
I:
,

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1

",

J

--"\

i
' ..

030-111.3

: ~t

Pascal Reference Manual

Ver5/PL 3

r
EX LIIRIS

David T. Craig
~

I
I
I
I
I
I
I
I
I ~~ -..,

I
I
I
I
I
I
I
I
I
I

CNAN6ES/AJ)J)/7/'NJ

PASCAL REFERENCE MANUAL

Summary:
Release 3.0 Notes

Chapter 1: Constant expressions can now be used any place that a single constant
can be used.

Chapter 2: The order of label, COI'I.t., type, Vorl procecb'e and function
declarations has been relaxed, so you can group them with related
sections of code.

Chapter 3: Type-conversion can be done with the syntax type-i«(x).

Chapter 6: Ranges can be used in case-tag lists, using the format
< constant> .. < consta.nt >.

Chapt.er 7: The paramet.er list. for a tcrwmd declered procedure or function can be
repeated when the procedure or function is defined.

The inline attribute for procedures and functions lets you write
explicit hex code.

Using the word univ before the formal t\-'pe identifier in a parameter
list lets the parameter be any type that is the same size as the
formed type.

Chapter 9: You can now write your own intrinsic units.

Chapter 10: The W8¥ in which an infinity or a NaN is output in a write with a real
value has changed.

Chapter 12: There are five new Compiler commands.

There are now option.s you can specify when invoking the Compiler or
Code Generator.

The Code Generator now allocates machine registers differently, and it
m8¥ run out of registers.

The (* ... *) Compiler comment delimiters shouldn't be used for the $1
construct if there is an asterisk in the name of an include file.

Appendix E: You now link QuickDraw programs t.o IOSPasLib, QD/Support, and
SyslUb.

You need the files Font.LIB and Font.HEUR on your prefix volume to
draw text using QuickDraw.

Appendix F: Programs using the Hardware unit should now be linked to Sys1Lib.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

pre/t;ce.
OlBpter 1
Tokens and Constants

Contents

1.1 Character Set and Special Symbols .. 1-1
1.2 Identifiers ... 1-2
1.3 Directives ... 1-2
l.ll I\lJrrtlers .. '" .1-2
1.5 Labels ... 1-4
L6 ~ted String Condants .. 1-4
1.7 Constant ()eclarations ... 1-5
1.8 ConYnents and Compiler Corrv'narIds •••••••••••••••••••••••••••.••••••••••••..••••••.•••• 1-5

Olapter2
Blocks, locallty, B"I:I Scq:Je

2.1 DefInItIon of a Block. ... 2-1
2.2 Rules of Scope .. 2-3

OlBpter 3
Data Types

3.1 Simple-Types (and Ordlnal-Types) .. 3-2
3.2 Structured-Types ... 3-7
3.3 Pointer-Types .. 3-13
3.4 Identical and Corr1Jatible Types•.. 3-13
3.5 The Type-Declaration-Part .. 3-16

Olapter 4
VBriables

11.1 Variable-Declarations ... 4-1
ll.2 Variable-References ... 4-1
4.3 (;)ual1flers•.....•..•..............•..•...•........•...••....•••...•... 4-2

Olapter5
E>cpIessims

5.1 q,erators•.•.•..................................•......•....••.......••.•..•..•..•...•...... 5-4
5.2 Function-Calls ... 5-10
5.3 Set-Constructors 5-11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

PsscsJ RefeJ1Jt7Cf!J I'4lYUsJ

~6
st.at.errBlts

Cmtents

6.1 Simple Statements ... _ 6-1
6.2 Structured-Statements ..•........................... 6-4

Olapter 7
Proca:l.Ires B"l1 fUlCticn

7.1 Procedure-Declarations .. 7-1
7.2 FlJ'lCtion-Cleclarations .. 7-4
7.3 Parameters .. 7-5

Chapter 8
PiUgUi,1S

8.1 Syntax .. 8-1
8.2 Program-Parameters _ '" 8-1
8.3 Segnentatlon ... 8-1

Olapter 9
Ulits

9.1 Regular -Ull ts•.................................•...................•.... 9-1
9.2 Intr1nslc-LJntts ... 9-4
9.3 lJnits that Use Other lJnits••...•..........•.....••...•.........•..•....•••.•.......... 9-4

Oleptel'10
fI1JutJ'D.JtpUt

10.1 Introduction to 110 ... 10-1
10.2 Record-Oriented 110 •••••.•••.•••••••••••••••••••••••• 10-8
10.3 Text-Oriented 1/0 •...•......•....•••.......••...•.••••••••••••••••••.•••••.••••••••••.•••.••• 10-9
10.4 Ultyped File 110•....................•..•...................................•......••. 10-18

Olapter 11
sta"dard Proca1.ir8I B"l1 FU'lCtkn&

11.1 Exit and t-Ialt Procedures .. 11-1
11.2 D}'I'lalltc Allocation ProceclJres .. 11-1
11.3 Transfer FlI'lCtions .. 11-4
11.4 Arithmetic FLflCttons .. 11-5
11.5 Ordinal F lI'lCtions ...•.......• 11-8
11.6 String Procedures and FlSlCtions .. 11-9
11.7 Byte-Oriented Procedures and FlJ'lCtions•............. 11-11
11.8 Packed Array of Char Procedures fI1d FISlCUons•.......... 11-12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

'j PflScal Reference Manual

Chapter 12
The Compiler

Contents'

12.1 Compiler Commands .. 12-1
12.2 Conditional Compilation .. 12-2
12.3 Optimization of If-Statements ... 12-5
12.4 Optimization of While-Statements and Repeat-Statements 12-6
12.5 Efficiency of Case-Statements ... 12-6

Appendixes
A Comparison to Apple II and Apple III Pascal , A-1
B K.nown Anomalies in the Compiler .. 8-1
C Syntax of the language ... C-l
D Floating-Point Arithmetic ... 0-1
E QuickDraw .. E-l
F. Hard, .. "are Interface ... F-1
G lisa Extended Character Set ... G-1
H Error Messages. H-1
I Pascal Workshop Files ... 1-1
J listing Formats ... J-1

IYlde/f.

Tables

5-1 Precedence of Operations .. 5-1
5-2 Binary Arithmetic Operations .. 5-4
5-3 Unary Arithmetic Operations (Signs) 5-4
5-4 Boolean Operations ... 5-6
5-5 Set OperatiOns .. 5-6
5-6 Relational Operations ... 5-7
5-7 Pointer Operation 5-8
10-1 Combinations of File Variable Types with External File

Species and Categories .. 10-3
A-1 Predefined Identifiers in the lisa Pascal Compiler A-4
0-1 Results of Addition and Subtraction on Infinities ... , , 0-3
0-2 Results of Multiplication and Division on Infinities D-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Syntax Diagrams

A,B
actual-parameter .. 5-10
actual-pararneter-llst .. 5-10
array-type .. 3-8
asslgrJTJeflt -statement .. 6-1
base-type ... 3-13
block ... '" .. 2-1

C
case ... 6-6
case-statement ... 6-5
cornpolI1d-staternent .. 6-4
condl tlenal-statement .. 6-4
constant ... 1-5
constant-deClaration .. 1-5
constant-declaration-part .. 2 - 2
control-varIable .. 6-8

D,E,F
digit-sequence .. 1-2
enurnerated-type ... 3-6
expressIon ... 5-3
factor ... 5-1
field-declaraUon ... 3-10
fleid-designator ... 4-4
fIeld-list ... 3-9
file-buffer-symbol ... 4-4
file- type ... 3-12
final-value .. 6-8
fixed-part ... 3-9
for-statement ... 6-8
formal-parameter -list .. 7 -6
flllCtion-bOdy ... 7-4
funcUon-call ... 5-10
function-declaration .. 7-4
function-heading ... 7-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Ccntents

G, H, I
goto-statement ... 6-3
heX-digit-sequence .. 1-2
IdentifIer .. 1-2
Identifier-list .. 3-6
1 f-statement ... 6-5
lrnpleJTlentatIon-part .. 9-2
Index ...•..•......... 4-2
index-type .. 3-8
InItial-value ..•....................... 6-8
Interface-part ... 9-2

L, M, 0
label ... 2-1,6-1
label-declaration-part ... 2-1
rnernber -group ... 5-11
ordinal-type .. 3-2
otherwIse-clause ... 6-6

p
parameter-declaration ... 7-6
poInter-ObjeCt -Syrnool .. 4-4
pointer-type ... 3-13
procedure-and-flI1ctlon-declaratIon-part ... 2-2
procedure-body ... 7-1
procedure-declaration .. 7-1
procedure-heading ... 7 -1
procedure-statement .. 6-2
program .. 8-1
program-headIng ... 8-1
program-parameters .. 8-1

Q,R
quallfler ... 4-2
quoted-character-corrstant ... 1-4
quoted-string-constant ... 1-4
real-type .. 3-2
record-type .. 3-9
regular-lJ11t .. 9-1
repeat-statement ... 6-7
repetitive-statement .. 6-6
result-type ... 7-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal RefeJ7!1l7Ct1 ft18nusJ Ccntents

S
scale-factor .. 1-3
set-constructor ... 5-11
set-type ... 3-11
sl~ .. 1-3
si~runber ... 1-3
sl"llie-expressioo ' ... 5-3
sifTl)le-staternent ... 6-1
slfTl)le-type .. 3-2
size-attribute .. _____ . __ .. ____ . __ . _., _. __ .. _ ._. _ 3-S
statement ... 6-1
staternent-part .. 2-2
strlrg-character•.. 1-4
string-type ... 3-5
structured-statement ... 6-4
stl\lCtured-type ..•.. 3-7
subrange-type•.. 3-7

T
tag-field-type ... 3-10
term ... 5-2
type ... 3-1
type-declaration•....................•... 3-1
type-declaratioo-part .. 2-2

U
lilt t -heading ... 9-1
lIlSigned-COf11tant ..•............. 5-2
1.I'lS1~-integer .. 1-3
l.I1SilJl8d-runber ... 1-3
lIlSlgned-real••.••...•....•..••••......•.•....•.•••......................•.........•...........•• 1-3
uses-clause ...•....... 8-1

v, W
variable-deClaration•.. 4-1
varlable-dec18r8tton-part ... 2-2
variable-Identifier ... 4-1
variable-reference ... 4-1
vanalt•.. 3-10
vartant -part .. 3-10
while-statement .. 6-7
witll-staternent ...•... 6-10

'7}'" .'. ,',:"~"t "

'- .. ;;""~

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Preface

This manual is intended for Pascal programmers. It describes an Implemen
tation of Pascal for the Usa computer. The compHer and code generator
translate Pascal source text to MC68000 object code.
The language is reasonably compatible with .A.pple II and .A.pple III Pascal. See
.A.ppendlx A for a discusslon of the differences between these forms of Pascal.
In addition to providing nearly all the features of standard Pascal, as described
in the Psscsl User M8I7usl 8I7d Report (Jensen and Wirth), this Pascal provideS
a variety of extensions. These are summarized in Appendix A. They Include
32-bit integers, an otherWlse clause in case statements, procedUral and
functional parameters with type-Cheeked parameter lists, and the - operator
for obtaining a pointer to an Object. The real arithmetic conforms to many
aspects of the proposed IEEE standard for Single-precision arithmetic.

qJeratlrg Envlra I' Ief It
The complIer wl1l operate In any standard Usa hardware configuration; this
manual assumes the WOrkShop software environment.

Related l:XJct.ments
Pascal User Manual and ReporC Jensen and Wirth, Springer-Verlag 1975.

Worf<s!7op User's Guide for tile Lise. .A.pple Computer, Inc. 1983.

Other Usa documentation.
Definitions

For the purposes of this manual the following definitions are used:
• Error: Either a run-time error or a compiler error.
• Stxpe: The body of text for which the declaration of an Identifier or

label Is valld.
• Undefined: The value Of a variable or funct10n when the variable does not

necessar1ly have a meaningfUl value of its type assigned to it
• unspecIfIed: A value or action or effect that, althOUgh possibly

well-defined, Is not specifIed and may not be the same In all cases or for
all versions or configurations of the system. Any programming construct
that leads to an unspeCified result or effect Is not supported.

NOtation Md syntax Diagram
All numbers in this manual are In decimal notation, except Where hexadecimal
notation is specifically indicated.
Throughout this manual, bold-face type Is used to distinguiSh Pascal text from
Engllsh text. For example", sqr(n dtv 16) represents a fragment of a Pascal
program. Sometimes the same word appears both in plain text and in

Pascal RefeIence ManlIal PIeface

bold-face; for example, "The declaration of a Pascal proceOUre begins with
the word procewre."
/lallcs are used when technical terms are introduced.
Pascal syntax Is specIfied by diagrams. For example .. the following dIagram
gIves the syntax for an identifier:

jdentffjer

Start at the left and follow the arrows through the diagram. Numerous paths
are possIble. Every path that begins at the left and ends at the arrow-head on
the right Is valId, and represents a valld way to construct an identifier. The
ooxes traversed by a path through the diagram represent the elements that can
be used to construct an identifier. Thus the diagram emboclies the following
rules:

• M identifier must begin with a Jetter, since the first arrow goes directly to
a box containing the name "letter."

• M Identifier might consist of nothing OUt a single letter, Since there Is a
path from this oox to the arroW-head on the right, wi thOut going through
any more boxes.

• The initlal letter may be followed by another letter .. a digi(, or an
tnc/erscore, since there are branches of the path that lead to these OOxes.

• The Initial letter may be followed by any number of letters; d1gIts; or
underscores, since there Is a loop In the path.

A word contained In a rectangular box may be a name for an atomic element
liKe "letter" or "dIgit," or It may be a ncrne for some other syntactiC
construction that is specified by another diagram. The name in a rectangular
box Is to be replaced by an actual Instance of the atom or construction that it
represents, e.g. ""S' for "diglt" or "COUlter" for "variable-reference".

Pascal S)I/7tJ01S, such as reserved wordS, operators" and punctuation, are
bold-face and are enclosed in circles or ovals, as In the following diagram for
the construction of a cOlTlpOUl'l(l-statement:

compound-statement

.(begin) (.I'---st_at_em ___ -en=t~__"') .@
-. ---{O .

...

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal RefeI8f7Ce I'1CTltI8J Pmfsce

Text in a circle or oval represents itself, and is to be written as shown (except
that capital1zation of letters Is not signlflcant~ In the diagram above, the
semicolon and the words begin and end are symbOls. The word "statement"
refers to a construction that has 1 ts own syntax diagram.
A COmpound-statement consists of the reserved word begin, fOllowed oy any
number of statements separated by semicolons, followed by the reserved word
erx1 (As w111 be seen In Chapter 6, a statement may be null; thus begin en:J Is
a valld compound-statemenL)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1.1

1.2

1.3

1.4

1-5

1.6

1.7

1.8

Chapter 1
Tokens and Constants

Olaracter Set ~ Special SyrrtKtls•.•...•.•.....•............•••.........•. 1-1

ldentJflers•..........................••............•..............•...•...................... 1-2

Directives•.........•........•................................. 1-2

I\kInbers ••••••••••••.•••.••••••.•.••.•.••••••.••••.•..••••••.•••.••....•..••••••....•••.•••••••••• 1-2

Labels ..••••••......••.•.•..•....•.•.•......• 1-4

QJoted SUing c:tI1stants •.•.....•••.•••••.•..••.••••....••••....••..•••..•.•..•••••••••••.•• 1-4

1.6.1 Quoted Character Constants ... 1-4

Const.a1t [)ec18l8tions •••••.•.....•..........•.....••.••..................•..•.........••.... 1-5
OJII.IEilts~~l1erOJlI.lalds ... l-S

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

/r'"c- ,

P8S'C8i Fi'ef'erence }(O Notes Tokens and Constants

Chapter 1
Tokens and Constants

1.9 Constant Expressions
Constant expressions may now be used wherever a single constant is allowed
1n the Pascal language. This means that constant expressions are allowed in
canst declarations, subranges, and case tags. (Const declarations are
described in Section 2.1, subranges in Section 3.1.3, and case statements in
Section 6.2.2.2.) Constant expressions are evaluated at compile time.

Constant expressions follow the same rules as expressions. Operands must
be compatible with their operators (+, -, ., div, I, in, and, or, not, and
relations). Set operations are permitted; constant sets may be defined within
the canst section.

The following functions are permitted in constant. expressions:

Abs, Sqr, Odd, Ord, Ord4, Chr, Trunc, Round, SizeOf

The const.ant expression SizeOf funct.ion is somewhat more rest.rictive than
its arithmetic expression counterpart. in that only a single type or variable
identifier is allowed (the arithmetic version allows field specifications).

All integer arithmetic is performed using long integers. OverflOlrvs are not
detected.

Some examples of constant expressions are as follows:

type
Colar = (Blue, Cyan, Green, YeUt'M, Red... ttagenta);

canst
PageSize = 1024;
~flBlks = Page5ize div 512;

WhiteColar = (Blue, Green, Red];
BlackColar = Cyan, YellCllW, Magenta];

var
InputBurr: packed fIIY&y [0 .. PageSize - 1] of cheri

Notes 1 .. 1

- ------ --- ----

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

PBscsl h'el'etl3nce 3.0 lIJ'otes

begin

Read(Input, Ch);
case Ch of

'0' .. '9': Digits;
'a' .. 'z', • A' .. 'Z': letters;
Chr(13): Emf1fLine;
Chr(03): Endlffile;
otherwise Special;

end; {case}

end.

To"kens lind Constants

Note that these examples also LIse other language enhancements: types before
the constants (to declare some set constants) and case tag ranges (for letters
and digits).

The introduction of constant ex pressions into the Pascal la.nguage causes a
possible syntax ambiguity between subra.nge and enumerated types which you
should be aware of:

type
range = expressionl .. expression2;
color = (black, brown, red, orange, yellow, green);

The Compiler distinguishes subrange types from enumerated types by the
first symbol after the equal sign: a left parenthesis in that position signifies
an enumerated type. If a subrange specification is of such complexity as to
require psrentheses, precede it with "0+".

Notes 1-2

I
I " :i

I
I
I
I
I 1.1

I
I
I
I
I
I
I
I
I
I
I
I

Tokens and Constants

TOkens are the smallest meaningful units of text In a Pascal program;
structurally, they correspond to the wordS in an Engl1sh sentence. The tokens
of Pascal are classified into special symbolS, identlf1ell; /1l/ITIbe1l; labels, and
quoted stJing constants.

The text of a Pascal program consists of tokens and sepa.rato.rs .. : a separator is
either a blank or a comment. Two adjacent tokens must be separated by one
or more separators, if both tokens are Identlfiers, numbers, or reserved wordS.
No separators can be embedded within tokens, except In quoted string
constants.

Olaroc:ter set cn1 Special S}'I'1DJis
The character set used by Pascal on the Usa is 8-blt extended ASCII, with
characters represented by numeric codes in the range from 0 to 255.
Letters, digits, heX-digits, and blanks are subsets of the character set:

• The lette.rs are those of the EngliSh alphabet, A through Z and a through z.
• The dlgits are the Arabic numerals 0 through 9; the fleX-digits are the

Arabic numerals 0 through 9, the letters A through F, and the letters a
through f.

• The blanks are the space character (ASCII 32), the hOrizontal tab Character
(ASCII 9), and the CR character (ASCII 13~

Special symbols and 17!JSelV8d words are tokens having one or more fixed
meanings. The fOllowing single characters are special symbols:

+ _ * / = < > [] • , () ; A ii {} $

The following character pairs are special symbOlS:
<> <= >= .- .. (* *)

The following are the resewed words:

and end label prognm l.Iltll
array file methods- record uses
begin for mod repeat var
case flrlcUon nil set While
const gato not string with
creatlon* if of sWclass*
div ifTlllementatlon or then
oownto In otherwise to
00 Interface packed type
else intrinsic· procewre lIllt

1-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference M8f7(Jal Tokens &- Const8l7ts

The reserved words marked wIth asterlsks are reserved for future use.
Corresponding upper and lower case letters are equlvalent in reserved words.
O1ly the first 8 characters of a reserved word are sIgnificant

1.2 IcJenU flefS
Identifiers serve to denote constants, types, variables, procedures, functions,
units and programs, and fields in records. Identifiers can be of any length, but
only the flrst 8 characters are signifIcant. correspond1ng upper and lower case
letters are equivalent In identifiers.

1de1711 fie]"

The first 8 Characters of an Identifier must not match the first 8 char
acters of a reserved word.

Exwrples Of klenlitJe.rs:

x RooE ~

13 DirecUves
Directives are wordS that have specIal meanIngs In partiCular contexts. They
are not reserved and can be used as identifiers In other contexts. For
example, the word forwarn is Interpreted as a dIrective If It occurs
Immediately after a procedUre-heading or function-heading. but in any other
posItIon It Is Interpreted as an Identifier.

1.4 I\kJ11)ers
The usual decimal notation is used for numbers that are constants of the data
types Integer, longlnt, and real (see Section 3.1.1~ Also, a hexadecimal Integer
constant uses the $ character as a prefix (1-4 digits for Integer, 5-8 digits for
laYJlnt~

ltiqJ t -sequence (~I dIgit I) ..
hex-diqH-seg.ex:e (.1 hex-digit I) •

-~ -

1-2

- ------------ ------~

\,

I
I
I
I
I
I
I
I
I

, \

I
,

".~l

I
I

;

I
I
I
I
I
I
I

Pascal Reference Manual TOkens & Constants

unsigned-real

digl t -sequence digit-sequence ~-------r-'

""-----------"'"111l't scale-factor

scale-facto}" ~}---''''''''''I':'"----'''''-~.I digit-sequence I,... -
~~SignP'

I.J{}si rned-nlllTlber
--------'---'---~-.! LHlslgned-integer

unsigned-real I---~-----

siqned-number .1 unsigned-number I ..
~ sign P'

The letter E or e preceding the scale in an unsigned-real means "Umes ten to
me power Of".

Examples of numbers:

1 +100 -0.1 SE-3 87.358+8 $1\050

Note that SE-3 means 5X10-3, and 87.35e+8 means 87.35xl08.

1-3

•

i
I
I
I
I
I
I
I
I
I

Pascal Refemnce Manual Tokens & Constants

1.5 Labels
A label is a dlgi t -sequence in the range from 0 through 9999.

1.6 Quoted String constants
A quoted-string-constant is a sequence of zero or more characters, all on one
Une of the program source text and enclosed by apostrophes. Currently, the
maximum number of characters is 255. A quoted-strIng-constant wIth nothIng
between the apostrophes denotes the null string.

If the quoted-string-constant Is to contain an apostrophe, thIs apostrophe must
be wrItten twice.

lfUlled-strlng-ct:nSt.a?l

--~.C)~----------------~ ... ~
(-1 string-character i'4J

strfng-cnaracter

Examples of quoted-stfing-constants:
, Pascal' 'THIS IS A STRIMi'

'A' , . ' , 'oon"t .arry!·
• •

...

All string values have a lengt17 attribute (see Section 3.1.1.6~ In the case of a
strlng constant value the length Is fixed; it Is equal to the actual number of
characters in the string value.

1.6.1 Quoted Olaracter constants
Syntactically, a quoted-character-constant Is simply a quoted-strIng-constant
whose length Is exactly 1.

quoted-character-constant ... ()--+-I string-character f-+()--+-

A quoted-character-constant is compatible with any char-type or string-type;
that Is, it can be used elther as a character value or as a string value.

1-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference Hanual TOkens & Constants

1.7 consta'lt DeclaraUons
A constant-declaration defines an identifier to denote a constant, within the
block that contains the declaration. The scope of a constant-identifier (see
Chapter 2) does not include its own declaration.

constant-declaraaon -I identifier ~ constant ~

constant
constant-identifier

A constant -identl fier Is an identi fler that has already been declared to
denote a constant.

A constant-identifier following a sign must denote a value of type Integer,
lorglnt., or real.

1.8 GaIiIIel'IU all Ctl'lllUer em.IOllS
The constructs:

{ any text not containIng right -brace }
(* any text not containing star-right-paren tt)

are called CtJfJYTIeflt.~

A compHer command is a comment that contains a $ character immediately
after the { or (tt that begins the comment. The $ character 1s followed by the
mnemonic of the compHer command (see Chapter 12~

Apart from the effects of compHer commands, the SUbstl tuUon of a blank for a
comment does not alter the meanIng of a program.

A comment cannot be nested wi thin another comment formed wi th the same
kind of delimiters. However, a comment formed with { ... J dell miters can be
nested within a comment formed with (* ... *) delimiters, and vice versa.

1-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Chapter 2
Blocks, Locality, and Scope

2.1 CJefinition of a Block ... 2-1

2.2 Rules of Scope •• 2-3

2.2.1 Scope of a Declaration ... 2-3
2.2.2 Redeclaration in an Enclosed Block .. 2-3
2.2.3 PosItion of Declaration wIthin Its Block .. 2-3
2.2.4 Redeclaration wi thin a Block .. 2-3
2.2.5 Identifiers of Standard (l)jects .. 2-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

,,""---~'"

PasC5'i R8f8i"'811C8 }.CI Notes BlockS;. LOC81itJ.~. SlIa'Scope

Chapter 2
Blocks, Locality, and Scope

Relaxed Order d Declarations (See Section 2.1)
The or del' of declarations. has been relaxed so that. label, const, type, Vel',

procedure, and rtldion declarations may be mixed freely to group related
parts of the code together. The only restrictions are that all data must be
defined before they are referenced in a declaration, and forward-referenced
pointer declarations must be satisfied in the group of declarations in which
they occur.

Notes 2-1

I
I

i

I
I 2.1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Blocks, Locality, and Scope

Deflnltlon of a BlOCk
A block consists of declarations and a statement-part. Every block Is part of
a procedure-declaration, a function-declaration, a program, or a unit. All
laentlfiers ana labels that are declared In a particular bloCk are lOCal to that
block.

blCkJk label-declaration-part

constant -declaration-part

type-declaration-part

variable-declaration-part

prOCedure-and-funcUon-deClaraUon-part

statement-part 1-------------.

The latJeJ-declaration-pa.rt declares all labels that marl< statements in the
corresponCling statement-part. Each label must mark exactly one statement in
the statement -part.

l8lJel-declaratJcn-p8lt

-Q§ ®I------....O~---...

l8iJel .1 dIgit-sequence I •

2-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference Hanual BlOCks., Localfty, & Scope

The constant-deClaration-part conta1ns all constant -declarations local to tne
bloCk.

anstant-deClaratim-part

~§D (4 ~Ir-c-o-n-st-an-t---de-C-la-ra-ti-. o-n-'I)

The type-t1eclaratJon-part contains all type-declarations local to the block.

t)1X1-ck:.'claratim-part

~~ (~~-deClaratiOn I) ..
The vaIiatJJe-decJa.Tation-paIt contains all variable-declarations local to the
block.

vBfhJble-declsration-psrt

(~I variable-declaration I) .. .

The plvcedu.re-and-fUnctJon-declsrstJon-p8l't contains all procedure and
function declarations local to the block.

p.rocea.m!h!Jrxi-flr1ctim-decJanltim-part

procedure-declaration

function-declaration

The statement-part specifIes tne algorithmlc actions to be executed upon an
activation of tne block.

stetement--po.rt ~I compound-statement I-I-~"''''

2-2

eJ· , .
'\"~~.~',~

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Ref'e.ret7l.-"'e l'18nUal BlOCks." Locality, & SCOpe

At run time, all variables declared within a particular blocK have
unspecIf1ed values eaCh Ume the statement-part Of me bloCK Is entereo.

2.2 Rules of SCOpe
This Chapter discusses the scope Of objects witlJin tlJe program or unit in wlllcll
tlJeyare defined See Chapter 9 for the scope of objects defined in the
interface-part of a unit and referenced In a host program or unit.

2.2.1 Scope of a Declaration
The appearance of an identifier or label in a declaration defines the identifier
or label. All corresponding occurrences of the identifier or label must be
within the scope of this declaration.

ThIs scope is the block that contains the declaration, and all blocks enclosed
by that block except as explained in Section 2.2.2 below.

2.2.2 Redeclaration in a1 Enclosed Block
Suppose that outer is a block, and il'YleT is another block that is enclosed
within outer. If an identifier declared in block outer has a further declaration
in block lmer, then block il'YleT and all blocks enclosed by IrTteT are excluded
from the scope of the deClaration in block outer. (See Appendix B for some
odd cases.)

2.2.3 Position of Declaration within Its Block
The declaratlon of an identlf1er or label must preceoe all corresponding
occurrences of that identifier or label in the program text--i.e., identifiers and
labels cannot be used untll after they are declared.

There is one exception to this rule: The base-type of a poInter-type (see
Section 3.3) can be an identifier that has not yet been declared. In this case,
the identifier must be declared somewhere in the same type-declaration-part
in which the painter-type occurs. (See Appendix B for some odd cases.)

2.7.4 Redeclaratlon within a Blocl<
M identifier or label cannot be declared more than once in the outer level of
a particular blocK, except for record field identifiers.

A record field identifier (see Sections 3.2.2, 4.3, and 4.3.2) is declared within a
record-type. It is meaningful only in combination with a reference to a
variable of that record-type. Therefore a field identifier can be declared
again wIthin the same block, as long as It is not declared again at the same
level within the same record-type. Also, an identifier that has been declared
to denote a constant, a type, or a variable can be declared again as a record
field identifier in the same block.

