s_eventblk t_event_text;

If a process calls TERMINATE PROCESS twice, the Operating System forces it
to terminate even if it has disabled the terminate exception.

3-10

Querating System Rererence Mamal Processes

3.8.3 INFO_PROCESS Process System Call

INFO_PROCESS (Var Errhum:Integer;
Proc_Id:LongInt;
var Proc_Info:ProcInfoRec);

ETrNum: Error indicator

Proc_Id: Global identifier of process

Proc_Info: Information about the process identified by
Proc_Id

A process can call INFO_PROCESS to get a varlety of Informatlon about any
process known to the Operating System. Use the function MY_ID to get the
Proc_Id of the calling process.

ProcinfoRec is defined as:
TYPE ProcInfoRec = RECORD
ProgPathname :Pathname;

Global id :longint;
Priority :1..255;

State ! (PACLLve, PSuspended, P¥alting);
Data_in :Boolean
END;
Data_In Ingdicates whether the data space of the process is currently in
memory.

The procedure on the next page gets information about a process and displays
some of it.

3-11

erating Systern Reference Marmual Processes

PROCEDURE Display Info(Proc_Id:LONGINT);
VAR ErrorCode:INTEGER;
Info_Rec:ProcInfoRec;
BEGIN
INFO_PROCESS(ErrorCode, Proc_Id, Info_Rec);
IF (ErrorCode=100) THEN
WRITELN("Attempt to display info about nonexistent

process. ")
ELSE
BEGIN
VITH Info_Rec DO
BEGIN
WRITELN(® program name: °, ProgPathName);
WRITELN(' global id: ',Global_id);
WRITELN(' priority: ', priority);
WITE(' state: ');
CASE State OF
PActive: WRITELN('active');
PSuspended: WRITELN(' suspended’);
PYalting: WRITELN('waiting')
END
END
END
END;

3-12

perating System Reference Manual Processes

3.8.84 KILL_PROCESS Process System Call
KILL_PROCESS (var ErrNum:Integer;
Proc_Id:LongInt)

ErrNum: Error indicator
Proc_Id: Process to be killed

KILL_PROCESS kills the process referred to by Proc_Id and all of the
processes in its subtree. The actual termination of the process does not occur
until the process is in one of the following states:

* Executing In user mode.
* Stopped oue to a SUSPEND_PROCESS call.
* Stopped due to a DELAY_TIME call.

* Stopped due to a WAIT_EVENT_CHN or SEND_EVENT_CHN call, or
READ_DATA or WRITE_DATA to a pipe.

3-13

Qoerating System Reference Manal Processes

3.8.5 SUSPEND_PROCESS Process System Call

SUSPEND_PROCESS (Var ErrNum:Integer;
Proc_Id:LongInt;
Susp Family:Boolean)

ErrNum: Error indicators
Proc_Id: Process to be suspended
Susp_Family: If true, suspend the entire process subtree

SUSPEND_PROCESS allows a process to suspend (block) any process in the
system. The actual suspension does not occur untll the process referred to by
Proc_Id is in one of the following states:

* Executing in user mode
* Stopped due to a DELAY_TIME call
* Stopped due to a WAIT_EVENT_CHN call

Nefther expiration of the delay time nor recelpt of the awalted event causes
a suspended process {0 resume execution. SUSPEND_PROCESS Is the only
direct way to block a process. Processes, however, can become blocked during
1/0, by the timer (see DELAY_TIME), or for many other reasons.

If Susp_Family is true, the Operating System suspends both the process
referred to by Proc_id and all of its descendents. If Susp Family is false,
only the process identified by Proc Id is suspended.

3-14

Qperating Systemn Rerference Marsgl Processes

i

3.86 ACTIVATE_PROCESS Process System Call

ACTIVATE_PROCESS(Var ErrNum:Integer;
Proc_Id:LongInt;
Act_Family:Boolean)

ErrNum: Error indicator
Proc_lId: Process to be activated
Act Family: If true, activate the entire process subtree

To awaken a suspended process, call ACTIVATE PROCESS. A process can
activate any other process in the system. Note that ACTIVATE_PROCESS can
awaken only a suspended process. If the process is blocked for some other
reason, ACTIVATE_PROCESS cannot unblock it. 1f Act_Family is true,
ACTIVATE_PROCESS also actlvates all the descendents of the process referred
to by Proc_Id

3-15

Qperating System Referernce Manual Processes

3.8.7 SETPRIORITY_PROCESS Process System Call

SETPRIORITY_PROCESS(Var ErrNum:Integer;
Proc_Id:LongInt;
New_Priority:Integer)

ErrNum: Error indicator
Proc_Id: Global id of process
New Priority: Process's new priority number

SETPRIORITY_PROCESS changes the scheduling priority of the process
referred to by Proc_Id to New Priority. The priority value must be between 1
and 225. (Operating System processes execute with priorities between 226

and 255.) The higher the priority, the more likely the process is to be allowed
to execule.

3-16

Qperating System Reference Mamial Processes

3.88 YIELD _CPU Process System Call

YIELD CPU(Var ErrNum:Integer;
To_Any:Boolean)

ErrNum: Error indication
To_Any: Yield to any process, or only higher or equal
priority

Background processes should use YIELD CPU often to allow other processes to
execute when they need to. Successive ylelds by processes of the same
priority result in a "round robin™ scheauling of the processes. If To_Any Is
true, YIELD CPU causes the calling process to yield the CPU to any other
ready process. If To_Any is false, YIELD CPU causes the calling process to
glve the CPU to any other ready-to-execute process with an equal or higher

priority. If no process meets the To_Any criterion, the calling process simply
continues execution.

3-17

perating System Rerference Marwsal Processes

3.89 ™MY_ID Process System Call
MY _ID:Longint

MY _ID is a function that returns the unigue global identifier (@ longint) of the
calling process. A process can use MY_ID to perform process handling calls
on itself.

For example:
SetPriority_Process(Errhum My Id, 100)
sets the priority of the calling process to 100.

3-18

4.1

43

45

4.7

Chapter 4
Memory Management
DAtaSegmentscccicciiiirteisutteteattseesettettesensnettnsansansansessnssnasunsnasnss -1
The Logical Data Segment NUITDETc.cceeeneirencnnnenss creeseneneenes PUSRY |
ShAred Data SEOQIMBNLSc..cececeeeeenmreessaseesssnesssssesssmsesssnssssansesssnssssnns a-2
Private Data Segmentsc.cceeeemeeeeceneeceneens testrretseresssraesesasasteteenenane 4-2
COUR SEQIMBILSceeeeneemeemeemeeatesessaesassessnasssssmessessassssnsansesassnsssassasns 4-2
Swappingceeee.. eetiteeestesiteasettanartnsattantsrtsaattatenstearaatananesansarean 4-2
Memory Management SySteMCALSccvcviieeeiiieeninenensisnecsitreecsensens 4-3
8.7.1 MAIKE_DATASEG ...eeereeveeeaneeeeresesasasesssnessssssssssessasasssasansassans 4-4
8.7.2 KILL_DATASEGccciciitaruiiminiieititetsassersitesssnsessastassassesearsnsans 4-6
8.7.3 OPEN_DATASEG ...ccveecreeseerrensnsesssessssssessasssessssssscssssssasssasasasss 4-7
8.7.8 CLOSE _DATASEG...ccitivrettrittsntiiiateniisettatasrtesnsessesasavensasnsase 4-3
8,75 FLUSH DATASEGcuciuiiteiieniinitississesetsseisessssssnssaniesssannss a-9
876 SIZE DATASEG....cccciiieirnieeiteesttirataesestostasseasassstasasscaerssenses 8-10
8.7.7 INFO_DATASEG ..iciiiiiiraiiesiniissataetaiisisasssseassisssssstasssssastnssass 4-11
8.7.8 INFO LDSN...cccieereerrernerseesseessessasesseesasesssssssassesssessessasssassssen 4-12
8.7.9 INFO_ADDRESS....cciciciaerireteti ittt tetatiasassssensssasassssansasass 4-13
8.7.10 MEM _INFD.ueieeeeirereeeentesesseesseessssessssesseessaessansasasssasssssassnsese 4-14
4.7.11 SETACCESS_DATASEGccitutitiiinirtatisitermnnteitesiesisstassessens 8-15
4.7.12 BIND_DATASEG and UNBIND_DATASEG.....ccceittistntenienneenenns 8-16

. .

CHANGES /A LDITIONS

Operating System 30 Notes Mernory Mensagement

Chapter 4
Memory Management

Memory-Resident Data Segments (See Section 4.1)
There is a limitation on the usage of memary-resident data segments. A
data segment crested using Make_Dataseg with O disk space cannot have ite
disk size subsequently incressed with a Size_Dataseg call. If you want to be
able to assign disk space to a memory-resident data segment, create the
segment initially with some disk space (e.g., one page), then reduce the disk
size immediately to O using Size_Dstaseg. Lster, you can incresse the disk
size of the memory-resident segment using Size Detaseqg.

Notes 4-1

i i
7

Memory Management

Every process has a set of code segments and data segments which are In
physicai memory when they are used. The logical address used by the process
must be translated into the physical address used by the memory controller.
This function is handled by the memory management unit (MMU)

4.1 Data Segments

Each process has a data segment that the Operating System automatically
allocates to It for use as a stack. The stack segment’s internal structures are
managed by the hardware and the Operating System.

A process can acquire additional data segments for uses such as heaps and
interprocess communication. These additional data segments can be private
(or local) data segments or shared data segments. Frivate data segmernts
can be accessed only by the creating process. when the process terminates,
any private data segments still in existence are destroyed. Shareg data
segmerts can be accessed by any process that opens those segments.

The Operating System requires that data segments be in physical memory
before the data are referenced. The Scheduler automatically loads all of the
data segments that the program says it needs. It is the responsibility of the
programmer to ensure that the program declares all its needs by assoclating
itself with the needed data segments before they are needed.

This process of assoclation Is called tinaing. A program can bind a data
segment to {tself in several ways. when a program creates a data segment by
using the MAIKE_DATASEG call, the segment s automatlcally opened and
bound to the program. If a program needs to open a segment that was
created by another program, the OPEN_DATASEG call is used. That call binds
the segment to the calling process, as well as opening the segment for the
process. Since there may be times when a process needs to use more data
segments than can be bound at one time, the UNBIND_DATASEG call is
provided to unbind the data segment without closing it. The program can then
use BIND DATASEG to bind another data segment to the program.

The Operating System views all data segments except the stack as linear
arrays of bytes. Therefore, allocation, access, and interpretation of structures
within a data segment are the responsibility of the program.

42 The Logical Data Segment Number

The address space of a process allows up to 16 data segments bound to a
process at the same time, in addition to the stack. Each bound data segment
is assoclated with a specific region of the address space by means of a
Logical Data Segment Number (LDSN). See Figure 3-1 for an illustration of
the address space of a process. Wwhile a data segment is bound to the process,
it is said to be a member of the working set of the process.

4-1

tperating System Reference Manal Memory Management

The process assoclates a data segment with a specific LDSN in the
MAKE_DATASEG or OPEN_DATASEG call.

The LDSN, which has a valld range of 1 to 16, is local to the calling process.
The process uses the LDSN to keep track of where a given data segment can
be found. More than one data segment can be associated with the same LDSN,
but only one such segment can be bound to a given LDSN at any Instant and
thus be a member of the working set of the process.

4.3 Shared Data Segments
Cooperating processes can share data segments. Shared segments cannot be
larger than 128 Kbytes In length. As with local data segments, the segment
creator assigns the segment a Flle System pathname. All processes that share
that data segment then use the same pathname. If the shared data segment
contains address pointers to data within the segment, the cooperating
processes must also use the same LOSN with the segment. This ensures that
all logical data addresses referencing locations within the data segment are
consistent for the processes sharing the segment. A shared data segment is
permanent until explicitly killea by a process.

a.a Private Data Segments
Data segments can also be private to a process. In this case, the maximum
size of the segment can be greater than 128 Kbytes. The actual maximum
size depends on the amount of physical memory in the machine and the
number of adjacent LDSNs avallable to map the segment. The process gives
the desired segment size and the base LOSN to map the segment. The
Memory Manager then uses ascending adjacent LOSNs to map successive 128
Kbyte chunks of the segment. The process must ensure that enough
consecutlve LDSNs are avallable to map the entire segment.

Suppose a process has a data segment already bound to LDSN 2. If the
program tries to bind a 256 Kbyte data segment to LDSN 1, the Operating
System retums an error because the 256 Kbyte segment needs two consecutive

free LDSNs. Instead, the program should bind the segment to LOSN 3 and the
system automatically also uses LDSN 4.

45 Code Segments
Divislon of a program into muitiple code segments (swapping units) is dictated
by the programmer through commands to the Compiler and Linker. The MMU
registers can map up to 106 code segments.

4.6 Swapping
when a process executes, the following segments must be In physical memory:
* The current code segment

* All the data segments in the process working set (the stack and all bound
data segments)

The Operating System ensures that this minimum set of segments is in physical
memory before the process is allowed to execute. If the program calls a
procedure in a segment not in memory, a segment swap-in request is initiated.

Qperating System Reference Maral! Memory Management

In the simplest case, this request only requires the system to allocate a block
of physlical memory and to read in the segment from the disk. In a worse
case, the request may require that other segments be swapped out first to
free up sufficient memory. A clock algorithm is used to determine which
segments to swap out or replace. This process is invisible to the program.

4.7 Memory Management System Calls
This section describes all the Operating System calls that pertain to memory
management. A summary of all the Operating System calls can be found in
Appendix A. The following speclal types are used in memory management
calls:

Pathname = STRING[255];
. Tastype = (ds_shared, ds_private);
DsInfoReC = Record
mem_size:longint;

. disc_size:longint;
numb_open: integer:
LLDSN: integer;
boundfF :boolean;

I presentF :boolean;
creatorf :boolean;
rvaccess:boolean;

l segptr: longint;

; volname:e_name;
end;

. E_name = string [32):

4-3

(perating System Reference Manual Memory Management

4.7.1 MAKE_DATASEG Memory Management System Call

HAKE_DATASEG (var ErrNum:Integer;
var Segname:Pathname;
tem Size, Disk Size:LongInt;
var RefNum:Integer;
var SegPtr:LongInt;

Ldsn:Integer
Dstype:Tdstype)

ErrNum: Error indicator

Segname : Pathname of data segment

Mem_Size: Bytes of memory to be allocated to data segment
Disk_Size: Bytes on disk to be allocated for swapping segment

RefNum: Identifier for data segment

SegPtr Address of data segment

Ldsn: Logical data segment number

Dstype: Type of dataseg (shared or private)

MAKE_DATASEG creates the data segment identified by the pathname,

Segname, and opens it for Immediate read-write access. Segname is a File
System pathname.

The parameter Mem_Size determines how many bytes of main memory are
allocated to the segment. The actual allocation takes place in terms of
512-byte pages. If the data segment Is private (Dstype is ds_private),
Mem_Size can be greater than 128 Kbytes, but you must ensure that enough
consecutlve LDSNs are free to map the entire segment.

Disk_Slze determlnes the number of bytes of swapping space to be allocated
to the segment on disk. If Disk_Size is less than Mem_Size, the segment
cannot be swapped out of main memory. In this case the segment is memory
resident unti] it is killed or until its size in memory becomes less than or
equal to its Disk_Size (see SIZE_DATASEG) The application pragrammer
should be aware of the serious performance implications of forcing a segment
to be memory resident. Because the segment cannot be swapped out, a new
process may not be able to get all of its working set into memory. To avold
thrashing, each application should ensure that all of its data segments are
swappable before it relinquishes the attention of the processor.

The calling process assoclates a Logical Data Segment Number (LDSN) with
the data segment. If this LOSN is bound to another data segment at the time
of the call, the call returns an error.

Reftum Is returned by the system to be used In any further references to the
data segment. The Operating Systemn also returmns SegPtr, an address pointer to
be used to reference the contents of the segment. SegPtr points to the base
of the data segment.

Any error conditions are retwrned In Ermum.

4-4

(s

.

perating System Rerference Manugl Memory Managemert

when a data segment {s created, it iImmediately becomes a member of the

working set of the calling process. You can use UNBIND_DATASEG to free
the LODSN,

4-5

Qperating System Reference Maral Memoly Managerment

8.72 KILL_DATASEG Memory Management System Call

KILL DATASEG (var ErrhNum:Integer;
var Segname:Pathname)

ErrNum: Error indicator
Segriame: Name of data segment to be deleted

when a process Is finished with a shared data segment, it can issue a
KILL_DATASEG call for that segment. (KILL. DATASEG cannot be used on a
private data segment.) If any process, including the calling process, still has
the data segment open, the actual deallocation of the segment is delayed until
all processes have closed it (see CLOSE_DATASEG). During the interim periodg,
however, after a KILL_DATASEG call has been jssued but before the segment
is actually deallocated, no other process can open that segment.