2-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference Hant.Ial Blocks.. L1X8lity, & SCOpe

22.5 Ident1f1ers of stcn1ard (])jects
Pascal on the Usa provides a set of standard (predeclared) constants, types,
procedures, and functions. The identifiers of these objects behave as if they
were declared in an outermost block enclosing the entire program; thus their
scope includes the entire program.

2-4

,.r-"'\ .. ,
f .~.)

• 't-.';;';

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Chapter 3
Data Types

3.1 Sir11>1e-Types (and (kdinal-Types) ..•••••...••••••••••••...........•.....•................ 3-2

3.1.1 Standard Simple-Types and Strlng-Types 3-3
3,1.1.1 The Integer Type '''''"'',,,,',,''',,,,' 3-3
3.1.1.2 The Longint Type .. 3-3
3.1.1.3 The Real Type .. 3-4
3.1.1.4 The Boolean Type .. 3-4
3.1.1.5 The Char Type .. 3-4
3.1.1.6 String-Types ... 3-5

3.1.2 Enurnerated-Types ... 3-6
3.1.3 Subrange-Types ... 3-7

3.2 Stn.I::;tured-Types ... 3-7

3.2.1 Array-Types .. 3-8
3.2.2 Record-Types .. 3-9
3.2.3 Set-Types .. 3-11
3.2.4 File-Types ... 3-12

3.3 Pointer-Types .. 3-13

3.4 Identical iY1d C::I'Tprtible Types. __ " " _ 3-13

3.4.1 Type Identity ... 3-14
3.4.2 Compatibility of Types .. 3-15
3.1l.3 Asslgrvnent-CornpaUbility ... 3-15

3.5 1l1e Type-CJeclaration-Part .. 3-16

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pssca} Reference ... ~.O Notes

Chapter 3
Data Types

3.6 Type-Conversion with Functional syrtax

Oats Types

Type-conversion has been added with the syntax type-i.(x). X may be a
variable or variable-select (field) or an expression, whichever is legal in the
local context. Type-id is any user or predeclared type identifier. X is
treated as an instance of type type-id, provided that. the storage size of x is
not changed (for conversion between sCBlars--excluding reals--even this is
relaxed).

For example:

type
R = record

var

x, y: Integer;
end;

Rr: r;
l: longInt;
I: Integer;

Rr := R(l);
Rr : = R(34 + 65536·100 h
I :- integer(l);

The last line shows a conversion from a 4-byte quantity to a two-byte
quantity, which is allowed for scalars. In this case the conversion is checked
for overflow according to the usual compiler conventions in effect.

Restriction: Do not use the type-conversion feature in conjunction with set
expressions such as the following:

type
s = set of O .. 31;

V8r
a, b, c: longint;

a :'" longint(s(a) + s(b));

The above capability is currently unimplemented and will not be reported as
an error from the Compiler. Conversion of set w3ri8bJes is okay, however.

Notes 3-1

I
I
I
I
I
I
I
I
I
I'
I
I
I
I
I
I
I
I
I

"'")

Data Types

A type Is used In declarIng varIables; it determInes the set of values which
those varIables can assume, and the operations that can be performed upon
them. A type-decJamtJlYl associates an identifIer with a type.

trpe-t.1ecla.rati(K1 .1 identifier ~ type t---t{)-+

:::;,t.1.t;;;;..=:.-_....._-e.I Simple-type 1---....

pointer-type 1----......

The occurrence of an identifier on the left-hand side of a type-declaration
declares It as a type-identifier for tne block In Which the type-deClaration
occurs. The scope of a type-Identifier does not Include its own declaration,
except for poInter-types (see Sectlons 2.2.3 and 3.3~

To help clarify the syntax description wIth some semantic hints, the following
terms are used to dist1nguish identifiers according to what they denote.
syntactically, all of them mean simply an Identifier:

slmple-type-ldenUfler
structured-type-idenUfier
pOinter-type-ldentlfler
ordlnal-type-ldentlfler
real-type-ldenUfier
strlng-type-ldentlfler

In other words .. a simple-type-identifier is any identifier that Is declared to
denote a simple type, a structured-type-identifier Is any identifier that Is
declared to denote a structured type, and so forth. A slmple-type-tdenUfter
can be the predeclared identifier of a standard type such as Integer, bOoleal,
etc.

3-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

pascal Reference Hanual

3.1 SirJ1)le-Types (cn1 Drdlnal-Types)
All the simple-types define ordered sets of values.

real-type

string-type 1-----......

real-type "I- real-type-idenUfier \1----......

....::.:....::=.:.:::::.....;:.u::;.:.::"'----..:---ll>! sub range-type

enumerated-type 1---------1

The standard real-type-identifier is real.
String-types are discussed in Section 3.1.1.6 below.

Data Types

D.n1inaJ-types are a subset of the sImple-types, with the following special
characteristics:

• Within a given ordinal-type, the possible values are an ordered set and each
possIble value is associated with an ominallly, which is an Integer value.
The first value of the ordinal-type has ordinal1ty 0, the next has ordlnal1ty
1, etc. Each possible value except the first has a predecessor based on
this ordering, and each possible value except the last has a stlCcessor based
on this ordering.

• The standard function om (see Section 11.5.1) can be applied to any value
of ordinal-type, and returns the ordinallty of the value.

• The standard function pIed (see Section 11.5.4) can be appUed to any value
of ordinal-type, and returns the predecessor of the value. (For the first
value in the ordinal-type, the result is unspeclfied.)

• The standard function succ (see Section 11.5.3) can be applied to any value
of ordinal-type, and returns the successor of the value. (For the first value
in the ordinal-type, the result Is unspeclfled.)

3-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

----- --

Pascal Reference M8I7lI8l Data Tjpes

All simple-types except real and the string-types are ordInal-types. The
standard ordinal-t ype-ldenti fiers are:

Integer
lCO'Jlnt
char
boolean

Note that in addition to these standard types, the enumerated-types and
sUbrange-types are ordinal-types.

3.1.1 staldard Si11ll1e-Types CI1d Strtng-Types
A standard type Is denoted by a predefIned type-identifier. The sImple-types
Integer, longlnt, real, Char .. and boolean are standard. The string-types are
lJser-defined Simple-types.

3.1.1.1 The Integer Type
The values are a subset of the whole numbers. (As constants, these values can
be denoted as specified In Section 1.4.) The predefined integer constant maxlnt
is deflned to be 32767. MaXlnt defines the range Of the type Integer as the
set of values:

-maxint-1, -maxint ... -1, 0, 1, ... maxlnt-1, maxint

These are 16-bit, 2's-complement integers.

3.1.1.2 The L~nt Type
The values are a subset of the IHhole numbers. (As constants" these values can
be denoted as specified in Section 1.4.) The range is the set of values from
-(23L1) to 23L l, I.e., -2}47j48~648 to 2l47p81647.

These are 32-bit integers.

Arithmetic on Integer and lorglnt operandS is done in both 16-bit and 32-bit
precIsion. AA expression with mixed operand sIzes Is evaluated In a manner
slmllar to the FCRTRAN single/double precIsIon floating-poInt arithmetic rules:

• All "integer" constants in the range of type Integer are considered to be of
type integer_ All "integer" constants In the range Of type longint, but not
in the range of type Integer, are considered to be of type l~nt.

• When both operands of an operator (or the sIngle operand of a unary
operator) are of type Integer" 16-blt operations are allHays performed and
the result is of type integer (truncated to 16 bits if necessary~

• When one or both operandS are of type l~nt, all operands are fIrst
converted to type longtnt, 32-bit operations are performed" and the result is
of type lorglnt. HOlHever, If this value Is assIgned to a varIable of type
Integer, it is truncated (see next rule~

3-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference Hamal Data Types

• The expression on the right of an assignment statement is evaluated
independently of tI1e size of tI1e varlaIJle on tI1e left. If necessary, the
resul t of the expression is truncated or extended to match the size Of the
variable on the lefL

The ord4 function (see Section 11.3.3) can be used to convert an Integer value
to a longlnt value.

II"fl..EM::NT A lICN r-.cTE

There is a performance penalty for the use of longlnt values. The
penalty Is essentially a factor of 2 for operations other than division
and multlpllcatlon; for division and mUltlpl1catlon; the penalty Is much
worse than a factor of 2.

3.1.13 The Real Type
For details of IEEE standard floating-point arithmetic; see Appendix D. The
possIble real values are

• Finite values (a subset of the mathematical real numbers). ~ constants,
these values can be denoted as specified in Section 1.4.

The largest absolute numeric real value is approximately 3.402823466E38 in
Pascal notation.
The smallest absolute numeric non-zero real value is approximately
1.401298464E -45 in Pascal notation.
The real zero value has a sign, like other numbers. However, the sign of a
zero value is disregarded except In division of a finite number by zero and
in textual output.

• Infinite values, +00 and -00. These arise either as the result of an operation
that overflows the maximum absolute finite value, or as the result of
dividing a finite value by zero. Appendix 0 gives the rules for arithmetic
operations using these values.

• NaNs (the word "Na/'I" stands for "Not a Number"). These are values of
type real that convey diagnostic information. For example, the result of
mUltiplying 00 by 0 is a Na/'I.

3.1.1.4 Tlle Boolea1 Type
The values are truth values denoted by the predefined constant identifiers false
and true. These values are ordered so that false is "less than" true. The
function-call or«false) returns 0, and orc(true) returns 1 (see Section 11.5.1~

3.1.15 The Olaf Type
The values are extended 8-bit ASCII; represented by numeric codes in the
range 0 .. 255. The ordering of the char values 1s defined by the ordering of
these numeric codeS. The function-call on(c1 Where c is a char value, returns
the numeric code of c (see Section 11.5.1~

3-4

\,

I
I --....

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference Manual Data rypes

3.1.1.6 string-Types
A string value Is a sequence of characters that has a dynamic lengt17 attri
bute. The length Is the actual number of characters in the sequence at any
time during program execution.

A string type has a static size attribute. The size Is the maximum limit on
the length of any value of this type. The current value of the length attribute
Is returned by the standard function length (see Section 11.6); the sIze attribute
of a string type Is determined when the string type Is defined.

size-attribute

S.-;;:.iz,::..:'e:::..--=a:.::;.;ttJ;:::.;1.:;;::'IJ,;,;;;.'{j.;;.;:te:;.......~ .. IIIoi[unsigned-Integer It---_____

where the size attribute is an unsigned-integer.

IrvPlEfVENT A llCN NJTE

In the current Implementation .. the size-attribute must be in the range
from 1 to 255. '*

The ordering relationshIp between any two string values Is determIned by
lexical comparison based on the Ordering relationship between character values
in correspondIng posItions In the two strIngs. (When the two strIngs are of
unequal lengths, each character in the longer string that does not correspond to
a character in the shorter one compares "higher"; thus the string 'attribute' is
ordered hIgher than 'at'.)

Do not confuse the sIze with the length.

~ "The sile-a1l-l"lb lA+e C3A etlAo\ f/J. Tn thi~ case 1he str1'(tj lenJ-th (~n
be. c~cnjeJ as irl:

VAf{, ~-h-tSi«'ltlt4C155Jj On eJ.it(,1-+hif r~r<1f'\.)
-the Ie hj +h 0 f s-lt IS "), , ,

t the v~J\Ae of S+r IS Pas.

END' ,

3-5

•
I
I
I
I
I
I
I
I
I
I
I

Pascal Ref'erence Manval Data Types

NJTES

The size attribute of a string constant is equal to the length of the
string constant value ... namely the number of characters actually in the
string.
Although string-types are simple-types by definition, they have some
characteristics of structured-types. ~ explained in Section ~.3.1,
indivIdual characters In a string can be accessed as if they were
components of an array. Also, all strIng-types are Impl1citly pacKed
types and all restrictions on pacKed types apply to strings (see sections
7.3.2, 5.1.6.1, and 11.7).

Do not make any assumptions about the internal storage format of strings, as
thIs format may not be the same In all implementations.
QJerators applicable to strIngs are specified in Section 5.1.5. Standard
procedUres and functions for manipulating strings are described in Section 11.6 .

3.1.2 Erunerat.ec1-Types
M enumerated-type defines an ordered set of values by l1sUng the identifiers
that denote these values. The orderlng of these values Is determIned by the
sequence in which the identifiers are listed.

enumerated-trpe .. (I)--t-i identifier-list ~

fdel7tif'ier-jist

The occurrence of an Identif1er wIthIn the Identifler-llst of an
enumerated-type declares it as a constant for the block in which the
enumerated-type Is declared. The type Of this constant 1s the enumerated-type
being declared.
Examples of' enllmeratect-types;

color = (red, yellow, green, blue)
sui t (Cllt>, di.amJnd, heart, spade)
marl talStatus = (marrleo, dl vorced, wldowed, slrgle)

Given these declarations, yellow is a constant of type color, diam::n1 is a
constant of type suit, and so forth.
When the ord function (see Section 11.5.1) is appl1ed to a value of an
enumerated-type, it returns an integer representing the orderlng of the value

3-6

Pascal RefelPnce H817t181 Data TYpes

wIth respect to the other values of the enumerated-type. For example, gIven
the declarations above" on:(red) returns 0, on:(yellow) returns 1, and on(blue)
returns 3.

3.1.3 swr~-Types
A sUbrange-type provides for range-checKing of values within some
ordinal-type. The syntax for a subrange-type Is

SlJbranqe-trpe .1 constant ~ constant ~

Both constants must be Of ordinal-type. Both constants must eIther be of the
same ordinal-type, or one must be of type integer and the other of type
l0r9nt. If both are of the same orOlnal-type, tnls type is called the nose-type
If one Is of type Integer and the other of type ImJint the host-type Is lCOJlnt
Note that no range-CheCKing Is done if the host-type is longlnt

Examples Or slllJrange-lYpes:
1. .100
-10 •• +10
red .. green

A variable of subrange-type possesses all the properties of variables of the
host type, wIth the restrIction that Its run-time value must be In me speclfleo
closed interval.

It-'PlEI"ENTA TIeN NJTE

Range-ChecKing Is enabled and disabled by the compUer commands $R+
and $R- (see Chapter 12~ The default Is $R+ (range-checKing enabled~

3.2 St.Itl;turefl-Types
A structured-type Is characterized by its structuring methOd anCl by the type(S)
of its components. If the component type Is itself structured, the reSUlting
structurea-type eXhibIts more tnan one level Of structuring. lhere Is no
specIfied Umlt on the nUmber of levels to whIch aata-types can be structured.

structured-type-identifier

3-7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Refemnce Manual Data TYPes

The use of the word packed in the declaration of a structured-type indicates
to the compHer that data storage Should be economized, even if this causes an
access to a component of a variable Of this type to be less efficient
The word packed only affects the representation of one level of the
structured-type In whiCh it occurs. If a component 1s 1tself structured, the
component's representation Is paCKed only if the word packed also occurs in
the declaration of its type. .
For restrictlons on the use Of components of packeCi variables, see Sectlons
7.3.2, 5.1.6.1, and 11.7.

The Implementation Of paCking is complex, and details of the allocation of
storage to components of a packed variable are unspecif1ect

If'1lLE~NT A TI(N r-.mE

In the current implementation, the word packed has no effect on types
other than anay anCi recoIt1

3.2.1 Array-Types
M array-type consists of a fixed number Of components that are all of one
type, callea me component-type. The number of elements Is determined by
one or more if1(JeX-types, one for each Cllmension of the array. There is no
specified l1mit on the number of dimensions. In each dimensIon, the array can
be indexed by every possible value of the corresponding index-type ... so the
number of elements Is the proCluct of the cardinalities of all the index-types.

8lT8y-type

~ Index-type ~ type 1---+
---""""""'0-------

index-type .. , ordinal-type 1---+

The type following the wora Of 1s the component-type Of the array.
Jf'1lL~ATI(N r-.mE

In the current implementation, the index-type should not be longlnt or a
subrange Of Img1nt, and arrays ShOuld not contaIn more than 32767 bytes.

3-8

'\

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference I'1antIaI

Examples Of'soey-types:

array[l. .100] of real
array[boOlESl] of color

Data ljpes

If the component-type of an array-type Is also an array-type, the result can be
regarded as a single multi-dimensional array. The declaration of such an array
Is equivalent to the declaration of a multi-dimensional array, as Illustrated by
the following examples:

array[boOlESl] of array[l. .10] of array[size] of real
Is equivalent to:

array[boOlESl, 1 .. 10, size] of real

likewise,
packed array[l. .10] of packed array[1. .8] of boOlESl

Is equivalent to:
packed array[l. .10,1 .. 8] of boolean

"Equivalent" means that the compHer does the same thing with the two
constructions.
A component of an array can be accessed by referencing the array and
applying one or more indexes (see Section ~.3.1~

3.2.2 Record-Types
A record-type consists of a fixed number of components called fields; possibly
of dIfferent types. For each component, the record-type declaration specifIes
the type of the field and an identifier that denotes it.

record-type
.(reaml) I : .7 .~

'-'I field-llst ~

field-list rr-I f-ix-e-d--p-ar-t-'I

l,,-~ ______ :or __ ;....... -va-r-la-n-t--p-ar-t-'r-J ~

fixed-part
(-\ L.. _fi_el_d_-de_C_la_ca_ti_" o_n--Jl)

'------10 .. ---
-

3-9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference Manual Data TYPes

...:.:~='ll.=tJd,-:...oec.==~ara.=t~::.::'Of1:':":----1.1Iof1 identifier-list ~ type ~

The fixed-part of a record-type specifies a list of "fixed" fields" giving an
identlfler ana a type for each fle1O. Each of these fields contains data that Is
always accessed In the same 'Way (see section 4.3.2).

EXBffIPle of a record-type:

record
year : integer;
IID'lth : 1 .• 12;
day: 1. .J1

end

A variant-part allocates memory space with more than one list of fields, thus
permitting the data in thIs space to be accessed In more than one way. Each
list of fields is called a variant. The variants "overlay" eaCh other in memory,
ana all fields of all variants are accessible at all times.

variant part

~~ ~~ltag-field-tYPe~
identifier : ;

valiant
~r-c-on-:-ta-nt--'I) .Q+<D \:j ~ ~CD-

. field-list

tag-field-trpe .1 ordinal-type-ldenUfier ~

In the current Implementation, the type lorglnt should not be used as a
tag-type as it 'Will not worK correctly.

3-10

,
, .'

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference Manual Data 7)pes

Each variant is introduced by one or more constants. All the constants must
be distinct and must be of an ordinal-type that Is compat1ble with the
tag-type (see Section 3.4~

The variant-part allows for an optional ident1fier, called the tag-flelq
identifier. If a tag-field identifier is present, it Is automatically declared as
the identifier of an additional fixed field of the record" called the tag-field

The value Of tne tag-fleld may be used by the program to indicate wnicn
variant should be used at a given time. If there is no tag-field, then the
program must select a variant on some other crl terion.

Examples of recon1-types wit/7 vaflants:

recorO
name, firStNaffie: strlng[80];
age: 0 .. 99;
case nmrioo: booleCil Of

end

true: (spousesNmE: string[80]);
false: 0

recorO
x"y: real;
area: real;
case S: Shape of

triangle: (sloe: real; inclination, anglel, angle2:
angle);

rectangle: (sloel, sioe2 : real; skew, angle3: angle);
circle: (diameter: real);

enu

The constants that introduce a variant are not used for referring to
fields of the variant; however, they can be used as optional arguments
Of the new procedure {see Section 11.2~ Variant fields are accessed in
exactly the same way as fixed fields (see Section 4.3.2~

3.2.3 set-Types
A set-type defines a range of values that is the po erset of some ordinal-type,
called the base-type. In other words, each possible value of a set-type Is some
subset of t1e pOSSible values Of the base-type.

set-tw;e .~ ordinal-type r--+

3-11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference Manual Date Types

II'-"PLEI'-'ENT A TICl\I NOTE

In the present Implementation the base-type must not be lorYJ1nt. The
base-type must not have more than 4088 possible values. If the base
type 1s a suorange Of Integer, 1t must be wlt1l1n tne limlts 0 .. 4087.

q>erators applicable to sets are specified in Section 5.1.4. Section 5.3 shows
how set values are denoted in Pascal.

Sets with less than 32 pOSSible values in the base-type can be held in a
register and offer the best performance. For sets larger than this, there is a
performance penalty that Is essentially a linear function of the size of the
base-type.

The empty set (see Section 5.1.4) Is a possible value of every set-type.

32.4 File-Types
A file-type is a structured-type consisting of a sequence of components that
are all of one type, ttle component-type. The component-type may be any
type.

The component data is not in program-addressable memory but is accessed via
a peripneral oevice. Tne number Of components (I.e. t1le length of the flle) Is
not flxed by the file-type declaration.

file-type

The type fUe (without the "of type" construct) represents a so-called "untyped
file" type for use with the Olockread and blockwrite functions (see Section
10.4).

Although the symbol file can be used as if it were a type-identifier, it
cannot be redeclared since it is a reserved word.

The standard file-type text denotes a file of text organized into Hnes. The
file may be stored on a file-structured device .. or it may be a stream of
characters from a cl7aracler device such as the Usa keyboard. Files of type
text are supported by the specialized 110 procedures discussed 1n Section 10.3.

In Pascal on the Usa, the type text Is distinct from the type file of char
(unlike standard pascal). The type flle of char Is a file whose records are of

3-12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal ReFerence Manval Data TYpes

type char, containing char values that are not interpreted or converted in any
way during 110 operations.
In a stored file of type text or file of -128 .. 127, the component values are
packed Into bytes on the storage medIum. However, this does not apply to the
type fIle of char; the component values of this type are stored in 16-bit words.
In Pascal on the Usa, flles can be passed to procedures and functions as
variable parameters, as explained in Section 7.3.2.

Sections 4.3.3, 10.2, 10.3, and 10.4 discuss methods of accessIng me components
and data.

3.3 Polnter-TypeS
A painter-type defines an unbounded set of values that point to variables of a
specified type called the base-(ype

pointer values are created by the standard procedure new (see Section 11.2.1),
by the (iii operator (see Section 5.1.6), and by the standard procedure pointer
(see Section 11.3.4~

base- type 1----__ -.

base-type ~ type-identifier ..

The base-type may be an identifier that has not yet been declared. In
this case, it must be declared somewhere in the same block as the
pointer-type.

The special symbol nil represents a standard pointer-valued constant that is a
possible value of every pointer type. Conceptually,. nil is a pointer that does
not point to anything.
Section 4.3.4 discusses the syntax for referencIng the Object pointed to by a
pointer variable.

3.4 Identical <nj COflllatIble Types
As explained below, this Pascal has stronger typing than standard Pascal. In
Pascal on the Lisa, two types mayor may not be j{1enticaJ, and identity is
required In some contexts but not in others.

3-13

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference /'1anuaJ Data Types

Even if not identical, two types may still be compat.ible, and this is sufficient
in contexts where identity Is not required--except for assIgnment, where
assfgnment-compaubfjfty is required.

3.4.1 Type I08ntlty
Identical types are required only in the following contexts:

• Variable parameters (see Section 7 .3.2~
• Result types of functional parameters (see Section 7.3.4~
• Value and variable parameters within parameter-lists of procedural or

functional parameters (see Section 7.3.5).

• O1e-dimensional packed arrays of char being compared via a relational
operator (see Section 5.1.5~

TWO types, tl and t2, are klent..icaJ if either of the following is true:
• The same type identiIJer is used to declare both t1 and t2, as in

foo = .. integer;
U = foo;
t2 = foo;

• t1 Is declared to oe equivalent to t2 as 1n
U t2;

Note that the declarations

t1 = t2;
t3 = U;

do not make t3 and t2 identical, even though they make t1 identical to t2 and
t3 identical to tl!

Also note that the declarations
t4 = integer;
t5 = integer;

dO maKe t4 and t5 ldentical, since both are defined by the same type
identifier. In general, the declarations

t6 = t7;
t8 = t7;

do make t6 and t8 identical if t7 is a type-identifier.
However, the declarations

t9 = .. integer;
uo = .. integer;

do not make t9 and tlO identical since ~ integer is not a type identifier but a
user-defined type consisting of the special symbol .. and a type identifier.

3-14

'\

I
I
,

I
I
I
I
I
I
I
I

(. "

I
I
I
I
I
I
I

J-";" ~

I
I

Pascal Reference Manual Data TYPes

Finally, note that two variables declared 1n the same declarat1on, as in
varl, var2: ~integer;

are Of identical type. However, if the declarations are separate then the
definitions above apply.
The declarations

varl: ~ integer;
var2: A integer;
var3: integer;
var4: integer;

make var3 and var4 identical in type, but not varl and Var2.

3.4.2 COfllJatlblllty of Types
Compatlb1l1ty is requirea in the majority of contexts where two or more
entities are used together, e.g. in expressions. Specific instances where type
compatlblllty Is requIred are noted elsewhere in this manual.
Two types are compatible if any of the fallowing are true:

• They are identical.
• rne 1s a sUbrange of the other.
• Both are subranges Of the same type.
• Both are string-types (the lengths and sizes may differ~
• Both are set-types, and their base-types are compatible.

3.4.3 Asslgment-CCJr11Jatlblllty
Assignment-compatlblllty Is required whenever a value Is assIgned to
somethlng~ eIther explicitly (as in an assignment-statement) or implicitly (as in
passing value parameters).
The value of an expression expval of type exptyp Is aSSignment-compatible
with a variable, parameter, or function-identifier of type vtyp if any of the
following is true.

• vtyp and exptyp are identical and neither Is a fHe-type, or a structured
type with a fHe component.

• vtyp Is real and exptyp is integer or longint (expval is coerced to type
real~

• vtyp and exptyp are compatible ordinal-types, and expval Is within the
range of poss1ble values of vtyp.

• vtyp and exptyp are compatlble set-types, and all the members of expval
are within the range of possible values of the base-type of vtyp.

• vtyp and exptyp are string types, and ltle current lengtrl of expval is equal
to or less than the size-attribute of vtyp.

3-15

L

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal RefeIel?Ce /'1anual Data Types

• vtyp is a strtrYJ type or a Char type and expval Is a quoted-character
constant.

• vtyp is a packed arraj{Ln] of Char and expval 1s a strIng constant
containing exactly n characters.
If the index-type of the packed array of char Is not Ln, but the array
does have exactly n elements, no error will occur. However, the results
are unspecified.

Whenever ass1gnment-compatlblllty 1s required and none Of the above Is true,
either a compiler error or a run-time error occurs.

3.5 The Type-Declaration-Part
My program, procedure, or function that declares types contains a type
declaration-part, as shown in Chapter 2.

Example of a type-decla,raaon-pa,rt-

type ccx.nt ;: integer;
range = integer;
color = (red, yellow, green, blue);
sex = (male, female);
year = 1900 .. 1999;
shape ;: (triangle, rect8rYJle, circle);
card ;: array [1. .80] of char;
str ~ str1ng[80];
polar ;: record r: real; theta: arYJle end;
person = A per&rOetal1s;
personOetalls ;: record

nellE, firstNcI'IE: str;
age : integer;
married: boolean;
father, child, slbllrJJ: persoo;
case s: sex Of

erK1;

male: (enlisted, bearded: boolean);
female: (pregnant: boolean)

people = file of personDetailS;
intfile = file of integer;

In the above example COUlt, ~, and Integer denote identical types. The
type year is compatible with, but not identical to, the types rarYJe, ctUlt, and
Integer.

3-16

'.'.~ I. .}

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Chapter 4
Variables

4.1 Variable--()eclarations•.•........••...........•........•.. 4-1

4.2 Yariable-Refeu::Ji iCeS ... 4-1

4.3 C)Jallflers .. 4-2

4.3.1 Arrays, Strings, and Indexes .. 1l-2
1l.3.2 Records and Field-Designators ... 1l-4
4.3.3 File-Buffers ... _. __ . __ . _____________ 4-4
4.3.4 Pointers and Their Cbjects .. 4-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Variables

4.1 Variable-DeclaratIons
A variable-declaration consists of a list of identifiers denoting new variables,
followed by their type.

Varll1lJle-tFclllllJtim"'l identifier-list ~ type ~

The occurrence of an identifier within the identifier-list of a variable
declaration declares it as a variable-identifier for the block in which the
declaration occurs. The variable can then be referenced throughout the
remaining lexical extent of that block, except as specIfied in Section 2.2.2.
ExtlmpJes of' varitlbJe-CfecJa.ratians:

X, y, z: real;
1, j: integer;
1<.: 0 .. 9;
p, q, r: boolean;
operator: (plUS, minus, tinEs);
a: array[O .. 63] of real;
c: color;
f: flle of Char;
hUel,hUe2: set of color;
pl, p2: person;
m., ml, nQ: array[1. .10,1. .10] of real;
coord: polar;
pooltape: array[1 .. 4] of tape;

4.2 Variable-References
A variable-reference denotes the value of a variable of Simple-type or
pointer-type, or the collection of values represented by a variable of
structured-type.

vBdBble-reference

----l ... ~1 varlable-identl fier

quallfier

v8rj8bJe-jdentifjer "'1 identifier ~

4-1

I
t'
[
l

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference Hanual Variables

syntax for the various kinds of quallf1erS Is gIven belOW.
43 QJallfle~

As shown above, a variable-reference is a variable-identifIer followed by zero
or more qualffielI Each qualifier modifies the meaning of the variable
reference.

An array ldentlfier with no qualifier is a reference to the entire array:

><Results
If the array identifier is followed by an index, this dRnotp.s a specific
component of the array:

xResults[current+l]
If the array component is a record, the index may be followed by a fleld
designator; in this case the variable-reference denotes a specific field within a
specific array component.

xResults[current+l].llnK
If the field Is a pointer, the field-designator may be followed by the pointer
Object-symbOl, to denote the Object polnted to by the polnter:

XResults[current+l].llnK
A

If the Object of the pointer is an array, another index can be added to denote
a component Of thiS array (and so forth):

xResults[current+l].11nK A [l]
4.3.1 Arrays, strings, a"Kt Indexes

A specific component Of an array variable is denoted by a variable-reference
that refers to the array variable, followed by an index that specifies the
component.
A speclf1c character within a string variable Is denoted by a variable-reference
that refers to the strIng variable, followed by an index that specIfles the
character poslt1on.

jnc/ex IIICD)----,(..-~ .. 1toI1 expression) .CD-
'-----(0..-.----

4-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference Manual

Exanples of fndeXlJt1arrays:

m[l, J]
a£l+j]

VarialJles

Each expression in the index selects a component in the corresponding
dimension of the array. The number of expressions must not exceed the
number of index-types in the array declaratlon, and the type of each
expression must be asslgnment-compatible with the corresponding index-type.
In indexing a multi-dimensional array, you can use either multiple indexes or
multiple expressions within an index. The two forms are completely equivalent.
For example,

m[l][j]

Is equivalent to

m[i, j]

For array variables, each index expression must be assignment-compatible with
the corresponding index-type specified in the declaration of the array-type.
A string value can be indexed by only one index expressIon, whose value must
be in the range l..n" where n is the current length of the string value. The
effect is to access one character of the string value.

WAANlNG

When a string value is manipulated by assignIng values to indivIdual
character positions, the dynamic length of the string is not maintained.
For example, suppose that strval is declared as follows:

strval: str1ng[lO];
The memory space allocated for strval includes space for 10 Char values
and a number that will represent the current length of the string--Le ...
the number of Char values currently in the string. Initially, all Of this
space contains unspecified values. The assIgnment

strval[l]:='F'
mayor may not work" depending on what the unspecified length happens
to be. If this assignment works, it stores the char value 'F' in character
position 1, but the length of strvaI remains unspecified. In other words,.
the value of strval[l] is now 'F', but the value of strval is unspecified.
Therefore, the effect of a statement such as wrttelr(strval) is
unspeci fled.
Therefore, this kind of string manipulation is not recommended. Instead,
use the standard procedures described in Section 11.6. These procedures
properly maintain the lengthS of the string values they modify.

£1.-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal RefeJ-erJCe Mantlal VarJalJles

4.3.2 Records and Fleld-Desl!Jlators
A specific field of a record variable is denoted by a variable-reference that
refers to the record variable~ followed by a fIeld-designator that specifies the
field.

fJeld-deslqnator --o----.!ldentlfler ~

Examples of fJeld-designators.:

p2 ~ • pregKllt
coord. theta

4.3.3 File-Buffers
Although a file variable may have any number of components, only one
component Is accessible at any time. The pOSition of the current component in
the file is called the current file posItion See Sections 10.2 and 10.3 for
standard procedures that move the current flle posit1on. program access to me
current component Is via a speclal variable associated with the fHe, called a
file-buffer.

The file-buffer is impliCitly declared when the file variable Is declared. If F
1s a file variable with components of type T, the associated file-buffer Is a
variable of type T.
The file-buffer associated with a file variable is denoted by a variable
reference that refers to the file variable, followed by a qualifier called the
file-buffer-symbol.

fJle-lxJffer-srrrtxJj·o __

Thus the file-buffer of file F is referenced by FA.

Sections 10.2 and 10.3 describe standard procedures that are used to move the
current me posltlon within the file and to tranSfer data oetween the flJe
buffer and the current file component.

4.3.4 PoInters and Their (l)jects
The value of a pointer variable Is either nIt or a value that identlfles some
other variable, called the object of the pointer.

The object pointed to by a pointer variable is denoted by a variable-reference
that refers to the poInter variable, followed by a quallfler called the pointer
ob ject -symbOl.

polnter-OlJ/ect-symlJOl ~

4-4

I
;
1
!

-I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

< ~ , :.r

"

• I

Pascal Refe.rence Henl.Ial VSIfetJles

Pointer values are created by the standard procedure new (see Section
11.2.1),. by the - operator (see Section 5.1.6), and by the standard
procedure polnter (see Section 11.3.4~

The constant nll (see Section 3.3) does not point to a variable. If you access
memory via a nil pointer reference, the results are unspeCified; there may not
be any error indIcation.
Examples of .references to OlJjects of pofnte.rs:

1~ p ft ~
pi .sibling

4-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

-,
.\

Chapter 5
Expressions

5.1 ~raton ..••..•.. 5-4

5.1.1 Binary cperators: Order of Evaluation of qJerands 5-4
5.1.2 Ali thrnetic ~rators ... 5-4
5.1.3 Boolean cperators ... 5-6
5.1.4 Set qJerators ... 5-6

5.1.4.1 Result Type in Set qJerations ... 5-7
5.1.5 Relational cperators ... 5-7

5.1.5.1 Comparing ~rs ... 5-7
5.1.5.2 Comparing Booleans ... 5-8
5.1.5.3 ~ring Strings ... 5-8
5.1.5.4 Comparing Sets ... 5-8
5.1.5.5 Testing Set Merrbership .. 5-8
5.1.5.6 Comparing Packed Arrays of Char 5-8

5.1.6 .-cperator .. 5-8
5.1.6.1 o-cperator with a Variable .. 5-9
5.1.6.2 "~erator with a Value Parameter 5-9
5.1.6.3 P-cperator with a Variable Parameter 5-9
5.1.6.4 cperator with a Procedure or FlIlCtion 5-9

5.2 F...nion-C:alls ... 5-10

5.3 Set -constnJ:::ton .. 5-11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Expressions

ExpressIons consist of operators and operands" I.e. variables" constants" set
constructors, and function calls. Table 5-1 shows the operator precedence:

t:pe.rstars
., not

*, /, div,
rtm,cm
+, -" or

-, <>, <" >"
<=, >=, in

Twle 5-1
PrecetB ICe Of (lJerators

PJl?cedence Cstego.r.ies

hlgnest unary operators

second "multiplying" operators

third "adding" operators &. signs

lowest relational operators

The following rules specl fy the way in which operands are bound to operators:

• When an operand is written between two operators of different precedence,
it is bound to the operator with the higher precedence.

• When an operand Is written between two operators of the same precedence,
it 1s bound to the operator on the lefL

Note that the order in which operations are performed is not specified.

These rules are impllcIt in the syntax for expressions, which are built up from
factors, terms, and simple-expressIons.

The syntax for a I'actor allows the unary operators - and not to be applied to
a value:

-'-fi..;;;;.'Bc;;..;t;.;;..O',;;..!T __ --.:-_'"""t""" ___ -,.-~ variable-reference 1--__ _

5-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference Hanual Expressions

A flIncaon-c8// activates a function~ and denotes the value returned by the
function (see Section 5.2~ A set-constJuctordenotes a value of a set-type (see
Section 5.3). An lII7signed-constant has the following syntax:

..=f.II::...:rn,::::'S1.%· 'f7.~'8::.::'O':--::.:co.::.:..'f7,:=.'S.::.::ta::...:lf7..:..t -...r----.! unsigned-number 1--__ _

Examples of factors.;

x
itX
15
(x+y+z)
sin(xl2)
['A' .. 'F' .. 'a' .. 'f']
notp

{variable-reference}
{pointer to a variable}
{unsigned-constant}
{stil-expressl00 }
{functloo-call}
{set-constructor}
{negation Of a boolean}

The syntax for a teIm allows the "multiplying" operators to be applled to
factors:

te.rm

Examples of te.rms:
x*y
1/(1-1)
p cnl q
(x <= y) cnl (y < z)

5-2

/~
. ')

CO,""#'

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference Manual Expressions

The syntax for a slmple-expresslon allows tile "adding" operators and signs to
be applled to terms:

Examples of slmple-expressJons:

x+y
-x
h.Jel + tue2
l*j + 1

The syntax for an e)(fJl'ess/on allows the relational operators to be applied to
simple-expressions:

expressjon

simple-expression 1--.,.---------------;1"""-.

Examples of expIesslons:

x = 1.5
P <= q
p=qcn:Jr
(1 < j) = (j < k)
c in rue1

}--,..---I~ slmple-expression

5-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference Manual Expressions

5.1 qJerato~
5.1.1 Binary q:,erators: order of Evaluation of qJercn:ls

The order of evaluation of the operands of a binary operator Is unspecIfIed.
5.1.2 ArlUllletlc qJeraton

The types of operands and results for arithmetic binary and unary operations
are shown in Tables 5-2 and 5-3 respectively.

Table 5-2
Binary Arlurnetic qJerations

t:peratar t:peralim t:pem?t1 rypes l)pe of Result

+ addItion
......... " " ,,, , ''''''''''', ..

Integer, real, or integer, real, or - subtraction
.................................. " , longint longint

» mul tiplication

I divisIon Integer, real, or real
lot'llint

dlv division with Integer or longint integer or longint
integer resul t

mod modulo integer or longinl integer

Note: The symbols +, -, and * are also used as set operators (see
Section 5.1.4~

Table 5-3
umy ArltJmetlc qJeratlons (Slgu)

t:peratof t:peratJon t:perand Types Type Of Result

+ identity
....................... , " ." ... integer, real, or same as operand

- Sign-negation 10000000t

My operand whose type Is Sltlr, where Sltlr is a sub range of some ordinal-type
ordtyp, Is treated as if it were of type ordtyp. Consequently an express10n
that consists of a Single operand of type sttlr is itsel? of type ordtyp.

5-4

"

/

Pascal Ref"erence /'18171.1al Expressioos

If both the operands of the addition, subtraction, or multiplication operators
are of type Integer or la9nl .. the result Is of type Integer or la9nt as
described in Section 3.1.1.2; otherwise, the result Is of type real.

See AppendIx 0 for more Information on all arithmetic operations with
operands or results of type real.

The result of the identity or sign-negation operator Is of the same type as the
operand.
The value of I cJlv j Is the mathematical quotient of ill, rounded toward zero
to an Integer or locglnt value. M error occurs if .)-0.

The value of 1 rTI(Xj j Is equal to the value of
1 - (1 div j)*j

The sign of the result of rTI(Xj Is always the same as the sIgn of I. M error
occurs 1 f J= O.
The predefIned constant maxint is of type Integer. Its value is 32767. This
value satisfles the following condItions:

• All whole numbers in the closed interval from -maxint-l to ~maxint are
representable In the type Integer.

• My unary operation performed on a whole number in this interval wUl be
correctly performed according to the mathematical rules for whole-number
arithmetic.

• My binary integer operation on two whole numbers in this same interval
will be correctly performed accordIng to the mathematical rules for
whole-number arithmetic, provided that the result is also in this interval.
If the mathematical result Is not in this intervaL then the actual result Is
the low-order 16 bIts of the mathematical result.

• My relational operation on two whole numbers In this same Interval will be
correctly performed according to the mathematical rules for whole-number
arithmetic.

5-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference Manual Express/ons

5.1..3 Boolean q>erators
The types of operands and results for Boolean operations are shown 1n Table
5-4.

cperatol' cperatJon
or dlsjt.rlctlon

ar(1 conjtrlctlon

Table 5-4
BcKlleal qJeraU(l1S

cper8l?d Types

lXlO18Cl1
........ , " , , , " ,'

Type of Result

lXlO18Cl1

not negation ______ ~~ ______________ -L ____________ ~

Whether a Boolean expression is completely or partially evaluated if Its value
can be determined by partial evaluation is unspecified. For example, consider
the expression

true or boolTst(x)
where boolTst is a function that returns a boolea1 value. This expression will
always have the value true, regardless of the result of boolTSt(X~ The language
definition does not specify whether the boolTst function is called when this
expression is evaluated. This could be important if boolTst has side-effects.

5.1.4 set qJerators
The types of operands and results for set operations are shown In Table 5-5.

cperatol' cperatJon
... union

dIfference

• intersection

T~le 5-5
set CfJeraUlllS

q;eranct TYpes

compatible
set-types

5-6

TYpe of Result

(see 5.1.4.1)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference Hani/8J Expressions

5.1.4.1 Result Type In set q>eratlCXlS
The fallowing rules govern the type of the result of a set operation where one
(or both) of the operands Is a set of sltu" where ordtyp represents any
ordinal-type and 3lbr represents a subrange of orcttyp:

• If orcttyp Is not the type integer" then the type of the result is set Of
omtyp.

• If orcltyp is the type integer" then the type of the result Is set of 0..4087 In
the current implementation (0 .. 32767 in a future implementatlon~ This rule
results from the Ilmitations on set-types (see Section 3.2.3~

5.1.5 Relational q>erators
The types of operands and results for relational operations are shown In Table
5-6, and discussed further below.

Q:Je.rator

-
.......... . " ,

<>

<
............................ ,

>

<-
., "

>-

<-.................................
>-

in

Table 5-6
Relatimal q>eratiCllS

cpe.ratJon QJerand TYpes

equal compatIble set-,
sirnple-, or ,., " ..

not equal pointer-types
(& see below)

less
...

greater compatible
lessleqwif···········,··,"'" sImple-types

(& see belOW)
.. ··greater/equal'···

., ... ~~~~.~, . .9.f.""" , "'. compatible
superset of set-types

Jeft ope.rand.:

member Of " .. ,~nY.. . .9.r9i.Q~~:::.~y.~ .. .T.
rJgflt operand:
set of T

5.1.5.1 Gomparlng I\k.ITtlers

TYpe of Result

boolea1

When the operands of <, >, >-, or <- are numeric, they need not be Of
compatIble type if one operand Is real and the other Is Integer or lorglnt

f\IJTE

See .A.ppendlx 0 for more information on relational operations wIth
operands of type real.

5-7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

P8SC8l Reference MantI81 ExpressIons

5.15.2 COrf1>aI1rg Booleans
If p and q are boolem operands, then p-q denotes their equivalence and p<--q
denotes the implication of q by P (because false<true). Similarl y, p<>q denotes
logical "exclusive-or:'

5.15.3 COrf1>aI1rg strirYJS
When the relational operators -, <> ; < , > , <- ; and > are used to compare
strings (see Section 3.1.1.6), they denote lexicographIc orderIng accordIng to the
ordering of the ASCII character set. Note that any two strIng values can be
compared since all string values are compatible.

5.15.4 COrf1>aI1ng sets
If u and v are set operands, then u<-v denotes the inclusion of u in v, and
u>-v denotes the inclusion Of v in u.

5.15.5 Testlrg Set MerOOershlp
The In operator yields the value true if the value of the ordinal-type operand
is a member of the set-type operand; otherwIse it yields the value false.

5.1.5.6 COrf1>aI1rg Packed Arrays of 0"Iar
In addition to the operand types shown in the table, the - and <> operators can
also be used to compare a packed array{LN] of char with a string constant
containing exactly N characters, or to compare two one-dimenSional packed
arrays of char of Identical type.

5.1.6 tt-qlerator
A pointer to a variable can be computed with the fiil--operator. The operand
and result types are shown in Table 5-7.

cperator t:perBtion

pointer • formation

Table 5--7
Pointer ~ratlon

cperand
variable, parameter,
procedure, or
function

Type of Result

same as nil

• 1s a unary operator taKIng a single variable, parameter, procedure, or
function as its operand and computing the value of its pOinter. The type of
the value Is equivalent to the type of nit and consequently can be aSSigned to
any pointer variable.

5-8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference M8/7{/al Expressions

5.1.6.1 rt--q)erator With a Variable
For an ordinary variable (not a parameter), the use of • is straIghtforward. For
example, if we have the declarations

type t.achar :: packed array[O .. 1] Of Char;
var int: integer;

t.acharptr: ft twochar;

then the statement

t.acharptr := alnt
causes twocharptr to point to tnt Now twocharptr ~ Is a relnterpretatlon of
the bit value of lnt as though it were a packed array[o..l] Of Char.

The operand of " cannot be a component of a packed variable.
5.1.6.2 .. q,erator With a Value Parm1eter

When. is appUed to a formal value parameter, the result is a pointer to the
stack location contaInIng the actual value. Suppose that foo is a formal value
parameter In a procedure and fooptr Is a poInter variable. If the procedure
executes the statement

fooptr : = iJfoo
then fooptrft is a reference to the value of foo. Note that if the actual
parameter is a variable-reference, fooptr ft Is not a reference to the variable
itself; it is a reference to the value taken from the variable and stored on the
stack.

5.1.6.3 ~rator With a Variable Parcrneter
When. is appUed to a formal variable parameter, the result is a pointer to
the actual-parameter (the pointer Is taken from the stack~ suppose that flIn
Is a formal variable parameter of a procedure, fte Is a variable passea to the
procedure as the actual-parameter for flIn. and f't.Ill:>tr Is a pointer variable.
I f the procedure executes the statement

flllptr ::: iJfllll

then flJ1'lltr Is a pointer to fIe. f't.Ill:>tr A is a reference to fie Itself.
5.1.6.4 ~rator With a ProceWre or FlIlCUon

It Is possible to apply" to a procedure or a function, yielding a pointer to the
entry-point. Note that Pascal provides no mechanism for using such a poInter.
Currently the only use for a procedure poInter Is to pass it to an assembly
language routine, whIch can then JSR to that address.
If the procedure pointed to Is In the local segment, • returns the current
address of the procedure's entry point. Jf the procedure Is In some other
segment, however, • returns the address of the jump table entry for the
procedure.

5-9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference M8l?tlal ExpressIons

In logical memory mapping (see WoIksl7op User's Guide for t/7e Lisa), the
procedure pointer is always valid.
In physical memory mapping, code swapping may change a local-segment
procedure address without warning, and the procedure pointer can become
invalid. If the procedure Is not In the local segment, the jump-table entry
address wlll remain valid despite swapping because the jump table 1s not
moved.

5.2 FlIlCtion-caIIs
A function-call specifies the activation of the function denoted by the
function-identifier. If the corresponding function-declaration contains a list Of
formal-parameters, then the function-call must contain a corresponding list of
actual-parameters. Each actual-parameter is substituted for the corresponding
formal-parameter. nle correspondence Is established by the pOSitions of the
parameters in the llsts of actual and formal parameters respectively. The
number of actual-parameters must be equal to the number of formal
parameters.
The order of evaluation and bindIng of the actual-parameters is unspecified.

fUll)(j(.J/7-CalJ

function-identifier

actual-parameter

actual-parameter-list

expression

procedure-identi fier

functlon-identl fier

A function-identifier is any Identifier that has been declared to denote a
function.

5-10

I
I
I
I
I
I
I

I
I

I
\

I
I
I
I
I
I
I

d':~:

1M '" •• :'

I
I

Pascal Rererence Manual

Examples Or 1UJc1lon-caJls:

sun(a., 63)
gcd(147,k)
sln(x+y)
eaf(f}
Ord(fA)

5.3 set -Coostructors

ExpressIons

A set-constructor denotes a value of a set-type, and Is formed by writing
expressions within [brackets). Each expression denotes a value of the sel

set-constJuctor "'CD[l-....--------------.. tp--... ~ J~
(_ I member-group I)
----~O)ll .. t----"

.1 expression I \:Q:i ~
.. expression

The notation [] denotes the empty set, which belongs to every set-type. My
member-group x..y denotes as set members the range of all values of the base
type In the closed interval x to y.
If x Is greater than y, then x..y denotes no members and [x..y] denotes the
empty set
All values designated in member-groups in a particular set-constructor must be
of the same ordinal-type. This ordinal-type is the base-type of the resulting
set. If an integer value deSignated as a set member Is outside the limits glven
1n Section 3.2.3 (0 .. 1+087 1n the current implementation), the results are
unspecified.
Examples or set-constructors.·

[red, c, green]
[1, 5, 10 .. k IIIld 12, 23]
['A' .. 'Z', 'a' .. 'z', Ctlr(xcode)]

5-11

I'
I
I·
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

- - -- -------

Chapter 6
Statements

6.1 SlrT1Jle statements .. 6-1

6.1.1 Assignment-Statements .. 6-1
6.1.2 Procedure-Statements .. 6-2
6.1. 3 Gate-Statements .. 6-3

6.2 St.n.J:::tured-Stat.ernent.s•...........•......•..••••....••..••..••..•....•.•............•.. 6-4

6.2.1 Compound-Statements .. 6-4
6.2.2 Conditional-Statements .. 6-4

6.2.2.1 If-Statements ... 6-5
6.2.2.2 Case-Statements ... 6-5

6.2.3 Repetitive-Statements .. 6-6
6.2.3.1 Repeat-Statements ... 6-7
6.2.3.2 Whlle-Statements ... 6-7
6.2.3.3 For-Statements ... 6-8

6.2.4 With-StatelTl8nts .. 6-10

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CIIAN~£s/A/)/)ITI()AlS
PtlScaJ Reference 3.0 Notes

Chapter 6
Statements

Extended Case staement (See Section 6.2.2.2)

statements

Case-tag lists may range over a number of constants--you don't have to list
each constant. The extended range is denoted by <constant> .. (const.ant.>,
where each constant can be a const.ant expression. (See the Release Notes
to Chapter 1 for a discussion of constant expressions.)

The second case-statement example in Section 6.2.2.2 ca.n now be written as
follows:

case i of
1: x:= sin(x);
2: x:= eos(x);
3 .. 5~ x ~= exp(x); {you no longer have to emJDerate 3 ... 4 ... 5 }
othEmfise x :'" In(x)

end;

Notes 6-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Statements

Statements aenote algor1ttvnlc actlons, and are executatlle. Tney can oe
prefixed by labels; a labeled statement can be referenced by a goto-statement.

simple-statement 1-----..

JabeJ .1 digit-sequence I ..,

A digit-sequence used as a label must be in the range 0 .. 9999, and must first
be declared as described In Section 2.1.

6.1 SifTllle Statements
A simple-statement is a statement that does not contain any other statement.

,:,'irnple-stetement assignment -statement

goto-statement 1--------..,

6.1.1 Assigment-Statements
The syntax for an assignment-statement Is as follows:

as...::Jgynent -statsnent
variable-reference

function-identi fier expression

The assIgnment-statement can be used In two ways:
• To replace the current value of a varIable by a new value speclfled as an

expressIon
• To specify an expressIon wnose value Is to be returned oy a functlon.

6-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference Hanual Statements

TIle expression must Oe assignment-compatible with the type of the variable or
the result-type of the function.

If the selection of the variable inVOlves indexing an array or taKing the
object of a polnter~ it is not specifIed whether these actions precede or
follow the evaluation of the expressIon.

Exa7pleS of' asslyrment-statements:
x := y+z;
p := (1<=1) and (1<100);
1 := sqr(k) - (i*j);
rue! := [blue, succ(c)];

6.L2 ProceWre-Statements
A procedure-statement serves to execute the procedure denoted by the
procedUre-ldenU fier.

PIl.7('fBCk/Il?-statef7JenI

procedure-identi fier
actual-parameter-list

(A procedure-identifier is simply an identifier that has been used to declare a
procedure.)
If the procedure has formal-parameters (see Section 7.3)~ the procedure
statement must contain a list of actual-parameters that are bound to the
corresponding formal-parameters. The number of actual-parameters must be
equal to the number of formal parameters. The correspondence Is establlshed
by the pos1tIons of the parameters in the llsts of actual and formal parameters
respectI vel y.
The rules for an actual-parameter p.p depend on the corresponding formal
parameter FP:

• If FP is a value parameter" IV> must be an expression. The type of the
value of p.p must be assIgnment-compatible wIth the type of FP.

• If FP Is a variable parameter, IV> must be a variable-reference. The type
of IV> must be identical to the type of FP.

• If FP is a procedural parameter~ IV> must be a procedure-identifier. The
type of each formal-parameter of IV> must be identical to the type of the
corresponding formal-parameter of FP.

6-2

'l

I
!

I
,

I
I
I
I
I
I
I

!

I
I
I

!

I
I
I
I
I
I
I

. ,
\l Pascal RefeIence I'1a!7val Statements

• If FP h a functional parameter, N> must be a flMlction-ldentlfler. The type
of each formal-parameter of N> must be Identical to the type of the
corresponding formal-parameter of FP, and the result-type of IV> must be
identical to the result-type of FP.

The order of evaluation and binding of the actual parameters is
unspecified.

Examples of procea;re-statements:

printheOOing;
trmspose(a., n, m);
bisect (fct, -1.0, +1.0, x);

6.1.3 Gom-Statements
A goto-statement causes a jump to another statement in the program, namely
the statement prefixed by the label that is referenced in the goto-statement.

qoto-st.aternent .. ~ label ~

The constants that lntroduce cases wlthln a case-statement (see Sectlon
6.2.2.2) are not labels, and cannot be referenced in goto-statements.

The followIng restrictions apply to goto-statements:
• The effect of a jump into a structured statement from outside of the

structured statement is unspecified.
• The effect of a jump between the then part and the else part of an If

statement is unspecified.
• The effect of a jump between two d1fferent cases within a case-statement

is unspecl fied.

6-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference M8I'IlI8l Statements

6.Z strt.ctureo-statements
Structured-statements are constructs composed of other statements that must
be executed either conditionally (conditional-statements), repeatedly
(repetitive-statements), or in sequence (compound-statement or with-statement).

structured-statement
"'::":::"::'::':="='::''''::'''::==::'':''::''_--..,,--111>1 compound-statement 1---......

condItional-statement

repeti ti ve-statement

with-statement 1-------_.

6.2.1 COfTlK:Uld--statements
The compound-statement specifies that its component statements are to be
executed in the same sequence as they are written.

compound-statement

.0(begin) C.I statement) .@
"'-. ---IO,..t----~

EX8tnPle of compound-statement-
begin

z ~= X;
X := y;
y := Z

erKt

M important use of the compound-statement Is to group more than one
statement into a single statement, in contexts where Pascal syntax only allows
one statement The symbols begin and erKt act as "statement brackets."
Examples of this wlll be seen in Section 6.2.3.2.

6.2.2 COOdlt1onal-statements
A conditional-statement selects for execution a single one (or none) of its
component statements.

c0I7r.lltional-S18teme.nt if-statement

6-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference Manual Statements

6.2.2.1 If-~~ts
The syntax for if-statements is as follows:

if-statement expression

statement

The expression must yield a result of type boolecn If the expression yieldS
the value true, the statement followIng the then is executed.

If the expression yields false and the else part is present,. the statement
fallowing the else Is executed; 1 f the else part Is not present, nothing Is
executed.

The syntactic ambiguity arising from the construct:

1f e1 tnen
if e2 then s1

else 52

is resolved by interpreting the construct as being equivalent to:

if e1 then begin
if e2 then s1

else s2
enJ

Examples of if-statements:

if x < 1.5 then z := x+y else z := 1.5;
if pI <> nil then pI := pIA .father;

6.2.2.2 C8se-Stat.ements
The case-statement contains an expression (the selectolj and a l1st of
statements. Each statement must be prefixed with one or more constants
(called case-const8nt~, or with the reserved word otherwise. All the case
constants must be distinct and must be of an ordinal-type that is compatible
with the type of the selector.

':'ese-statement expresslon

otherwise-clause

6-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Refe/'ence M8I?lIal Statements

("I constant 1-1-)-... 0--1 statement

-----10---

....;O...;.;tIJt.:!....;.;....;.~---..:...:1se..::.._-cJ.='8USe= ___ ... O-'C otherwise)-.j statement I~-••

The case-statement specifies execution Of the statement prefixed by a case
constant equal to the current value of the selector. If no such case-constant
exists and an otherwise part is present, the statement following the word
otherwise Is executed; if no otherwise part Is present, nothing Is executed.
Examples of case-statements:

case operator of
plus: x:.,. x"y;
mirus: x:= x-y;
tiREs: x: = X*Y

end

case i of
1: x :== sin(x);
2: x := cos(x);
3" 4" 5: x: = exp(x);
otherwise x .- In(x)

end

IM'LEI"ENT ATJ(N l\UTE

In the current implementation, the case-statement wlll not work
correctly If any case-constant is of type longlnt or the value of the
selector Is of type longlnt

6.2.3 Repetitive-Statements
Repetitive-statements specIfy that certain statements are to be executed
repeatedly_

re, 'Btjtjve-statement repeat-statement

while-statement

for-statement

6-6

,~
~"c, u)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference /I18rJU8l Statements

6.2.3.1 Repeat-statements
A repeat-statement contains an expression whIch controls the repeated
execution of a sequence of statements contained within the repeat-statement

l~at-st~t~t

.(repeat ~ statement I) .@itii)--+[expression f-
"------iO~ ... --~

me expression must yield a result of type txxllecn Tne statements between
the symbols repeat and lfltll are repeatedly executed until the expression
yIelds the value true on completion of the sequence of statements. Tne
sequence of statements is executed at least once, because the expression Is
evaluated after execution of the sequence.
ExarrpJes of .repeat-statements:

repeat
k:=lnn1j;
1: j;
j := k

lIltll j '" 0

repeat
process (f ~);
get(f)

LIltil eof(f)

6.2.3.2 Whlle-statements
A while-statement contains an expression which controls the repeated
execution of one statement (possibly a compound-statement) contained within
the While-statement

w/7jle-statement

~ expression ~ statement ~

The expression must yield a result of type boolecn It is evaluated before the
contained statement Is executed. The contained statement is repeatecll y
executed as long as tne expression yieldS the value true. If the expressIon
yields false at the beginning, the statement Is not executed.