KILL_DATASEG does not affect the membership of the data segment in the

working set of the process. The RefNum and SegPtr values are valid until a
CLOSE_DATASEG call is issued.

One important note: normally, when a data segment is closed, the contents
are written to disk as a file with the pathname assoclated with the data
segment. If, however, the program calls KILL_DATASEG on the data segment

before closing it, the contents of the data segment are not written to disk and
are lost when the segment is closed.

4-6

(Qperating System Reference Manual Memory Marnagement

4.7.3 OPEN_DATASEG Memory Management System Call

OPEN_DATASEG (Var ErrNum:Integer;
var Segname :Pathname;
var RefNum:Integer;
var SegPtr:LongInt;

Ldsn:Integer)

ErrNum: Error indicator

Segname: Name of data segment to be opened
RefNum: Identifler for data segment

SegPtr Pointer to contents of data segment,
Ldsn: Logical data segment number

A process can open an existing shared data segment with OPEN_DATASEG.
The calling process must supply the name of the data segment (Segname) and
the Logical Data Segment Numbper to be associated with it. The LOSN given
must not have a data segment currently bound to it. The segment's name 1is
determined by the process that creates the data segment; it cannot be null.

The Operating System returns both ReftNum, an identifier for the calling
process to use in future references to the data segment, and SegPtr, an
address pointer used to reference the contents of the segment.

when a data segment Is opened, it immediately becomes a member of the
working set of the calling process. The access mode of the newly opened
segment is Readonly. You can use SETACCESS_DATASEG to change the
access rights to Readwrite. You can use UNBIND DATASEG to free the
LDSN.

You cannot use OPEN on a private data segment, since calling CLOSE on a
private data segment geletes It

(perating System Rererence Maal Memory Management

4.7.4 CLOSE_DATASEG Memory Management System Call

CLOSE_DATASEG (Var ErrNum:Integer;
RefNum: Integer)

ErrNum: Error indicator
RefNum: Data segment identifier

CLOSE_DATASEG terminates any use of RefNum for data segment operations.
If the data segment is bound to a Logical Data Segment Number,
CLOSE_DATASEG frees that LDSN. The data segment Is removed from the
working set of the calling process. RefNum Is made Invalld. Any references
to the data segment using the origlnal SegPtr will have unpredictable results.

If RefNum refers to a private data segment, CLOSE_DATASEG aiso kills the
data segment, deallocating the memory and disk space used for the data
segment. 1If RefNum refers to a shared data segment, the contents of the
data segment are written o disk as |f FLUSH_DATASEG had been called. (If
KILL_DATASEG Is called before CLOSE_DATASEG, the contents of the data
segment are thrown away when the last process closes the data segment.)

The followlng procedure sets up a heap for LisaGraf using the memory
management calls:

PROCEDURE InitDataSegForiisaGraf (var ErrorCode:integer):

CONST HeapSize=16384; (= 16 KBytes for graphics heap *)
DiskS1ze=16384;

VAR HeapBuf :LONGINT; (= pointer to heap for LisaGraf *)
GrafHeap :PathName: (* data segment path name *)
Heap Refnum:INTEGER; (* refnum for heap data seg *)

BCEGIN
GrafHeap:="qrafheap";
OPEN_DATASEG(ErrorCode, GrafHeap, Heap_Refnum HeapBuf, 1);
IF (ErrorCode<>0) THFN
BEGIN
WRITELN(‘Unable to open’,Grafheap, ‘Error is *, ErrorCode)
END
ELSE
InitHeap(POINTER(HeapBuf), POINTER(HeapBuf +HeapSize),
aHeapError);
END;

Qperating System Reference Manual Memory Managemernt

.75 FLUSH DATASEG Memory Management Systern Call

FLUSH DATASEG (Var ErrNum:Integer;
RefNum:Integer)

ErrNum: Error indicator
RefNum: Data segment identifier

FLUSH DATASEG wrlites the cantents of the data segment identified by
ReftNum to the disk. (Note that CLOSE_DATASEG automatically flushes the
data segment before closing it, unless KILL_DATASEG was called first.) This
call has no effect upon the memory residence or binding of the data segment.

4-9

Qperating System Reference Manual Memory Management

8.7.6 SIZE_DATASEG Memory Management System Call

SIZE_DATASEG (Var ErrNum:Integer;
Refnum: Integer;
DeltatemSize:LongInt;

var NewemSize:LongInt;
DeltaDiskSize:LongInt;
var NewDiskSize:LongInt)

ErrNum: Error indicator

RefNum: Data segment identifier

DeltatemSize: Amount in bytes of change in memory
allocation

NewMemSize: New actual size of segment in memory

DeltaDiskSize: Amount in bytes of change in disk allocation

NewDlskSize: New actual disk (swapping) allocation

SIZE_DATASEG changes the memory and/or disk space allocations of the data
segment referred to by RefNum. Both DeltaMemSize and DeltaDiskSize can
be either positive, negative, or zero. The changes to the data segment take
place at the high end of the segment and do not destroy the contents of the
segment, unless data are lost in shrinking the segment. Because the actual
allocation Is done in terms of pages (512-byte blocks), the NewMemSize and
NewDiskSize returned by SIZE_DATASEG may be larger than the old size plus
delta size of the respective areas.

If the NewDiskSize is less than the NewMemSize, the segment cannot be
swapped out of memory. The application programmer should be aware of the
serlous performance Impllications of forcing a segment to be memory resident.
Because the segment cannot be swapped out, a new process may not be able
to get all of its working set into memory. To avoid thrashing, each
application should ensure that all of its data segments are swappable before It
relinquishes the attention of the processor.

If the necessary adjacent LDSNs are avallable, SIZE_DATASEG can Increase
the size of a private data segment beyond 128 Kbytes.

4-10

——r

Qperating System Reference Mamal Memory Management

4.7.7 INFO_DATASEG Memory Management System Call

l INFO_DATASEG (Var ErrNum:Integer;
RefNum: Integer;
var DsInfo:DsInfoRec)
l ErrNum: Error indicator
RefNum: Identifier of data segment
I DsInfo: Attributes of data segment
INFO_DATASEG returns information about a data segment to the calling
process. The structure of the DsInfoRec record is:
I RECORD
Mem Size:LongInt (= Bytes of memory allocated to data segment "),
Disc_Size:LongInt (* Bytes of disk space allocated to segment »);
I NumbOpen:Integer (= Current nuaber of processes with segment open *),
Lasn: Integer (* LDSN for segment binding
BoundF :Boolean (* True if segment is bound to LDSN of calling proc -),
PresentF :Boolean (* True if segment 1s present in memory ")
I Creatorf :Booleanm (* True if the calling process is the creator =)
(» of the segment *):
RWAccess:Boolean (* True if the calling process has Write access *)
I (* to segment »)
; END;
_/"
|

Qperating System Reference Manual Memory Management

4.7.8 INFO_LDSN Memory Management System Catl

INFO_LDSN (var ErrNum:Integer;
Ldsn:Integer;
var RefNum:Integer)

ErrNum: Error indicator

Lasn: Logical data segment number
RefNum: Data segment identifier

INFO_LDSN returns the refnum of the data segment currently bound to Ldsn
You can then use INFO DATASEG to get information about that data segment.
If the LDSN specifled Is not currently bound to a data segment, the refnum
returned s -1.

4-12

Qperating System Rerference Marvial Memory Management

479 INFO_ADDRESS Memory Management System Call

INFO_ADORESS (Var ErrNum:Integer:
Address:Longint;
var RefNum:Integer)

ErrNum: Error indicator

ARddress: The address about which the program needs information
RefNum: Data segment identifier

This call retumns the refnum of the currently bound data segment that
contains the address given.

If no data segment that contalns the address given is currently bound to the
calling process, an error indication is returned in ErrNum.

4-13

tperating System Reference Marxal Memory Management

4.7.10 MEM_INFO Memory Management System Call

MEM_INFO (Var ErrNum:Integer;
Var Swapspace;
Dataspace;
Cur_codesize;
Hax_codesize:Longint)

ErrNum: Error indicator

Swapspace: Amount, in bytes, of Swappable system memory
available to the calling process

Dataspace: Amount, in bytes, of system memory that the
calling process needs for its bound data areas,
including the process stack and the shared
intrinsic data segment

Cur_codesize: Size, in bytes, of the calling segment

Max_codesize: Size, in bytes, of the largest code segment
within the address space of the calling process

This call retrieves information about the memory resources used by the calling
process.

Qperating System Reference Marksal Memory Management

711 SETACCESS DATASEG Memory Management System Call

SETACCESS _DATASEG (var Errhum:Integer;
RefNum: Integer;
Readonly :Boolean)

ErrNum: Error indicator
RefNum: Data segment identifier
Readonly: Access mode

A process can control the kinds of access it is allowed to exercise on a data
segment with the SETACCESS DATASEG call. Refnum is the identifier for
the data segment. If Readonly Is true, an attempt by the process to write to
the data segment tesults in an address error exception condition. To get
readwrite access, set Readonly to false.

4-15

Qperating System Reference Manual Memory Management

4.7.12 BIND_DATASEG and UNBIND_DATASEG Memory Management System Calls

BIND_DATASEG(var Errnum:Integer;
RefNum:Integer)

UNBIND DATASEG(Var ErrNum:Integer;
RefNum:Integer)

ErrNum: Error indicator
RefNum: Data segment identifier

BIND_DATASEG binds the data segment referred to by ReflNum to its
assoclated Logical Data Segment Number(s). UNBIND_DATASEG unbinds the
data segment from its LDSNs. BIND_DATASEG causes the data segment to
becorne a member of the current working set. At the time of the
BIND_DATASEG call, the necessary LDSNs must not be bound to a different
data segment. UNBIND_DATASEG frees the assoclated LDSNs. A reference to
the contents of an unbound segment gives unpredictable results.
OPEN_DATASEG and MAKE_DATASEG define which LDSNs are assoclated
with a given data segment.

4-16

51

53
5.4
55
5.6
5.7

5.8

59

Chapter 5
Exceptions and Events
EXCEPUONS ... it crtctttrec s en s e re e trene s aatsnesseasensansassensannssanas 5-1
System-Deflned EXCepLIONS ... cirmciin ettt s e st senens 5-2
Exception HAaNAICTSccciccimiiramnsetsateeranssassnncesiensmssesssansasssensnessasse 5-2
EVBNES ..oeceercecmerscmsas s asasss s s e s s s s sssesessassssnsasassssassmssnes 55
EVENE CHAMNEIS ...ccooieeiiieiiiemetei ettt eneetee e se e cnnn s sesnnssnsnsansnssanaen 5-5
The SYSEM ClOCK ...euciiiiiiieiiineteerntatetattestetesenseasnesaranssssnssasenss 5-10
Exception Management SYStermn Callsc.ccoveecireincencinransenensennssssensnes 5-10
5.7.1 DECLARE_EXCEP_HOLitvvviinieneniietenneinienieisesninnassnseseans 5-11
9.7.2 DISABLE EXCEP .cuciuiiiiiiiiiiiniinsesieceiitoreieesiiseesassssesressassnsss 5-12
5.7.3 ENABLE_EXCEP ...ccotiiinnniissinnnssiirnsitirsntrssssisissssisrsssssssees 5-13
S.7.8 INFO_EXCEP ...vveiiieneiisseesssssnessssssnesessnsaassssassesssasassssnssassnnnes 5-14
5.7.5 SIGNAL_EXCEP....ccociriiriniiiiinunssieninssirininiisassiiesesssisnsssssses 5-15
5.7.6 FLUSH_EXCEP ..icevuiiiiiirissininnsssssiesnesstttssisinssesmistsssanssnssssssas 5-16
Event Management SYStem Calls........cccciiieiiirtenensieneaecientesasanscenas 5-17
5.8.1 MAKE_EVENT_CHN ..ccceiiiurieiesinsnsenasesasasssnsesssssssanssasesssnnsssanans S-18
5.8.2 KILL_EVENT_CHIN ..ouiiiiiieis srrreceresssareresesssseesssaessassassesensnsenes 5-19
5.8.3 OPEN_EVENT_CHN ...cctiniiiiiiiniiiiiniiinnsiessesseiee s sesssssssees 5-20
5.8.4 CLOSE_EVENT_CHN....ivviiiiriimnistiniiiisens i asssssae 5-21
585 INFO_EVENT_CHN oottt e rsissensaesssnsnsssennas 5-22
5.8.6 WAIT_EVENT_CHN .iiiiiiiiiiiiiiitttttiitirstestee s sen s ssnsssnssseassnnens 5-23
5.8.7 FLUSH_EVENT_CHN ...ttt trese s ee s ananasne 5-25
5.8.8 SEND _EVENT_CHN c.iiiitiiiiiiiis st ittt stasaieetasne s sanassnsenes S-26
ClOCK SYSLEM CallScc.cirieineiieiiinissrenenncssaneacrrsenssiasenassssensnsnnsenans 5-27
5.9.1 DELAY_TIME .ciiiiiirinereenessneenensssssssnresssesssssssasssssssassnssssasensesss 5-28
5.9.2 GET _TIME tiiiiivciiiireiieieeeeeesnnnsnsssnsneeseseenessssensssnssnnssssasssssessanns 5-29
5.9.3 SET LOCAL_TIME_DIFF ..veeeieieecarnereescessssnseseesssssssesenessnsssses: S-30
5.9.4 CONVERT _TIME ..o ieuiiiiiiiineeeesecannnneeeessessssaseseessnsssessesssnneeanan 5-31

CHANGES/APOITIONS

Cperating System 3.0 Notes Exceptions and Events

Chapter 5
Exceptions and Events

Event Channels (See Section 5.5)
Timed event channels have been removed.

Event channels are now memory-based rather than disk-based. This means
that event channels are not preserved across system activetions. If the
system is shut down, all event channels are deleted. Any data that must be
preserved should be read from an event channel and stored in a file until
needed the next time the system is booted.

In the example on page 3-7, the boolean receiver is mistakenly set to TRUE
and then FALSE--it should be FALSE then TRUE.

SET_LOCAL_TIME_DIFF (See Section 5.9.3)
The SET_LOCAL_TIME_DIFF clock system call has been removed.

Notes 5-1

Exceptions and Events

Processes have several ways to keep Informed about the state of the system.
Normal process-to-process communication and synchronization employ pipes,
shared data segments, or events. Abnormal conditions, including those your
program may define, employ exceptions (interrupts). Exceptions are signals to
which the process can respond in a varlety of ways under your control.

S.1 Exceptons
Normal execution of a process can be interrupted by an exceptional condition
(such as division by zero or reference to an invalid address). Some error
conditions are trapped by the hardware and some by the system software. The
process {tself can define and signal exceptions of your choice.

when an exception occurs, the system first checks the state of the exception.
The three exceptlon states are:

* Enabled
* Queued
* Ignored

If a system-defined exception Is enab/eq the system looks for an assoclated
user-defined handler. If none is found, the system invokes the default
exception handler, which usually aborts the process that generated the
exception. If a user-defined exception is enabled, the system invokes the
assoclated user-defined exception handler. You create a new exception by
declaring and enabling a handler for it.

If the state of the exception is guewey the exception Is placed on a queue.
when the exception Is subsequently enabled, the queue is examined and the

appropriate exception handler is invoked. Processes can flush the exception
gueue.

If the state of the exception is Jgnoreq the system detects the occurrence of
the exception, but the exception is neither honored nor queued. Note that
ignoring a system-defined exception has uncertain effects, Although you can
cause the system to ignore even the SYS_TERMINATE exception, that
capabllity Is provided so that your program can clean up before terminating.
YOu cannot set your program to ignore fatal errors.

Invocatlon of the exception handler causes the Scheduler to run, so it is
possible for another process to run between the signaling of the exception and
the execution of the exception handler.

5-1

Operating System Reference Manual Exveptions and Events

5.2 System-Deflned Exceptions
Certaln exceptlons are predefined by the Operating System. These include:

* Division by zero (SYS_ZERO DIV) The default handler aborts the process.

* Value out of bounds (that s, range check error) or illegal string index
(SYS_VALUE_D0B). The default handler aborts the process.

* Arithmetic overflow (SYS_OVERFLOW). The default handler aborts the
process.

* Process termination (SYS_TERMINATE). This exception is signaled when a
process terminates, or when there is a bus error, address error, illegal
instruction, privilege violation, or 1111 emulator error. The default handler
does nothing. This exception Is different from the other systemn-defined
exceptions In that the program always terminates as soon as the exception
occurs. In the case of other (non-fatal) errors, the program is allowed to
continue untll the exceptlon is enabled.

Except where otherwise noted, these exceptions are fatal if they occur within
Operating System code. The hardware exceptions for parity error, spurious
interrupt, and power fallure are also fatal.

5.3 Exception Handlers
A user-defined exception handler can be declared for a specific exception.
This exceptlion nanaler IS cooea as a procegure but must follow certain
conventions. Each handler must have two input parameters: Environment Ptr
and Data_Ptr. The Operating System ensures that these pointers are valid
when the handler is entered. Environment_Ptr points to an area in the stack
contalning the interrupted environment: register contents, condition flags, and
program state. The handler can access this environment and can modify
everything except the program counter, register A7, and the supervisor state
bit in the status register. Data_Ptr points to an area in the stack containing
information about the specific exception.