6-7

Pascal Refe.!l!?nce Manual

The while-statement:

.... l1e b do body

Is equivalent to:

1 f b then repeat
body

Lfltll rot b

Exarrples of kllJjJe-statements:

.... 11e a[l] <> x do 1 := 1+1

.... l1e 1>0 do begin
if odd(l) then z := ~
1 := 1 dlv 2;
x := sqr{x)

end

.... 11e rot eof(f) do begIn
process (f -);
get(f)

end

6.2.3.3 For-statements

Statements

The for-statement causes one contaIned statement (possIbly a compound
statement) to be repeated} y executed whlle a progression of values is aSSigned
to a variable callecl the control-val/able

fo[-staten7t:?lJl

control-variable initial-value

J------"'J.....--t final-value statement

conI1l11-vaJia/..,le _I varIable-IdentifIer ~

jnjijai-valuB I L--.
..::.:...:.:.=:......::..;=~.1I>l expression,

..:...;fJ,~'n:.='8J~-~va~'f,.:::::lIe~-4.1IJ>l1 expression ~

6-8

Pascal Reference Mantla} Statements

The control-variable must be a variable-identifier (without any quaUfler~ It
must be local to the innermost block containing the for-statement" and must
not be a variable parameter of that block. The control-variable must be of
ordinal-type" and the initial and final values must be of a type compatible with
this type.

The first value assigned to the control-variable Is the initial-value.

If the for-statement is constructed with the reserved word to, each successive
value of the control-variable is the successor (see Section 3.1) of the previous
value" using the inherent orderIng of values according to the type of the
control-variable. When each value is assigned to the control-variable, it Is
compared to the final-value; if it is less than or equal to the final value, the
contained statement is then executed.

If the for-statement is constructed wIth the reserved word cbWnto, each
success1ve value Of the control-variable 1s the predecessor (see section 3.1) of
the previous value. When e~ch v~lLJe is ~sslgned to the control-variable,. it is
compared to the f1nal-value; if It Is greater than or equal to the final value,
the contained statement Is then executed.

If the value of the control-variable is altered by execution of the repeated
statement, the effect is unspeCified. After a for-statement is executed, the
value of the contrOl-variable is unspecified, unless the for-statement was
exited by a goto. Apart from these restrictions, the for-statement:

for v := e1 to e2 do body

is equivalent to:

begin
'tE!ql1 : = e1;
teql2 := 82;
if tenp1 <= t.erIl>2 then begin

v := t_1;
body;
1IIh1le v <> tef1ll2 do begin

v := succ(v);
body

end
enD

end

6-9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Refemnce /'1817t/al

and the for-statement:
for v : = e1 downto e2 do body

Is equIvalent to:
begin

tetrp1 : = e1;
teql2 := e2;
if tetrp1 >= tenp2 then begin

v := t~l;
body;
While v <> tenp2 do begin

v := pred(v);
body

ere
end

end

Statements

where t.en'lJ1 and t.en'lJ2 are auxiliary variables of the host type of the variable
v that do not occur elsewhere in the program.
ExampJes of for-statements:

for i := 2 to 63 do if a[i] > max then max := a[i]
for i := 1 to n do for j := 1 to n do

begIn
x := 0;
for k := 1 to n do x := X + ml[i,k]*m2[k,j];
m[i, j] := X

end

for c := red to blue do q(c)
6.2.4 WIth-statements

The syntax for a with-statement is

wHn-statement

recora-variable-reference

,

statement

(A record-variable-reference is simply a reference to some record variable.)
The occurrence of a record-variable-reference in a with-statement affects the
way the compHer processes variable-references within the statement fOllowing
the wora do. Fields Of the record-variable can be referenced by their field
identifiers, without explicit reference to the record-variable.

6-10

Pascal Reference Manual

Example Of wftIJ-staiement:

wI th date do if nmth = 12 then begin
nmth := 1;
year := year + 1

end
else nmth : = nmth + 1

This Is equivalent to:

if date.nmth = 12 then begin
date .lOOnth : '" 1;
date. year : = date. year + 1

end
else date .nmth : = date .lIDlth + 1

Statements

Within a wIth-statement, each variable-reference is checked to see If it can
be interpreted as a field of the record. suppose that we have the following
declarations:

type recTyp = record
foo: integer;
bar: real

erJl;

var baz: recTyp;
foo: integer;

The identifier foo can refer both to a field of the record varIable baz and to a
variable of type integer. Now consider the statement

with bel do begin

foo : = 36; {Which foo is thiS?}

end

The foo in this wIth-statement Is a reference to the field baz.foo; not the
variable (00.

The statement:
with v1, v2, ... vn do 3

is equivalent to the following "nested" wIth-statements:

with vI do
with v2 do

with vn do s

6-11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference Hanual Statements

If vn in the above statements is a field of bOth vi and V2, it is interpreted to
mean Vl.vn, not v1.vn. The list of record-variable-references in the with
statement Is Checked from right to left

If the selection of a variable in the record-variable-l1st involves the lndexing
of an array or the de-referencIng of a poInter, these actions are executed
before the component statement Is executed.

WAANJN3

If a variable in the record-variable-llst is a painter-reference, the value
of the pOinter must not be altered within the with-statement. If the
value of the pointer Is altered, the results are unspecIfied.

Example of lI7S8fe wit/7-statement using pointer-reference:

wi th ppp" 00 begin

new(ppp); {Ooo't 00 this ... }

ppp: =XXX; {. •• or this}

end

6-12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

-- - --------

7.1

72.

7.3

Chapter 7
Procedures and FlIlCtions

Proc:ec:lJre-[)laraUons ••...•.••••••••.••.••..•••••.••.•...•..•.••••.•.•••••.•...•••.•••.•. 7-1

F tI1CtI(J"t--()eclaratlCllS•..••..•..•..•.•••••••..•.....••••••••••••••••..•••••• 7-4
Parameters _. ___ _ . _________ . ____ ... ____ ________ ... __ . _ .. _ .. _ _ 7-5

7.3.1 ValuePararneters .. 7-7
7.3.2 Variable Parameters .. 7-7
7.3.3 Procedural Parameters .. 7-7
7.3.4 FtJrlCtional Parameters .. 7-9
7.3.5 Parameter List Compatibility ... 7-9

I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I

Pascal fi'eference .,~O Notes Procedures and Functions

Chapter 7
Procedures and FLI1ctions

Repetition of Forward Procedure and Function Parameters (See Section 7_1)
You may repeat the parameter lists for torward declared or unit Interface
procedures and funct.ions when the act.ual rout.ine is defined. The repeat.ed
paramet.er list (and, for functions, the function result type) must be exactly
the same as the original definition or an error will be reported by the
Compiler.

JnIine Attribute (See Section 7.1)
The new inline facilit.y allows you to writ.e explicit hex code in place of a
procedure body. You can cleclare a pfCIcedure or function inline in a manner
similar to the Wf!oj you declare external and rorward procedures. For
example, the following procedure declaration allows YOll to trap certain calls
with a single instruction in place of a JSR:

Procedure Tr8p(Tos: LongInt); inline $A9ED;

The follol,l,'ing is no,,",' the syntax for a procedure-body:

"---.(forward)1-------.1

'--+(external)l-------.
"~

The synt.ax for functions is similar. The const.ant can be a constant
expressic.n, and arll.' number of them may follow the word inline. Like
forward and external, inIine is not a reserved word.

v.,'hen a procedure is normally called, code is generated t.hat. pushes one or
t o "'/ords of function result (if a function is being called), pushes the
procedure's arguments (if anyt and then a JSR is: generated to call the
procedLD"e" ~""hen you declare a routine inline, the Compiler causes the
const.ants followincr t.he word inline t.o be generat.ed in place of t.he JSR.
Each constant (or constant expression) represents exactly one word. They are

/vot e.s 1-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal f;,'efslBl7ce -I~O l'vvtes Plocedules and Functions

generated in the order given. As long as you observe the proper rules for
adjusting the stack, saving registers, etc." you can efficiently write small
routines using this facility. This is not a substitute for being able to embed
assembly code in a Pascal program" and it is not intended to be such.

NOTE

There is no code body other than what is specified for the inline
constants. Remember this when you declare such routines in a unit's
Irterface section. There is no corresponding declaration in the
Implementation section.

Univ in Penmeter" Lists (See Section 7.3)
The word univ (not a reserved word) is naw allowed before the type
ident.ifier in formal parameter lists. The univ informs the Compiler that any
parameter type is acceptable as long as it has the same size as the formal
type. The following is now the syntax for a parameter-declaration:

---~----~ identifier-list }..----.........Ia..! type-identifier

Example:

type ptr = "'char;
procedlU"e RealAddr(virt: longint;

rAddr: uni v ptr);

RealAddr(v ... p1);
RealAddr(v, p2);

{ p1 3: p2 can be pointers to types other than chars, }
{ or can be 81PJ ot her 4-byt e type. }

/Votes 7-2

I
I
I
I 7.1

I
I
I
I
I
I

(

I
I
I
I
I
I
I
I
I

Procedures and Functions

PIlX.'!eWre-Declarations
A procedure-declaration associates an identifier with part of a program so that
it can be activated by a procedure-statement.

procedure-declaration

-~"'1I>l1 procedure-heading ~ procedure-body ~

prt:JCefiffe-lxxly

The procedure-heading specifIes the Identifier for the procedure, and the
formal parameters (if any).

PJl.1{~.1.0"8-neEJt.tI,.,g

--tIool"'C procedure H identifier 1-1 "I:""\r-,....-_-_-_-_-___ - _-_-_-_-_-_-_-_-~-.."..
~ formal-parameter-list ~

The syntax for a formal-parameter-llst is given in Section 7.3.

A procedure is activated by a procedure-statement (see Section 6.1.2), which
gives the procedure's identifier and any actual-parameters requlred by the
procedure. The statements to be executed upon activation of the procedure
are specified by the statement-part of the procedure's block. If the
procedure's identifier is used in a procedure-statement within the procedure's
blocK" the procedure is executed recursively.

7-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

,

I
I

Pascal Reference H8I?lIal ProceWJ'eS & FlI7Ctions

Exarple of a procet:li.ln!?-ck!claration:

p1'OOeWI'e readInteger (var f: text; var x: integer);
var value,digitValue: integer;
begin

... 11e (f· = ' .) CI1d not eof(f) 00 get (f);
value := 0;
while (f" 1n ['0' .. '9']) a1d not eaf(f) do begin

dlgltValue := Ord(fA) - ord('O');
value := lO*value + digltValue;
get(f)

end;
x := value

end;

A procedure-deClaration that has forward instead of a bloCk 1s called a
forwani declaration Somewhere after the forward declaration (and in the
same blOCk), the procedure Is actually defined by a defining declaration--a
procedure-declaration that uses the same procedure-identifier, omits the
formal-parameter-llst, and includes a block. The forward declaration and the
defining declaration must be local to the same block, but need not be
contiguous; that is, other procedures or functions can be declared between
them and can call the procedure that has been declared forward. This permits
mutual recursion.
The forward declaration and the definIng declaration constitute a complete
declaration of the procedure. The procedure Is considered to be declared at
the place of the forward declaration.
Example Of fOIW8.n:J deClaration:

procedure walter(m.,n: integer); {forward declaratlm}
forward;

prt:JCet1lre clara(x, y: real);
begin

walter(4 .. 5); {(J(beCaUse walter Is forwrd declared}

em;
procerure walter; {defining declaration}

begin

clara(8.3 .. 2.4);

em;
A procedure-declaration that has external instead of a block defines the Pascal
interface to a separately assembled or compiled routine (a .PROC in the case
of assembly language~ The external code must be llnked with the compiled

7-2

I
I
I
I

j

I
I
I
I
I
I
I
I
I

j

I

I
I
I
I

•. ~r<_,.,. , .

I
I

Pascal ReFerence 1'18IVa1 P.rocet:X.u'es & FtnCtions

Pascal host program before execution; see the WoJ1<stJop USer's Guide for tI7e
Lisa for details.
ExarrpJe of an extemaJ procedlJ18-deCJaration:

procewre lOOkescreen(1roex: integer);
external;

This means that mak~reen is an external procedure that will be linked to the
host program before execution.

II"PLEfvENT A 11(N !\UTE

It is the programmer's responsibillty to ensure that the external
procedure is compatible with the external declaration In the Pascal
program; the current linker does no cheCkIng.

ThIs Pascal (unlike Apple II and Apple III pascal) does not allow a
variable parameter of an external procedure or function to be declared
wIthout a type. To obtaIn a simllar effect, use a formal-parameter of
pointer-type, as in the following example:

type bl~ = packed array[o .. 32767] of Char;
blgpaocptr = A b1gpaoc;

procec:lJre mtever (bytearray: blgpaocptr);
external;

The actual-parameter can be any pOinter value obtained via the --
operator (see Section 5.1.6~ For example, if cJots is a paj<ed array of
booleal, it can be passed to whatever by writing

Itlatever(iIdots)

This description of external procedures also appUes to external functions.

7-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal ReFerence I'18nt.Ial

7 2. FLflCti(Jl-Declaratims
A function-declaration serves to define a part of the program that computes
and returns a value of simple-type or pOinter-type.

fllncUon-decl8f8Uon

-~.~I function-heading ~ function-body ~

The function-heading speci fles the identi fler for the function, the formal
parameters (if any), and the type of the function result

resul t - type
formal-parameter-l ist

fesult-t 'E!

real-type-identifier 1---..... 1

The syntax for a formal-parameter-list is given in Section 7.3.
A function Is activated by the evaluation of a function-call (see Section 5.2),
which gives the function's identifier and any actual-parameters requlred by the
function. The function-call appears as an operand In an expression. The
expression is evaluated by executing the function, and replacing the function
call with the value returned by the function.
The statements to be executed upon activation of the function are specified by
the statement-part of the function's block. This block Should normally contain
at least one assignment-statement (see Section 6.1.1) that assigns a value to
the function-identifier. The result of the function is the last value assigned.
If no SUCh assignment-statement exists, or If It exlsts but Is not executed, the
value returned by the function is unspecified.

7-4

".

,.-<"",., -

Pascal Reference M8I7lIai Pnx:edtJres & Fl/I1CtJons

If the function's identifier is used in a function-call within the function's
block, the function Is executed recursively.
Exarples of fl..nclicn-declaratJms:

function max(a: vector; n: integer): real;
var x: real; i: integer;
begin

x :- a[1];
for 1 := 2 to n do if x < a[i] then x := a[l]
max := X

erI1;

fll1Ction poWer(x: real; y: integer): real; { y >= O}
var I,Z: real; i: integer;
begin

I : = x,; Z : = 1; i : = y;
While 1 > 0 do begin

{z*(w**1) = x ** y }
if odd(l) then Z := Z*I;
1 := i dlv 2;
I := sqr(w)

erKl;
{z = x-y }
fX)ler := Z

end;

A function can be declared forward in the same manner as a procedure (see
Section 7.1 above~ This permits mutual recursion.
A function-declaration that has external instead of a block defines the Pascal
interface to a separate} y complled or assembled external routine (a .FLN:: In
the case of assembly language~ See the explanation 1n Section 7.1 above.

7.3 Pa:rrrneters
A formal-parameter-llst may be part of a procedure-declaratlon or
function-declaration, or it may be part of the declaration of a procedural or
functional parameter.

If it is part of a procedure-declaration or function-declaration, it declares the
formal parameters of the procedure or function. Each parameter so declared
is local to the procedure or function being declared, and can be referenced by
Its identifier in the block associated with the procedUre or function.
If it Is part of the declaration of a procedural or functional parameter, it
declares the formal parameters of the procedural or functional parameter. In

7-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference I'18I7tI8l

this case there is no associated block and the identifiers of parameters In the
formal-parameter-Ust are not significant (see Sections 7.3.3 and 7.3.4 below~

fonnal -pa1l17Jeler-lisl
~--------------~

ident1 fler-Hst type-identifier

There are four kinds of parameters: value parameters, varjabJe parameters,
procedural parameters, and flJnclianal paIl!Jf'/1eteJ'I They are distinguished as
follows:

• A parameter-group preceded by var is a list of variable parameters.
• A parameter-group without a preceding var 1s a list of value parameters.
• A procedUre-heacling or function-heading denotes a procedural or functional

parameter; see Sections 7.3.3 and 7.3.4 below.
I'CTE

The types of formal-parameters are denoted by type-identifiers. In
other words, only a simple identifier can be used to denote a type in a
formal-parameter-llst. To use a type such as arra}{O .. 2S5] of char as
the type of a parameter, you must declare a type-Identifier for this
type:

type charray = array [O •• 255] of char;
The identifier Charray can then be used in a formal-parameter-l1st to
denote the type.

7-6

I
I ..

.j

I
~

I
I
I
I
I
I
I

:

I
I
I
I
I
I
I
I
I

Pascal Reference HanvaJ Procedtl.res & Ft..nCtlons

NOTE

The word file (for an "untyped" file) Is not allowed as a type-Identifier
In a parameter-declaration, since it is a reserved word. To use a
parameter of this type, declare some other identifier for the type file
--for example,

type phyle = file;
The identifier phyle can then be used in a formal-parameter-llst to
denote the type flle.

7.3.1 Value Par<rneten
For a value-parameter, the corresponding actual-parameter in a proCedure
statement or function-call (see Sections 5.2 and 6.1.2) must be an expressIon,
and its value must not be of file-type or of any structured-type that contains
a file-type. The formal value-parameter denotes a variable local to the
procedure or function. The current value of the expression is aSSigned to the
formal value-parameter upon activation of the procedure or function. The
actual-parameter must be aSSignment-compatible with the type of the formal
value-parameter.

7.3.2 Variable Parameters
For a variable-parameter- the corresponding actual-parameter in a procedure
statement or function-call (see Sections 5.2 and 6.1.2) must be a varlable
reference. The formal variable-parameter denotes this actual variable during
the entire activation of the procedure or function.
Within the procedure or function, any reference to the formal varlable
parameter is a reference to the actual-parameter Itself. The type of the
actual-parameter must be Identical to that of the formal variable-parameter.

I'UTE

If the reference to an actual variable-parameter involves indexing an
array or finding the object of a pOinter, these actions are executed
before the activation of the procedure or function.

Components of variables of any packed structured type (including string-types)
cannot be used as actual variable parameters.

7.3.3 Procedural Panmeten
When the formal-parameter is a procedUre-heading, the corresponding actual
parameter in a procedure-statement or function-call (see Sections 5.2 and 6.1.2)
must be a procedure-identifier. The identifier in the formal procedure-heading
represents the actual procedure during execution of the procedure or function
receiving the procedural parameter.

7-7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference Manllal

Example of procedural parametelJ:

progrClll passProc;
var i : integer;

Procedll/"8S & Fl/f7CtJons

proceWre a(procec:1Jre x) {x is a formal proceWral paralBter.}
begin

"I"!te('About to call x ');
x {call the procewre passed as par~ter}

end;

proceWre b;
begin

write('In proceWre b')
end;

function c(procedUre x): integer;
begin

X; {call the prreerure passed as paraneter}
c:=2

end;

begin
a(b); {call a, passi~ b as parnreter}
i:= c(b) {call c, passi~ b as parameter}

end.

If the actual procedure and the formal procedure have formal-parameter-lists,
the formal-parameter-lists must be compatible (see Section 7.35). However,
only the ldentifier of the actual procedure is written as an actual parameter;
any formal-parameter-l1st Is omitted.
Exanple of procedl.lfBl parameteIS wllJ7 their own formal-pararneler-llsts:

progrClll test;
procec:1Jre XAsPar(y: integer);

begin
writeln(, y,..', y)

end;

proceWre callProc(proceclJre xAgain(z: integer»;
begin

xAgain(l)
end;

begin {tx.xJy of progrClll}
callProc(XAsPar)

end.

If the procedural parameter, upon activation, accesses any non-lOcal entlty (by
variable-reference; procedure-statement function-call, or label), the entity

7-8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference Manual ProcedlJres & FtrlCtions

accessed must be one that was accesslble to the procedure 'When the procedure
\Vas passed as an actual parameter.

To see what this means, consider a procedure pp \Vhich is known to another
procedure, flrst.Passer. Suppose that the follo\Ving sequence takes place:

1. first.Passer Is executing.

2. flrst?asser calls a procedure named flrstRecelver, passIng pp as an
actual parameter.

3. flrstRecelver calls s~ecelver; again passing pp as an actual
parameter.

4. ~ecelver calls pp (first execution of pp~

5. ~ecelver calls thirt:t1.ecelvcf, again passing pp as an actual
parameter.

6. thlr~ecelver calls firstpasser (indirect recursion), and passes pp to
firstpasser as an actual parameter.

7. flrstpasser (executing recursively) calls pp (second execution of pp~

Thus the procedure pp Is called first from ~ecelver; and then from the
second (recursive) execution of flrst.Passer.

Suppose that pp accesses an entity named XXX" which is not local to pp; and
suppose that each of the other procedures has a local entity named xxx.

Each time pp Is called, 'Which xxx does It access? The ans\Ver Is that in eacIJ
case, pp accesses the xxx that is local to the f1nt execution of flrstpasser-
that is, the xxx that \Vas accessible when pp was originally passed as an actual
parameter.

7.3.4 FI..I"Ctional ParCYTleters
When the formal parameter is a function-heading, the actual-·parameter must
be a function-identifier. The identifier in the formal function-heading
represents the actual function during the execution of the procedure or
function receiving the functional parameter.

Functional parameters are exactly Ilke procedural parameters, with the
additional rule that correspondlng formal and actual functions must have
identical result-types.

7.3.5 ParCYTleter List CorT1Jatlbillty
Parameter list compatibility Is required Of the parameter lists of corresponding
formal and actual procedural or functional parameters.

7-9

I
I
I
I
I
I
I
I
I
I

•
I
I
I
I
I
I
I
I

Pascal Reference Manual ProcedUres & Functions

Two formal-parameter-Usts are compatible if they contain the same number of
parameters and if the parameters in corresponding positions match. Two
parameters match if one of the following is true:

• They are both value parameters of identlcal type.
• They are both variable parameters of itJentlcal type.
• They are both proceoural parameters wIth compatlble parameter llsts.

• They are both functional parameters with compatible parameter lists and
identical result-types.

7-10

- t

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Chapter 8
Programs

8.1 Syntax .. 8-1

8.2 ProgrI:l'l1-Pm fllleterS.n n 8-1

8.3 Segnentation ... 8-1

--------~

i
\.",

Programs

8.1 Syntax
A Pascal program has the form of a procedure declaration except for its
heading and an optional lJses-clause.

p.lZyn:67J

-.j program-heading f-+() \'1 K)7 ·1 block f-+
. uses-clause . ;

progn7m-lJfNllffrlf1

~rognm~r-l-de-nt1-f-le--'r I \ 1_ ~ r ...
~ program-parameters j-.w-

p!l?Qlan7para71etel~' .Ildentlfler-llst ~

-=l/.:.;;.'Se.;;:..;'S;....-=cJ.='8='l/,;;,.;;'Se;......... ~ identifier-list ~

The occurrence of an identifier immediately after the word progrcm declares it
as the program's identif1er.
The uses-clause identifies all units required by the program, inclUding units
that It uses directly and other units that are used by thOse units.

8.2 Prognm-Pan:meters
Currently, any program-parameters are purely decorative and are totally
Ignored by the comp1ler.

8.3 Segnentatloo
The code of a program's main body is always placed in a run-Ume segment
whose name Is a string Of blanks (the "blank segment"~ My other block can
be placed in a different segment by us1ng the $S compiler command (see
Chapter 12 and Appendix A~ If no $S command is used in the program, all
code Is placed in the blank segment. Code from a program can be placed In
the same segment with code from a regular-unit, but it cannot be mixed with
code from an intrinsic-unit (see Chapter 9~

8-1

I:
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I '

I
I

Chapter 9
Units

9.1 Regular-lklits ••..•.......•...•...•..•....•..........................••......................... 9-1

9.1.1 Writing Regular-LJnits ... 9-1
9.1.2 Using Regular-lJnits ..•........................ 9-3

9.2 Intrlnsic-Ulits •.............•............•...................................•.........•....... 9-4

9.3 Ltlits that lJse Other Ltlits•...•.. 9-4

i
I
I
I
I
I
I
I
I
I
I
I
I
I
I

PBScai Relerence 3.0 Notes

Chapter 9
Units

lNriting Regular-Units (See Section 9.Ll)

Units

The example unit on page 9-3 contains a typographical error that leads to a
bus erroI'. For proper s'y'ntax in Lisa Pascal, a semicolon ought. to appear
after the secclnd-to-last end.

Add1 : =1 nc:r+ 1
end;

end.

Intrinsic-Units (See Section 9.2)
You can now write your own intrinsic-units; you are no longer limited to the
intrinsic-units provided by Apple.

A shared intrinsic-unit provides for the sharing of common data (Le., one
copy of the data on the system).

The code of the entire unit, or of blocks within the unit, must. be placed in
one or more named segments. Segmentation is cont.rolled by the $S compiler
command (described in Section 12.lt the ChangeSeg utility, and the +M linker
option (both described in the Workshop User's Guide). Code from an
intrinsic-unit cannot be placed in the same segment with code from a
program or a regular-unit.

9.2.1 lNriting lrVinsic-Units
An int.rinsic-unit has the same syntax as a regular-unit, except that it has an
intrinsic clause in the heading.

For syntactic compatibility with UCSD Pascal, the keywords code and
data may appear in the unit heading of an intrinsic-unit, together with
integer constants. These keywords and constants are accepted but ere
ignored.

If the keyword shared appears in the irttinsic clause, the system will contain
only a single data area for the unit; the data is shared among all programs
that use the uniL If shared does not appear in the intrinsic clause, each
program that uses the unit has its own data erea for the unit.

Notes 9-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference .,"\0 Notes Units

The new syntax for a unit, either regular or intrinsic, is:

unit ~
., unit-heading.L)

G ~. ~ interface-part H implementation-part I ... ~

unit-hetlding ::::-\ .. I 'l ~ .~~ identifier f-+
, I J .(Intri""i~)--'

'---+(shared }-

If an intrinsic-unit contains a uses clause, it can only use other
intrinsic-units; an intrinsic-unit cannot use a regular-unit.

In order for a unit to be used by a program (or by another unit), it must be
compiled, and its object file must be accessible to the Compiler.

A Single copy of the code of an intrinsic-unit is available to all programs in
the system; therefore, intrinsic-units must be coordinated as part of system
generation and system maintenance activities. Specifically, all intrinsic-units
that have code in the same run-time code segment file must be linked
together into an intrinsic segment file, and the intrinsic segment file must
be referenced in the system intrinsics library, INTRINSIC.UB.

9..2.2 Using Intrinsic-Units
For the host program or unit, there is no syntactiC difference between using
a regular-unit and using an intrinsic-unit. The uses clause immediately
follows the symbol INTERFACE (see Section 8.1 for syntax). There is only
one uses clause in any host program or unit; it must declare all units used
by that program or unit.

9..2.3 Compiler COI1YTl8Ilds Related to Regular- and Intrinsic-Units
The $U Compiler commands control which library directory is searched for a
unit's interface. In the $U+ mode (the defaultt the Compiler first searches
for the unit's interface in the system intrinsic library directory,
INTRINSIC.UB. If the interface isn't found there, the Compiler searches the
file named in the SU filename command. If su- is specified, the Compiler
does not look in INTRINSIC. LIB, it only searches the file named in the $U
filename command. (See Chapter 12 for a description of $U filename and
other Compiler commandS.)

9.2..4 Building Library Files

Notes 9-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(

PascBi F?eterence }(,) Notes l../nits

9.2..4 Building Library Files
To create intrinsic-units and link them into a library file, yCIU must perform
the following steps in order, as sho'Nn in the diagram on the next page.

step 1A Compile and Generate the intrinsic-units.

step 1B Define the intrinsic-units, code segments, and file names, using
the IUManager utility (described in the Utilities section of the
lA/arks-hop User's Guide). (Steps 1 A and 18 can be done in eithe.r
order.)

Step 2 Link the intrinsic libraries.

step 3 Install the library files, using the IUManager utility.

step 4 Develop t.he main programs (not shown in detail).

step 5 Run main programs which use the library files. (The system must
be rebooted before this st.ep.)

",---.......
LibDiT

Developing Ira'irBic Ut.-aries
r-·-...... ----.. -----· .. ·--.... ·-··-· -· · .. · :

STEP 3 lBG ins~

Notes 9-J

--- --------

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

.~~-:-""

i
"

Units

A unit is a separately compUed, non-executable object flle tnat can be linKed
with other Object files to produce complete programs. There are two Kinds of
units, calleo regular-wIts ana IntrinsIc-wIts, In the current implementation of
the Workshop, you can use intrinsic-units that are provided, but you cannot
wrIte new ones.
Each unit useCl by a program (or another unit) must be compUed, anCl its Object
flle must be accessIble to tne compHer, before the nost program (or unit) can
be compUed.

9.1 Regular-lX1lts
Regular-units can Oe used as a means Of mooularlzing large programs, or of
making code available for Incorporation In various programs, without maKing
the source available.
When a program or unit (called the nost) uses a regular-unit, the linker inserts
a copy Of me compUed code from tne regular-unit into me nost's Object flle.
By default, me code copied from me regular-unit is placed in tne blanK
segment (see Cnapter 8~ The code of the entire unit, or Of blocKs within the
unit, can be placed In one or more different segments by using the SS compHer
command (see Chapter 12~

9.1.1 WTltlng Re(JJlar-U'llts
The syntax for a regular-unit is:

..:;;..T8='iJ.:.:..;rJa=IJ"_-w,='i;:...t --tI>I unit -neading

Interface-part implementation-part

..::;U:;..::1J::..:;t....:.-ne.='8diJ=-'-"'1?t].::a..-_ (IDit)-+j laenU fIer •

9-1

Pascal Rele.rence fvIa1t/a1

fntelf8l..":e- . t

uses-clause

constant -declaratlon-part

type-declaration-part

variable-declaration-part

procedure-and-functlon-declaratlon-part

i. irfl:Jlemenlatim

constant-declaration-part

type-declaration-part

variable-declaration-part

procedure-and-function-declaration-part

me Interface-part declares constants, types, varIables, procedures, and
functions that are "public," i.e. available to the host

U7/ts

The host can access these entities just as if they had been declared in the
host Procedures and functions declared in the Interface-part are abbreviated
to nothing but the procedure or function name, parameter specIfications, and
function result-type.

Since the interface-part may contain a uses-clause, a unit can use
another unit (see Section 9.3~

9-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

P8SC8l Ref'erence I'1I!!ntIaI

The implementation-part, which follows the last declaration in the interface
part, begins by declaring any constants, types, variables, procedures, or
functions that are "private," l.e. not avallable to the host

The pUbllc procedures and functions are re-declared in the Implementation
part. The parameters and function result types are omitted from these
declarations, since they were declared In the interface-part, and the procedure
and function blocks, omitted in the interface-part, are included in the
implementation-part

In effect, the procedure and function declarations in the interface are like
forward declarations, although the forward directive is not used. Therefore,
these procedures and functions can be defined and referenced in any sequence
in the implementation.

There Is no "initialization" section in Pascal units on the Usa (unlike
Apple II and Apple III Pascal~ If a unit requires initialization of its
data, it should define a public procedure that performs the initialization,
and the hOst ShOuld call th1s procedure.

Also note that global labels cannot be declared In a unit

A short example of a unit Is:

lIlit Siq:Jle;
INTERfACE {pUJllc objects declared}

const FirstValue=l;
procerure Ad(D1e(var lncr:integer);
function Addl(Incr:lnteger):lnteger;

ItflLEtENTATIOO
procedJre Ad£Dle; {note lack of paralEters ••• }

begin
Incr:=Incr+l

end;
function Add1;

begin
Add1:=Incr+l

end-
800. J

9.1.2 USing RE9llar-utlts

{ ... ~ lack of function result type}

The syntax for a uses-clause is given In Section 8.1. Note that in a host
program, the uses-clause (if any) must immediately follow the program
heading. In a host unit, the uses-clause (if any) immediately follows the
symbol Interface. 011 Y one uses-clause may appear in any host program or
unit; it declares all un1ts usee by the host program or unit.

See Section 9.3 for the case where a hOst uses a unit that uses another unit

9-3

-ii -
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Refe.rence Mant!81 U7lts

It Is necessary to specify the file to be searched for regular units. The $U
compUer command specifies this file. See Chapter 12 for more details.

Assume that the example unit SllllJle (see above) is compiled to an object file
nameO ,APPL:SIMPLE.OOJ. Tne fOllowIng Is a Short program mat uses Slf1l)le.
It also uses another unit named other, whiCh Is in file APPL:OTHER.OOJ.

program C811S1mple;
uses {$U APPL:SltFLE.OOJ}

S1nple,
{file to search for units}
{use unit Simple}

{$U APPL: OTl£R . OOJ}
Other;

{file to search for units}
{use unit other}

var i: integer;
begin

l:=flrstValue; {FlrstValue is from Simple}
wr1te('1+1 1s ',Add1(1»; {Add1 1s defined 1n Simple}
write(xyz(l» {xyz is defined in Other}

end.

9.2 Intrinslc-U'l1ts
The only intrinsic-units you can use are the ones provided with the Workshop
software.
Intrinsic-unIts provIde a mechanism for Pascal programs to share common code,
with only one copy of the code In the system. The code is kept on disk, and
when loaded into memory it can be executed by any program that declares the
intrinsic-unit (via a uses-clause, the same as for regular-units~
By default, the system looks up all intrinsic-units In the system Intrinslcs
library fUe, INTRINSIC.LIB. All IntrInsIc-units are referenced In thIs library,
so the $U fUename compUer command is not needed with intrinsic-unIts.

9.3 lkllts that Use other Ullts
As explained above, the uses-clause in the host must name all units that are
used by the host. Here "used" means that the host directly references
something in the Interface of the unIt Consider the following diagram:

unltA
interface

JII uses lI'\l tC;
unite

V Host Program implementation ~ interface uses unl tA.. unl t8;

~ unitB
implementation

interface

Implementation

9-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference /'18f7{J81 U7/ts

The host program directly references the interfaces of t.nItA and t.nItB; the
uses-clause names both of these units. The implementation-part of lII1tA also
references the interface of t.nItc, but it is not necessary to name t.nItc in the
host-program's uses-clause.
In some cases, the uses-clause must also name a unit that is not directly
referenced by the host. The following diagram is exactly llke the previous one
except that this time the Interface Of t.nItA references the interface of lIl1tc,
and lII1te must be named in the host-program's uses-clause. Note that trite
must be named before lIl1tA

unltA
interface ,. uses tnitc;

~ unite

/ Host Program implementation
interface

uses lflltC, lflltJ\,

~ t.nItB; unite
lmplementation

interface

implementation

In a case like this, the documentation for lIl1tA Should state that lII1te must
be named in the uses-clause before t.nltA

9-5

Chapter 10
Input/Output

10.1 Introduction to 110 ••• 10-1

10.1.1 Device Types ... 10-2
10.1.2 External File Species ... 10-2
10.1.3 The Reset Procedure ... 10-3
10.1.ll The Rewrite Procedure .. 10-5
10.1.5 The Close Procedure .. 10-6
10.1.6 The loresult Function ... 10-7
10.1.7 The Eof Function .. 10-7

10.2 Record-Oriented 110 •••••••••••••••••••••••••••••••.•••••••••••••••••••••••••••••••••••••••. 10-8

10.2.1 The Get Procedure .. 10-8
10.2.2 The Put Procedure•.............................. 10-8
10.2.3 The Seek Procedure ... 10-9

10.3 Text -ortented 110 •• 10-9

10.3.1 The Read Procedure .. 10-11
10.3.1.1 Read with a Char Variable 10-12
10.3.1.2 Read with an Integer or Longint Variable 10-12
10.3.1.3 Read with a Real Variable .. 10-12
10.3. Lll Read wi th a String Variable 10-13
10.3.1.5 Read with a Packed Array of Char Variable 10-13

10.3.2 The Readln Procedure .. 10-14
10.3.3 The Write,Procedure .. 10-14

10.3.3.1 OJtput-Specs ... 10-15
10.3.3.2 Write with a Char Value ... 10-15
10.3.3.3 Write with an Integer or Longint Value 10-15
1O.3.3.ll Write with a Real Value ... 10-16
10.3.35 Wrt te wi th a String Value... 10-16
10.3.3.6 Write with a Packed Array of Char value 10-17
10.3.3.7 Write with a Boolean Value 10-17

10.3.4 The Writeln Procedure ... 10-17
10.3.5 The Eoln Function ... 10-17
10.3.6 The Page Procedure ... 10-18
10.3.7 Keyboard Testing and Screen Cursor Control 10-18

10.3.7.1 The Keypress Function .. 10-18
10.3.7.2 The Gotoxy Procedure ... 10-18

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

P8SC8J Reference MBnl/8J Input/attput

10.4 Ultyped FUe 110. ...••.•..... ...••.•..•..•.............. ..••.... ..••..• •..•• 10-18

10.4.1 The BlockreadFLI1Ction ... 10-19
10.4.2 The Block write Function '" 10-20

-.,.. -..

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I!
I
I

',1

---~

Pascal Reference ~~o Notes

Chapter 10
Input/Output

Input/Output

Output or Infinite (I NaN Values when lHriting 8 Real (See Section 10.3.3.4)
If the out.put expression in a write procedure has an infinit.e value, it. is now
output as the string "INF" or "-INF". If the output expression is: a NaN, it is
output as the string "NaN", followed by a parenthesized NaN code such as
"NaN (7)".

Notes 10-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Input/Output

This chapter describes the standard C'bullt-in") I/O procedures and functions of
Pascal on the Usa.
Standard procedures and functions are predeclared. Since all predeclared
entities act as if they were declared in a "block" surrounding the program, no
confllct arises from a declaration that redefines the same identifier within the
program.

NJTE

Standard procedures and functIons cannot be used as actual procedural
and functional parameters.

ThIs chaPter and Chapter 11 use a modIf1ed BNF notaUon~ Instead of syntax
dIagrams, to indicate the syntax Of actual-parameter-llsts for standard
procedUres and functIons.
Example:

PSl1JI77eter List- new(p [, t1, .. _ tn])
This represents the syntax of the actual-parameter-Ust of the standard
procedure new, as follows:

• p, tt, and tn stand for actual-parameters. Notes on the types and
interpretations of the parameters accompany the syntax description.

• The notation tl, .. _ tn means that any number of actual-parameters can
appear here, separated by commas.

• Square brackets [] indicate parts of the syntax that can be omitted.
Thus the syntax shown here means that the p parameter is required. My
number of t parameters may appear, with separating commas, or there may be
no t parameters.

10.1 Int.nxiK;tion to 110
This section covers the I/O concepts and procedures that apply to all file types.
This includes the types text (see Section 10.3) and "untyped" flIes (see Section
10.4~

To use a Pascal file variable (any variable whose type Is a file-type), it must
be associated with an external fIle. The external file may be a named
collection of information stored on a peripheral device, or (for certain f11e
types) it may be the peripheral device itself.
The association of a file variable with an external file is made by cpening the
file. M existing file 1s opened via the reset procedure, and a new fUe 1s
created and opened via the rewrite procedure.

10-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal on the Usa does not provide automatic 110 cheCking. To check
the result of any particular 110 operatIonl use the toresult function
described in Section 10.1.6.

10.1.1 oevtce Types
For purposes of Pascal 110, there are two types of peripheral devices:

• A ffle-stnlCtllla1 device Is one that stores files of data, such as a diskette.
• A character device is one whose input and output are streams of individual

bytes, such as the Usa screen and Keyboard or a printer.
lD.L2 External File Species

There are three "species" of external fUes that can be used in Pascal 110
operations:

• A dstsfiJe Is any fUe that is stored on a file-structured device and was
not originally created In association with a file variable of type text

• A textfiJe Is a file that is stored on a file-structured device and was
originally created In association wIth a flle variable of type text lextflles
are stored in a specialized format (see Section 10.3~

• A cl7aracter device can be treated as a file.
lable 10-1 summarlzes the effects of all possible COmbinations of different file
variable types and external fUe species. The "ordinary cases" in the table
reflect the basic lntent of the various file-types. other combinations, such as
blocK-oriented access to a textfile via a variable of type me, are legal but
may require cautious programming.

IJ I 1,1 J ",! I
..;., ~ , t .) .. ~ 7/.\. I /.,..ttl' .,/.,-,:,,,.'

:iN ,: 1ft I !.) . ., ,I ..;;" 'h,f''';' -i'-I t l, r jJo i!.. .~ t .;.; i,-(n.1i . ,; I Ii

,,/'''~I;' L /: 4~ .

10-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I (
I
I

PascaJ Reference Mant/al JrputA1Jlptlt

TEmle 10-1
comtnaUms of File vartctJle Types with External File Species

B'O C8teg:ules

var f: flle Of
var f: file; some Type; var f: text;

ordinary' case. (Textflle format ordinary' case.

datafile After reset, assumed!) After Block access.
f ~ - 1st record reset-, f ~ Is
file. IXlspecified.

(Textflle format ordInary' case. (Textflle format
not assumed!) TextfUe format not assumed!)
After reset .. , assumed. After Block access.

textfUe f· = 1st record Te3et, f· is
Of flle (as unspecl fled.
declared~

After reset, ordinary' case. BloCk access,
(' = 1St char. After reset, if allowed by

character from device f A is unspecl- device.
device (system walts for fied (no wait

It!~ 110 error If for input char~
flle record type
not byte-sized.

<pIn U7ese cases., the ltJ.l1J'SUlt fU7ctkn will .nJtum a "warning"
(ie., s negedve f7lK17ber) immediately after the mset operadon.

10.1.3 The Retet Procecllre
qJens an existing me.
Parameter List: reset (f, t1 tle)

1. f is a variable-reference that refers to a variable of file-type. The fUe
must not be open.

2. Utle is an expression with a string value. The string should be a valid
pathname for a fUe on a me-structured device, or a pathnarne for a
character device.

10-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference Hanusl /rput/altplJt

Both parameters are requlrea (unUKe Apple II ana Apple 111 Pascal,
where the second parameter Is optlonal~

Reset(f, Utle) finas an existing external fUe with the pathname Utle, ana
associates f with this external file. (If there Is no existing external me with
the pathname Utle, an 1/0 error occurs; see Section 10.1.6.)

If Utle is the pathname of a character aevlce, then
• Eof(f) becomes false.
• If f is of type text, the value of f A is unspecifiea. The next rem or readln

on f wlll walt until a character is avallable for input, and begln readlng
with that character.

• If f is of type ftle ana the aevlce is one that allows blocK access, there is
no f1le buffer varIaOle f" ana me "current f1le pOSlt10n" IS set to me first
blocK (blocK 0) of the file. If the device does not allow blocK access" an
I/O error occurs (see Section 10.1.6~

• If f Is not of type text or fUe, its component-type must be a "byte-size"
type such as the type -128..127. Note that char Is not a byte-size type! If
the component-type of f Is not byte-size, an 1/0 error occurs (see Section
10.1.6~

If no 110 error occurs, the system walts until a character Is available from
the device and then assigns the character's 8-bl t code to f".

If title Is the pathname for an existing fUe on a file-structured device" then
• Eof(f) becomes false if the external file Is not empty. If the external file

Is empty, ~f) becomes true.

• If f is not of type text or file, reset sets the "current f1le posltlon" to the
first record in the external fUe, and assigns the value of this record to the
file buffer variable f". If the external file Is a textflle, the loresult
function w111 return a negative number as a warning (see Section 10.1.6~

• If f is of type text, the value of f" is unspecified. If the file is a textfile"
the next read or readln on f wlll begIn at the fIrst Character of f. If the
flle is a dataflle" it will be treated as if it were a textf1le (see Section
10.3) and the loresult function will return a negative number as a warning
(see Section 10.1.6~

• If f Is of type fUe, there is no file buffer variable f A and the "current file
position" Is set to the first block (block 0) of the fHe.

10-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

/

C .

I
I

Pascal Refe.rence Mantl8l

lo.L4 The Rewrtte ProceOJre
Creates and opens a new me.
Pan:meter List: rewrl tee f... t1 tIe)

1. f is a variable-reference that refers to a variable of fUe-type.
2. title Is an expression with a strIng value. The string should be a valid

patnname for a fIle on a fIle-structurea aevlce, or a patnname for a
character devIce.

If f Is already open" an I/O error occurs (see Section 10.1.6~
If title Is the pathname of a character devIce" then

• Eof(f) becomes false.

• Rewr1te(f, title) simply associates f with the device and opens f.

• The status of the device Is not affected.
• The value of f" becomes unspecl fled.

If title Is the pathname for a new file on a flle-structured device" then
• Eof(f) becomes true.

• Rewrtte(f, title) creates a new external fUe with the pathname title" and
associates f with the external file. This is the only way to create a new
external file.

• The species of the new external me Is set according to the type of f-
"textflle" for type text, or "dataflle" for any other type.

• The value of f ~ becomes unspeci fled.
• If f Is not of type rue, the "current file pOSition" is set to just before the

first record or character pOSition of the new external me.
• If f is of type fUe, the "current file position" is set to blocK 0 (the first

blocK in the file~
• If f Is subsequently closed wIth any option other than lock or cJ\I1Ch (see

Section 10.1.5), the new external file is discarded at that time. Closing f
with lOCk or clUlCh Is the only way to make the new external file
permanent.

• If title is the pathname of an existing external fUe, the existing fUe wlll be
discarded only when f is subsequently closed with the lock or cnnch option
(see section 10.1.5~

Unspecified effects are caused if the current file pOSition of a file f is altered
whUe the file-buffer f ~ is an actual variable parameter, or an element of the
record-variable-reference list of a with-statement, or both.

10-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Refemnce Manual

10.15 The Close Pl'OOeWre
Closes a file.
Parameter List· close(f [, IlltimJ)

1. f is a variable-reference that refers to a variable of file-type.

/nputA:1Jtput

2. optlm (may be omitted) is an Identifier from the llst gIven below. If
omltted .. the effect Is the same as uslng the Identlf1er normal.

Close(f, optlm) closes f, if f is open. The associatlon between f and Its
external file is broken and the file system marks the external file "closed". If
f Is not open" the close procedUre has no effect
The optlm parameter controls the dlsposltIon of the external file .. if it Is not a
character device. If it is a character device ... f Is closed and the status of the
devIce Is unchanged.
The identifiers that can be used as actual-parameters for optlm are as follows:

• normal -- If f was opened usIng rewrite, it Is deleted from the directory.
If f was opened with reset... it remains In the directory. This is the default
option, in the case where the optlm parameter Is omitted.

• lc::d< -- If the external file was opened with rewrite, it Is made permanent
in the directory.
If f was opened with rewrite and a tltle that matches an existing fHe, the
old file is deleted (unless the safety switch is "on"~ If the old file has the
safety switch "on it remains in the directory and the new file Is deleted.
If f was opened with reset, a normal close Is done.

• purge -- The external file Is deleted from the directory (unless the safety
switch Is "on"~ In the specIal case of a flle that already exists and Is
opened with rewrlte, the original file remains in the directory, unchanged.

• CIU'lCtl -- This Is Ilke lc::d< except that It lOCks the end-of-file to the point
of last access; I.e., everything after the last record or character accessed is
thrown away.

All closes regardless of the optlm wm cause the fl)e system to mark the
external me "closed" and w111 make the value of f unspecified.
If a program terminates with a file open (l.e., if close Is omitted), the system
automatically closes the file with the normal option.

If you open an existing file with reset and modify the file with any
write operatlon, the contents are immediately changed no matter what
close option you specify.

10-6

;r.~.~,*
" '.' , ' • I ~'1

":.;",,"

I
,

I
I
I
I
I
I

-
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference I"1CnIal

10.1.6 The Ioresult FlIlCUoo
Pascal on the Usa does not provide automatic 110 checking. To check the
result of any particular 110 operation, you must use the loresult function.
Result type: lnteger
Pammeter List· no parameters
loresult returns an Integer value which reflects the status of ttle last com
pleted I/O operation. The codes are given in the W011<SI1Op User's Guide for tile
Lisa. Note that the code 0 indicates successful completion, positive codes
indicate errors, and negative codes are "warnings" (see Table 10-1).

Note that the codes returned by loresult are not the same as the codes used in
~le II and Apple III Pascal.

I'CTES

The read, readln, write, and writeln procedures described in Section 10.3
may actually perform multiple 110 operations on each call. After one of
these procedures has executed, loresult wlll return a code for the status
of the last of the multiple operatlons.
Also, beware of the following common error in diagnostic code:

read(foo);
Irlteln('loresult=', loresult)

The intention is to wrlte out the status of the read operation, but
instead the status written out wlll be that of the write operation on the
string 'ioresult·'.

10.1.7 The Eof Ftrntlon
Detects the end of a file.
Result Type: boole81

Parameter List· eof [(f»)

1. f Is a varIable-reference that refers to a var1able Of flle-type.
If the parameter-llst Is omitted, the function Is applled to the standard file
lf1lut (see Section 10.3)'

After a get or put operatlon, eof{t) returns true if the current file posItion Is
beyond the last external flle record, or the external flle contains no records;
otherwise, eof(f) returns false. specifically, this means the following:

• After a get, eof{f) returns true if the get attempted to read beyond the last
f1le record (or the f1le Is empty~

• After a put, eof{t) returns true if the record written by the put Is now the
last flle record.

10-7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pescel Reference Menuel

If f is a character device .. eoftf) wUl always return false.

See Section 10.3 for the behavior of eoftf) after a read or reacJln operation.
NJTE

Whenever eof(f) is true, the value of the f1le buffer variable f" Is un
specified.

102 ReooId-CklentOO I/O
This section covers the get, put, and seek procedures, 'Which perform record
orIented 110; that Is, they consider a fHe to be a sequence of variables of the
type specified In the flIe-type. These procedures are not allowed with files of
type fUe.
The effects of get and put are unspecified wIth files of type text, and seek has
no effect with flies of type text The text type is supported by speclallzed
prOCedUres descrlbed in Section 10.3.

102.1 me Get Procetl.Ire
Reads the next record in a file.
P8J111T1eter List· get(f)

1. f Is a variable-reference that refers to a variable of file-type. The me
must be open.

If eoftf) Is false, get(f) advances the current file posit1on to the next flle
record, and assigns the value of this record to f . If no next component
exists~ then eof(f) becomes true~ and the value of fA becomes unspecified.
If eoitf) is true when get(f) is called, then eoitf) remains true, and the value of
(' becomes unspecl fled.
If the external flle Is a character devIce .. eof(f) Is always false and there Is no
"current file position." In this case, get(f) walts until a value Is ready for input
and then assigns the value to f

10.2.2 me Put Procecue
Writes the current record in a file.
P8f8fl18ter List· put (f)

1. f is a variable-reference that refers to a variable of file-type. The flle
must be open.

If eot(f) Is false, put(f) advances the current fIle posltlon to the next flle
record and then writes the value of f" to f at the new file position. If the
new f1le position Is beyond the end of the file, eof(f) becomes true, and the
value of f" becomes unspecified.
If eoftf) Is true, p.Jt(f) appends the value of f" to the end of f and eoftf)
remaIns true.

10-8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Refe!ence Mantlal /nput/t1Jtptlt

If the external file is a character device, eof(f) is always false, there is no
"current file position," and the value of f" is sent to the device.

NnE

If put Is called immediately after a flle Is opened wIth reset the put
will wrIte the seccK7d record of the file (since the reset sets the
current position to the fIrst record and put advances the position before
wrl tlng~ To get around this ana wrl te the first record, use the seek
proceoure (see Sectlon 10.2.3~

10.2.3 The 8eeI< ProcetlJre
Allows access to an arbitrary record in a fHe.
Parameter Lis!.- seeI<{f, n)

1. f is a variable-reference that refers to a variable of file-type. The file
must be open.

2. n Is an express10n with an Integer value that speclf1es a record number In
the file. Note that records in flles are numbered from O.

If the file is a character device or is of type text, seek does nothlng.
Otherwise, seek(f, n) affects the action of the next get or put from the fUe,
forclng It to access fUe record n lnstead of the "next" record. 5eek(f, n) does
not affect the fIle-buffer f".

A get or put must be executed between seek calls. The result of two con
secutive seeks with no intervening get or put Is unspecified. Immediately after
a seek(f, n1 eof{t) w111 return false; a following get or put wlll cause eat to
return the appropriate value.

The record number specified in a seek call Is not checked for validity.
If the number Is not the number of a record In the file and the program
trIes to get the specIfied record, the value of the fIle-buffer becomes
unspecified and eof becomes true.

10.3 Text-ortented I/O
This section describes input and output using file variables of the standard type
text. Note that In Pascal on the Usa, the type text Is distinct from flle of
char (see Section 3.2.4).
When a text file is opened, the external file Is interpreted In a specIal way. It
is considered to represent a sequence of characters, usually formatted lnto
J/nes by CR characters (ASCII 13).
The Usa keyboard and the WorkShop screen appear to a Pascal program to be
built-in files of type text named l~t and OtJtJlJt respectively. These fIles

10-9

Pascal Reference Manual Inpllt/aJtplIt

need not be declared and need not be opened with reset or rewrtte, since they
are always open.
When a program is takIng Input from lrllJt, typed characters are echoed on the
wOr\(snop screen. In addit10n to tne IflJUt file, tne Usa Keyboard is alSO
represented as the character device -KEYBOAAD. To get Keyboard input
without echoing on the screen, you can open a file variable of type text with
-KEYBOAAD as the external flle pathname.
other interactive devices can also be represented in Pascal programs as fUes of
type text.

When a text file is created on a flle-structured device" the external flle is a
textfUe. It contains information other than the actual sequence of characters
represented" as follows:

• The stored file Is a sequence of l024-byte pages.
• Each page contains some number of cmplete lines of text and is padded

with null characters (ASCII 0) after the last line.
• Two 512-byte !'leader blOCkS are also present at the begInning of the fUe.
• A sequence of spaces in the text may be compressed into a two-byte code,

namely a aE clJaIactef(N3CII 16) followed by a byte containing 32 plus
the number of spaces represented.

All of this speclal formatting is invisible to a Pascal program if the file is
accessed via a file variable of type text (but visible via a file variable Of any
other file-type~
Certain things that can be done with a record-structured file are Imposslble
with a file variable of type text:

• The seek procedure does nothing with a file variable of type text.

• The effects of get and put are unspec1f1ed wIth a file variable of type text.

• The contents of the flle buffer variable are unspeci fled wi th a file variable
of type text.

• A flle variable of type text that Is opened with reset cannot be used for
output, and one opened wIth rewrite cannot be used for input. Results are
unspecified if either of these operations is attempted.

In place of these capablli ties, text -oriented 110 provIdes the following:
• AUtomatic conversion of each input CR character into a space.
• The eoln function to detect when the end of an input Hne has been

reached.
• The read procedure, whlch can read char values, string values, packed array

of char values, and numeric values (from textual representatlons~

10-10

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference H8l7tlal

• The write procedure, Which can wrIte char values, strIng values, packed
array of char values, numerIc values, and bOoleM values (as textual
representatlons~

• Line-oriented reacllng and writing via the readln and wrlteln procedures.

• The page procedure" which outputs a form-feed character to the external
fIle.

• Automatic conversion of Input OLE -codes to the sequences of spaces that
they represent. Note that output sequences of spaces are not converted to
OLE -cOCles.

• Automatic skipping of header blocks and null characters during input.

• Automatic generation of textfile header blocks, and automatic padding of
textfile pages with null characters on outpul

10.3.1 1lle Read ProceclIre
ReadS one or more values from a text file Into one or more program variables.

Parameter LIst: read([f,] vl [, V2, ... vn])
The syntax of the parameter-list of read allows an Indefinite number of
actual-parameters. Consecutive actual-parameters are separated by commas,
just as in a normal parameter-lisl

1. f (may be omItted) is a variable-reference that refers to a variable of
type texl The fUe must be open. If f Is omitted, the procedure reads
from the standard text me lrprt, which represents the Usa keyboard.

2. vi ... vn are input variables. Each is a variable parameter, used as a
destination for data read from the file. Each Input variable must be a
variable-reference that refers to a variable of one of the followIng types:

• char, Integer, or lroJlnt (or a subrange of one of these)

• real
• a string-type or a pcD<ed array of Char type.

These are the types of data that can be read (as textual representations)
from a file. At least one input variable must be present.

Rea(f,vl,._,vn) Is equivalent to:

begin
rem(f, Vl);

read(f, vn)
end

10-11

PesceJ Reference M8I7lI8i /nput/ttltptlt

Read can also be used to read from a file fll that is not a text file. In
thIs case ~fll..x) Is equivalent to:

begin
x := fil";
get(fil)

EJRj

103.1.1 Read 'With a Char Variable
If f is Of type text and v Is of type char~ the following things are true
immediately after ~f,v~

• Eof(f) wlll return true 1f the read attempted to read beyond the last
character In the external fHe.

• EOlr(f) wm return true~ and the value of v wUl be a space~ If the Character
read was the CR character. Eolr(f) w1ll also return true If eot(t) Is true.

10.3.1.2 Read with Bl Integer or La-glnt vartable
If f Is of type text and v Is of type Integer~ subrange of 1nteger~ or lorYJlnt,
then reac(f,v) Implles the readIng from f Of a sequence of characters that form
a signed whole number according to the syntax of SectIon 1.4 (except that
hexadecimal notation Is not allowed~ If the value read is assignrnent
compatible with the type of v, it is assIgned to V; otherwise an error occurs.

In reading the sequence of characters, preceding blanks and eRs are skipped.
Reading ceases as soon as a character is reached that, together wIth the
characters already read, does not form part Of a sIgned whole number.

M error occurs If a signed WhOle number Is not found after Skipping Cf'Iy
preceding blankS and CRs.

If f is of type text, the following things are true immediately after ~f,v)

• Eof{f) w111 return true If the last character 1n the numeric string was the
last character in the external file.

• Eolr(f) will return true if the last character in the numeric string was the
last Character on the Une (not counting the CR character~ Eolr(f) will also
return true 1f eof(f) is true.

10.3.1.3 Read with a Real vartable
If f Is of type text and V Is of type real, then ~f,v) lmplles the reading
from f of a sequence of characters that represents a real value. The real
value is aSSigned to the variable v.