Each exception handler must be defined at the global level of the process,
must return, and cannot have any EXIT or global GOTO statements. Because
the Operating System disables the exception before calling the exception
handler, the handler should re-enable the exception before it returns.

If an exception handler for a glven exception already exists when another
handler {s declared for that exception, the old handler becomes dissociated
from the exception.

An exception can occur during the execution of an exception handler. The
state of the exception determines whether it is honcredplaced on a queue, or
ignored. If the second exception has the same name as the exception that is
currently being handled and its state is enabled, a nested call to the exception
handler occurs. (The system always disables the exception before calling the
exception handler, however, Therefore, nested handler calling occurs only if
you explicitly enable the exception.)

Qperating System Reference Mana! Exveptions and Events

There Is an exception-occurred flag, Ex_occurred_f, for every declared
exception; it is set whenever the corresponding exception occurs. This flag
can be examined and reset using the INFO_EXCEP system call. Once the flag
Is set, it remains set until FLUSH EXCEP is called.

The following program fragment gives an example of exception handling.

PROCEDURE Handler (Environment_Ptrp_env_bik;
Data_Ptrp _ex_data)

VAR ErMmum:INTEGER;

BEGIN

(*Environment_Ptr points to a record containing the program *)
(*counter and all registers. Data Ptr points to an array of 12 =)
(*longints that contain the event header and text if this handler *)
(=Is associated with an event-call channel (See below) *)

ENABLE_EXCEP(ermum.excep_name);

END;
BEGIN (*Main program=)

E)éwp_rm\e:-'Ermew‘;
DECLARE_EXCEP_HDL(ermum.excep_name. sHandler):

SIE;NAI__EXCEP(erfnurwxcep_ram,excep_uata):

At the time the exception handler Is invoked for a SYS_TERMINATE
exception, the stack is as shown in Figure 5-1.

5-3

Qperating System Reference Mamal

low address

high address

Exceptions and Events

Link

Program Counter

Data_Ptr

Environment_Ptr

Terminate Flag

Exception Kind
Function Code (fc)
Access Address (aa)
Instruction Register

Status Register

Program Counter

—'

Exception Data Block
(SYS_TERMINATE Exception)

Program Counter
Status Reqister
D0-D7 and AD-A7

Exception Environment Block

Link

Program Counter

Figure 5-1

Stack at Exception Handler Invocation

The Exception Data Block glven here reflects the state of the stack upon a
SYS_TERMINATE exception. The Term_Ex_Data record (described in Appendix
A) glves the varlous forms the data block can take. The Excep Kind field (the
first, or Oth, longint) gives the cause of the exception. The status register and
program counter values In the data block reflect the true (current) state of
these values. The same data In the Environment block reflects the state of

S-4

Querating System Reference Mamual Exceptions and Events

these values at the time the exception was signaled, not the values at the
time the exceptlon actually occurs.

For SYS_ZERO_DIV, SYS_VALUE_00B, and SYS_DOVERFLOW exceptions, the
Hard Ex Data record described In Appendix A glves the varlous forms that
the data block can take.

In the case of a bus or address error, the PC (program counter) can be 2 to 10
bytes beyond the current instruction. The PC and A7 cannot be modified by
the exception handler.

when a disabled exception is re-enabled, a queued exception may be signaled.
In this case, the exception environment reflects the state of the system at the
time the exception was re-enabled, not the time at which the exception
occurred.

5S4 Events
An event Is a plece of information sent by one process to another, generally
tu help cooperating processes synchronize their activities. An event is sent
through a kind of pipe called an event channel. The event is a fixed-size
data block consisting of a header and some text. The header contains control
information, the identifier of the sending process, and the type of the event.
The header is written by the system, not the sender, and IS readable by the
receiving process. The event text is written by the sender; its meaning is
defined by the sending angd recelving processes.

There are several predefined system event types. The predefined type “user" is
assigned to all events not sent by the Operating System.

5.5 Event Channels
Event channels can be viewed as higher-level pipes. One important difference
Is that event channels require fixed-size data blocks, whereas pipes can
handle an arbitrary byte stream.

An event channel can be defined globally or locally. A global event channel
has a globally defined pathname catalogued in the File System and can be
used by any process. A local event channel, however, has no name and is
known only by the Operating System and the process that opened it. Local
event channels can be opened by user processes only as recelvers. A local
channel can be opened by the father process to recejve system-generated
events pertalning to its son.

There are two types of global and local event channels: event-wait and
event-call. If the recelving process Is not ready to recelve the event, an
event-wait type of event channel queues an event sent to it . An event-call
type of event channel, however, forces its event on the process, in effect
treating the event as an exception. In that case, an exception name must be
given when the event-call event channel is opened, and an exception handler
for that exception must be declared. If the process reading the event-call
channel is suspended at the time the event is sent, the event Is delivered
when the process becomes active.

perating System Reference Marnial Exceptions and Events

when an event channel is created, the Operating System preallocates enough
space to the channel for typical interprocess communication. If
SEND_EVENT_CHN is called when the channel does not have enough space for
the event, the calling process Is blocked until enough space Is freed up.

If WAIT_EVENT_CHN s called when the channel Is empty, the calling process
Is blocked untll an event arrives.

Tne following code fragments use event-walt channels to handle process

synchronization. Operating System calls used In these program fragments are
documented later in this chapter.

Process A

evem: _Charrel_1°;

mf' _EA

OPEN | EVENT CHN (errint chn_name, refnuml, exception, receiver);
chn_name := ‘event_chamnel ! 2

receiver := FALSE;

OPEN_EVENT_CHN (errint, chn_name, refnum2, exception, receiver);
waitlist.length := 1;

waitlist.refnum[0] := refruml;
REPEAT v

§,"'

eventl ptr*.[0] := | upon_value; o
interval.sec := » send event immediately =)

interval .msec := 0
SEND_EVENT CHN (errint, refnum2, eventl ptr, interval,clktime);
WAIT_EVENT CHN (errint, waitlist, refrum_signaling, event2 ptr);

(; processing performed here *)

UNTIL AllDone;

Qperating Systern Reference Mamal Exceptions and Events

.
i

Process B:

chn_name :
exception:= *;
receiver := JRUE; FALSE

OPEN_EVENT_CHN (errint, chn_name, refrum2, exception, receiver);
chn_name := 'event_channel 1°;

receiver :=-FA-SE; “(RUE

OPEN_EVENT_CHN (errint, chn_name, refnumi, exception, receiver);
waitlist.le L

waitlist. refnun[l]] = refnuml;

REPEAT
event2 ptr~.[0] := agreed_upon_value;
interval.sec := 0; (* send event immediately =)
interval.msec :-=
WAIT EVENT CHN (e

-

‘event_chamnel_2';

n nl

Deel

1nt waitlist, refrum signaling, eventi ptr);
(; processing performed here *)

SENJ EVENT_CHN (ertint, refrum2, event2 ptr, interval, clktime);
UNTIL AIlDone;

The order of execution of the two processes is the same regardless of the
process priorities. Process switch always occurs at the WAIT_EVENT_CHN
call.

In the following example using event-call channels, process switch may occur
at different places in the programs. Process A calls YIELD _CPU, which glves
the CPU to Process B only if Process B is ready to run.

. -"\L
(“i;

(perating Systern Rerference Marvial Excaptions and Events

Process A

PROCEDURE Handler(Erw_ptr:p_erw_blk:
Data_ptr:p_ex data);

BEGIN
event2 ptr-.[0] := agreed_upon_value;

(; processing performed here »)

interval.sec := 0; (» send event immediately =)
interval .msec := 0;
SEND_EVENT_CHN (errint, refrum, event2_ptr, interval, clktime);
to_any := true;
YIELD CPU (errint,to_any):
END;

BEGIN (* Main program+)

DECLARE | EXDEP HOL (errint, excep _name 1, 3Handler);
chn_name := ‘event_channel 17;

exception:= excep_name 1;

receiver := TRUE;

OPEN_EVENT_CHN (errint, chn_name, refruml, exception, receiver);
chn name := ‘event_channel 2°;

recelver := FALSE;

exception:= **:

OPEN_EVENT_CHN (errint, chn_name, refnum2, exception, receiver);
SEND_EVENT_CHN (errint, refrum, event2_ptr, interval, clktime);
to_any := true;

YIElD_CPU (errint, to_any);

Qperating System Reference Marvsal Exceptions and Events

Process B:

PROCEDURE Hendler(Enw_ptr:p_emw_blk:
Data ptr:p_ex data);

BEGIN
event2 ptr-.[0] := agreed upon_value;

(; processing performed here *)

interval.sec := 0; (* send event immediately =)
interval.msec := 0;

SEND_EVENT_CHN (errint, refnuml, event2_ptr, interval, clktime);
to any := true;

YIELD CPU (errint, to_any):

END;

BEGIN (*Hain program =)
DECLARE_EXCEP HDL (errint,excep namej 1, aHandler)
chn_name := "event_channel _1°;
exception:= excep name_1;
recelver "= FALSES
exception:= '*;
OPEN_EVENT-CHN (errint, chn_name, refnuml, exception, receliver);
chn_name := ‘event_channel 2°;
recelver := TRUE:
OPEN_EVENT_CHN (errint, chn_name, refnum2, exception, receiver);

-

END.

5-9

fperating System Reference Marna! Exceptions arnd Events

”

)

5.6 The System Clock
A process can read the system clock time, convert it toZlocal time, or delay
its own continuation until a given time. The year.month)day, hour, minute,
second, and millisecond are available from the clock. The system clock is set
up through the Workshop shell. For more information, see the worxshop Lser’s
Guice for the Lisa.

5.7 Exception Management System Calls
This section describes all the Operating System calls that pertain to exception
management. A summary of all the Operating System calls can be found in

Appendix A. The following special types are used in exception management
calls:

T_ex_name = STRING[16];

Longadr = “longint;

T_ex_data = Array [0..11] of longint:

T_ex_sts = Record
ex_occurred_f :boolean;
ex_state:t_ex_state;
num_excep: integer;
hdl_adr :longadr;

end;
T_ex_state = (enabled, queued, ignored);

5-10

Qperating System Reference Manual Exceptions and Events

5.7.1 DECLARE_EXCEP_HOL Exception Management System Call

DECLARE_EXCEP HDL (Var Errtum:Integer;
var Excep Name:t_ex_name;
Entry_Point:LongAdr)

ErrNum: Error indicator
Excep_Name: Name of exception
Entry_Point: Address of exception handler

DECLARE_EXCEP_HDL sets the Operating System so that the occurrence of
the exception referred to by Excep_Name causes the execution of the
exception handler at Entry Point.

Excep_Name Is a character string name with up to 16 characters that is
locally defined In the process and known only to the process and the Operating
System. If Entry Polnt is nll and Excep Name specifies a system exception,
the system default exception handler is used. Any previously declared
exception handler is dissoclated by this call. The exception itself is
automatically enabled.

' l If any Excep_Name exceptlons are queued at the time of the
DECLARE_EXCEP_HDL call, the exception is automatically enabled and the
- I queued exceptlons are handled by the newly declared handler.

R You can call DECLARE_EXCEP_HOL with an exception handler address ofnil
e to gissoclate your handler from the exception. If there is no system handler
defined, the program that signals the exception receives an error 201.

5-11

Qperating System Reference Mamal Exceptions and Events

5.7.2 DISABLE_EXCEP Exception Management System Call

DISABRLE EXCEP (Var ErrNum:Integer;
var Excep Name:t _ex_name;

Queue:Boolean)
ExrrNum: Error indicator
Excep_Name: Name of exception to be disabled
Quete: Exception queuing flag

A process can explicitly disable the trapping of an exception by calling
DISABLE_EXCEP. Excep_Name is the name of the exception to be disabled.
If Queue Is true and an exception occurs, the exception is queued and Is
handled when it Is eniabled agaln. If Queue Is false, the exception is lgnored.
when an exception handler Is entered, the state of the exception In question
Is automatically set to gueued.

If an exception handler 1s assoclated througn OPEN_EVENT_CHN with an
event channel and DISABLE EXCEP is called for that exception, then:

* If Queue 1Is false, and if an event is sent to the event channel by
SEND_EVENT_CHN, the SEND_EVENT_CHN call succeeds, but it is

equivalent to not calling SEND_EVENT CHN at all.

s If Queue Is true, and If an event Is sent to the event channel by
SEND_EVENT_CHN, the SEND_EVENT_CHN call succeeds and a call to
WAIT_EVENT_CHN recelves the event, thus dequeuing the exception.

5-12

Operating System Reference Manual Exveptions and Events

5.7.3 ENABLE_EXCEP Exception Management System Call
ENABLE_EXCEP (var ErrNum:Integer;
var Excep-name:t_ex_name)

ErrNum: Error indicator
Excep_Name: Name of exception to be enabled

ENABLE EXCEP causes an exception to be handled again. Since the
Operating System automatically disables an exception when its exception
handler is entered (see DISABLE_EXCEP), the exception handler should
explicitly re-enable the exception before it returns to the process.

5-13

Qperating System Reference Mamial Exveptions and Events

5.7.4 INFO_EXCEP Exception Management System Call

INFO_EXCEP (Var ErrNum:Integer;
var Excep_Name:t_ex_name;
var Excep_Status:t_ex sts)

ErrNum: Error indicator
Excep_Name: Name of exception
Excep_Status: Status of exception

INFO_EXCEP retumns Information about the exception specified by
Excep_Name. The parameter Excep_Status is a record containing information
about the exception. This record contalns:

t_ex_sts = RECORD (= exception status =)
Ex_occurred_f :Boolean; (*exception occurred flag =)
Ex_state:t_ex state; (= exception status ")

Num_excep:integer; (*no. of exceptions queued ")
Hdl_adr:Longadr; (=exception handler‘s address *)
END;
Once Ex_occurred_f has been set to true, only a call to FLUSH_EXCEP can
set it to false.

5-14

. : '
\

Operating System Rererence Marnial Exceptions and Events

575 SIGNAL_EXCEP Exception Management System Call

SIGNAL_EXCEP (Var ErrNum:Integer;
var Excep Name:t_ex_name;
var Excep Data: t_ex_data)

ErrNum: Error indicator
Excep_name: Name of exception to be signaled
Excep_Data: Information for exception handler

A process can signal the occurrence of an exception by calling
SIGNAL_EXCEP. The exception handler assoclated with Excep Name is
entered. It Is passed Excep_Data, a data area contalning information about

the nature and cause of the exception. The structure of this information area
Is:

array[0..size exdata] of Longint

SIGNAL_EXCEP can be used for user-defined exceptions and for testing
exception handlers defined to handle system-defined exceptions.

5-15

(perating System Reference Manial Exceptions and Events

5.7.6 FLUSH_EXCEP Exception Management System Call

FLUSH_EXCEP (Var ErrNum:Integer:
var Excep Name:t_ex_name)

ErrNum: Error indicator
Excep_Name: Name of exception whose queue is flushed

FLUSH_EXCEP clears out the queue assoclated with the exception
_Name and resets its “exception occurred” flag.

5-16

Lperating System Reference Marial Exveptions and Events

5.8 Event Management System Calls
This section describes all the Operating System calls that pertain to event
management. A summary of all the Operating System calls can be found In
Appendix A. The following special types are used In event management calls:

Patnm\e STRING[Z551;

T e STRING[16];

T Record
chn_type:chn_kind;
mm_events: integer;
open_recv:integer;
open_send: integer;
ec _name :pathname;

n

StS

chn kind

| = (valt ec, call ec);
T waitlist =

Record

length: integer;

refrum:array [0..10] of integer;

P_r eventblk = “r_eventblk;

R_eventblk = Record

event_header :t_eheader;
event_text:t event text;
end;

T eheader = Record

send_pid:longint;
event_type:longint;
end;

T_event_text = array [0..9] of longint;

P S | eventblk = "s_eventblk;

S eventblk = T event text;

Timestmp interval = Record
sec:longint;
msec:0..999;

end;

Time_rec = Record

year:1integer;
day:1..366;
hour:-23..23;
minute:-59..59;
second:0..59;
msec:0..999;

end;

e e [

=

-

5-17

Qperating System Reference Marual Exceptions and Events

5.81 MAKE_EVENT_CHN Event Management System Call
HMAKE_EVENT_CHN (Var ErrNum:Integer;
var Event_Chn_Name:Pathname)

ErrNum: Error indicator
Event_Chn_Name: Pathname of event channel

MAKE_EVENT_CHN creates an event channel with the name glven In

Event_Cin_Name. The name must be a Flle System pathname; it cannot be
null.