In reading the sequence Of characters, preceding blanks and CRs are Skipped.
Reading ceases as soon as a Character Is reached mat, together wlm tne

10-12

\

Pascal Reference MatvaJ

Characters already read, does not form a valid representation. A "valId
representation" is either of the following:

• A finite real" Integer, or longlnt value represented according to the
sIgned-number syntax of Section 1.4 (except that hexadecimal notation is
not allOWecJ~ An Integer or lCJ"glnt value is converted to type reaL

• An infinite value or Nan represented as described in Appendix D.
An error occurs if a valld representation is not found after skipping any
preceding blanks and CRs.
Immediately after reac(f ... v) where v is a real variable .. the status of eof(f) and
eolr(f) are the same as for an Integer variable (see Section 10.3.1.2 above~

103.1.4 Read with a strlrYJ variable
If f Is of type text and V Is of strIng-type .. then reac(f ... v) impUes the reading
from f of a sequence of characters up to !JI.Jt not inc/wing the next CR or
the end of the file. The resulting Character-string is assigned to v. An error
occurs if the number of characters read exceeds the size attribute Of v.

NJTE

Read with a strIng variable does not Skip to the next line after reading,
and the CR Is left waiting in the input buffer. For this reason, you
cannot use successive read calls to read a sequence of strings, as they
w111 never get past the first CR -- after the first read, each subsequent
read w111 see the CR and wIll read a zero-length string.
Instead, use reamn to read string values (see Section 10.3.2~ Readln
SkIps to the beglmlng of the next line after reading.

The following things are true Immediately after I"eCK(f,v}

• Eof(f) wlll return true if the Une read was the last line In the fHe.
• Eolr(t) wlll always return true.

10.3.1.5 Read with a Packed Array of Olar variable
If f Is of type text and v Is a pa;ked array Of ctlaI, Ulen rea(f,v) Implles the
reading from f of a sequence of characters. Characters are read into
successive character posltlons In v until all positlons have been filled, or until
a CR or the end of the flle Is encountered. If a CR or the end-of-flle is
encountered, it is not read into Vi the remaIning positions In v are filled wIth
spaces.

10-13

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reremnce Manual

10.32 The ReacJln P1'Oce(1Jre
The reacIln procedure is an extension Of read. Essentially It does the same
thIng as reat and then SkIps to the next line In the input file.
Pal8l77eter List: The syntax of the parameter llst Of readln Is the same as that
of read" except as follows:

• A reooIn call wIth no Input variables Is allowed. Exanple:

readln(sourcefl1e)

• The parameter-lIst can be omItted altogether.
If the fIrst parameter does not specIfy a fUe, or if the parameter-llst Is
omItted, the procedure reads from the standard me IflU, whIch represents the
Usa keyboard.
Reamr(f). wIth no Input-varIableS" causes a skIp to the begInnIng of the next
llne (1f there Is one" else to the end-of-fUe).
Readln can only be used on a text rue. Except for this restriction,
reacJIr(f,v1"._,vn) Is equivalent to:

begin
read(f, v1, • 0 0, vn);
reooln(f)

end

The fOllowing things are true immediately after readlr(f,V), regardless Of the
type of v:

• Eof(f) wlll return true If the line read was the last line in the external file.
• Eolr(f) wlll always return false.

103.3 The write P1'Oce(1Jre
WrItes one or more values to a text file.
Pammeter List: wrlte([f,] p1 [, p2, ... pn])

The syntax of the parameter list of write allows an indefinite number of
actual-parameters.

1. f (may be omItted) is a variable-reference that refers to a varIable of
type text. The fUe must be open. If f is omitted, the procedure writes to
the standard flIe wtput, which represents the WOrkShOP screen.

2. p1 ... pnare OlJtput-specs: Each output-spec includeS an OlJtpu(
e./IfPressJOf7, whose value is to be written to the file. As expla1ned below,
an output-spec may also contain specifications of field-width and number
of decimal places. Each output expressIon must have a result of type
integer, longlnt real, boolean, char, a string-type, or a pad<ed array Of
char type. These are the types of data that can be wrl tten (as textual
representations) to a fUe. At least one output-spec must be present.

10-14

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference M8I7lJ8i

Wtlte(f.pl_.pn) Is equivalent to:
begin

11'1te(f,pl);

11'1te(f,pn)
em

Immediately after wrtte(t), both eof{f) and eolr(f) wl11 return true.

~

/nptJt/aJtput

Write can also be used to wrlte onto a file ru that Is not a text fUe.
In this case wrtte(ru"x) is equivalent to:

begin
ru":=X;
~(fn)

end

103.3.1 OJtpJt-Specs
Each output-spec has the form

rutExpr [: MlnWlmn [: DeCPl8JeS]]
where rutExpr is an output expressIon. MlnWldth and DecPICD!S are
expressions with Integer or longlnt values.
MlnWlmn specifies the mlnlrntm field width, with a default value that
depends on the type of the value of OJtExpr (see below). MlnWldth should be
greater than zero; otherwise, the results are unspecified. Exactly MlnWldth
characters are written (using leading spaces if necessary), except when rutExpr
has a numeric value that requires more than MlnWldth characters; In thIs
case, enough characters are written to represent the value of rutExpr.
DecPl8JeS spec I fies the numt>er of decimal places In a fiXed-point repre
sentation of a real value. It can be speclfled only If rutExpr has a real value,
and if MlnWldth Is also specified. If DecPlaces is not speCified, a floatlng
point representation Is wrl tten.

10.3.3.2 WIlte with a am V'alue
If rutExpr has a char value, the character Is written on the file f. The default
value for MlnWldth Is one.

10.3.3.3 WIlle with M Integer or Locglnt V'alue
If rutExpr has an Integer or lcrglnt value .. Its decimal representaUon Is written
on the file f. The default value for MlnWldth Is 8. The representation consists
of the digits representing the value, prefixed by a minus sIgn If the value Is
negative, and any leading spaces that may be required to satiSfy MlnWldth. If
the representation requires more than MlnWldth characters, MlnWldth is
Ignored.

10-15

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

P8.SC8/ Reference M817t18/ /rptltA2Jtptlt

103.3.4 wrlte with a Real value
If rutExpr has a real value, the default value for MlnWldlh is 12.
If rutExpr has an infinite value, it is output as a string of at least two "+"
characters or at least two "-" characters. If OJtExpr is a NaN, it is output as
the character string "NaN", possIbly followed by a string of Characters enclosed
by sIngle-quotes. see section 10.3.3.5 for detalls on string output.
If rutExpr has a zero value, it Is represented as "a" or "-a".
If rutExpr has a finite value, its decImal representation Is written on the flle
f. This representation is the nearest possible decimal representation, dependlng
on MlnWldth and DecPIClJeS. If the unrounded value is exactly halfway
between two possIble representations, the representation whose least sIgnificant
digit is even Is written out.
If lJed>lClJeS Is not speclfled .. a floating-point representatlon Is written as
follows:

• If MlnWldU, Is less than 6, then Its value Is set to 6 (Intemally~ ThIs Is the
minimum usable wIdth for wrtting a floating-point representation.

• If the sign of ttle value of rutExpr Is negative, a minus sign Is written;
otherw1se, a space is wrItten.

• If MlnWldlh .l!: 8, the significant digits are written with one digit to the left
of the decimal point and (MlnWldlh - 7) digits to the right of the decImal
point.

• If MlnWlttth < 8, the most Significant digIt Is written and the decimal poInt
is omitted.

• The exponent is written as the letter "E", an explicit "+" or "-" sign, and
two digIts.

If DecPla;m is speCified" a flxer1-point representatlon is written as follows:
• Enough leading spaces are written to satisfy MlnWldUl.
• If the value Is negative, the minus sign "-" is written; if it is not negative,

a space Is written.
• If DecPIClJeS > 0, the significant digits are written with the Integer part Of

the value to the left of the declmal poInt. The next DecPlaces digIts are
written to the right of the decimal poInt.

• If OecPlaces ~ 0, only ttle integer part of the value Is written and no
decimal point is written.

10.3.35 WIlte wlttl a Strlrg V81~
If ttle value of rutExpr is of string type wlttl lengttl L, the default value for
MlnWlttth Is L If MlnWl<.fth>-L, ttle value Is written on the me f preceded by
(MInWlttth-L) spaces. If MlnWldth<L, the first MlnWldth characters of the
string are written.

10-16

I'l
,-./

(

Pascal Reference M8fl{J8l /tplIt/a.JtplIt

10.3.3.6 WItte WiUl a POOkeCl Array Of Olar V81ue
If E is Of type packeCl array Of Char, the effect Is the same as writing a string
whose length Is the number of elements In the array.

10.3.3.7 WItte wlUl a BooleM Value
If the value of rutExpr Is of type tJooleM, the string to TRUE" (with a leadIng
space) or the string "FALSE" Is wrItten on the fUe f. The default value of
MlnWldth is 5. If MlnWldth>5, leadIng spaces are added; If MlnWldth<5, the
first MlnWldth characters of the strIng are written. ThIs Is equIvalent to:

wrlte(f,' TRlE' :MlnWldth)
or

write(f, 'FALSE' :M1nWldth)

10.3.4 TIle Wrlteln ProceWre
Ttle wIlleln pIOcedure Is an extension of wrtte. Essentially it does the same
thing as write, and then writes a CR character to the output file (endIng the
llne~

P811Jmeter LIst: The syntax Of the parameter 11st Of wrtteln Is the same as
that of write, except as follows:

• A wrlteln call with no output-specs is allowed. Example:

wrlteln(DUtputfl1e)

• The parameter-list can be omitted altogether.
If the first parameter does not specIfy a fHe, or if the parameter-ust is
omitted, the procedure writes to the standard file out:pJt., Which represents the
WOrkShOP screen.
WItt.elr(f) writes a CR character to the file f.
WItteln can only be used on a text file. Except for this restriction,
wrlt.elr(f..p1_..pn) is equivalent to:

begin
write(f,p1, . .. ,pn);
wrlteln(f)

end

ImmedIately after wrttelr(f), both ~f) and 8Olr(f) w1ll return true.
10.3.5 TOO Eoln FtJ'lCtlon

Result Type: tJooleM
Pammeter List: 801n[(f»)

1. f is a variable-reference that refers to a variable of type text The file
must be open.

The actual-parameter-l1st can be omitted entirely. In this case, the function Is
applied to the standard me 1r1Jut (the Usa keyboard~

10-17

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Refe.rence l'1a?tIal /rput./altput

Eolr(t) returns true "If the end of a line has been reached In fo" The meanlng
of this depends on whether the external file is a character device, on which 110
procedure was executed last, and on what type of variable was used to receive
an input value. For aetails, see secUons 10.3.1 througn 10.3.4.

The end of the file Is considered to be the end of a 11ne; therefore eolr(t) wlll
return true whenever eof{f) Is true.

10.3.6 The Page ProceWre
Parameter List: page(f)

1. f Is a variable-reference that refers to a variable of type text The file
must be open.

The actual-parameter f cannot be omitted. Page(t) outputs a form-feed
cnaracter to me fUe f. Tnis will cause a SKip to me top of a new page wnen
f Is pnnted.
Note that page(output) sends a form-feed to the WorkshOp screen, but In
general thIs 'NUl not clear the screen. For methods of ClearIng the screen, see
the WorkstJop User's Guide for tile LIsa.

103.7 Keyboard TesUng (flj SCreen OJmlr Cmtrol
103.7.1 The Keypress F~tlon

Tests the Lisa keyboard to see if it has a character awaiting input
Parameter L1st- no paraneters.
Result Type: t.xxJlecn

Keypress returns true if a character has been typed on the Usa keyboard but
nas not yet been read, or false otnerwlse. Tnls Is done oy testing me
typeahead queue; if the queue Is empty, Keypress is false, otherwise It Is true.

10.3.7.2 The Gotoxy ProceaJre
Moves the Workshop screen cursor to a specified location on the screen.
Parameter List· gotoxy(x" y)

1. x is an expression with an integer value. If x < 0, the value 0 will be
used; If x > 79, the value 79 w1ll be used.

2. y Is an expressIon with an Integer value. If y < 0, tne value 0 wlll be
used; If y > 31, me value 31 wlll Oe used.

Gotoxy(x" y) moves the cursor to the point (x,y) on the screen. Note that the
point (0,0) is the upper left comer of the screen.

10.4 U1typed FUe 110
Untyped me 110 operates on an "untyped me," l.e., a vanable of type me (no
component type~ AA untyped file Is treated as a sequence Of 512-byte blocks.:
the bytes are not type-checked but considered as raw data ThIs can be useful
for applications where the data need not be Interpreted at all during 110
operations.

10-18

(

(

Pascal ReFerence M8I7lIai Inptlt./CUtpt/t

The blocks In cr1 untypea flle are conslaerea to be numOerea sequentially
starting wIth O. The system keeps track of the current lJllX1k ~J;:this is
block 0 Immeaiately after the file is openea. Each time a block Is re8(t the
current block number is incremented. By default~ each I/O operation begins at
the current block number; however~ cr1 arbitrary block number can be speclf1ed.

M untyped fUe has no fUe-bUffer~ and It cannot be used with get, put, or any
of the text-oriented 1/0 procedures. It can only be used with reset, rewr1te~
close, eof, and the blockread and blockwrtte functions described below.

To use untyped me 110, an untyped me is opened with reset or rewr1te~ and
the blockread and blfXlkwrite functions are used for input and output

10.4.1 The BIOCkread Ftrotim
Reads one or more 512-byte blOCks of data from an untyped flle to a program
variable, and returns the number of bloCkS read.

Result Type: Integer

PBRTrJeter List: blockreacl(f, daUDJf .. COUlt [.. blOOl<rUn»

1. f Is a variable-reference that refers to a variable of type flle. The flle
must be open.

2. databuf is a variable-reference that refers to Ule variable into which the
blocks of data wlU be read. The size and type of this variable are not
checked; If it is not large enough to hOld the data, other program data
may be overwritten and the results are unpredictable.

3. COUll Is an expreSSion with an integer value. It specifies the maximum
number of blocks to be transferred. Blockread wlll read as many bloCkS
as it can, up to this limit.

4. blc:x;Krun (may be omitted) is an expreSSion with an Integer value. It
specifies the starting block number for the transfer. If It Is omitted, the
transfer begins with the current block. Thus the transfers are sequential
if the blockruTlber parameter is never used; If a blockruTlber parameter
is used, it provides random access to blocks.

Blockreac(f ... databuf, CCUlt, blockrun) reads blocks from f into databUf, starting
at block blockrun. COlI"lt is the maximum number of blocks read; if the
end-of-file Is encountered before ClUlt blocks are read, the transfer ends at
that point The value returned is the number of blocks actually read.

If the last block In the file was read, the current block number Is unspecified
and ~f) ls true. Otherwlse, eof(f) is false and the current blOCk number Is
advanced to the block after the last block that was read.

10-19

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference /'-1817t1al

10.4.2 The Blockwrt te Fl.I'Ction
Writes one or more 512-byte blocks of data from a program variable to an
untyped fUe, and returns the number of blocKs written.
ReM t Type: Integer
Parameter LIst: blockwrite(f, databuf, COlIlt [, blockrUn]}

1. f 1s a variable-reference that refers to a var1able of type flle. Tne flle
must be open.

2. dataruf is a vartable-reference that refers to the variable from which the
blocKs of data wlll be written. The size and type of this var1able are not
checked.

3. CCUlt is an expression with an Integer value. It speclfles the maximum
number of blocKs to be transferred. Blockwrlte wllJ write as many blocKs
as it can, up to this limit.

4. blockrun (may be omltted) Is an expression with an integer value. It
specifies the starting blocK number for the transfer. If It is omitted, the
transfer begins with the current block. Thus the transfers are sequential
if the blockrurtJer parameter is never used; If a blockrurtJer parameter
is used, it provides random access to blocKs.

Blockwrlte(f, dataruf, CCUlt, blockrun) writes blocKs into f from dataruf,
startlng at blocK blockrU1l. COlIlt Is the maximum number of blockS wrltten;
if disk space runs out before CCUlt blocks are written, the transfer ends at
that point. The value returned Is the number of blocks actually written.
If disK space ran out, the current blocK number Is unspecif1ed. Otherwise, the
current block number is advanced to the block after the last blocK that was
written.

Unlike Apple II and Apple 1Il Pascal, this Pascal does not allow
blockwrtte to write a block at a position beyond the first position after
the current end of the file. In other 'Words, you cannot create a block
me with gaps In It.

10-20

/~
':\,."".i

I
I
I
I
I
I
I
I
I

•
I

I

I
I
I
I
I
I
I
I

' ,
I'

\

Chapter 11
Standard Procedures and

Functions

11.1 Extt 81d ~t Procec1Jres•••••.•••.••••••••••••.•••••••••.••••••..•.••••••.•..•...••.. 11-1

11.1.1 The Exit Procedure .. 11-1
11.1.2 The Halt Procedure ... 11-1

11.2 Dynamic Allocation J>roce£lJres ..•••...•.•..•.••........•.••••.•••••••••••••••••••••••• 11-1

11.2.1 The New Procedure ... 11-2
11.2.2 TheHe~esultFunction ... 11-3
11.2.3 The Mark Procedure .. 11-3
11.2.4 The Release Procedure .. 11-3
11.2.5 The Memavall Function .. 11-3

11.3 TlCIlSfer FlIlCtilllS ..•.......•...••.......•........ 11-4

11.3.1 The TruncFunction ... 11-4
11.3.2 The Round Function .. 11-4
11.3.3 The OrdLl Function ... 11-4
11.3.4 The Pointer Function ... 11-S

11.4 AritlTnetic FlIlCtions ...•.•..••.. 11-5

11.4.1 The tl:Id Function .. 11-S
11.4.2 The,A,bsFunction .. 11-5
11.4.3 The Sqr Function ... 11-6
11.4.4 The Sin Function ... 11-6
11.4.S The Cos Function .. 11-6
11.4.6 The Exp Function .. 11-6
11.4.7 The LnFunction .. 11-7
11.4.8 The Sqrt Function ... 11-7
11.4.9 The Arctan Function .. 11-7
11.4.10 ThePwroftenFunction .. 11-7

11.5 0rdinBl F~tions .. 11-8

I1.S.1 The Ord Function ... 11-8
11.S.2 The Chr Function .. 11-8
11.S.3 The SUcc Function ... 11-8
11.S.4 The Pred Function ... 11-9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference Hanual Standard Procedures & runctjons

11..6 string Procet:lJres crld F LflCtions ..••••..•....•.......• _..... .•.••.. .•.•.......•.•.•••.•. 11-9

11.6.1 The Length Function .. 11-9
11.6.2 The Pos Function .. 11-9
11.6.3 TheConcatFunction ... 11-10
11.6.4 The Copy F LI1Ction .. 11-10
11.6.5 TheOeleteProcecure .. 11-10
11.6.6 The Insert Procedure ... 11-10

11.7 Byte-Oriented Procet:lJres and FlrICtims __ __ ... __ 11-11

11.7.1 The Moveleft Procedure ... 11-11
11. 7.2 The Moveright Procedure ... 11-12
11.7.3 The Sizeof Function .. 11-12

11..8 Packed Array of Char Procet:lJres em FlrICtions 11-12

11.8.1 The Scaneq function ... 11-12
11.8.2 The Scanne Function ... 11-13
11.8.3 The Fillchar Procedure .. 11-13

(

Standard Procedures and
Functions

This chapter describes all the standard C'bullt-in") procedures and functions in
Pascal on t.re Usa, except for the I/O procedures and functions described in
Chapter 10.

Standard procedures and functions are predeclared. Since all predeclared
entities act as If they were declared in a block surrounding the program, no
conflict arises from a declaration that redefines the same identifier within the
program.

Standard procedUres and functions cannot be used as actual procedural
and functional parameters.

This Chapter uses a mOdified BNF notation, instead of syntax diagrams, to
indicate the syntax of actual-parameter-Hsts for standard procedures and
functIons. The notatIon is explained at the beginning of Chapter 10.

11.1 Exit cnj Halt ProceWres
11.1.1 The Exit ProoeWre

Exits immediately from a specified procedure or function, or from the main
program.
Parameter List: ex1t(1d)

1. Id is the identifier of a procedure or function, or of the main program. If
Id is an identifier defined in the program, it must be in the scope of the
exit call. Note that this is more restricted than UCSD Pascal.

Exit(ld) causes an immediate exit from 10. Essentially, it causes a Jump to the
end of 10.

The halt procedure (see below) can be used to exit the main program
from a lI1lt without knowing the main program's identifier.

11.12 The Halt ProoeWre
Exits immediately from the main program.
Pal'8fl?eter List: no parameters
Halt causes an immediate exit from the main program.

11.2 D~c Allocation Procewres
These procedures are used to manage the fleap, a memory area that Is
unallocated when the program starts running. The procedure new is used for

11-1

PesceJ Reference M8ntJeJ St8l7de.n1 Procedures & Fl.K7Ctions

all allocation of heap space by the program. The mark and release procedures
are used together to deallocate heap space" and the ~re3Ult function is used
to return the status of the last preceding dynamic allocation operation ..

11.2.1 The New PJoce(l.rre
Allocates a new dynamlc varlable and sets a pointer varIable to poInt to It.
Pe.rameter Ljst· new(p [, tl, ... tn])

1. p Is a variable-reference that refers to a variable of any pointer-type.
This is a variable parameter.

2. tl, ... tn are constants ... used only when allOCatlng a variable of
record-type wIth variants (see below~

New(p) allocates a new variable of the base-type of p; and makes p point to it.
The variable can be referenced as p ~. Successive calls to new allocate
contiguous areas.
If the heap does not contain enough free space to allocate the new variable ... p
Is set to nil and a subsequent call to the I'letllresult function will return a
non-zero result.
If the base-type of p is a record-type with variants, new(p) allocates enough
space to allow for the largest variant. The form

new(p ... tt... . .. tn)
allocates a varIable with space for the varIants specIfied by the tag values t1;
... tn (Instead of enough space for the largest varlants~ The tag values must
be constants. They must be listed contiguously and in the order of their
declaration. The tag values are not assigned to the tag-fieldS by this
procedure.
Tralling tag values can be omitted. The space allocated allows for the largest
variants for all tag-values Ulat are nut specifIed.

WARNIf\G

When a record variable is dynamically allocated wlth explicit tag values
as shown above ... you Should not maKe assignments to any fields of
variants that are not selected by the tag values. Also" you should not
assign an entire record to this record. If you do elther of these things,
other data can be overwritten without any error beIng detected at
compile time.

11-2

P8SCUi Ref'e.n:nce /'1tnu81

11.2.2 The ~result FlJlCtlm
Returns the status of the most recent dynamic allocation operation.
Result Type: integer

P8JaI'l7eter LIst: no parameters
~result returns an integer code that reflects the status of the most recent
call on new, rnaI1<, release, or memavall. The codes are given in the Wol1<sl7op
User's GuIde.: note that the code for a successful operation Is o.

11.2.3 The Mark ProcetiIre
sets a pointer to a heap area.
Parameter List- marI«p)

1. P is a variable-reference that refers to a variable of any pointer-type_
This is a variable parameter.

Mar1«p) causes the painter p to poInt to the lowest free area in the heap. The
next call to new wlll allocate space beginning at the bOttom Of this area, and
then p wUl be a polnter to thls space. The pointer p is also placed on a
stack-like list for subsequent use wIth the release procedure (see belOW~

11.2.4 The Release ProcetiIre
Deallocates all variables In a marked heap area.
Parameter List- release(p)

1. p is a variable-reference that refers to a poInter variable. It must be a
pointer that was previously set with the rnaI1< procedure. The pointer p
must be on the 11st created by the mark procedure; otherwise an error
occurs.

Release(p) removes pointers from the 11st, back to and Including the pointer p.
The heap areas pointed to by these pointers are deallocated.]n other words,
release(p) deallocates all areas allocated since the the pOinter p was passed to
the rnaI1< procedure.

1125 The Memavail FlIlCtlon
Returns the maximum possible amount of available memory.
Result Tfpe: l<rg1nt

Parameter List- no parameters
Memavall returns the maximum number of words (not bytes) of heap and stack
space that could ever be avallable to the program, allowing for posslble
automatic expansIon of the program's data segment. Note that the result of
memavall can Change over time even if the program does not allocate any
heap space, because of activities by the operating system or other processes in
the system.

11-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference /'1817t18l St8l7dan! Procedures & Functions

11.3 TnYJSfer Ftn:;tltrlS
The procedures pack and l.fllSCk, described by Jensen and Wirth, are not
supported.

11.3.1 TIle Trt.I"C FlXlCUon
Converts a real value to a lorglnt value.
Result Type: locglnt
ParatrXJter List- t~(x)

1. x is an expression with a value of type real.

T~x) returns a lCX1Qlnl result that is the value of x rounded to the largest
whole number that is between 0 and x (lnclusive~

113.2 TIle Rt:Uld FlI'lCtion
converts a real value to a longlnt value.
Result Type: lCX1Qlnl
Panmeter List: I'()lnj(x)

1. x Is an expression wIth a value of type real.

ROlR'(x) returns a lorglnt result that is the value of x rounded to the nearest
whole number. If x is exactly halfway between two whole numbers, the result
Is the whole number wi th the greatest absolute magnl tude.

11.3.3 TIle Qrd4 FlI'lCtion
Converts an ordinal-type or painter-type value to type lorglnl
Result Type: Itrglnt

Parameter List- ord4(x)

1. x is an expression with a value Of ordinal-type or pointer-type.
Q.rd4(x) returns the value of X, converted to type lCX1Qlnl If x Is of type
longlnt, the resul t Is the same as x.
If x Is of pointer-type, the result is the corresponding physical address, of type
Itrglnl

If x Is of type integer, the result is the same numerical value represented by X,
but of type longint. This is useful in arithmetic expressions. For example ...
consider the express10n

abc*XyZ

where both abc and xyz are of type Integer. By the rules given in sectlon
3.1.1.2, the result of this multiplication Is of type integer {16 bits~ If the
mathematical product of abc and xyz cannot be represented in 16 bits, the
result is the low-order 16 bits. To avoid this, the expression can be written as

ord4(abc)-xyz

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Psscal Refe.l75'l7Ce M8I?iJsI St8l7d8n:t P.roceotI.res & rlA7Ct/ons

This expression causes 32-bit arithmetic to be used, and the result is a 32-bit
lOOJint value.

If x is of an ordinal-type other than Integer or Img1nt~ the numerical value Of
the result is the ordinal number determined by mapping the values of the type
onto consecutive non-negative integers starting at zero.

11.3.4 The Polnter FlIlCtlm
Converts an integer or longlnt value to poInter-type.

Result Tjpe: pointer

Pa/"Bf11P.ter list- pointer(x)

1. x Is an expressIon with a value of type Integer or lOilQlnt

Polnter(x) returns a poInter value that corresponds to the ptlY~C~1 address x.
ThIs poInter 1s Of the same type as nil and is assignment-compatible wIth any
poInter-type.

11.4 Artumetlc FlIlCtia1S
In general~ any real result returnee by an arltnmetlc function 1s an approx
imation. There are two exceptions to this: the result of the abs function is
exact~ and the result of the pwroften function is exact when the parameter n
Is 1n the range 0 !: n !: 10.

11.4.1 The rud FlIlCtim
Tests whether a whole-number value is odd.

Result Tjpe: txxlleCll

Parcmeter List· odd(x)

1. x is an expression wlth a value of type integer or longlnl

cn:(x) returns true if x is Odd; otherwise it yIeldS false.

11.4.2 The Pbs FtrlCtion
Returns the absolute value of a numeric value.

Result Type: same as parameter

panmeter List: aos(x)

1. x Is an expression with a value of type real, integer, or Img1nt

Abs(x) returns the absolute value of x.

11-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal ReFe.l7Jl1Ce 1'18ntI81

11.4.3 The Sqr FlIlCtion
Returns the square of a numeric value.
Result Type: depends on parameter (see below)
PBf8IT)Oter List- sqr(x)

1. x is an expression with a value of type real, Integer" or longlnt
8qI(x) returns the square of x. If x is of type real, the result Is real; If x is of
type longlnt, the result is longlnt; and if x is of type Integer .. the result may be
el ther integer or lCOJInt
If x Is of type real and floating-point overflow occurs, the result Is +00.

11.4.4 The Sin Fl.IlCtion
Returns the sine of a numeric value.
Result Type: real

PBl"Bmeter List· s1n(x)

1. x Is an expression with a value of type real .. Integer .. or longlnt ThIs
value is assumed to represent an angle in radians.

S1n(x) returns the sine of x. If x is infinite, a diagnostic NaN is produced and
the invalid operatton signal Is set (see Appendix D~

11.4.5 The COS FlIlCtlon
Returns the cosine of a numeric value.
Rest/It Tjpe: real

Parameter List· cos(x)

1. x is an expression with a value of type real, Integer, or longlnt This
value Is assumed to represent an angle in radians.

COs(x) returns the cosine of x. If x Is lnfinite, a diagnostic NaN is produced
and the invalld operation signal Is set (see Appendix D~

11.4.6 The Exp FlIlCtion
Returns the exponential of a numeric value.
ReSUlt TYpe: real

POfl:1l7'letef List' exp(x)

1. x is an expression with a value of type real, Integec or lCO"Jint All
possible values are valId.

E>q:(x) returns the value of e x, where e is the base of the natural logarithms.
If floating-point overflow occurs, the result is +00.

11-6

'" "".

I
I
I
I
I
I
I
I
I
I

!