5-18

i
i

(perating System Rererence Manual Exceptions and Events

5.8.2 KILL_EVENT_CHN Event Management System Call

KILL_EVENT CHN (var Errtum:Integer;
var Event_Chn_Name:Pathname)

ErrNum: Error indicator
Event_Chn_Name: Pathname of event channel

To delete an event channel, call KILL_EVENT_CHN. The actual deletion Is
delayed unti] all processes using the event channel have closed it. In the
period between the KILL_EVENT _CHN call and the channel's actual deletion,

no processes can open it. A channel can be deleted by any process that
knows the channel's name.

5-19

perating System Reference Maal Exceptions and Events

5.8.3 OPEN_EVENT_CHN Event Management Systermn Call

OPEN_EVENT_CtN (var ErrNum:Integer;
var Event Chn_Name:Pathname;
var Refnum:Integer;
Excep Name:t_ex_name;
Recelver :Boolean)

ErrNum: Error indicator
Event_Chn_Name: Pathname of event channel
RefNum: Igentifier of event channel
Excep_Name: Exception name, if any
Receiver: Access mode of calling process

OPEN_EVENT_CHN opens an event channel and defines its attributes from the
process point of view. RefNum is returned by the Operating System to be
used In any further references to the channel.

Event_Chn_Name determines whether the event channel is locally or globally
defined. If it is @ null string, the event channel is locally defined. If
Event_Chn_Name Is not null, It is the File System pathname of the channel.

Excep_Name determines whether the channel is an event-wait or event-call
channel. If it is a null string, the channel is of event-wait type. Otherwise,
the channel is an event-call channel and Excep Name is the name of the
exception that is signaled when an event arrives in the channel. Excep_Name
must be declared before its use in the OPEN_EVENT_CHN call.

Recelver Is a Boolean value indicating whether the process IS opening the
channel as a sender (Recelver Is false) or a receiver (Receiver is true)l A
local channel (one with a null pathname) can be opened only to recelve
events. Also, a call-type channel can only be opened as a recelver.

5-20

perating System Reference Marigl Exveptlons and Events

a
.
i
!
i

5.84 CLOSE_EVENT_CHN Event Management System Call
CLOSE_EVENT_CHN (Var ErrNum:Integer;
RefNum: Integer)

ErrNum: Error indicator
RefNum: Identifier of event channel to be closed

CLOSE_EVENT_CHN closes the event channel assoclated with RefNum. Any
events queued in the channel remain there. The channel cannot be accessed
until it is opened agaln.

If the channel has previously been killed with KILL EVENT_CHN, you cannot
open it after it has been closed.

If the channel has not been killed, it can be opened by OPEN_EVENT_CHN.

C

5-21

Qerating System Reference Marnial Exceptions and Events

5.8.5 INFO_EVENT_CHN Event Management System Call

INFO_EVENT CHN (Var ErrNum:Integer;
RetNum:Integer;
var Chn_Info:t_chn_sts)

ErrNum: Error indicator
RefNum: Identifier of event channel
Chn_Info: Status of event channel

INFO_EVENT_CHN glves a process Information about an event channel. The
Operating System returns a record, Chn_Info, with information pertaining to
the channel assoclated with ReftiNum.

The definition of the type of the Chn_Info record is:

t_chn_sts =
RECORD (» event channel status *)
Chn_type:Chn_kind; (» wait_ec or call _ec *)

Num_events:Integer; (* number of queued events *)

Open_recv:Integer; (* number of processes reading channel *)

Open_send:integer; (* no. of processes sending to this
channel =)

Ec_name :pathname; (* event channel name ”*)

END;

S-22

(-

(perating System Reference Manual Exceptions and Events

5.86 WAIT_EVENT_CHN Event Management Systern Call
WAIT_EVENT_CHN (var ErrNum:Integer:

var Wait List:t waitlist;
var RefNum:Integer;
Event _Ptr:p r_eventblk)

ExrrNum: Error indicator
Wait List: Record with array of event channel refnums
RefNum: Identifier of channel that had an event

Event_Ptr: Polnter to event data

WAIT_EVENT_CHN puts the calling process in a waiting state pending the
arrival of an event in one of the specified channels. Wait List is a pointer to
a list of event channel identifiers. when an event arrives in any of these
channels, the process is made ready to execute. RefNum identifles which
channel got the event, and Event_Ptr points to the event itself.

A process can walt for any Boolean combination of events. If it must wait
for any event from a set of channels (an OR condition), it should call
WAIT_EVENT_CHN with walt_List contalning the list of event channel
identifiers. If, on the other hand, it must wait for all the events from a set
of channels (an AND condition), then for each channel in the set,
WAIT_EVENT_CHN should be called with walt_L ist contalning just that
channel identifier.

The structure of t_waltlist is:

RECORD
Length:Integer;
Refnum:Array[0..slze_waitlist] of Integer;
END;

Event_Pur is a pointer to a record containing the event header and the event
text. “Its definition is:

P_r_eventblk = “r_eventblk;

R_eventblk = Record
event_header:t_eheader;
event_text:t_event_text;
end;

T_eheader = Record
send_pid:longint;
event_type:longint;

end;
T_event_text = array [0..9] of longint;

Send_pid s the process id of the sender.

5-23

Qperating System Reference Marnual Exceptlons and Events

Currently, the possible event type values are:

1 = Event sent by user process
2 = Event sent by system

when you receive the SYS_SON_TERM event, the first longint of the event
text contains the termination cause of the son process. The cause is same as
that given In the SYS_TERMINATE exception given to the son process. The
rest of the event text can be filled by the son process.

If you call WAIT_EVENT_CHN on an event-call channel that has gueued
events, the event s treated just lilke an event in an event-wait channel. If
WAIT_EVENT_CHN s called on an event-call channel that does not have any
queued events, an error 1s returned.

5-24

'

C

Operating System Reference Markial Exceptions and Events

5.8.7 FLUSH_EVENT_CHN Event Management System Call
FLUSH_EVENT_CHN (Var ErrNum:Integer;
RefNum:Integer)

ErrNum: Error indicator
RefNum: Identifier of event channel to be flushed

FLUSH_EVENT_CHN clears out the specified event channel. All events

queued in the channel are removed. If FLUSH EVENT_CHN s called by a
sender, it has no effect.

5-25

(perating System Reference Marial Exceptions and Events

5.8.8 SEND_EVENT_CHN Event Management System Call

SEND_EVENT_CHN (var Errnum:Integer;
RefNum: Integer;
Event Ptr:p s eventblk;
Interval:Timestmp_interval;
Clktime:Time rec)

ErrNum: Error indicator
RefNum: Channel for event
Event_Ptr: Pointer to event data
Interval: Timer for event
Clktime: Time data for event

SEND_EVENT_CHN sends an event to the channel specified by ReftNum.
Event_Ptr points to the event that is to be sent. The event data area
contains only the event text; the header is added by the system.

If the event is of the event-wait type, the event is queued. Otherwise the
Operating System signals the corresponding exception for the process receiving
the event.

If the channel is opened by several senders, the receiver can sort the events
by the process identifier, which the Operating System places in the event
header. Altematively, the senders can place predefined identifiers, which
identify the sender, in the event text.

The Interval parameter indicates whether the event is a timed event,
NOTE

Timed events will not be supported in future releases of the Operating
System. The Interval and Clktime parameters will be ignored in future
releases. If you want your software to be upward-compatible, always
set both flelds of the Interval parameter to zero.

Timestmp_Interval Is a record contalning a second and a millisecond field. 1f
both flelds are 0, the event Is sent immeaiately. If the second given is less
than 0, the millisecond fleld is ignored and the Time_rec record is used. If
the time in the Time_rec has already passed, the event is sent immediately.
If the millisecond field is greater than 0, and the second field is greater than
or equal to 0, the event is sent that number of seconds and milliseconds from
the present.

A process can time out a request to another process by sending itself a timed
event and then walting for the arrival of elther the timed event or an event
indicating the request has been served. If the timed event Is recelved first,
the request has timed out. A process can also time {ts own progress by
perlodically sending itself a timed event through an event-call event channel.

5-26

perating System Reference Maal Exveptions ano Events

59 Clock System Calls
This section describes all the Operating System calls that pertain to the clock.
A summary of all the Operating System calls can be found in Appendix A.

The following special types are used in clock calls:

Timestmp interval = Record
sec:longint;
msec:0..999;

end;

Time_rec = Record

year : integer;

day:1..366;

hour:-23..23;

minute:-59..59;

second:0..59;

msec:0..999;
end;

Hour_range = -23..23

Hinute range = -59..59;

5-27

perating System Reference Marnal Exceptions ard Events

59.1 DELAY_TIME Clock System Call

DELAY_TIME (Var ErrNum:Integer;
Interval:Timestmp_interval:
Clktime:Time_rec)

ErrNum: Error indicator
Interval: Delay timer
Clktime: Time information

ODELAY_TIME stops executlon of the calling process for the number of seconds
and milliseconds specified in the Interval record. If this time period is zero,
DELAY_TIME has no effect. If the period is less than zero, execution of the
process is delayed until the time specified by Clktime.

5-28

("

(perating System Reference Marna! Exceptions and Events

59.2 GET_TIME Clock System Call

GET_TIME (var ErrNum:Integer;
var Sys_Time:Time_rec)

ErrNum: Error indicator
Sys Time: Time information

GET_TIME returns the current system clock time In the record Sys Time. The
msec fleld of Sys_Time always contalns a zero on return.

5-29

Lperating System Reference Marual Exceptions and Events

593 SET_LOCAL_TIME DIFF Clock System Call
SET_LOCAL_TIME _DIFF (var ErrNum:Integer;
Hour :Hour_range;
Hinute:Minute_range)

Errnum: Error inaicator

Hour : Number of hours difference from the system clock
Minute: Number of minutes difference from the system clock

SET_t OCAL_TIME_DIFF Informs the Operating System of the difference In

hours and minutes between the local time and the system clock. Hour and
Minute can be negative.

5-30

(perating System Rererence Mam/al Exceptions ang Events

59.4 CONVERT_TIME Clock System Call

CONVERT_TIME (Var ErrNum:Integer;
Var Sys_Time:Time rec;
var Local Time:Time rec;
To_Sys:Boolean)

ExrNum: Error indicator

Sys Time: System clock time
Local_Time: Local time
To_Sys: Direction of time conversion

CONVERT_TIME converts between local time and system clock time.

To_Sys s a Boolean value indicating In which direction the conversion is to
go. If To Sys Is true, the system takes the time data in Local_Time and puts
the corresponding system time In Sys_Time. If To_Sys is false, the system
takes the time data in Sys_Time and puts the corresponding local time in
Local_Time. Both time data areas contain the year, month, day, hour, minute,
second, and millisecond.

5-31

o . :
ST :
3 ‘

Chapter 6
Configuration
6.1 Configuation System Calls .___________________ ... 6-1
6.1.1 READ _PMEM L et 6-2
6.1.2 GETNATCONFIG ..ottt et e araerraasannaraaeasanen 6-3
6.1.3 MACH _INFO .. s 6-5
6.14 CARDS EQUIPPEDiiiiirii e ieee it aec e e cteeaaaraaaaenn 6-6
B.1.0 OSBOOT YO it e et ettt 6-7

Configuration

Every Lisa system is configured using the Preferences tool. Preferences
places the configuration state of the system in & special part of the system's
memory called parameter memory. Every time parameter memory is
changed, a copy of the new data is made on the boot disk. If tha contents
of parameter memory sre lost, this disk copy is automatically restored to
parameter memory.

Several calls are provided that sllow programs to request information about
the configuration of the system.

6.1 Configuration System Calls

This section describes all the Operating System calls that pertain to
configuration. A summary of all the Operating System calls can be found in
Appendix A. Special data types used by configuration calls are defined along
with the calls.

6-1

JO T U P S SO WP,

Operating System Reference Manual Configuration

611 READ PMEM Configuration System Call
READ PMEM (Var ExxNum:Integer; Var PMrec:PMesRec)

ExrNum: Error code
PMrec: Contents of paramster memory

READ_PMEM returns the contents of parameter memory in PMrec. The
contents of PiMrec are not to be interpreted by the caller. This routine
exists for the purpose of obtaining PMrec so that PMrec can be passed to
the other configuration procedures described in this chapter.

6-2

C

Cperating Svstem Reference Manual Configuration

6.12 GETNXTCONFIG Corfiguration System Call

GETNXTCONFIG (Var ErxNum:Integer;
Yar NextEntry:Longint;
Yar PHrec:PMemRec;
Yar Config: Confu_j)ev]

ExrNum - Exror code

NextEntry: Enumeration index

PMrec: Contents of parameter memory
Config: Configuration entry

GETNXTCONFIG is used to enumerate device configuration information.
NextEntry = 0 is passed by the caller to start the enumeration. After the
first call to GETNXTCONFIG, the caller pesses the previously returned value
of NextEmtry on each subsequent call to GETNXTCONFIG. The Operating
Systemn updates the value of NextEnmtry with each call. The enumeration is
done using the caller's copy of parameter memory (obtained by calling
READ_PMEM) which is input in PMrec. Upon return from the procedure,
Config holds the next configuration record that was extracted from the copy
of pararneter memory. ErrNum = 799 is returned when no more configuration
entries are svailable.

The Config record contains:

pos: cd_position;

nExtWords: byte; (*number of valid ExtWords following*)
ExtWords: array[1..3] of Integer;

DriverID: longint;

DevName: e_name;

where cd_position = record
slot, chan, dev: byte
end;

The pos record of three bytes indicates the position of the device being
described. DevName is a character string representation of this position.
The characteristics of the device can be obtained by calling LOOKUP and
passing -DevName as input. Table 6-1 shows the device names, as well as
the aliases, which may be substituted for DeviName in any Operating System
call.

6-3

Cperating S\stermn Keference Manual

Configuration

Table 6-1

Device Names
Slot Chan Dev DevNeme Alias Description
1 0 0 #1 SLOT1 Peripheral at slot 1
1 X 0 #1¥x SLOT 1ICHANX at slot 1 channel x
1 X Y #1#x#y SLOTICHANXDEYY at slot 1 channel x device vy
2 0 0 #2 SLOT2 Peripheral at slot 2
2 X 0 #24x SLOT2CHANX at slot 2 channel x
2 X ¥ #24x#y SLOTZCHANXDEVY at slot 2 channel x device y
3 0 0 #3 SLOT3 Peripheral at slot 3
3 X 0 #34x SLOT 3CHANX at slot 3 channel x
3 X Y #34x#ty SLOT3CHANXDEYY at slot 3 channel x device y
10 1 0 #1041 RS232A Serial Port A
10 2 0 #1082 RS23728 Serial Port B
11 0 0 #11 PARAPORT Parallel Port
12 0 0 #12 UPPER or PARAPORT Hard disk on Lisa 2/10
13 0 0 #13 LOWER Sony Drive
14 1] #14#1 UPPER Upper Floppy on Lisa 1
14 2 0 #1442 LOWER Lower Floppy on Lisa 1
15 1 0 #1541 ALTCONSOLE Alternate Console
15 2 0 #1542 MAINCONSOLE Main Console

ExtWords contains optionsl extension words.

ExtWards]1] contains the following:

RECORD

If the device is a printer,

printer_flag: boolean; (* = true(1l) *¢)
default flag: boolean; {' true if it's the default printer*)

printerID: 14 bits

* unique printer ID:
32 = Imagewriter / || DIP
33 = Daisy Wheel Printer

35 = Ink Jet Printer *)

END;

DriverlD contains the unique driver ID:
32 = Serial Cable
33 = Parallel Cable
34 = 2 Port Card
35 = Profile
36 = Sony
37 = Priem Card
38 = Priem Disk
39 = Archive Tape
40 = Console
42 = Modem A

Cpsrating S\ystem Relerence Manual Configurstion

6.13 MACH_INFO Configuralion System Call

MACH_INFO (Var ExxNum:Integer;
Var The_info:Minfo)

ExrNum: Error code
The_info: Type of Lisa being used

MACH_INFO returns an array, The_info, showing the CPU board, [/0 board
and memory board in use:

ninfo = RECORD
cpu_board, io board, nm*size: longint
END;

cpu_board always returne 0. mem_size returns the number of bytes in
memory. io_board returns:

Q0 =Lisal
1 = Lisa 2/10
Z2 = Lisa 2, Lisa 2/3, or Lisa 1 upgraded to use micro diskettes.

((";-3
A

6-5

Qperating System Reference Manual

6.14 CARDS_EQUIPPED Configuretion System Call
CARDS EQUIPPED (Var ErxNum:Integer;
var In_Slot:Slot_array)

ExxNum: Error code
In Slot: Identifies the types of cards configured

Configuration

CARDS_EQUIPPED returns an array showing the types of cards which are in

the various card slots.
The definition of Slot_array is:

slot_array = array [1..3] of integer;
where the array values may contain:

0 = no card present
2 = 2-port parallel card
5 = Priam card

6-6

P U VU PRSP

I

’

.

Qperating S\stem Reference Msnugl Configuration

6.15 0OSBOOTVOL Configuration System Call
0SBOOTVOL. (Var Exxhum:Integer; var VolNeme: e _name);
ExrrNum: Error code
VYolName: Identifies the device name for the boot volume

OSBOOTVOL returns the device name of the boot volume. This port might
not be the port configured for the boot volume, since it is possible for the
user to override the default boot volume. Characteristice about the device
can be obtained by calling LOOKUP and passing YolName.

6-7

2, o 7
- iy Fa - : .
. o~)

Appendixes
A Operating System INterface WUNIt......cocvvemenvieiiinnminiencisasoncosccasensnsane A1l
B System-Reserved EXCEption NamMES......ceeeeciviriemmmrremceemrecerenscerennreenes B-1
C SYStEMRESEIVEH EVENL TYPES .eoueeeeeeeeeeeneeeeeaeereesssmeesessesemeeseesasassns C-1
D ETTOY MESSA0ES .. ccciicniieiimeetneietaseestessanssesssssmasssasaasensssansnssansansssvasnnnsane D-1
E FS_INFO FICIOSoieeiimcciimeeemerrancmececnscermensectmaseasenessansensannnrasesnssnns E-1

-~
R

Appendix A
Operating System Interface Unit

def_str_index = 16;(= * for ‘SYS_VALUE_00B' excep due to string index err *)

A-1

UNIT syscall; (» system call definitions unit =)
I INTRINSIC;
INTERFACE
l CONST
max_ename = 32; (= maximum length of a file system object name ")
max_pathname = 255; (* maximum length of a file system pathname ")
max_label size = 128; (=~ maximm size of a flle label, in bytes *;
I len_exname = 16; (* length of exception name »
size exdata = 11; (» 48 bytes, exception data block should have the
same size as r_eventblk, received avent block *)
I size etext = 9; (* event text size - 40 bytes »)
size waitlist = 10; (» size of wait 1ist - should be same as regptr list =)
I (= exception kind definitions for °'SYS_TERHMINATE' exception ")
o call_term = O; (* process called terminate process ")
ended =1; (* process executed 'end’ statement »)
I self killed = 2; (» process called kill process on self *)
killeg = 3; (= process was killed by another process *)
fthr_term = 4; (» process's father is terminating ")
bad_syscall = 5; (* process made invalid sys call - subcode bad *)
I bad errnum = 6; (» process passed bad address for errnum parm)
swap_error = 7; (= process aborted due to code swap-in error *)
stk_overflow = 8; (* process exceeded max size (+T nhn) of stack =)
I data_overflow = 9; (» process tried to exceed max data space size =)
parity err = 10; (» process got a parity error while executing =)
def_div_zero = 11;(= default handler for div zero exception was called *)
I def _value oob = 12; (= " for value oob exception »)
def_ovfw = 13; (» " for overflow exception ")
def_nmi_key = 14; (* " for NHI key exception »
I def_range = 15;(* * for "SYS VALUE 00B" excep due to value range err =

perating System Rererence Marxial

bus_error = 21;
addr_error = 22;
i11g inst = 23;

priv_violation = 24;

1ine 1010 = 26;
1ine 1111 - 27;

unexpected ex = 29;

div_zero = 31;
value oob = 32;
ovfw = 3%,
nml_key = 34;
value range = 35;
str_index = 36;

(» bus error occurred

= agddress error occurred

= illegal instruction trap occurred
privilege violation trap occurred
1ine 1010 emulator ococurred

line 1111 emulator occurred

L |

PN N NN
E

(» an unexpected exception occurred
(* exception kind definitions for hardeare exception

(= excep kind for value range and string index error
(* Note that these two cause "SYS_VALUE_00B' excep

(=DEVICE_CONTROL functions+)

awParity = 1;
avOutDTR = 2;
avOUtXON = 3;
avoutDelay = 4;
avBauwd = 5;
avinvait = 6;
avInDTR = 7;
avInXoN = 8;
avTypeahd = 9;
dvDiscon = 10;
OVOUtNOHS = 11;

avDiskStat = 20;
avDiskSpare = 21;

TYPE

(*RS-232%)

("RS-232%)

("RS-232%)

(RS-232+)

(*RS-232%)

(*RS-232, CONSOLE®)
("RS-232*)

(*RS-232%)

(*RS-232%)

(*RS-232%)

("RS-232%)
("PROFILE®)
(*CONSOLE")

(*RS-232, CONSOLE, PARALLEL PRINTER*) (*not yet®)
(*DISKETTE, PROFILE®)
(*DISKETTE, PROFILE®)

pathname = string [max_pathname):
e_name = string [max_ename];
namestring = string [20);
procinfoRec = record
progpathname : pathname;

global_id

father_1id

priority

state

data_in
ena;

: longint;

: longint:

: 1..255;

: (pactive, psuspended, pwaiting):
: boolean

A-2

Qperating System Interface (it

. v

perating System Reference Marval

S
i

dsinfoRec = record
mem_size : longint;
disc_size: longint;
numb_open : integer;
ldsn : integer;
boundf : boolean;
presentf : boolean:
creatorF : boolean;
rwaccess : boolean:
segptr : longint;
volname: e_name;

end;

t_ex _name = string [len exname];
longadr = “longint;

p_ex_data = "t_ex data;
t_ex_sts = record
ex_occurred f : booleary;
ex_state : t_ex_ state;
num_excep : integer;
hdl_adr : longadr;

end;

p_env_blk = “env_blk;
env_blk = record

pc : longint;
sT : integer;
a0 : longint;
dl : longint;
dz : longint;
g3 : longint;
d4 : longint;
as : longint;
a6 : longint;
d7 : longint;
a0 : longint;
al : longint;
az : longint;
a3 : longint;
a4 : longint;
a5 : longint;
a6 : longint;
a’ : longint;

Loerating Systern Interface Linit

Tastype = (ds_shared, ds_private); (* types of data segments *)

(* exception name

t_ex_state = (enabled, queued, ignored): (» exception state

t_ex data - array [0..size exdata] of longint; (* exception data blk

(* exception status
(= exception occurred flag
(* exception state

(* number of exceptions q'ed

(* handler address

(* environment block to pass to handler

(* program counter
(* status register
(» data registers 0 - 7

(* address registers 0 - 7

A-3

*)

Qoerating System Reference Manual

Qperating System Interface Lnit

p_term ex data = “term_ex data;

term ex_data = record (» terminate exception data block *)
case excep_kind : longint of
call_term
ended,
self killed,
killed,
fthr_term,
bad_syscall,
bad_errnum,
Swap_error,
Stk_overflow,
data_overflow,
parity err : (); (= due to process termination »)
111g_inst,
priv violation, (= due to illegal instruction, privilege
violation ")
line_ 1010,
line 1111, (= due to 1ine 1010, 1111 emulator *)
def_div_zero,
cef_value_oob,
def _ovfw,
def_nmi_key (» terminate oue to default handler for hardware
exception *)
: (sr : integer;
pc : longint); (+ at the time of occurrence *)
def_range,
def_str_index (» terminate due to default handler for
'SYS_VALUE_00B' excep for value range or string
index error ")

: (value_check : integer;
upper bound : integer;
lower bound : integer;
return pc : longint;
caller a6 : longint);

bus_error,
aqdr_error (= due to bus error or address error *)
: (fun_field : packed record (= one integer =)
filler : 0..8$7ff; {(» 11 bits *)

r w _flag : boolean;
i n_flag : boolean;
fun code : 0..7; (= 3 bits *)

A-4

s

perating System Reference Manual perating System Interface Uit

access_adr : longint;

inst_register : integer;

sr_error : integer:

pc_error : longint);
end;

p_hard_ex_data = “hard_ex_data;
hard_ex_data = record (= hardware exception data block ")
case excep_kind : longint of
div_zero, value oob, ovfe
: (sr : integer;
pc : longint);
value_range, str_index
: (value_check : integer;
upper_bound : integer;
lower_bound : integer;
return p¢c : longint;
caller_ a6 : longint);
end;

accesses = (dread, dwrite, append, private, global refnum);
mset = set of accesses;
iomode = (absolute, relative, sequential);

UID = record (*unique id+)

a, b: longint

end;

timestmp interval = record (» time interval *)
sec : longint; (= number of seconds *)
msec : 0..999; (» number of milliseconds within a second *)

end;

info_type = (device_t, volume_t, object_t);
devtype = (diskdev, pascalbd, seqdev, bitbkt, non_io);
filetype = (undefined, MDDFfile, rootcat, freelist, badblocks, sysdata,

spool, exec, usercat, pipe, bootfile, swapdata, swapcode, ramap,
userfile, killedoblect);

entrytype= (emptyentry, catentry. linkentry, flleentry, pipeentry, ecentry,
killedentry);

Qoerating System Rererence Mamal Qperating System Interface Unit

fs_info = record
name : e_name;
dgir_path : pathname;
machine_ id - longint;
fs_overhead : integer;
result_scavenge : integer;
case otype : info_type of
device t, volume t: (
iochannel : integer;
devt : Odevtiype;
slot_no : integer:
fs_slze : longint;
vol_size : longint;
blockstructured, mounted : boolean;
opencount : longint;
privatedev, remote, lockeddev : boolean;
mount_pending, unmount pending : boolean;
volname, password : e_name;
fsversion, volnum : integer:
volid : UID;
backup_volid : UID;
blocksize, datasize, clustersize, filecount : integer;
label_size : integer;
freecount : longint;
DTVC, DTCC, DTVB, DTVS : longint;
master_copy_id, copy_thread : longint;
overmount_stamp : UID;
boot_code : integer;
boot_environ : integer:
privileged, write protected : boolean;
master, copy, copy_flaq, scavenge_flag : boolean;
vol_left_mounted : boolean);

oblect_t : (

size : longlnt

psize : longint; (» physical file size in bytes)
lpsize : integer; (= logical page size in bytes for this flle *)

ftype : flletype;

etype : entrytype;

OTC, DOTA, DTH, DTB, DTS : longint;
refnum : integer.

fmark : longint;

acmode : mset;

nreaders, nwriters, nusers : integer;
fuld : UID;

user type integer;

user_subtype : integer;

A-6

Qperating System Reference Manual Qperating System Interface Lnit

system_type : integer;

eof, safety on, kseitch : boolean;

private, locked, protected, master_flle : boolean;
file_scavenged, file closed by 0S, file_left_open:boolean)
end;

actype = record
dcversion : integer;
dccode : integer;

dcdata : array [0..9] of longint; (= user/driver defined data =)
end;

I t_waitlist = record (= walt list *)
length : integer;
l end;

refnum : array [0..s1ze_waitlist] of integer;

t_eheader = record (= event header *)
send_pid : longint: (* sender's process 1d *)
event_type : longint; (» type of event *)

end;

T_event_text = array [0..s1ze_etext] of longlint:

o p_r_eventblk = “r_eventblk;

s r_eventblk = record
event_header : t eheader;
event_text : t_event text;
end;

_S_eventblk = “s_eventblk;
s_eventblk = t_event_text;

time_rec = record

year : integer;

aay : 1..366; (* Julian date =)
hour : -23_.23;

minute : -59..59;

second : 0..59;

msec : 0..999;

end;

A-7

fperating System Reference Maral

chn_kind = (wait_ec, call_ec);
t_chn_sts = record

chn_type : chn king;
num_events : integer;
open_recv : integer;
open_send : integer;
ec_pame : pathname;

end;

hour_range = -23..23;
minute_range = -59..59;

{configuration stuff: }

Qperating System Interface Lnlt

(* channel status =)

tports = (uppertwig lowertwig parallel,

slot1l, slotl12, slotl3, slotla,
slot2l, slot22, slot23, slot2i,
slot31. slot32. slot33, slot3a.

seriala, serialb, main console, alt _console,
t_mouse, t_speaker, t_extral, t_extra2, t_extra3);

cara_types = (no_card, apple_card, n_port _card, nhet_carq,

(* chahnel type »)
(= number of events queued =)
(» number of opens for receiving =)
(= number of opens for sending *)
(= event channel name ®)

laser_caraq):

slot_array = array [1..3] of card_types:

{ Lisa Office System parameter memory type }

pmByteUnique = -128..127;

ptienRec = array(1..62] of pmByteUnique;

(» Flle System calls %)

procedure HAKE_FILE (var ecode:1integer; var path:pathname;
label_size:1integer):

procedure MAKE_PIPE (var ecode:integer: var path:pathname:
label_size:integer);

procedure MAKE_CATALOG (var ecode:integer; var path:pathname;
label size:integer):

procedure MAKE_LINK (var ecode:integer; var path, ref:pathname;
label_size:integer);

A-8

P

I
|

-4.[4

iy,

herating System Rererence Marnsal perating System interrace (it

procedure KILL _OBJECT (var ecode:integer; var path:pathname):

procedure UNKILL _FILE (var ecode:integer; refrum:1integer; var
new name:e_name),;

procedure OPEN (var ecode:integer; var path:pathname; var refnum:integer;
manip:mset);

procedure CLOSE_OBJCCT (var ecode:integer; refrum:integer);

procedure READ_DATA (var ecode:integer; refnum:integer; data_addr:longint:
count:longint: var actual:longint: mode:iomode;
offset:longint);

procedure WRITE_DATA (var ecode:integer; refnuminteger; data_addr:longint;
count:longint; var actual:longint; moae:lomode;
offset:longint);

procedure FLUSH (var ecode:integer; refmum:integer);

procedure |.OOKUP (var ecode:integer; var path:pathname; var
attributes:fs_info);

procedure INFO (var ecode:integer; refnum:integer; var refinfo:fs_info);

procedure ALLOCATE (var ecode:integer; refnuminteger; contiguous:boolean;
count:longint; var actual:longint):

procequre TRUNCATE (var ecode:integer; refnuminteger);
procedure COMPACT (var ecode:integer; refnuminteger).

procedure RENAHE_ENTRY (var ecode:integer: var path:pathname; var
newname:e_name),

procecdure READ_LABEL (var ecode:integer; var path:pathname;
data_addr:1longint; count:longint; var actual:longint).

procegure WRITE_LABEL (wvar ecode:integer; var path:pathname;
data_addr:longint; count:longint; var actual:longint);

procedure MOUNT (var ecode:integer; var vname : e name; var password :
€ _name ;var devname : e_name);

procedure UNMOUNT (var ecode:integer: var vname : e_name):

(perating System Reference Mamal Lperating System interrace (nit
procedure SFT_WORKING DIR (var ecode:integer; var path:pathname);

procedure GET WORKING DIR (var ecode:integer; var path:pathname);

procedure SET_SAFETY (var ecode:integer;var path:pathname;on off:boolean);

procegure DEVICE CONTROL (var ecode:integer; var path:pathname;
var cparm : detype);

procedure RESET CATALOG (var ecode:integer; var path:pathname);
procedure GET _NEXT_ENTRY (var ecode:integer; var prefix, entry:e name);

procedure SET_FILE _INFO (var ecode :integer; refnuminteger; fsi:fs _info);

(* Process Management system calls *)
function Hy_ID:1ongint;

procedure Info_Process (var errnuminteger; proc_id:longint; var
proc_info:procinfoRec);

procedure Yield CPU (var errnuminteger; to_any:boolean);

procedure SetPriority Process (var errnunrinteger; proc_id:longint;
new_priority:-integer):

procedure Suspend_Process (var errnuminteger; proc_id:1ongint;
susp_family:poolean);

procedure Activate Process (var errnuminteger; proc_id:longint;
act_family:boolean);

procequre Kill _Process (var errnuminteger; proc_ld:longint);
procedure lerminate_Process (var errnuminteger: event ptr:p s eventblk);
procedure Hake Process (var errnuminteger; var proc_id:longint; var

progfile:pathname; var entryname:namestring:
evnt_chn_refnuminteger);

A-10

perating Svstem Kererence Marss! perating System nterrace (it

(* Hemory Hanagement system calls *)

procedure make_dataseg(var errnum: integer; var segname: pathname; mem_size,
disc_size: longint; var refnum: integer; var segptr:

foxeay

procedure

proccdure

procedure

procedure

procedure

procedure

procedure
procedure
procegure
procegure

procedure

procegure

longint; 1dsn: integer; dstype: Tdstype):
kill_dataseg (var errnuminteger; var segname:pathname);

open_dataseg (var errnuminteger: var segname:pathname; var
refnuminteger; var segptr:longint; ldsminteger);

close_dataseq (var errnuminteqger; refnuminteger);
size_dataseqg (var errnuminteger; refnuminteger;
deltamemsize:longint, var newmemsize:longint;

deltadiscsize: longint; var newdiscsize: longint);

info_dataseqg (var errnuminteger; refnuminteger: var
dsinfo:dsinfoRes);

setaccess_dataseg (var errnuminteger; refnuminteger;
reaconly:boolean);

unbind dataseqg (var errnuminteger; refnuminteger);

bind_dataseg(var errnuminteger; refnuminteger);

info ldsn (var errnuminteger: 1dsn: integer; var refrnum: integer);

flush dataseqg(var errnum: integer; refnum: integer);

mem_info{var errnum: integer; var swapspace, dataspace.
cur_cogesize, max_codesize: longint);

info_address(var errnum: integer: address: longint: var refnum:
integer);