I
I
I
I
I
I
I

,
i

I
I

Pascal Refel1Jf]ce Maf7{)al Standard Procectures (1 Functions

11.4.7 The Ln FlSICtion
Returns the natural logarithm of a numeric value.
ReS't/lt TyPe: real

P8I8fTJeter List: In(x)

1. x Is an expression with a value of type real, Integer, or looglnl All
non-negative values are valId; negative values are InvaUd.

If x Is non-negative" lr(x) returns the natural logarIthm (loge) of x.
If x is negatlve, a diagnostlc NaN Is produced and the Invalid (lleratlon signal
Is set (see Appendix 0).

11.4..8 The Sqrt FtIlCtlon
Returns the square root of a numeric value.
ReS't/l t TyPe: real
Parameter L1st- sqrt(x)

1. x Is an expressIon with a value of type real, Integer, or looglnl All
non-negative values are valid; negative values are invalid.

If x is non-negative .. sqrt(x) returns the positive square root of x.
If x is negatlve, a diagnostlc NaN is produced and the Invalid ~eratlon signal
Is set (see AppendIx D~

lL4.9 TIle ArCtal FlSICtlon
Returns the arctangent of a numeric value.
ReS't/l t TyPe: real
Parameter List- arcta1(x)

1. x Is an expression with a value of type real, Integer, or looglnl All
numeric values are vaI1d" including ;too.

Arcta(x) returns the prIncIpal value, in radIans, of the arctangent of x.
lL4.10 The Pwroften FISICUon

Returns a specified power of 10.
ReSUlt TyPe: real

parameter List- pwrotten(n)

1. n is an expression with a value of type Integer.

If -45 ~ n ~ 38, then pwrOfter(n) returns 10n. The result is mathematically
exact for 0 ~ n .:s. 10. If n .:s. -46, the result is 0; if n ~ 39, the result is +00.

11-7

I
I
-Ii
I •
I
I
I

Pascal Reference M8f7{,I8} Standard Procedt/J'es & FlII7CtJons

11.5 0It11nal FI,H;Uons
115.1 The Ord Fl.I'lCtim

Returns the ordinal number of an ordinal-type or poInter-type value.
ReSlllt Type: Integer or longlnt
Parameter List: ord(x)

1. x Is an expressIon with a value of ordInal-type or poInter-type.
If x is of type lnteger or longint, the result Is the same as x.
If x is of pointer-type, the result Is the corresponding physiCal address ... of type
U.nginl

If x is Of another ordinal-type, the result Is the ordinal number detennined by
mapping the values of the type onto consecutive non-negative whole numbers
starting at zero.
For a parameter of type char, the result Is the corresponding ASCII cOde. For
a parameter of type txx>1ea1,

ord(false) returns 0
ord(true) returns 1

11.5.2 The Chr FI,H;Uon
Returns the char value corresponding to a whole-number value.
Result TYpe: char (but see below)
Parameter List: dlr(x)

1. x is an expression with an Integer or longlnt value.
ctu(x) returns the char value whose ordinal number (I.e., its ASCII COde) is X, if
x Is in the range 0_255. If x is not in the range 0..255, the value returned is
not within the range of the type Char, and any attempt to assign it to a
variable of type char wlll cause an error.

For any char value ch, the following Is true:
chr(oro(ch» = ch

11.5.3 The SUCc FI,H;Uon
Returns the successor of a value of ordinal-type.
RoSll}! TYpo: same as parameter (but see belOW)
Parameter List: succ(x)

1. x is an expression with a value of ordinal-type.
SUCC(x) returns the successor of X, if such a value exists according to the
inherent ordering of values in the type of x.

11-8

/3·' : ... , ~

", ';"::-H'

• •
I
• •
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference Mar/tJ8I Sta7d8rd Prr:JCet:1.I.res & FtnCtJons

If x is the last value in the type of x.. it has no successor. In this case the
value returned is not within the range of the type of x.. and any attempt to
assign it to a variable of this type will cause unspecified results.

115.4 TIle Pred Fl.I1Ctlon
Returns the predecessor of a value of ordInal-type.
ReSlJl! TYpe: same as parameter (but see below)
Pammeter List: pred(x)

1. x is an expression with a value of ordinal-type.
Pret(x) returns the predecessor of x.. if such a value exists accordIng to the
inherent ordering of values in the type of x.
If x is the first value In the type of x:, it has no predecessor. In this case the
value returned is not within the range Of the type of x.. and any attempt to
assign It to a variable of this type w111 cause unspecified results.

11.6 SUing ProceO.aes arKj FUlCtions
The string procedures and functions do not accept packed array Of char
parameters, and they do not accept indexed string parameters.

11.6.1 llle Length Fl.I1Ction
Returns the current length of a value of string-type.
ReSl.lIt TYpe: integer

Pa.rarnete.r LIst- lergtt(str)

1. str is an expresslon with a value of string-type.
Lengtr(str) returns the current length of sUo

1L62 llle Pas Fl.I1CUm
Searches a string for the first occurrence of a specIfied SUbstring.
Result Type: Integer
PaJ"l!1fTJete.r LIst· pos(st.tlstr, str)

1. Slbstr 1s an expression with a value of string-type.
2. sU Is an expression with a value of strIng-type.

Pos(stbsU, str) searches for SlJJstr within str, and returns an integer value that
Is the index of the first character of stbStr within str.

lf Slbstr Is not found, pos(Slbstr, str) returns zero.

11-9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

P8SC8l Ref"eJ?:JrJCe I'18nuBJ

11.6.3 The Galcat FlIlCtlon
Takes a sequence of strIngs and concatenates them.
Rest/It Type: strIng-type
PanmeterList- an;at(strl [, str2, ... strn])

• Each parameter Is an expression with a value Of string-type. lVly pracUcal
number of parameters may Oe pass ea.

Galcat.(strl, _, str n) concatenates all the parameters in the oraer in which
they are written, and returns the concatenated string. Note that the number
Of Characters in me result cannot exceed 255.

11.6.4 The COpy FlI'lCtion
Returns a sUbstrIng of specIfIed length, taken from a specIfied position wIthIn
a string.
Result Type: string-type
Parameter List- copy (source, inde~ COUlt)

1. source is an expression with a value of string-type.
2. index Is an expression wIth an integer value.
3. COUlt Is an expressIon with an integer value.

COpy(srurce, Index" COUlt) returns a strIng containing cotIlt characters from
source, begInn1ng at sourct"tlndexJ

11.65 The Delete Prt:lceflJre
Deletes a SUbstring of speclfled length from a speci fled posi tlon wi thIn the
value of a string variable.
Parameter List- delete (dest, index" COUlt)

1. dest is a variaOle-reference that refers to a variable of strlng-type. ThIs
is a variable parameter.

2. Index is an expressIon wIth an integer value.
3. COUlt Is an expressIon with an Integer value.

Delete(dest, Index" COlIlt) removes ctUlt characters from the value of dest,
beginning at dest{lndexJ

11.6.6 The Insert ProcedJre
Inserts a substring into the value of a string variable, at a specIfIed position.
PaR1lTl8ter List· insert(source, dest, index)

1. soo:rce Is an expressIon with a value of string-type.
2. (Jest Is a var1able-reference that refers to a var1aOle of str1ng-type. This

Is a varIable parameter.
3. IndeX Is an expression with an Integer value.

11-10

:~
'~

I
I

I

I
I
I
I
I
I
I
I

Pascal Reference Manual Standard PlOCedllres & rl1l7ctlons

Insert(source, dest, looex) inserts source into <Jest The fIrst character of
source becomes clest[lndexl

11.7 Byte-:Ortented Procedures CI1d Ft.n::tloos
These features allow a program to treat a program variable as a sequence of
bytes, without regard to data types.

f\UTE

The slzeof function (described in Section 11.7.3, below) can be used to
detennine the number of bytes in a variable.

These procedures do no type-CheCking on their source or dest actual
parameters. However, since these are variable parameters they cannot be
indexed if they are packed or if they are of string-type. If an unpacked
"byte array" is desired, then a variable of the type

array [lo .. hI] of -128 .. 127
should be used for source or clest The elements in an array of this type are
stored In contiguous bytes, and, since it Is unpacked, an array of this type can
be used with an index as an actual-parameter for these routines.

lrvFLEtvENT A n~ f\UTE

Currently, an array with elements of the type 0..255 or the type char
has Its elements stored in wordS, not bytes.

11.7.1 TIle MOVeleft Procewre
Caples a spec1 fled numDer Of contiguous Dytes from a svu.rce laryt1 to a
destination range (starting at the lowest address~

Parameter Ljst· lIDVeleft(source, dest, cotIlt)

1. source is a variable-reference that refers to a variable of any type
except a file-type or a structured-type that contains a file-type. This is
a variable parameter. The first byte allocated to source (lowest address
within source) is the first byte of the source range.

2. <Jest is a variable-reference that refers to a variable of any type except
a file-type or a structured-type that contains a file-type. This is a
variable parameter. The first byte allocated to dest (lowest address
within clest) is the first byte of the destination range.

3. COlI1t Is an expression wlth an Integer value. The source range and the
destination range are each oo.nt bytes long.

MoVeleft(source, dest, COUlt) copies COUlt bytes from the source range to the
destInatIon range.

11-11

Pascal Reference Manual Standard Procedures & FunctIons

MoVeleft starts from the "left" end of the source range (lowest address~ It
proceeds to the "right" (higher addresses)~ copying bytes into the destination
range~ starting at the lowest address of the destination range.
The cotIlt parameter Is not range-checked.

11.7.2 The MoVeri~t Procewre
MoVer1~t is exactly like move left (see above) .. except that it starts from the
"right" end of the source range (highest address~ It proceeds to the "left"
(lower addresses)~ copying bytes Into the destination range, starting at the
highest address of the destination range.
The reason for having both rooveleft and mover1~t Is that the source and
destination ranges may overlap. If they overlap~ the order in whIch bytes are
moved Is critical: each byte must be moved before it gets overwrItten by
another ·byte.

11.7.3 The Sizeof FLIlCtion
Returns the number of bytes occupied by a specified variable, or by any
variable of a specified type.
Result Type: Integer
Pa.rameter LjsL' sizeof(id)

1. Id is either a variable-identifier or a type-identifier. It must not refer to
a file-type or a structured-type that contains a file-type, or to a
variable of such a type.

Si~ld) returns the number of bytes occupied by Id, If Id Is a variable
Identifier; if Id is a type-Identifier, it returns the number of bytes occupied by
any variable of type Id.

11.8 Packed Array of Olar ProceWres CIld FLIlCtions

These routines operate only on packed arrays of Char. The packed
arrays of Char cannot be sUbscripted; the operations always begin at the
first character in a packed array of char.

11.8.1 The Sc3leq FLIlCtion
Searches a packed array of char for the first occurrence of a specified
character.
Result Type: integer
Perimeter LjsL- scareq(limit, ch, paoc)

1. llm1t Is an expressIon with a value of type Integer or lcrglnl It Is
truncated to 16 bits, and is not range-CheCKed.

2. ch Is an expression with a value of type char.

11-12

~
(. '.)

J

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Refe.rence Manual StandaJr1 Pnx:ectlres & FlI7Ctions

3. pave is an expression with a value of type packed array of char. This Is
a variable parameter.

scaneqUmlt. ch, paoc) scans paoc, looking for the first occurrence of m The
scan begins with the flrst character in paoc. If the cha,racter Is not found
wIthin llmlt characters from the beginning of pace, the value returned Is eqUal
to limit Otherwise, the value returned is the number of characters scanned
befOre ctt was found.

11.8.2 The 5caTle FlIlCUon
This function is exactly like ~ except that it searches for a character
that does not matCh the ctt parameter.

11.8.3 The Flllctlar PrOceOn"e
Fllls a specified number of characters In a packecJ array Of Char with a
specified character.
Parameter Lis!.- fillchar(paoc, COlI'lt, ctt)

1. paoc is an expression with a value of type packed array of char. Th1s 1s
a variable parameter.

2. COtI1t Is an expression with a value of type Integer or lCXYJlnt It is
truncated to 16 bits, and is not range-checked.

3. Ch Is an expression with a value of type char.

FUlchaI(paoc, cnnt, eh) writes the value of ell Into COlI'lt contiguous bytes of
memory, starting at the flrst byte of pcl)C.

Since the COl.I1t parameter Is not range-checked, It Is pOSSible to write Into
memory outside of pare, with unspecified results.

11-13

I
I
I
I
I
I
I
I
I
I
I
I

i

I
I
I
I
I
I
I

Chapter 12
The Compiler

12.1 Cor'r1>l1er GonYncIlds ... 12-1

12.2 COI1dltlonal ~latlon •.. 0 •••••• 0 0 12-3

12.2.1 Complle-TIme VarIableS ana me $OECL commana 12-3
12.2.2 The $SETC Command .. 12-4
12.2.3 Complle-TIme ExpressIons ... 12-4
12.2.4 The $lFC ... $ELSEC ... and $ENDC Commands 12-4

12.3 qltlmlzatioo of If-Statements .. 12-5

12.4 q>tlm1zatlon of WhlIe-Statements crtd Repeat-Statements 00 .. 0 12-7

12.5 Efficiency of case-statements ... 12-7

Pascal "'ererenee }~.O Notes The Compiler

Olapter 12
The Compiler

New Compiler Corrmands. (See Section 12..1)
The 3.0 release of Pascal for the Lisa adds new compiler commands and
compiler and code-generator invocation optiOns. The following pages detail
the additions. A table on page 12-7 of these notes summarizes all of the
available commands and options, including those discussed in Chapter 12 of
the manual.

Five new Compiler commands have been added: $ASM, $E, $1'1, $PI and Su.
SASM controls whether or not the listing shows the assembly code generated
by your Pascal statements. $E lets you automatically invoke the Editor. $M
lets you generate Macintosh code. $P st81ts a new page in your listing. $U
controls the Compiler's search for a regular or intrinsic unit's interface.

'*' SASM+ or $ASM- If a listing is being generated, show the assembly code
generated by the Code Generator along wit.h its associated
Pascal source (..), or show a minimum list.ing wit.hout the
a..~embly code, but with the UsaBug procedure-relative
addresses (-). This option is done on a
procedure-by-procedure basis. See Appendix J for a
discussion and examples of the different listing formats.

$E+ Dr $E-

SM+ or $M-

Turn on automatic invocation of the Editor (+) or turn it
off (-). The default is $E-. If there is no error log file
and you are not generating a listing, then the Compiler
""ill prompt you as to whether t.o continue the compilation,
abort it by pressing [CLE A~], or call the Editor by pressing
E. By specifying $E+, the E res:ponse is assumed and the
Compiler will give control to the Editor without prompting
yOll. If an error log fUe is being generated and there are
errors:, then at the end of compilation, with the $E+ option
in effect t.he Compiler will call the EditOf, which \~/il1 in
turn load t.he error log file for you. $E- with an error log
file will cause the Editor not t.o be called.

Generat.e Ma.cint~:h code (+) or Lisa. code (-). The default
is $M-. $M is actually a. Code Generator c,ptiol\ and has
meaning only if t.he Code Generat.or is automatically
invoked.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal fi"eference 3.0 Notes The Compiler

$P Output a form-feed character (CHR:12)) as the first
character of the line containing the $P command. Any
characters between the $P and the right comment delimiter
are ignored (no + or - is required). The form-feed
character calJSes an eject on most printers" so the line
containing the $P will be at the top of a new page when
printed. The $P command is ignored if the listing is on
the screen.

$U+ or $U- Turns on (+) or off (-) the Compiler's search of the
INTRINSIC.LIB for unit interfaces. The default is $U+. If
you specify $U-, the Compiler does not look in
INTRINSIC.LIB for the unit's interface. Instead, it searches
the file named in the $U filename command. In the
default $U+ mode, the Compiler first searches the
INTRINSIC.UB for tJle unit's interface, then, if the
interface is not found, the file named in t.he $U filename
commancl (if any) is searchec!.

Compiler and Code Generator Invocation Options
The Compiler and Code Generator now let. you specify options at invocation
time. Some of the Code Generator's options can be specified to the
Compiler., if t.he Code Generator is being invoked aut.omatically from the
Compiler. To specify an option, enter it when you are prompted for an input
file. If the option is valid, you will be prompted for t.he input file again, at
v,ohich point you can enter another option or the input file name. If what you
enter is not a valid option, it is int.erpreted as an input file name, and will
result in an error.

Compiler Opti(Jl"lS
$ASM+ or $ASM- Allo~." ass:ernbly listing generation cont.rols (+) or ignore

them (-). The $ASM- option acts as a master control
s:wit·ch for t.he $ASM Compiler command, overriding any
$ASM Compiler commands in the source. The default. is
not to generate an assembly listing unless a $ASM+ is
specified as an option (or as a Compile.r command if no
option is given) and 8. listing file is being generated. See
Appendix J for a discussion and examples of the different
listing formats.

$ASM PROC Format the assembly listing by procedure. Normally',
assembly code is interleaved with t.he Pascal source code
to shol,l,'· which statements generate which code. If you
specify $ASM PROC, all the code for a procedure is shown
after the source for that procedure. This option has
meaning only if you ere showing the assembly code (Le.,
you specified $ASM+ as a Compiler or Code Generator
option or you have $ASt-1+ Compiler commands in your
source). $ASM PROC is actually a Code Generator option,.

Notes 12-2

Pssc8i Reference },;} Not6'S Tl'le Compil6r

$ASM ONLY

$C+ or $C-

$E filename

$1:+ or SE-

$G+ or SG-

6.nd has meaning only if the Code Generator is
automatically invoked. See Appendix J for a discussion
and examples of the different listing formats.

Format the listing as an Assembler input file, with the
Pascal source shown as comments (each Pascal line
preceded by a semicolon). Using $ASf'v1 ONLY" you can
convert Pascal procedures t.o assembly code to
hand-optimize them. (Beware, though, the generated code
may not be valid Assembler inpllt..) This option hes
meaning on]'Y if you are shQl,",'ing the assembly code (Le.,
you specified $Ast-1 ... as 6 Compiler or Code Generator
option or you have $ASM+ Compiler commands in your
source). $ASM ON... Y is actually a Code Generator option,
and has meaning only if the Code Generator is
automatically invoked. See Appendix J for a discussion
and examples of the different listing formats.

Turn code generation on (+) or off (-). The default is $<:+.
This has the same effect as the $C Compiler command.

Output e. listing of Compiler errors to t.he specified file.
This has the same effect as the $E filename Compiler
command. The default is no error listing except t.o the
console screen.

Turn automatic invocation of the Editor on (+) or off (-).
The default is $E-. This has the same effect as the $E
Compiler command.

Turn automatic invocation of the Code Generator on (+) or
off (-). The default is $G+. There is no corresponding
Compiler command for this option. If you use the default,
the Compiler will prompt you for an object file name
instead of an J-code file name. (An I-code file is still
created, however, and the file name given to it by the
Compiler will be the file name you specified for the output
object file, except that the .OBJ ext.ension is replaced with
J. This.I file will be deleted bv the Code Generator after
it actually creates the object fiie.) If you specify $G-, the
Compiler will prompt you for an I-code file name and the
Code Generator will not be automatically invoked. You
will have to invoke the Code Generator explicitly, and the
I-code file will not be automatically deleted. This mode
of operation is compatible with previous releases. Specify
$G- if you want to lise Code Generator options that are
not allowed as Compiler options.

Notes 12-3

l~
1/<

Pas-co.'l h'eterence }.;) l'v'vtes Tl"le Compiler

SL+ or $L-

SM+ or $M-

SOV .. or $OV-

$A+ or SR-

$W fileneme

Code Generator Options

All(IW listing (';olltrols (+) or ignore them (-). The def6ult is
$L+. The SL- IJption acts as a master control s'+.'itch for
the listing commands, overriding any $L Compiler
command=;: in the source. If you specify $Lt., all $L
Compiler commands are processed, and YOLI are prompt.ed
for a listing file. If you specify $l-, you are not prompted
for a list.in~1 file and all $L Compiler commands are
ignored.

Generate fv1a.cintosh code (+) or Lisa code (-). The default
is SM-. This has the same effect as t.he $t-1 Compiler
command. $M is actually a Code Generator option, and
has meaning only if the Code Generator is aut.omatically
invoked.

Turn integer overflow checking on (+) or off (-). The
default is $OV-. This has t.he s:a.rne effect as the SOV
Compiler command.

Turn range checking on (+) or off (-). The default is $R-.
This has the same effect as the $R Compiler c:ommand.

Uses the named file in place of INTRINSIC.LIB when
searching for unit interfaces.

Most of the Code Generator options deal with listing generation. These
options allow you to override, to some degree, -....'hat you elected to do when
you generat.ed the listing from the Compiler. If ~/OU generate only a
Compiler listing, the Code Generator will add the procedure-relative
(LisaBug) addresses for each line of Pascal SOUTce. By using the $ASM:!:
Compiler command, you can see the generated code for selected procedures
as well. The different listing format.s are described in more detail, with
examples, in Appendix J.

Code Generator options, like Compiler options, are specified when you are
prompt.ed for an input. file. Since the Compiler usually invokes the Code
Generator automatically, some (not all) of these options may be specified as
if they were Compiler options, at. the t.ime you invoke t.he Compiler. They
will be passed along to the Code Generator when it is invoked. To use
options that must be given direct.ly to the Code GeneratOl', run the Compiler
in $G- mode, and then explicitly invoke t.he Code Generator.

y..,'hen YOll indicat.e to the Compiler t.hat YOll want a list.ing file, the listing
file name is conveyed to the Code Generator through the I-code file. That
listing file is modified by the Code Generator to produce the final listing
(YOll must have disk space to hold two copies of the listing file). Also

Notes 12-4

-

I
I

(

F'BSC'S} fi'eference }.CI Aletes' Tbe Co{npiler

passed in the I-code is line number information (used to synchronize the
generated code with the Compiler's list.ing) and changes in the Compiler's
:$ASM status. All this information, particularly the line numbers, makes the
I-code file larger if you are generat.ing a listing and if you did not. specify
the $L- Compiler option. The Code Generator options allow you some
control over its interpret.ation of the listing-control I-code.

$ASM+ or $ASM- Produce a full listing showing the generated code (+) or a
minimum list.ing cont.aining only address information (-). In
both cases, ignore all $ASM status changes in the I-code.
This option must be specified explicitly to the Code
Generator, since it acts as an override to the Compiler's
setting. The listing will show only the generated code if
you specify a $ASM:!: Code Generat.or option or a $ASM
Compiler command or option. See Appendix J for a
discussion and examples clf the different listing formats.

:$ASM PROC

:$ASM Qto.L Y

:$1+ or $1-

Format t.he assembly listing by procedure. Normally,
a...-::sembly code is interleaved with the Pascal source code
to show which statements generate which code. If you
specify $ASM moc, all the code for a procedure is shown
after the source for that procedure. This option has
meaning only if you are showing t.he assembly code (Le.,
you specified $ASM+ as a Compiler or Code Generator
option or yoU have $ASM+ Compiler commands in your
source). $ASM PROC may be specified as a Compiler
option. See Appendix J for a discussion and examples of
the different listing formats.

Format the listing as an Assembler input file, with the
Pascal source shown as comments (each Pascal line
preceded by B. semicolon). Using $ASM ONLY, you can
convert Pascal procedures t.o assembly code to
hand-optimize them. (Beware, though, the generated code
may not be valid Assembler input.) This option has
meaning only if you are showing the assembly code (Le.,
yOll specified $ASI'1+ as a Compiler or Code Generator
option or you have $ASM+ Compiler commands in your
source). $ASM Ot-L Y may be specified as a Compiler
option. See Appendix J for a discussion and examples of
the different listing formats.

Delete the I-code file (+) or don't delete it. (-). The
default is to delete the I-code file ($1+) if the Code
Generator is automatically invoked by the Compiler (the

Notes 12-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pas'cal Reference }.(,"I Notes The Compiler

$L+ or SL-

$M+ or $M-

Register Allocation

Compiler's default SG+ mode), and not to delete the I-code
file ($1-) if the Code Generator is explicitly invoked by t.he
user (if you specify the Compiler option $G-). $1 may not
be specified as a Compiler option.

Output a Code-Generator-produced listing in addition to
the Compiler-produced listing (+ t or ignore all listing
control I-codes and output only the Compiler-produced
listing (-). If you specify $L+, the Code Generator will
prompt you for the name of an output listing file whenever
the Code Generator encounters listing filename I-code
(meaning prompts can occur in the middle of code
generation). These options must be specified explicitly to
the Code Generator; they have different meanings as
Compiler optioos_

Generate Macintosh code (+) or Lisa code (-). The default
is SM-. $M~ may be specified as a Compiler option.

The Code Generator's allocation of machine registers has been modified for
improved code generation. In some cases, it may run OLit of registers while
generating procedures for which code generation was previously successful,
due t.o the longer lifetimes clf some regist.ers. If this happens, you must
simplify the expressions in the problem procedure and recompile.

Asterisks in $1 Filenames in Compiler Commands (See Section 12.1)
If there is: an asterisk in the name of an include file, do not enclose the $1
const.ruct. in the (*. __ *) Compiler comment delimiters. Instead LIse the { ... }
delimiters.

Notes 12-6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pas-cal Ref'erence 3 .. 0 Notes

COt'qJUer
Cull_lam

(in sowce code)

$ASM:!

$C:!:
SO:!:
$OECL list
$ELSEC
$E:!
SE tnename
SENnC

SI filename
$IFC
SLt
SL filename
SM:
SOY:!
$P
$R:!:
$S segname
$SETC
$U:!:
$U filename

$Xt

..lASM:!:
l)&M PR.Q~j
!$ASM..ONLY!
$C:!

$E:!:
$E fllen8l11e

$G:t

SLt

15M:!: 1
SOY:!:

$R:!:

$W rilename

$ ASM:!:
SASM PROC
$ASM ONLY

$ I:!:

$L:!:

$M:

The Compiler

Desaiption

(none) Assertlly code in 1 isting
fllSsertlly listil'YJ by prooecttt
Listing in fOr1'\ Of fllSseI'I)ler illlUt fi Ie

$C+ COde generation onIbff

$0+ ~ation Of proc nI!f'ItS. onIbff
[)IOlare OOPipil e-UN VIII" i 11)1 es
COfIpi Ie-tiM ELSE

SE- toMtio Edi tor illJlOO8.tion onIbff

Error listing to fil...e
COfIpile-tiM OOJF

$G+ Auto Code GBnwator irwoce.tim OO/Off

$1+ 1 Delete I-coc:Ie filt after coc:Ie generation
J no 1 uoe source ooae frOl'l f 11 tnf!f'Ie

2
COfIpi Ie-tiM IF

$L- Lilting control (MSttr wi too if option)

Us t to filllWll!!
$M_3 Generate ttecintos.hll.ise code

$OV- over flow ct.c:4(ing on/off

start new page in lis.ting

SR+ Rwlge ctleOking o%ff

start puttir.g code in segnaM

Sltt value Of cc:If1)ile-tiM varill)le
$U+ IHTRI HSI C . UD snrct'I for interfaceS onIbff

SNrctl f i 1........ for in tel' ftIiI:)U in USES
use f i 1 et'l8I'Ie ins tl!8(l 0 f I HTR I HSl C . U 8

$X+' AUtOMtic stICk txpIrlJion onIl)ff

The options shown in boxes ere actually Code Generator options, but can be specified
to the Compiler if the Code Generator is automatically invoked.

Notes:
1. $1+ is: the def8ult if SG+ is in effect, otherwise $1- is: the default.
2. tL- is the default unless you've specified 8 listin~ file.
3 is only valid if SG+ is in effect.
4. $X+ is the default if 1M- is in effect, otherwise $X- is the default.

s..r..n.y €I CompU Cmrlmaldl and
Ccn1Jiler and Code Genert!lt.m" Options

Notes 12-7

I
I
I
I
I
I 12.1

I
I
I
I
I
I
I
I
I
I
I '

I
I

The Compiler

The Pascal complIer translates Pascal source text to an Intermediate code, and
the code generator translates the Interrnecllate code to MC68000 object code.
Instructions for operating the compHer and code generator are gIven in the
Wol1<SI7qJ User's Gl.Jldl for U/e LIsa

COI'Tllller Co II'Tlaf Ids
A compHer command Is a text construction, embedded In source text, that
controls complier operat1on. Every complier command IS written withIn
comment delimiters, { ... } or (* ~ Every compiler command begins with the $
cnaracter, Whlch must Oe the flrst Character Inside the comment dellmlters.
In this manual, compiler commands are ShOwn in upper case to help distinguiSh
them from Pascal program text; however, upper and lower case are Inter
changeatlle In compHer commands just as they are In pascal program text.
The following compiler commands are avallable:
INPUT FILE caYma.

$I fllet"8re Start taking source Code from We fllename. Wnen tne end
of thIs file Is reached, revert to the prevlous source file.
If the mename begIns with'" or -, there must be a space
between $1 and the fUename (the space is not necessary
otnerwlse~

$U filename Search the file fUename for any units subsequently
specified In the uses-clause. Does not apply to Intrlnsic
units.

cavma. CF ca:JE GENERA Tlav
SC+ or $C-

SR+ or SR-

Tum code generat10n on (+) or off (-). ThIs is done on a
procedure-by-proceaure basis. These commands shOuld be
written between proceClures; reSUlts are unspecIfIed If they
are written inside procedures. The default Is $C+.

Tum integer overflow checking on (+) or off (-~ OVerflow
CheCking Is done after all lnteger add, SUbtract, 16-blt
multiply, divide, negate, aos, and 16-01t square operations,
and after 32 to 16 bIt conversIons. The default Is $01-.