(* Exception Hanagement system calls *)

procedure

procedure

declare_excep hdl (var errnuminteger; var excep_name:t_ex_name;
entry_point:longadr);

disable excep (var errnuminteger; var excep_name:t_ex_name;
queue:boolean);

A-11

perating System Rererence Manial perating System interface (nit

procedure enable_excep (var errnuminteger; var excep_name:t_ex_name):

procequre signal_excep (var errnuicinteger; var excep_name:t_ex_name;
excep_data:t_ex_data);

procedure info_excep (var errnuminteger; var excep_name:t_ex_name; var
excep_status:t_ex_sts):

procedure flush_excep (var errnumcinteger; var excep_name:U_ex_name);

(# Event Channel management system calls *)

procedure make_event_chn (var errnuminteger; var event_chn_name:pathname);

procedure kill_event_chn (var errnuminteger; var event_chn_name:pathname);

procedure open_event _chn (var errnuminteger; var event_chn_name:pathname; var
refnuminteger: var excep_name:t_ex_name;
receiver:bpolean);

procedure close_event_chn (var errnuminteger; refnuminteger);

procedure info_event _chn (var errnuminteger; refnuminteger; var
chn_info:t chn sts).

procedure wait_event _chn (var errnuminteger; var wait_list:t_waitlist; var
refnuminteger; event ptrp r eventblk);

procedure flush event chn (var errnuminteger; refnuminteger);
procegure send_event_chn (var errnuminteger; refnuminteger;

event_ptr:p_s_eventblk; interval:timestmp_interval;
clktime:time rec);

(* Timer functions system calls *)

procedure delay time (var errnuminteger; interval:timestmp_interval;
clktime:time_rec);

procedure get_time (var errnuminteger; var gmt_time:time_rec):

procegure set _local time diff (var errnuminteger; hour:hour_range;
minute:minute range);

A-12

e

Qerating System Reference Manisl perating System Interrace (nit

procedure convert_time (var errnuminteger; var gmt time:time rec; var
local_time:time_rec; to_gmt:boolean):

{configuration stuff}

function OSBOOTVOL (var error : integer) : tports;

procedure GET CONFIG NAME(var error:integer. devpostn:tports; var
devname:e_name);

procegure CARDS_EQUIPPED(var error:integer; var in_slot:slot_array);

IMPLEHMENTATION

procedure MAKE_FILE: external:
procedure MAKE_PIPE; external;
procedure HAKE_CATALOG; external;
procedure MAKE |.LINK; external;
procedure KILL_OBJECT; external;
procedure OPEN; external;
procedure CLOSE OBJECT; external;
procedurc READ DATA; external;
procedure WRITE DATA; external:
procedgure FLUSH; external:
procedure LOOKUP; external;
procedure INFO; external:;
procedure ALLOCATE: external:
procegure TRUNCATE; external:
procedure COMPACT; external;

Qperating System Rerference Manual

procedure RENAME_ENTRY:; external:
procedure READ LABEL; external;
proceaure WRITE LABEL; external;
procedure MOUNT; external;
procedure UNMOUNT; external;
procedure SET WORKING DIR; external;
procedure GET WORKING DIR; external;
procedure SET_SAFETY; external;
procedure DEVICE CONTROL; external;
procedure RESET CATALOG; external;
procedure GET_NEXT ENTRY; external;
procedure GET DEV_NAME; external;

function Hy ID; external;

procedure Info_Process; external;
procedure Yield CPU; external;
procedure SetPriority Process; external;
procedure Suspend_Process; external;
procedure Activate Process; external;
procegure Kill_Process; external;
procedure Terminate Process; external;
procedure Hake Process; external;

procedgure Sched Class; external;

A-14

Qoerating System Interface nit

Qperating System Reference Marnial

procedure
procegure
procedure
procedure
procedure
procedure
procegure
procedure
proceaure
procegure
procedure
procedure

procedure
procedure
proceaure
procedure
procedure

procedure

procedure
procedure
proceaure

procequre

make_dataseq; external;
kill _dataseg; external;
open_dataseq; external;
close_dataseg; external;
size dataseqg; external;
info _dataseqg: external;
setaccess_dataseg; external;
unbind dataseqg; external;
bind_dataseq; external;
info_ldsn; external;
flush_dataseg; external;

mem_info; external;

declare_excep hdl; externmal;
disable_excep; external;
enable_excep; external;
signal_excep; external;
info_excep; external;
flush_excep; external;

make_event_chn; external;
kill event_chn; external;
open_event_chn; external;

close_event_chn; external:

A-15

Qperating System Interface Lnit

Qperating System Reference Manual

procequre 1nfo_event_chn; external;
procedure wait event _chn; external;
procedure flush event_chn; external;
procequre send_event_chn; external;

procedure delay time; external;
procedure get time; external;

procedure set local time diff; external;

procedure convert_time; external;
procedure set_file info; external;
function ENABLEDBG; external;
function 0SBOOTVOL; external;
procedure GET CONFIG_NAME; external:
function DISK LIKELY; external;
procedure CARDS EQUIPPED; external;
procedure Read Ptemy external;
procedure Write PHem; external;
end.

A-16

(perating System Interface Linlt

P

Appendix B
System-Reserved
Exception Names

SYS_OVERFLOW Overflow exception. Signaled wnen the TRAPV instruction is
executed and the overflow condition is on.

SYS_VALUE 008 Value-out-of-bound exception. Signaled when the CHK
instruction Is executed and the value is less than 0 or greater
than upper bound.

SYS_ZERO DIV Division by zero exception. Signaled when the DIVS or DIVU
Instruction Is executed and the divisor is zero.

SYS_TERMINATE Termination exception. Signaled when a process is to be
terminated.

~.

(

SYS_SON_TERM

Appendix C
System-Reserved
Event Types

"Son terminate” event type. If a father process has created a son
process with a local event channel, this event is sent to the
father process when the son process terminates.

pia s

-

[.

-6081

-6003
-1885
-18682
-1840
-1293
-1176
-1175
-1174
-1173
-1146
-1063

-1060

-1059
-696
-660
-626
-622
-621
-620
-413
-412
-321
-320
-130

-149

-125
~-120
-115

101
110
130
131
132
133
134

(

Appendix D
Error Messages

End of execfile input

Attempt toreset text file withtyped-file type
Attempt toreset nontext file with text type

ProFile not present during driver initialization
ProFile not present during driver initialization
Packet ended in aresumable state (Archive).
Object is not password protected.

Datainthe object have been altered by Scavenger
File or volume was scavenged

File was left open or volume was left mounted, and system crashed
File was last closed by the OS

Only aportion of the space requested was allocated

Attempt to mount boot volume from another Lisa or not most recent boot

volurne

Attempt to mount aforeign boot disk following a temporary unmount,
The bad block directory of the dickette is almost full or difficult toread
Printer out of paper during initialization

Cable disconnected during ProFile initialization

Scavenger indicated data are gquestionable, but may be OK
Parameter merncry and the disk copy were both invalid

Perameter mernory was invalid but the disk copy wes valid
Parameter memory was valid but the disk copy was invalid

Event channel wes scavenged

Event channel wss left open and system crashed

Datasegment open whenthe system crashed. Data possibly invalid.
Could not determine size of datasegrent

Process waes created, but a library used by program has been scavenged and

altered

Process was created, but the specified program file has been scavenged and

altered

Specified process is already terminating
Specified process is already active

Specified process is already suspended

Specified process does not exist

Specified process is asystern process

Irvalid priority specified (must be 1..225)

Could not open program file

File System error while tryingtoread programfile
Irvvalid program file (incorrect format)

Could not get astack segment for new process
Could not get asyslocal segment for new process

D-1

Coerating Sstem Reference Manusl Error Messages

135
136
138
141
142
143
144

145
146

147
148
190

191
192
193
194
195
196

Could not get sysglobal space for new process

Could not set up communication channel for new process

Error accessing program file while loading

Error accessing a library file while loading program

Cannot run protectedfile onthis machine

Program uses an intrinsic unit not found inthe Intrinsic Library

Program uses an intrinsic unit whose name/type does not agree with the
Intrinsic Library

Prograrn uses ashared segment not found inthe Intrinsic Library

Program uses ashared segment whose name does not agree with the Intrinsic
Library

No space insyslocal for program file descriptor during process crestion
Nospace inthe shared IU datasegment for the program's shared U globals
No space in syslocal for program file description during List_LibFiles
operation

Could not open program file

Errortryingtoread programfile

Cannot read protected programfile

Invalid program file (incorrect format)

Prograrn uses ashared segment not found inthe Intrinsic Library

Program uses a shered segment whose name does not agree withthe Intrinsic
Library

Disk 1/0 error tryingtoread the intrinsic unit directory

Specified library file number does not exist inthe Intrinsic Library

No such exceptionname declered

No space left in the system data area for Declare_Excep_Hdl or
Signal_Excep

Null name specified es exception name

Invalid LDSN

No datasegment bound tothe LDSN

Datasegment already bound to the LDSN

Datasegment too large

Input data segment path name is invalid

Datasegment already exists

Insufficient disk space for datasegment

Aninvalid size has been specified

Insufficient systemresources

Unexpected File System error

Datasegment not found

Invalid address passed to Info_Address

Insufficient memory for operation

Disk errar while tryingtoswap in data segment

Invalid event channel name pessed to Make_Event_Chn

Nospace left insystem global data areafor Open_Event_Chn

Nospeace left irsystem local deta ereafor Open_Event_Chn
Non-block-structured device specified in pathname

Catalog is full in Make_Event_Chn or Open_Event_Chn

Operating Systemn Reference Manual Error Messages

406
410
411
413
416
417
420
421
422
423
424

423
426
427
428
429

D
F-N
-

625

Do
b
Sw

No such event channel exists in Kill_Event_Chn

Attempt to open alocal event channel to send

Attempt to open event channel to receive when event channel has areceiver
Unexpected File System error in Open_Event_Chn

Cannot get enough disk space for event channel in Open_Evert_Chn
Unexpected File System error in Close_Event_Chn

Attempt to wait on a channel that the calling process did not gpen
Wait_Event_Chnreturns empty because sender process could not comnplete
Attempt to call Weit_Event_Chn on an empty event-call channel

Cannot find corresponding event channel after being blocked

Amount of data returned while reading from event channel not of expected
size

Event channel empty after being unblocked, Wait_Event_Chn

Badrequest pointer error returned in Wait_Event_Chn

Wait_List has illegal length specified

Receiver unblocked beceouse last sender closed

Unexpected File System error in Wait_Evert_Chn

Attemnpt tosendto achannel which the calling process does not. have open
Amount of data transferred while writing to event channel not of expected
size

Sender unblocked because receiver closed in Send_Event_Chn

Unexpected File System error in Send_Evert_Chn

Unexpected File Systemn error in Make_Event_Chn

Event channel already exists in Make_Event_Chn

Unexpected File System etror in Kill_Event_Chn

Unexpected File Systemn error in Flush_Event_Chn

Size of stack expansionrequest exceeds limit specified for program
Ceannot perform explicit stack expansion due to lack of memory
Insufficient disk space for explicit stack expansion

Attempt to perform 170 operation on non 1/0request

No more alarms available during driver initialization

Call to nonconfigured device driver

Cannot find sector on floppy diskette (disk unformatted)

[llegal length or disk address for transfer

Call to nonconfigured device driver

No moreroom in sysglobal for [/0 request

Unpermitted direct access to spare track with sparing enabled on floppy
drive

No disk present in drive

Wrong call versionto floppy drive

Unpermitted floppy drive function

Checksum error on floppy diskette

Cannot format, or write protected, or error unciamping floppy diskette

No moreroom insysglobal for /0 request

[1legal device control perametersto floppy drive

Scavenger indicated data are bad

D-3

Coerating S\stem Relsrence Manusl Error Messages

630

631
632
634
635
636
638

639

641
642
646
647
648
649
652
653
634
635
656
657
658
659

662
663
666
670
671
- 672
- 673
674
675
680
682
683
685
686
687
688
690
691
692
693

The time passed to Deley_Time, Corwert_Time, or Send_Event_Chn has
invalid year

Illegal timeout request parameter

No memory available toinitialize clock

Illegal timed event id of -1

Process got unblocked prematurely due to process termination
Timer request did not complete successfully

Time passed to Delay_Time or Send_Event_Chn more than 23 days from
current time

Illegal dete passed to Set_Time, or illegal date from system clock in
Get_Time

RS-232 driver called with wrong version nurnber

RS-232read or write initiated with illegal parameter
Unimplemented or unsupported RS-232 driver function

No memory available to initialize RS~232

Unexpected RS-232 timer interrupt

Unperrnitted RS-232 initialization, or disconnect detected
Illegal device control parameters to R5-232

N-port driver not initialized prior to ProFile

Noroom insysglobal to initialize ProFile

Hard error statusreturned from drive

Wwrong call versionto ProFile

Unpermitted ProFile function

Illegal device control parameter to ProFile

Premature end of file whenreading from driver

Corrupt File System header chain found in driver

Cable disconnected

Parity error while sending commmand or writing data toProFile
Checksum error or CRC error or perity error in dataread
Timeout

Bad command response from drive

Illegal length specified (must = 1 on input)

Unimplemented console driver function

No memory available to initialize console

Console driver called with wrong version nurnber

lllegal device control

Wrong call versiontoserial driver

Unpermitted serial driver function

Noroom insysglobal to initialize serial driver

Eject not allowed this device

Noroom in sysglobal to initialize n-port card driver
Unpermitted n-port card driver function

Wrong call version to n-paort card driver

Wwrong call version to parallel printer

Illegal parallel printer parameters

N-port card not initialized prior to perallel printer

Noroom insysglobal to initialize parallel printer

D-4

[.

Cperating System Reference Manual Error Messages

694
695
696
698
699
700

701
702
703

706
707
708
709
710
124
725
726
727
728
729
730
731
732
733
734
735
736
737
730
751
752
753
754
735
756
757
758

791
792
793
794
793
801
802

Unimplemented parallel printer function

Illegal device control pararneters (parallel printer)
Printer out of paper

Printer offline

Noresponse from printer

Mismatch between loader version number and Opersting System version
numkber

0S exhausted its internal space during stertup

Cannot make system process

Cannot kill pseudo-outer process

Ceannot creste driver

Cannot initialize floppy disk driver

Cannot initialize the File System volume

Hard disk mount table unreadable

Cannot map screen date

Too many slot-based devices

The boot tracks donot know theright File Systemversion
Either damaged File System or damaged contents
Boot device read failed

The OS will not fit into the available memory
SYSTEM.OS is missing

SYSTEM.CONFIG is corrupt

SYSTEM.OS is corrupt

SYSTEM.DEBUG or SYSTEM.DEBUG? is corrupt
SYSTEM.LLD is corrupt

Loader range error

Wrong driver is found. For instance, storing a diskette loader on a ProFile
SYSTEM.LLD is missing

SYSTEM.UNPACK is missing

Unpack of SYSTEM.OS with SYSTEM.UNPACK failed
Position specified is out of range.

No device exists at the requested position.

Can't performrequestedfunction while device is busy.
Specified position is not aterminal node.

Built-in devices cannot be configured.

Isolated positions cannot be configured.

The specified position is already configured.

Parallel Port doesn't exist on this type of machine.
Noroom in mernory for more devices.

Can't, get buffer space to load configurable driver.
Configurable driver code file is not executable.

Can't get memory space for a configurable driver.

120 error reading configurable driver file.
Configurable driver code file not found.

Configurable driver has more than one segment.
10Result <) 0 on 1/0 using the Monitor

Asynchronous 1/Q request not completed successfully

D-5

Cperating Systermn Refersnce Menusl Errar Messages

8O3
806
809
810
816
819
820
821

861
882

866

Bad combination of mode parameters

Page specified is out of range

Invalid arguments (page, address, offset, or count)
Therequested page could not beread in

Not enough sysglobal space for File System buffers
Bad device number

No space insysglobal for asynchronous request list
Already initialized 1/0 for this device

Bad device number

Error in paremeter values (Allocate)

No moreroom to allocate pages on device

Error in parameter values (Deallocate)

Partial deallocation only (ran into unallocatedregion)
Irvalid s-file number

Unalloceteds-file or 1/0 error

Meap overflow: s-file too large

Attempt to compact file past PEOF

The allocation map of this file is trunceted.
Unallocated s-file or 1/0 error

Requested exact fit, but one could not be provided
Requested transfer count is <=0

End of file encountered

Invelid page or offset value in parameter list

Bad unit number

Nofreeslots ins-list directory (too many s-files)
No available disk space for file hints

Device not mounted

Empty, locked, or invalid s-file

Relative page is beyond PEOF (bad perameter value)
No sysglobal space for volurme bitmap

wrong FS version or not avalid Lisa FS volume
Bad unit number

Bad unit number

Unit already mounted (mount)/no unit mounted
No sysglobal space for DCB or MDDF

Parameter not avalids-file ID

No sysglobal space for s-file control block
Specifiedfile is already openfor private access
Device not mounted

Invalid s-file ID or s-file control block

Attempt to postion past LEOF

Attempt toread empty file

No space onvolume for new data page of file
Attempt toread past LEOF

Not first auto-allocation, but file was empty
Could not update filesize hints after awrite

No syslocal space for I/0 request list

YA !
- ;

s

Operating System Reference Manual

887
868
890
891
892
894
895
896
897
899
900
901
921
922
926
927
941
944
945
946
947
948
949
930
951
952
954
955
956
957
958
939
960
961
962
963
964
865
966
967
968
971
972
974
977
978
979

Catalog pointer does not indicate a catalog(bad parameter)
Entry not found in catalog

Entry by that name already exists

Catalog is full or is damaged

Illegal name for an ertry

Entry not found, or catalog is dameged

Irvvalid entry name

Safety switch is on--cannot kill entry

Irwalid bootdev value

Attempt to allocate apipe

Irvalid page count or FCB pointer argument

Could not satisfy allocationrequest

Pathname invalid or no such device

Irvalid label size

Pathname invalid or no such device

Invalid label size

Pathname invalid or no such device

Object isnot afile

Fileis not inthe killed state

Pathname invalid or no such device

Not enough space in syslocal for File Systemrefdb
Entry not found inspecified catalog

Private access not allowed if file already open shared
Pipe already in use, requested access not possible or dwrite not allowed
File is already opened in private mode

Badrefnum

Bad refnum

Read access not allowed to specified object

Attempt to position FMARK past LEOF not allowed
Negative request count is illegal

Nonsequential access is not allowed
Systemresources exhausted

Error writing to pipe while an unsatisfied read was pending
Badrefnum

No WRITE or APPEND access allowed

Attempt to position FMARK too far past LEOF
Append access not allowed in absolute mode

Append access not allowed inrelative mode

Internal inconsistency of FMARK and LEOF (warning)
Nonsequential access is not allowed

Badrefnum

Pathname irnvalid or no such device

Entry not found in specified catalog

Badrefnum

Badrefnum

Page count is nonpositive

Not ablock-structured device

D-7

Error Messages

Qperating S\stem Reference Msnual

981
982
983
985
986
987
988
989
990
994
995
999
1002
1003
1021
1022
1023
1024
1031
1032
1033
1041
1042
1043
1051
1052
1053

1054
1061
1062
1071
1091
- 1092
1101
1121
1122
1124
1128
1130
1131
1132
1133
1134
1135
1136
1137

Badrefnum

No space has been allocated for specifiedfile
Not a block-structured device

Badrefnum

No space has been allocated for specifiedfile
Not a block-structured device

Badrefnum

Caller is not areader of the pipe

Not a block-structured device

Invalid refnum

Not a block-structured device

Asynchronous read was unblocked before it was satisfied
Invalid Device_Control call for device (Priam).
Unable to get SysGlobal space for disk operation(Priam).
Pathname invalid or no such entry

No such entry found

Invalid newnarne, check for '-’ instring

New name already exists in catalog

Pathname invalid or no such entry

Invalid transfer count

No such entry found

Pathname invalid or no such entry

Invalid transfer count

No such entry found

No device ar volume by thet name

Avolurme is already mounted on device

Errar Messages

Attempt to mount temporarily unmounted boot volume just unmounted from

this Lisa

The bad block directory of the diskette is imvalid

No device or volume by that name

Novolume is mounted on device

Not avalid or mounted volume for working directory
Pathname invalid or no such entry

No such entry found

Invalid device name

Invalid device, not mounted, or catalog is damaged
No space for catalog scan buffer (Reset_Catalog).
No space for catalog scan buffer (Get_Next_Entry).
Invalid pathname, device, or volume not mounted
File is protected; cannot open due to protectionviolation
No device or volume by that name

No volurne is mounted on thet device

No more openfiles inthe file list of that device
Cannot find space in sysglobal for openfile list
Cannot find the openfile entry to rodify

Boot volume not mounted

Boot volume already unmounted

D-8

1138
1141
1142
1143
1144

1145
1158
1139
1160
1161
1162
1163
1164
1163
1166
1167
1168
1169

1170
1171
1172
1176
1177
1178

1180
1181
1182
1183
1184

1186
1188
1190
1191
1193
1196
1197
1198
1199
1200
1201
1202
1203
1204

Cperating System Reference Manual Errar Messages

Caller cannot have higher priority than system processes when calling ubd
Boot volume was not unrnounted when calling rbd

Some other volume still mounted on the boot device when callingrbd

No sysglobal space for MDDF to dorbd

Attermnpt to remount volume which is not the temporarily unmounted boot
volume

No sysglobal space for bit mep to dorbd

Track-by-track copy buffer is toosmall

Shutdownrequested while boot volume was unmounted

Destination device too small for track-by-track copy

Invalid final shut down mode

Power is already off

Illegal command

Device is not adiskette device

No volume is mounted on the device

Avalid volume is already mounted onthe device

Not ablock-structured device

Device name is invalid

Could not access device before initialization using default device
perameters

Could not mount volume after initialization

‘~' is not allowed in avolurne name

No space svailable to initialize abitmap for the volume

Cannot read from a pipe more than half of its allocated physical size
Cannot cancel areadrequest for apipe

Process waiting for pipe data got unblocked because last pipe writer closed
it

Cannot write to a pipe more than half of its alloceted physical size

No system space left for request block for pipe

Writer process to a pipe got unblocked before the request was satisfied
Cannot cancel awriterequest for a pipe

Process waiting for pipe space got unblocked because the reader closed the
pipe

Cannot allocate space to a pipe while it has data wrapped around

Cannot compact a pipe while it has det a8 wrapped sround

Attemnpt to access a page that is not allocated tothe pipe

Bad parameter

Premeature end of file encountered

Something is still open on device--cannot unrmount

Yolume is not formatted or cannot be read

Negative request count is illegal

Function or procedure is not yet implemented

Illegal volume parameter

Blank file parameter

Error writing destinationfile

Invalid UCSD directory

File not found

Operating Systern Refersnce Manual Errar Messages

1210
1211
1212
1213
1214
1215
1216
1217

Boot track program not executable

Boot track program too big

Error reading boot track program

Error writing boot track program

Boot track program file not found

Cannot write boot tracks onthat device

Could not create/close internal buffer

Boot track program has too many code segments

Could not find configuration information entry

Could not get enough working space

Premature EOF in boot track program

Position out of range

No device at that position

Scavenger has detected an internal inconsistency symptomatic of asoftweare
bug

Invalid device name

Device is not block structured

Illegal atternpt to scavenge the boot volume

Cannot read consistently fromthe volume

Cannot write consistently to the volurme

Cannot allocate space (Heap segment)

Cannot alloceate space (Map segment)

Cannot allocate space (SFDB segment)

Error rebuilding the volume root directory

Illegal attempt to scavenge a non-0S-formetted volume
Pathname is invalid because device or object is not present.
Pathname syntax is invalid.

Interior pathname component does not specify a directory object.
Directory cannat be deleted because it is not empty.

Operation is not allowed on avolume with aflat catalog.
Operation is not allowed on a directory object.

Cannot allocate Syslocal space for the directory scanstack.
Directory treeis inconsistent.

Operation not allowed against avolume or device (Quick_Lookup)
The directory that contained the file has been deleted (Unkill_File)
Supplied pessword does not rnatchthe password onthe object.
The allocation map of this file is darmaged and cannot be read.
Bed string argumnent has been passed

Entry name for the object is imvalid (on the volume)

S-list entry for the object is irvalid (on the volume)

No disk in floppy drive

wWrite-protect error onfloppy drive

Unable to clamp floppy drive

Floppy drive write error

Unable to initialize disk drive (Priam).

Error writing to disk (Priam) / Exror reading from tape (Archive).
Error reading from disk (Priam) /7 Exror writing to tape (Archive).

D-10

!

{

—

s

Operating S\stem Reference Manusl Errar Messages

1843
1844
1845
1682
1885
1998
1999
6001
6002
6003
6004
6005
6006
6010
6081
6082
6083
6090
6101
6151
6152
6153
6154

Error controlling tape (Archive).

Packet ended in a non-resumable state (Archive).

Packet command had &n error (Archive).

Badresponse from ProFile

ProFile timeout error

Invalid perameter address

Badrefnum

Attempt to access unopened file

Attempt toreopen afile which is not closed using an open F1B(file info block)
Operation incompatible with access mode with which file was opened
Printer offline

File record type incompatibie with character device (must be byte sized)
Bad integer (read)

Opersation incompatible with file type or access mode

Premsature end of exec file

Invalid exec(temporary) file name

Attempt toset prefix with null name

Attempt to move console with exec or output file open

Badreal (read)

Attempt toreinitalize heap already in use

Bad argument to NEW (negative size)

Insufficient memory for NEWrequest

Attempt to RELEASE outside of heap

Operating Systern Error Codes
The error codes listed below are generated only when a nonrecoversble error

10030
10051
10100

10102
10103
10104
10197
10198

10199

10201
10202
10203
10203
10207
10208
10212
10213

occurs while in Opersting System code.

Request block is not chained to a PCB(Unblk_Req)

Bld_Req is called with interrupts of f

An error was returned from SetUp_Directory or a Data Segment routine
(Setup_IUInfo)

Error > O trying to creste shell (Root)

Sem_Count > 1 (Init_Sem)

Could not open event channel far shell (Root)

Automatic stack expansion fault occurred in system code (Check_Stack)
Need_Mem set for current process while scheduling is disabled
(SirnpleScheduler)

Attempt to block for reason other than 1/0 while scheduling is disabled
(SimpleScheduler)

Hardware exception occurred while insystem code

No space left from Sigl_Excep call in Hard_Excep

No space left from Sigl_Excep call in Nmi_Excep

Error from Wait_Event_Chn called in Excep_Prolog

No system dataspace in Excep_Setup

No space left from Sigl_Excep call inrange error

Errar in Term_Def_Hdl from Enable_Excep

Error in Force_Term_Excep, nospace inEng_Ex_Deata

D-11

Cperating System Relerence Msanual Errar Messagss

10401
10582
10590
10593
10594
10595
10396
10597
10598
10599
10600
10601
10602
10603
10604
10605

10609
10610
10611
10612

10613
10614

10615
10616
10617
10619
10624
10637
. 10675
10699
10700

10701
10702
10703
10704
10706
10707
10708
10709
10710
10724
10725
10726

Error from Close_Event_ChninEc_Cleanup

Unable to get space inFreeze_Seg

Fatal memory parity error

Unable to move memory manager segment during stertup

Unable to swap in asegment during startup

Unable to get space in Extend_MMlist

Tryingto alter size of segment that is not data or stack (Alt_DS_Size)
Tryingto allocate space to an allocsted segment Eﬁlloc__Mem)
Attempting to allocate a nonfree memory region (Take_Free)

Disk 170 error while swapping in an OS code segment.

Error atternpting to meke timer pipe

Error from Kill_Object of an existing timer pipe

Error from second Make_Pipe to make timer pipe

Errar from Opento opentimer pipe

Nosyslocal space for head of timer list

Error during allocate space for timer pipe, or interrupt from nonconfigured
device

Interrupt from nonconfigured device

Error from info about timer pipe

Spurious interrupt fromfloppy drive £2

S{Jurious interrupt from floppy drive #1, or no syslocal spece far timer list
element

Error from Read_Data of timer pipe

Actual returned from Read_Data is not the same as requested from timer
pipe

Error from open of the receiver's event channel

Error from Write _Event tothereceiver's event channsl

Error from Close_Event_Chnonthereceiver's pipe

No sysglobal space for tirner request block

Attempt to shut down floppy disk controller while drive is still busy
Not enough memory toinitialize system timeout drives

Spurious timeowt on console driver

Spurious timeout on parallel printer driver

Mismatch between loader version number and Operating System version
number

OS exhausted its internal space during stertup

Cannot make system process

Cannot kill pseudo-outer process

Cannot create driver

Cannot initialize floppy disk driver

Cannot initialize the File System volume

Hard disk rount table unreadable

Cannot map screen data

Too many slot-based devices

The boot tracks do not know theright File Systernversion

Either damaged File System or damaged contents

Boot deviceread failed

D-12

et et n e e

3 pae
3

Cperating System Reference Manual Error Messages

10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10778
10739
10740
10741
11176

11177

11178
11180
118xx
11901

The OS will not fit into the available memory

SYSTEM.OS is missing

SYSTEM.CONFIG is corrupt

SYSTEM.OS is corrupt

SYSTEM.DEBUG or SYSTEM.DEBUG2Z is corrupt

SYSTEM.LLD is corrupt

Loader range error

Wrong driver is found. For instance, storing a diskette loader on a ProFile
SYSTEM.LLD is missing

SYSTEM.UNPACK is missing

Unpack of SYSTEM.OS with SYSTEM.UNPACK failed

Can't find arequired driver for the boot device.

Can't load arequired driver for the boot device.

Boot device won't initialize.

Can't boot from aserial device.

Found a pending write request for a pipe while in Close_Object when it is
called by the last writer of the pipe

Found a pending read request for a pipe while in Close Object when it is
called by the (only possible) reader of the pipe

Found a pending readrequest for a pipe while in Read_Data from the pipe
Found a pending write request for a pipe while in Write_Datato the pipe
Error xx from diskette ROM(See OS errors 18xx)

Callto Getspace or Relspace with a bad pararneter, or free pool is bad

D-13

Appendix E
FS__INFO Fields

* gefined for mounted ar uwnounted aevices
$ gerined ror mounted aevices only
All ather fielas are oefined far mounted block -structured devices only.

DEVICE_T, VOLUME_T:

R
,

!

(‘f"_

backup volid
blocksize

* blockstructured

boot_code
boot_environ
clustersize
copy
copy_flag
copy_thread
datasize

* devt

= dir_path
DTCC
OTvB
DTvC
OTvS
filecount
freecount
fs_overhead

fs_slze
fsversion

= jochannel
label size

$ lockeddev
machine_ID
master
master_copy_ID

* mounted

$ mount_pending

* name

$ opencount
avermount_stamp
password

1D of the volume of which this volume is a8 copy.
Number of bytes in a block on this device.

Flag set if this device is block-structured.
Reserved.

Reserved.

Reserved.

Reserved.

Flag set if this volume is a copy.

Count of copy operations involving this volume.
Number of data bytes in a page on this volume.
Device type.

Pathname of the volume/device.

Date/time volume was created if it Is a copy.
Date/time volume was last backed-up.
Date/time volume was created.

Date/time volume was last scavenged.

Count of files on this volume,

Count of free pages on this volume.

Number of pages on this volume required to store
File Systemn data structures.

Number of pages on this volume,

version number of the File System under which
this volume was initiallzed.

Number of the expansion card channel through
which this device is accessed.

Size in bytes of the user-defined labels associated
with objects on this volume.

Reserved.

Machine on which this volume was initialized.
Reserved.

Reserved.

Flag set if a volume is mounted.

Reserved.

Name of this volume/device.

Count of objects open on this volume/device.
Reserved.

Password of this volume.

E-1

perating System Reference Manial FS INFO Flelas

T privatedev
privileged

$ remote
result_scavenge
scavenge_flag

* slot_no

$ unmount_pending
volid
vol_left_mounted

volname
volnum
vol_size

write_protected

OBJECT_T:

acmode
dir_path
DTA
DTB
DTC
DTM
DTS

eof

etype
flle_closed_by 0S

file_left_open
file_scavenged

fmark
fs_overhead

ftype
fuid

kswitch
locked
Ipsize

Reserved.

Reserved.

Reserved.

Reserved.

Flag set by the Scavenger if it has altered this
volume in some way.

Number of the expansion slot holding the card
through which this device is accessed.
Reserved.

Unique identifier for this volume.

Flag set if this volume was mounted during a
system crash.

Volume name.

Volume number.

Total number of blocks in the Flle System volume
and boot area on this device.

Reserved.

Set of access modes associated with this refnum.
Pathname of the directory containing this object.
Date/time object was last accessed.

Date/time object was last backed-up.

Date/time object was created.

Date/time object was last modified.

Date/time object was last scavenged.

Flag set if end of file has been encountered on
this object (through the given refnum).

Directory entry type.

Flag set if this object was closed by the Operating
System.

Flag set if this object was open during a system
crash.

Flag set by the Scavenger if this object has been
altered in some way.

Absolute byte to which the file mark points,
Number of pages used by the File System to store
control information about this object.

Object type.

Unique identifier for this object.

Flag set when the object Is killed.

Reserved.

Number of data bytes on a page.

E-2

~. Lo

2
{

machine_ID
master_file
name
nreaders

nwriters

nusers
private
protected
psize
refoum

result_scavenge
safety_on

size
system_type
user_type
user_subtype

perating System Reference Mamal

™Machine on which this object may be opened.
Flag set if this object is a master.

Entry name of this object.

Number of processes with this object open for
reading.

Number of processes with this object open for
writing.

Number of processes with this object open.
Flag set if this object is open for private access.
Flag set if this object is protected.

Physical size of this object in bytes.
Reference number for this object (argument to
INFO).

Reserved.

Value of the safety switch for this object.
Number of data bytes in this object (LEOF).
Reserved.

User-defined type field for this object.
User-defined suntype fleld for this object.

E-3

FS INFO Flelds

;

s

Index

Please note that the topic references in this Inaex are gy secti/on number.

__________ A_-_______h
accessing devices 1.3, 2.8
ACTIVATE_PROCESS 3.8.6
ALLOCATE 2.10.13

Append access 2.10.8
attribute 1.3, 2.10.5

...... _w-___Bn_________
baud rate 2.10.12.1
binding 4.1
BIND_DATASEG 4.7.12
blocked process 1.4,
3 (introduction), 3.8.5
buffer 2.9, 2.10.12.1, 2.10.16,
5.5, 5.8

___________ C__________
CARDS EQUIPPED 6.1.1
catalog 2.1, 2.5, 2.10.19
changing file size 2.10.13-2.10.15
clock 5.6
clock system calls S.9
CLOSE_DATASEG 4.7.4
CLOSE_EVENT CHN 5.8.4
CLOSE_0OBJECT 2.10.9
code segment 4.5
commnication between processes 1.7
COMPACT 2.10.14, 2.10.15
configuration 6 (introduction)
configuration system calls 6.1
controlling

a device 2.10.12

a process 3.4

CONVERT_TIME 5.9.4
creating
a data segment 4.7.1
an event channel 5.8.1
an object 2.10.1
a process 3.3, 3.8.1

___________ D_________*
data segment
creating 4.7.1
private 4.1, 4.4
shared 1.7, 4.1, 4.3
swapping 4.6
Dccode memonics 2.10.12
Dcdata 2.10.12
Dctype 2.10.12
Dcversion 2.10.12
DECLARE EXCEP HOL 5.7.1
DELAY TIME 5.9.1
deleting
a process 3.8.2, 3.8.4
an object 2.10.2
device 2.3-2.7, 2.10.12
accessing 1.3, 2.8
control information 2.10.12
mounting 1.3, 2.10.20
names 2.1, 2.3, 2.10.12.1
priority 2.3
storage 2.4
DEVICE _CONTROL 2.10.12
directory 2 (introduction)
DISABLE_EXCEP S.7.2
disk hard error codes 2.10.12.2

Index-1

(perating System Reference Marnial

division by zero 5.2, B
Dread, Dwrite access 2.10.8

__________ E“““‘"““"
ENABLE _EXCEP 5.7.3
end of file 2.7, 2.10.14, 2.10.15
eof 2.10.5; see alsu end of file.
error
disk hard error codes 2.10.12.2
error messages D
soft error 2.10.12.1
See also exception.
event 1.6, 5.4, C
event channel 1.7, 5.5, 5.8.1
event management system calls 5.8
event types C
exception 1.6, $.1-5.3, B
exception handler S.1, 5.3
exception management system calls
5.7
exception names B

__________ F--m———

father process 1.4, 3.6, 3.7,
3.8.1, 3.8.2

file 2 (introduction)
access 2.8
attributes 2.10.5-2.10.7
changing size 2.10.13-2.10.15
label 2.6, 2.10.11
marker 2.7, 2.10.15
name 2.1, 2.10.1
private 2.8
shared 1.7, 2.8

File System 1.3, 2

File System calls 2.10

FLUSH 2.10.16

Index-2

lngex

FLUSH DATASEG 4.7.5
FLUSH EVENT CHN 5.8.7
FLUSH_EXCEP 5.7.6
FS_INFO fields E

__________ G__________
GET_CONFIG NAME 6.1.2
GET_NEXT ENTRY 2.10.19
GET_TIME 5.9.2
GET_WORKING DIR 2.10.18
global access to files 2.8
global event channel 5.5
Global Refnum 2.8, 2.10.8

____________ H__________
handshake 2.10.12.1

hierarchy of processes 3.2

............ T
INFO 2.10.6
INFO_ADDRESS 4.7.
INFO_DATASEG 4.7.
INFO_EVENT CHN S.
INFO_EXCEP S5.7.4
INFO LDSN 4.7 8
INFO PROCESS 3.8.3

interface unit A

interprocess communication 1.7, 2.9
I/0 2 (introduction)

9
7
8.5

__________ K_______-__
KILL _DATASEG 4.7.2
KILL _EVENT CHN 5.8.2
KILL OBJECT 2.10.2
KILL_PROCESS 3.8.4

et bkt o bt

Qoerating System Reference Marial

__________ L__________

label, file 2.6, 2.10.11

LDSN 4.2, 4.4, 4.7.8

LEOF. See end of file.

local data segment 4.1

local event channel 5.5

logical data segment number 4.2,
4.4, 4.7.8

logical end of file.
file.

LOOKUP 2.10.5

See end of

__________ H___-______

MAKE DATASEG 4.7.1

MAKE EVENT CHN 6.8.1

MAKE FILE 2.10.1

MAKE _PIPE 2.10.1

MAKE PROCESS 3.8.1

memory management 1.5, 4.1-4.6
memory management system calls 4.7
memory, parameter 6 (introduction)
MEM_INFO 4.7.10

memonics for Dccode 2.10.12.1
HOUNT 2.10.20

mounting a device 1.3, 2.10.20
MY ID 3.8.9

__________ N__________
naming an object 2.1, 2.10.1,
2.10.4

__________ Q---=-—=——==

object 1.3
creating 2.10
deleting 2.10
naming 2.1, 2.
renaming 2.10.

Index-3

Inoex

OPEN 2.10.8

OPEN DATASEG 4.7.3
OPEN_EVENT CHN 5.8.3
0S interface A
0SBOOTVOL 6.1.3

____________ Pevemm e
page 2.4
parameter memory 6 (introduction)
parity 2.10.12.1
pathname 1.3, 2.1, 2.2
PEOF. See end of file.
physical end of file.
file.
pipe 1.7, 2.9. 2.10.1, 2.10.8
priority of devices 2.3
priority of processes 3.5, 3.8.7,
3.8.8
private access to files 2.8, 2.10.8
private data segment 4.1, 4.4
process 1.4, 3
blockead 1.4, 3 (introduction),
3.8.5
creating 3.3, 3.8.1
father 1.4, 3.6, 3.7, 3.8.1,

See end of

3.8.2
hierarchy 3.2
priority 3.5, 3.8.7, 3.8.8

queuing 3.5, 3.8.5-3.8.8
scheauling 3.5, 3.8.5-3.8.8
shell 1.4, 3.2
son 1.4, 3.7, C
starting 3.8.1,
stopping 3.8.2,
structure 3.1
termination 1.4, 3.6, 5.2, B, C
process system calls 3.8

3.8.6
3.8.4

(perating System Reference Manual

__________ 0__________
queuing a process 3.5, 3.8.5-3.8.8

___________ R____-_____
range check error 5.2, B
READ DATA 2.10.10

READ LABEL 2.10.11

refnum 2.8; see also Global Refnum.

RENAHE_ENTRY 2.10.4

renaming an object 2.10.4

RESET_CATALOG 2.10.19

running a program 1.4, 1.8, 3.8.1,
3.8.6

___________ S____m--___

safety switch 2.5, 2.10.17

Scheduler 3

scheduling processes 3.5,
3.8.5-3.8.8

SEND EVENT CHN 5.8.8

SETACCESS DATASEG 4.7.11

SETPRIORITY PROCESS 3.8.7

SET FILE_INFO 2.10.7

SET_LOCAL_TIME DIFF 5.9.3

SET_SAFETY 2.10.17

SET_WORKING DIR 2.10.18

shared data segment 1.7, 4.1, 4.3

shared file 1.7, 2.8

shell process 1.4, 3.2

SIGNAL_EXCEP 5.7.5

SIZE_DATASEG 4.7.6

soft error 2.10.12.

son process 1.4, 3.

sparing 2.10.12

starting a process 3.8.1,

stopping a process 3.8.2,

storage device 2.4

SUSPEND PROCESS 3.8.5

1
7, C

Inagex-4

Index

swapping 4.6
Syscall unit A
system calls
clock 5.9
configuration 6.1
event management 5.8
exception management 5.7
file 2.10
memory management 4.7
process 3.8
system clock 5.6, 5.9
system-def ined exceptions 5.2, B
SYS_OVERFLOW 5.2, B
SYS_SON_TERM C
SYS_TERMINATE 5.2, B
SYS_VALUE 00B 5.2, B
SYS_ZERO DIV 5.2, B

___________ T___“______

terminated process 1.4, 3.6, 5.2,
B, C

TERMINATE_PROCESS 3.8.2

timed events 5.8.8

tree, process 3.2

TRUNCATE 2.10.15

__________ Ummmem e m e
UNBIND_DATASEG 4.7.12

UNKILL FILE 2.10.3

UNMOUNT 2.10.20

user-defined exception handler 6.3

__________ V_“__,_____

value out of bounds 5.2, B
volume catalog 2.1, 2.5, 2.10.19
volume name 1.3

e

(

Qperating System Reference Marn/al

__________ Y--—----—-—-

WAIT _EVENT CHN 5.8.6

working directory 2.2
working set 4.2

WRITE_DATA 2.10.10
WRITE_LABEL 2.10.11

writing buffered data 2.10.1%

__________ Y________«_
VIELD CPU 3.8.8

Index-5

lndex

-

nerating System Reference Maxal Mall-Back Form

Apple publications would like to learn about readers and what you think about this
manual in order to make better manuals in the future. Please fill out this form, or
write all over it, and send it to us. we promise to read it.

How are you using this manual?
[] learning to use the product [] reference [] both reference and learning

[] other

Is it quick and easy o find the Information you need in this manual?
[] always [] often []sometimes []seldom [] never

Comments
what makes this manual easy to use?

what rmakes this manual hard to use?

what do you llke most about the manual?

what do you like least about the manual?

Please comment on, for example, accuracy, level of detall, number and usefulness of
examples, length or brevity of explanation, style, use of graphics, usefulness of the index,
organization, suitabllity to your particular needs, readability.

what languages do you use on your Lisa? (check each)
[] Pascal [] BASIC []COBOL [] other
How long have you been programming?

[10-1 years []1-3 []4-7 []Jover 7 []nota programmer
what {s your job titie?
Have you completed:

[] nign school [] some college [] BA/BS [] MA/MS [] more
what magazines do you read?

Other comments (please attach more sheets if necessary)

......... FQUL oo
B 7 /T ISP ST PRI
PLACE
ST
HERE
@§oppic computer

POS Publications Department
20525 Marlanl Avenue
Cupertino, Callfornia 95014

TAPE R STAPLE

i
i . .
< .

The OEMSysCall Unit

Contents
1 Inbroduction .. o eeceemememeeeces—e————————— 1
2 OEMSysCall Routineso eeieeicrca e me—ee—————aa. 2
2 S () 1 A/ o) N 2
2 A -1 A s) U 3
2.3 ScaVENQEYOl .o e e 4
T YA P 9
s T A 1= Dot | - L)
A T G U oo - N ?
2 A O <1 TtV ¢ - 8
2.8 RENAMIE SB U ...ttt ettt e e e e et e e aaneanaeaann 9
R B g LAY =TT N . 10
2.10 ChangePaseWOrd ittt it ce i et ceeaea e ta e et eaaaaay 11
I IR ETTACE . ..o e me e e ———mm———e————— 12

i

The OEMSysCall Unit

1 Introduction

The OEMSysCall unit provides interfaces to privileged procedures within the
Lisa Operating System. These privileged procedures offer facilities that fall
into two categories: disk volume managernent and file password protection.

Disk Volurme Management
The OEMSysCall unit includes procedures to

» Initialize a disk volume.

* Eject a removable disk volume.

« Scavenge a disk volumne.

» Determine if two disk volumes are identical.

File Fassword Frotection

A file may be protected from unauthorized access by associating & password
with it. Password protection prevents a file from being opened, killed, or
renamed without presentation of the proper password. Other operations (e.g.,
Lookup, Read_Label, etc.) are unaffected by the presence of a password
protecting the specified file. The OEMSysCall unit includes procedures to

* Open a password-protected file.

= Delete a password-protected file.

s Rename a password-protected file.

« Change the password associated with a file.

» Yerify the password associated with a file.

1-1

Lisa Systems Sontware CEMSYysCall

2 OEMSysCall Routines

2.1 Init_Vvol

Init_Vol (var ecode : integer;

ecode:

devName : e_name;
volName : e_name;
password : e_name)

Error indication (common errors are listed below)

devName: Name of the device to initialize
volName: Name to assign to the new disk volume
password: Password to assign to the new disk volume

Initialize the volume on the specified device. The volume is assigned the
name and password volName and passward Yolume passwords are currently
not supported by the Lisa file system. The volume may not be mounted on
the device at the time of the call.

common errors:

618
971
1167
1169

1171
1172

1390

Cannot format the volume (make sure s diskette is in
the drive).

Device name is invalid (check configuration]}.

Device is not a disk.

Could not default mount the volume in order to
perform initialization.

Yolume name contains the dash, "-", character.

No space in system heap for the volume allocation
map of the new volume.

Yolume is mounted on the device.

1-2

Lisa Systems Software CEMS)ysCall

22 Ejectvol
EjectYol (var ecode : integer;
devName : e_name)

ecode: Error indication (common errors are listed below)
devName: Name of the device from which to eject media

Eject the removable disk media from the specified device. The device must
support ejectable media, and the volume may not be mounted on the device
at the time of the call.

Common errors:
614 No diskette present in the drive,.

971 Device name is invalid (check configuration).
1164 Device does not support ejectable media.
1390 Yolume is mounted on the device.

1-3

Lisa Systems Software QEMSYsCall

23 ScavengeVYol
ScavengeVol (var ecode : integer;
devName : e_name)

ecode: Error indication (common errors are listed below)
devName: Name of the device to scavenge

Scavenge the volume on the specified device. The volume may not be
mounted on the device at the time of the call.

Common errors:

614 No diskette present in the drive.
971 Device name is invalid (check configuration).
1225 Scavenger aborted.
1227 Device is not a disk.
1231 Scavenger heap overflow.
1237 Unable to repair the volume directory structure.
1240 Yolume is not in a Lisa file system format.
1390 Volume is mounted on the device.
1-4

24 Verifyvol

ecode:

’

614
971

1167
1390

1392
1393

Lisa Systems Software OEMSysCall

VerifyYol (var ecode : integer;

sourceDev : e_name;
destinDev : e_name;
buffddr : longint;
bufSize : longint)

Error indication (common errors are listed below)

sourceDev: Name of the device being verified
destinDev: Naeme of the device to verify agsinst
bufAddr : Address of the buffer

bufSize: Size of the buffer in bytes

Compare the volume on sourceDev with the volume on destinDev. The
volumes are compsred track by track. The rnemory buffer used during the
comperison is supplied by the caller and is described by its sterting address
buf Addr and length bufSize. The buffer must be at least large enough to
accommodate two disk blocks of 536 bytes each (i.e., 1072 bytes). Neither
the source volume nor the destination volume may be mounted at the time
of the call.
and 1393 if they differ,

Common errors:

The error indication ecode is zero if the volumes are identical,

No diskette present in the drive.

Source or destination device name is invalid (check
configuration).

Source oy destination device is not a disk.

Yolume is mounted on the source or destination
device.

Supplied buffer is too small (bufSize ¢ 1072).
Yolumes are not identical.

1-5

Lisa Systems Softwsre OEMS)sCall

25 MakeSecure

MakeSecure (var ecode : integer;
var path : pathname;
var password : e_name)

ecode: Error indication {(common errors are listed below)
path: Name of the new file

password: Password to be associated with the new file

Create a new file protected by the specified password. This procedure
behaves the same as Make_File.

Cormmmon errors:

854 Yolume s-file list is full.

853 Cannot allocate disk space for the file leader.
890 File already exists.

891 Volume catalog is full.

892 File name is illegal (a file name may not contain
the dash, "-", character).
921 Pathname is invalid.
1-6

,,,,,

Lisg Systems Software OEMSYVsCall

26 KillSecure

KillSecure (var ecode : integer;
var path : pathname;
var password : e_name)

ecode: Error indication (common errors are listed below)
path: Name of the object to be deleted
password: Password associated with the object

Delete the file with the specified name and password. The deletion is not
allowed if password does not match the password assigned to the file. This
procedure behaves the same as Kill_Object.

Common errors:

~-1293 Warning: the file was not password protected. The
kill gperation completes normally.
894 File cannot be found.
895 File name is illegal.
896 File safety switch is set (the file is protected
against deletion).
1294 Supplied password does not match the password
protecting this file.
1298 File cannot be accessed because its s-list entry is
damaged.

1-7