Tum range CheCking on (+) or off (-~ At present, range
CheCking is done in assIgnment statements and array
indexes and for string value parameters. No range
checking is done for type lorglnt. The default is $R ...

12-1

Pascal Reference Manual TIle Compiler

$S ~ Start puttIng code modUles Into segment segane. The
default segment name Is a string of blanks to designate the
"blank segment" In whIch the maIn program and al1 buIlt-In
support code are always lInked. All other code can be
placed Into any segmenL

$X+ or $X- Tum automatic run-time stack expansIon on (+) or off (-~
The default Is $X+.

compUer directives that affel;t I;ode generation take effect when the
end of the Pascal statement in whiCh they are embedded Is reaChed. If
the same directive is specified more than once In a statement, the last
setting is used. A tricky case of this is:

beg1n
j := foo;
{SR-}
1 := 1*2
{$R+}

end

Since the second assignment does not end with a semicolon .. and
actually ends when the erKj is encountered... range checking wlll not be
turned off for that statement.

CE8I..lGGflVf.3

$0+ or $0- Tum the generation of procedure names In object code on
(+) or off (-). These commands should be written between
procedures; results are unspecified If they are written
inside procedures. The default Is $0+.

CCNJfTflNAL CiJ"'-PfLA T/CN

nCL list

SELSEG
$EN)C

$IFC
$SETC

i1/~L.

(see Section 12.2 below~

(see Section 12.2 below~

(:iCC section 12.2 belOW~

(see seCtion 12.2 below~

(see section 12.2 below~

A reran+ ~:·;--;-{%)-~~~r;~(~e-;~-;@ /·11~-~~)::'1
/'1 (; /fIiS. eJf 14~1 d (s %~.

12-2

I
I
I
I
I
I
I
I
I
I

(,

I
I
I
I
I
I
I .. ,

I
I

Pascal Reference Manual

LISTING aNTRlL

Sf fllenaoo

SL fller81e

TIJe corrpller

Start makIng a l1sting Of compHer errors as they are
encountered. Analogous to $L. fllerane (see below~ The
default Is no error listing.
Start llstlng the oompllation on fHe fllerwne. If a listing
Is beIng made already, that flle Is closed and saved prIor to
opening the new fHe. The default 1s no listlng. If the
fllename begIns wIth ... or -, there must be a space between
$L and the filename (the spaoe Is not neoessary otherwise~

SL'" or SL - The first ... or - followIng the $L. turns the source listlng on
(+) or off (-) without Changing the list flle. You must
speo1fy the listing me before using $L +. The default is
$L +, but no listing Is produced If no listIng fIle has been
specified.

12.2 ccn:nUooaI COO1Jllatioo
CondItional compUatlon Is oontrolled oy the $IFC, SELSEC, and SEN:J()
commands, whiCh are used to bracKet sections of source text. Whether a
particular bracketed section of a program is compiled depends on the boolean
value of a compile-time 8)(!JTession whIch can contaIn compJle-time variablBX

12.2.1 CcJI'1llUe-Tlme varlmles Cfij the $tEa... COITfT'8l(J

Compile-time variables are completely Independent of program variables; even
if a compile-time variable and a program variable have the same identifier,
they can never be confused by the compiler.
A complle-tlme varlable Is declared when it appears In the IdenUHer-llst of a
sa::a.. command.
Example of compile-time variable declaratIon:

{so::a.. LIBVERSI(J(. PROOVERSlOO}

This declares LIBVERSICN and PROOVERSICN as compIle-time variables.
Notice that no types are specIfied.
Note tne fOllOwing points aoout complle-ume varlables:

• CompUe-time variables have no types, although their values do. The only
possible types are integer anCl boolecn

• All compIle-time var1ables Should be declared before the end of the
variable-declaration-part Of the main program. In other words a $OEa...
command that declares a new compile-time variable must precede the
main program's procedure and function declarations (If any). The new
compile-time variable Is then Known throughout the remaInder of the
compilation.

• At any point in the program, a complle-tirne variable can have a new
value assigned to it by a $SETe command.

12-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference Manual Tl7e CompIler

12.2.2 ll'e $SETe COOJncn1
The $SE:TC command haS the form

{$SEre IO := EXPR}
01'

{$SETC IO = EXPR}
where 10 is the identifier of a compUe-time variable and EXPR Is a complle
tIme expression. EXPR Is evaluated Immediately. The value of EXPR Is
assigned to ID,

Example of assIgnment to compIle-time varIable:

{$SETe LIBVERSlm := 5}
This assigns the value 5 to the compUe-time variable LIBVERSIO'l

122.3 COfr4>Ile-Time Expresslms
compUe-time expressIons appear In the $SETC command and In the $JFC
command. A complle- time expression is evaluated by the compHer as soon as
1 t Is encountered In the texL

Tne only operands allowed in a complle-Ume expression are:

• Complle-Ume varIables
• Constants of the types Integer and boolea1. (These are also the only

possible types for results of compUe-time expressions.)
All Pascal operators are allo'Hed except as follo'Hs:

• The In operator 1s not allowed.
• The II operator Is not allowed.
• The I operator is automatically replaced by dlv.

12.2.4 The $IFC, $ELSEC, em SENJC Cmlrr'olds
The SELSEC and SENJC commands take no arguments. The $lFe command has
the form

{$IfC EXPR}
wnere EXPR Is a complle-Ume expression with a OOOlem value.
Tt1ese three commands form constructions simllar to the Pascal if-statement,
except that the SE~ command Is always needed at the end of the $IFC
construction. SELSEC Is optlooal.

12-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

-'-

C
I:

':.. '

I
I

Pascal Reference Manual

Example of conditionally corrplJ[?(1 axle:
{SIFC PfQiVERSI(J.I >= lIBVERSI(J.I}

k := kvall(data+indat);
{SELSEC}

k := kval2(c1ata+cpin:lat ft);
{$EN)C}

wrlteln(k)

me conplJer

If the value of PROOVERSI£N Is greater than or equal to the value Of
LIBVERSI£N, then the statement k:-kval1.(c1ata+lndat) is compUed, and the
statement k:-kvaI2(ctata-.cplnclat ft) Is skIpped.
But if the value of PROOVERSI£N is less than the value of LIBVERSICN, then
the first statement 1s skipped and the second statement Is complIed.
In eIther case, the wrltelr(k) statement is complIed because the conditional
construction ends with the SEN:::C command.
$IFC constructions can be nested within each other to 10 levels. Every $IFC
must have a matching SEI'-I:X::!.

When tne compHer Is skipping, all commands In the Skipped text are Ignored
except the following:

.lSEC .tfJC
$IFC (so that $EN:lC's can be matched properly)

All program text Is Ignored during SKipping. If a listing Is produced, each
source Une that Is skIpped Is marked with the letter S as Its "lex level."

12.3 qltlmlzatlon of If-Statements
When the compller finds an if-statement controlled by a boolea1 constant, It
may be unnecessary to compile the then part or the else part. For example,
given the declarations

const al.ays = true;
never = false;

then the statement
if never then statement

wlll not be complled at all. In the statement
if never then statement!

else statement2
"statementl" 1s not compUeC1; only "statementZ" is compUeC1.

12-5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference Manual Tile Compjler

Slmllarly~ In the statement
if always then statement1

else statement2
only "statementl" Is compllecj,
The interaction between this optimization and conditional compllation can be
seen from the fOllowing program:

progran Foo;

{$SETC FLAG := FALSE}
const pi = 3.1415926;

size = 512;
{SIFe FLAG}

debUg = false; {a boolean constant, if FlAG=true}
{SENJC}

var 1, j, k, 1, rn, n: integer;
{$IFC OOT FLAG}

debug: boolean; {a boolean variable, if FLAG=false}
{S£~}

{$IFC NOT FLAG}
pI'OCeOJre Wlat.lllXle;

begin
{interactive pl'OCeWre to set global boolean variable, debug}

end;
{$a«}

begin {lIBln}
{$IFC OOT FLAG}

WlatnDde;
{S£tt:lC}

1 f detlJg tnen beg1n
statementl

em

end.

else begin
statement2

ern

The way this is compiled depends on the complle-time varIable FLAG. If
FLAG Is false, then debug is a boolean vadable and the Whatroode procedure
is compiled and called at the beginning of the main program. The If derug

12-6

I
I
I
I
I
I

!

I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference Manual The CompjJer

statement Is controlled by a txlOlea1 variable and aJl of it is compUea, in tne
usual manner.
But if the value of FLAG is changed to true, then debUg is a constant with
the value false; and Whatmode is neither compiled nor called. The if detlJg
statement 1s controlled by a constant, so only its else part, "stalemenl2"; is
complled.

12.4 q>tlmizatloo of While-statements EI1d Repeat-Statements
A whUe-statement or repeat-statement controlled by a txlOle<fl constant does
not generate any condi tional branches.

12.5 EfficIency of case-Staterrenu
A sparse or small case-statement will generate smaller and faster code than
the corresponding sequence of if-statements.

12-7

I
I
I

I ,

I Appendixes

I A Comparison to Apple II and f\pple III Pascal _. _. ____ . _____ . _____ ... ______ A-1
j 8

I c
Known Anomalies in the Compiler _ 8-1
Syntax of the Language ___ . ______ . _ C-l

, 0 Floating-Point Arithmetic _ ... _______________ . __ . __ . _ _ ... __ ... _ .. _. __ 0-1

I E

F

~uickI)r~ ___ __ ._ .. __ ____________________ ._. ____ ... __ .. __ ._. __ . ____ ._. E-1

Hardware Interface _ _ _ _ _____________ . ________ . __________________ ... ___ . __ F-1

I G

H
i

Usa Extended Character Set __________ .. ______ . ________________________ . ____ G-l

Error Messages . _ ___________________ .. _. ___ _". _. _. _______ . __ . _______ H-l

I
I

J

Pascal '.Nakshop Files. _______________ . _ _ _ _ _ _ ______ . _________ . __________ . __ . __ 1-1

Listing Formats ______________ . _. ___ . _. __ . _________________________ . _. _. __ .. _ .J-l

1 .' . ,

- (

1 ,

I
l

I
I
I
I
I
I
I
I

I
I

i

I
I

,

I
i

I
I
I
I
I
I
I
I
I
I
I
I
I
I

A.I

A.2

A_3

AA

Appendix A
Comparison to Apple II

and Apple III Pascal

Extensions .. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ A-l

[)eletiorts _ __ _._. ___ . __ .. __ .. __ ... _._. __ ._ " ___ " __ '_'_" f\-l

other [)iff erenees _ .. _ .. __ .. _ _ .. _ . _ . __ .. ___ . _______ . ___ ____ . _ _ _ _ _ _ _ _ _ f\-3

Predefined Identifiers _ _ _ _ _ _ _ _ _ _ ______ .. __ . ___ . _. _ .. _' ... _______________ . _ . _ A-4

I
I
I
I
I
I
I
I
I

- "",
/

I
I -
I

I
I
I
I
I
I
I
I
I

----------- -- ----- -------- -- - ------------ -- ------------------------ -- --------------

Comparison to Apple II 1.'2.
and Apple III Pascal 1.1

This appendix contains lists of t.he major differences bet.ween t.he Pascal
language on t.he Lisa and t.he Pascal implemented on the Apple II and Apple
IlL Please note that these lists are not. exhaust.ive.

A.1 Extensions
The following features have been added on the Lisa:

• i) Operator-returns the pointer to its operand (see Sect.ion 5.1.6).

• Heapresult, pointer, a.nd ord4 functions (see Sections 11.2.2, 11.3.3, and
11.3.4).

• Keypress funct.ion built int.o tt-re language, ""lith same effect as t.he
keypress function in the applestuf'f unit of Apple II and Apple III Pascal
(see Section 10.3.7.1).

• Hexadecimal constants (see Section 1.4).

• Otherwise-clause in case-statement (same as Apple III Pascal; see
Section 6.2.2.2).

• Global goto-statement (see Section 6.1.3).

• A tile of char t.'y'pe that. is distinct. from the text t'y'pe (see Sections
3.2.4 and 10.3).

• Numerous compiler commands (see Section 12.1).

• Procedural and functional parameters (see SectiOns 7.3.3 and 7.3.4).

• Stronger type-checking (see Sections 3.4 and 7.3.5).

A.2 Deletions
The following features are not included on the Lisa:

• Turtlegrophics, applestuf'f, and other standard units of Apple II and
Apple III Pascal.

• Interactive type (not needed, as the 1/0 procedures will do the right
thing "'Jith a file of type text if it is opened on a character device).

• Keyboard file--same effect can be obtained by opening a file of t'y'pe
text on the device -KEYBOARD (see Section 1(>.3).

• Unit (device-oriented) I/O procedures.

A-l

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pescsl RetelBliUi' ;'.,:fsi/uBi Cornparison to ~pple 1l & III PascBl

• Recognition of the ETX character (control-C) to mean "end of file" in
input from a character device.

• "Long int.e'Jer" elata t\'pe, with length att.ribute in declaration. Replaced
by t.he longint t.ype (see Section 3.1.1.2).

.. "Init.ializat.ion" code in a unit (see Sec:t.ion 9).

• Trle abilit.y to creat.e new int.rinsic-units and install t~lem in the system
(see Section 9).

• Reset procedure without an external file title, for use on a file that is
already open (see Section 10.1.1). To obtain the same effect, close the
file and reopen it.

• Treesearch~ :£1' .s~h
.. Bytestream, wordstream (data t':lpes in Apple III Pascal).

• Exit(program)--The exit(identifier) form works" and the identifier can be
the program-identifier. Halt can also be used for orderlY' ex it. from a
program (see Section 11.1).

.. Extended comparisons (see Section 5.1.5).

• Scan funct.ion. Replaced by scaneq and scanne (see Section 11.8).

.. Bit-wise boolean operations .

.. Segment keyword for procedures and functions. Use the $S command
insteacl (see Sect.ion 12.1).

.. The following compiler commands (see Section 12.1):

.. $1+ and $1- (no automat.ic 1/0 checking; pro~lram must use iaresult
function) .

.. $G ($G+ is the 8..,"'Sumption on the lise) .

.. $N and $R (for resident code segments).

.. $Q-

• $5+ and $5++ for swappin9.

• $U+ and $U- (for User Program).

• $V_
In general, do not assume that a compiler command used in Apple II or
Apple III Pascal is valid on the Lisa. Furthermore" do not assume that an
Apple II or Apple III Pascal compiler command is "harmless" on the Lisa, as
it rna':,' be implemented ",lith a different meaning.

A-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Comp8l'ison to t4pple II & III PSSC8J

A3 other Differences
The follo'h'ing features of Pascal on the lisa are different from the
conesponding features of Apple II and Apple III Pascal,

• Size of all strings must be explicitly declared (see Section 3.1.1.6).

a Mod Bnd div--Pascal on the Lisa truncates toward 0 (see Section 5.1.2).

• Apple II and Apple III Pascal ignore underscores; Pascal on the Lisa
does not. They are legal ch8l"acters in identifiers (see Section 1.2).

• A goto-statement cannot refer t.o a case-const.ant in Pascal on t.he Lisa
(see Section 6.1.3).

a A program must begin with the word program in Pas:cal on the Lisa (see
Chapter 8).

a Trunc is different (see Section 11.3.1).

• lM"itE(b) ',.,.here b is a boolean will write either ' TRUE' or 'F ALSE' in
Pascal on the lisa (see Section 10.3.3).

• l;-,'hether a file is a textfile does not depend on whether its name ends
with ".TEXT" when it is created. Instead, any external file opened with
a file variable of type text is treated as a textfile, ""'hile a file opened
with a file variable of t.ype rile or char is not; it is treated as a
"datefile," Le. a straight file of records which are of type char (see
Sections 3.2.4 and 10.2).

• Get, P'A, and the contents of the file buffer variable are not support.ed
on files of type text. Use only the text-oriented I/O procedures .,."ith
textfiles.

• Eoln and ed functions on files of type text work as they do on
interactive files in Apple II and Apple III Pascal.

a Pascal on the Lisa does not let you pass an element of a packed
veriable as a v8l"iable parameter (see Sections 7.3.2, 11.7, and 11.8).

• Limits on sets ere different (see Section 3.2.3).

• The control variable of a for-statement must be a local variable (see
Section 6.2.3.3).

• In a write or writeln call, the default field lengths for irt.eger and real
values ere 8 and 12 respectively (see Section 10.3.3).

AA Prede(ined Identifiers
The predefined identifiers listed in Table A-1 are built. into the Pascal
Compiler for each machine, as indicated. If you declere or define these
names in your program, no Compiler error will result, but you will lose the
capacit.y of t.he corresponding built.-in, or predefined, entity. The list does
not include identifiers in special library units, sllch as those in the
QuickDraw graphics unit.

A-3

-
I Pascal Reference Manual Comparison to Apple II & III Pascal

I
Idc:riifier ~ Lisa ADDle III ADDle] [

I IORESULT Integer function Yes Yes Yes

KEYBOARD File Device Yes Yes

I
KEYPRESS Boolean function In library Yes Yes

LENGTH Integer function Yes Yes Yes

LN Real function Yes Yes Yes

I LOG Real function No Yes Yes

LONGINT Type Yes No No

I MARK Procedure Different Yes Yes

MAXINT Constant Yes Yes Yes

I
IVIEMAYAIL Integer function Different Yes Yes

MOYELEFT Procedure Different Yes Yes

MOYERIGHT Procedure Different Yes Yes

I NEW Procedure Different Yes Yes

000 Boolean funct.ion Yes Yes Yes

I ORD Integer function Yes Yes Yes

ORD4 Integer function Yes No No

OUTPUT File Yes Yes Yes

I PAGE Procedure Yes Yes Yes

POINTER Pointer function Yes No No

I POS Integer function Yes Yes Yes

PRED Integer function Yes Yes Yes

I PUT Procedure Yes Yes Yes

PWROFTEN Real function Yes Yes Yes

I
READ Procedure Yes Yes Yes

READLN Procedure Yes Yes Yes

REAL Type Yes Yes Yes

I RELEASE Procedure Different Yes Yes

RESET Procedure Different Yes Yes

I REWRITE Procedure Yes Yes Yes

ROUND Integer function Yes Yes Yes

I
I

A-5

I
.". ~~- ~.-----. --_.- -~~------

I
I

Pss·c.a1 Reference Manual Comparison to f¥Jple II & III Pascal /~

I
ldertifier ~ Lisa A~~le III AD~le 1 [

I SCAN Integer function No Yes Yes

SCANEQ Integer function 'yes No No

I SCRNNE Integer function Yes No No

SEEK Procedure Yes Yes Yes

I
SIZEOF Integer function Yes Yes Yes

SQR Genenc functIon Yes Yes Yes

SQRT Real function Yes Yes Yes

I STR String function ~,Jo Yes Yes

STRING Type fLlnction Length req Yes Yes

I suce Integer function Yes Yes Yes

TEXT Type function Different Yes Yes

I
THISCLASS Pointer function Yes No No

TREESE ARCH Integer function No Yes Yes

TRUE Constant Yes Yes Yes

I TRUNC Integer function Yes Yes Yes

UNITBUSY Boolean function No Yes Yes

I UNITCLEAR Proc:edure r'-Jo Yes Yes

UNITREAD Procedure 1'-10 Yes Yes

I
UNITSTATUS Procedure No Yes No

UNIT~""AIT Procedure No Yes Yes

UNITWRITE Procedure No Yes Yes

I I,..,IORDSTRE R~.IJ Type No Yes: No

y.,IRITE Procedure Yes Yes Yes

I l,,)RITELt'J Procedure Yes Yes Yes

I
I
I
I A-6

I

Appendix B
Known Anomalies in the Compiler

This apperKJix describes the known anomalies in the current implementation of
the COfTl>iler,

8.1 ScqJe of Declared Const.a1ts
Consider the fOllowing program:

prognn c~1;
cmst ten=10;

procedJre p;
coost ten=ten; {llfIS SID.IJ) EE AN fARm}
begin

writeln(ten)
en1;

begin
P

en1.

The constant declaration in procedure p should cause a compiler error, because
it is illegal to use an identifier within its own declaration (except for pointer
identifiers~ However, the error is not detected by the compiler, The effect is
that the value of the global constant ten is used in defining the local constant
tef\ and the wrtteln statement wlites "l[f',

A more seriOlfS anomaly of the same kind is illustrated by the following
program:

progrEIR cscqJe2;
const red=!; vlo1et=2;
procec:lJre q;

type arraYTY.IJe=aITaY(red .. violet] of integer;
color = (violet, blue, green, yellow, orange, red);

va:r arrayVar:arrayType; c:color;
begin

arrayVar [1] : = 1;
c:=red;
writeln(ord(c»

end;

begin
q

en1.

B-1

I~

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference M8I7i.J81 ConpjJer Anamelies

Wi thin the procerure q.. the global constants red and violet are used to define
an array index type; the effect of ana){red..vlolet] ls equivalent to ana){L2l
In the declaraUon of the type COIOf, the constants red c:n::J violet are locally
redefined; they are no longer equal to 1 and 2 respecUvely--lnstead they are
constants of type color wIth ordInal1Ues 5 CJ'Id 0 respectively. The writeln
statement writes ""5".

The use of red in the declaration of the type color should cause a compiler
error but does not

Consider the statement

arrayVar[1): =1;
If this statement is replaced by

arrayVar[red):=1;
a compiler error will result, as red is now an illegal index value for anayVar
--even though arrayvar is of type arrayType and arrayType is defined by
ana)(~vloletl

To avoid this kind of situation, avoid redefinition of constant-identifiers in
ent.rnerated scalar types.

B.2 ~ of Base--Types for Pointen
Consider the following program:

program p~1;
type s=O .. 7;
pI oceWre Ekecurrent;

type sptr=" s;
s=record

ch:char;
l:xJOl : l:xJOlem

end;
var current: s;

ptrs:sptr;
begin

netf(~trs);
ptrs A : =current

end;

begin
lB<ecurreot

end.

Here we have a global type I, which is a subrange of integer; we also have a
local type I, which is a record-type. Within the procedure makecurrent, the
type sptr is defined as a pointer to a variable of type So The intention is that
this should refer to the local type s, deflned on the next line of the program;
lIlfortunately, however, the compiler does not yet know about the local type s

8-2

I
,~""I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Refefl!l7Ce M8ntJ81 Corrpiler Anom8iies

8'ld uses the global type s. TtlJs ptrs oecomes a pointer to a variable of type
0..7 instead of a poInter to a record. Consequently the statement

ptrs" : = current

causes a COf'T'4)Uer error slnce ptrs" CI1d current are of incompatible types.
To avoid this kind of situation .. re-declare the type s locally before declaring
U1e poInter-type SJJtt based (J1 So Alternately, avoId re-declaraUon of
identifiers that are used as base-typeS for poInter-types.

8-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

C.l

Co2

C.3

CJl

c.s
C.6

C.7

C.S

C.9

Appendix C
Syntax of the Language

Tokens and ():)nstants •••...••...•••••.••••.•••••.•.••••••.•.•••••••••••••••••••••••.•••••..• C-l

Blocks .•......••...........•...•..•..••........•.••....•....••......•....••...•....•••••••.•..•... C-4

[)ala Types ..•....•...•.•............................•.••••.••.........•••..••••..•.••..•.••••.. C-5

variables ..•..........•.. C-9

Expressions ... C-I0

Staterre1ts ••••••••••..••••..••.••.•..•••.••••...••.••••••••.••.••••••••••.••••••..••••.•.•.•• C-12

Prt:x:B1Jres 8ld F lIl::ti (J1S •• C-15

ProgrtIllS .. C-16

LKdts ..•.•..•....•.••...•••.......••...•••..•••.•...••••.••••••••••...••..•..••••....•••..••••.. 0-17

Syntax of the Language

This appendix collects the syntax diagrams found in the main sections of this
manual. see the Preface for an intrcx:k.lCtion to syntax dtagrcrns.

C.l Tm<erlS cn:J COlStalts (see ~ter 1)

Jette}" .1 0 f/}}"C(/f17 0, o (ll!lV¢ 01 •
digit .1 ® tJurx¢ 01 •
/Jex-diqil

~ dIgIt 1 •
®~ @ tl7.rougl7

jdentifie}"

diqit-.re<W1C€ ;1 dIgIt 1 ()

hex-diqit-.re<W1C€ (:1 hex-digi t I) ..

C-1

Ii

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Refe.rtJme fYlin.l8/

..!:!!..!.~~~~t!::!-.---";;--"1 digit-sequence

hex-dig! t -sequence

skIn

l17..rigned-reaJ

digit-sequence dig! t -sequence
'----------~ scale-factor

scaJe-racfof ~ ;r .1 digit-sequence

~ \+i sign r'

..!:l/J::..:If7~s.'li::z:.:.::.::::'CI:.....:-n:.:.:~:::...'/m:.:.:'lJe.:...:.:..'l" __ ~PJ unsigned-integer

unsigned-real

siqned-numoer ... 1 unsigned-number I~----<
~ sign ~

tpJted-Sl/ing-C01St.lTJt

·0 ~ (-1 string-character

C-2

I
,-.. ~I

c ,

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

...::.s~tr!:.:J.n';Z,.'!l-....:c.::..:.'I7a=IJ'8,..::.:'C:;,..;.t=er_--..;;-,_-.,+..,Y dIar e.>apt 0 arCR I J
~~---------.~~------

synta..'It

constant-dec/alBUm .Ildentlfler ~ constant J--.O--+

l:c~'Onu::~~ta:!!.'f7!!:..t--'''-_~ ___ -r.., constant-identifier

sIgned-number

quoted-string

quotea-cnar

C-3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Referet'kJe f'1En.JaJ

C.2 BI~S (see Cf'q>ter 2)

ala::l(
-':::;'::'='-:"'-"~'" label-declaration-part

constant -dec laration-part

type-declaration-part

variable-declaration-part

procedure-and-function-declaration-part

statement -part 1----------------..

lalJel-c/eClaration-paTt

.~ (.IIObI-~-9'I·OI---"".

/aIJe/ .1 digit-sequence I •

CtYJ.J'lant -d:!r./anll JlYJ-pBlt

.~ (:'1 -co-n-stan-t--d-ec-la-r-aU-'on-',)

type-c/ecJaTatlon-paTt

.(type) (.1 type-declaration I)
•

C-4

syntax

(.

variabJe-decJaralion-part

(4"1 variable-declaration I)

pmcedure-8I7d-flJnclion-dec18ralion-part

--.....---~ procedure-declaration

functlon-aeclaratlon

s18tement-p8!l .. \ compound-statement I ...

C3 Data Types (see ~ter 3)

type-cJec1810tJm ... \identifier ~ type ~

...:tu:::.::.:...-_~~ simple-type 1---_.

pointer-type I---~---

real-type 1----.... 1

re81-trpe ... 1 real-type-identlfler I ...

C-5

Pascal Refel"8f7Ce /"/a'xIa/ SyntaX'

ordlnaJ-t sub range-type

enumerateo-type 1--------..1

SIJ1/'Jg-~yPe

size-attrlbute

,..::;S:.:,:iZ'e=-..;-8=.;:t;..;.:t.r:.:..:.:1b:;.:'U::..:;.te:::..-_I101 ... , unsigned-integer ~I --~

enumerated-type .CD----! identifier-list ~

IdentH/er-jjst •

SlIbranqe-tY/Je .1 constant ~ constant I------

C-6

(

-- ? (.

\

structured-type-identi fier

index-type .. I ordinal-type ~

record-type
.. (record) 1. ~ .. @-+

~ field-list ~

field-list

I ·r--I fixe-d-pa----.'t I c;:::::J,. ~ t.::r
l ~ variant-part f-' ~

(.,1 field-declaration I)
~.----~G)~.~--~ .

...:..:fJ.='e.='.Id,--~=='18J=-=a=ti4=m~----4"1H1 identifier-list ~ type ~

C-7

syntax

Pascal Reference Manual syntax

variant-part

~'Cj ;::o;.ltag-fleld-tYpe~
identifier : ;

tag-field-type ., ordlnal-type-identifler ~

variant
(• ..--, c-on-stan-t""""l .o--.cD' .CD---+
"-----iO) \..j field-list t-f

sel-lme .~ ordInal-type ~

file-type

~~ ~~ of type

base-type 1---..,.....-.-'

pointer-type-identifier

lJase-tJ1)e ... 1 type-IdentIfler ...

C-8

I
I
I
I
I
I
I
I
I
I

~
I
I
I
I
I
I
I
I

P8$C81 Reference 1'18I7U81

0..4 varlcmles (see Chapter 4)

Variable-deClaration., identifier-list ~ type ~

veriable-reference

-....., • ...,/ varlatHe-lcJentl fler

~ qualifier ~

vBriebJe-identifier .. , identifier J-+

ifler

flle-bUffer-symbol ~--...J

pointer-object-SYnlDOl

fJeld-cleslqn8tor ... 0--t1 identifier ~

flle-lJuffer-sYTTiJol .0)---.....

pofnter-OlJject-symlJOl "O --.. r

C-9

syntax

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pascal Reference Manual

C.S Expresslms (see ~ter 5)

unsjoned-constant
~=:":';;:;':::""':::;:;:;;"':'::=":':':---..,.-~ .. IIIooI·1 unsigned-number 11-----

factor
---- .------.-.,._-

tann

,-~:.IIf,I,1 quoted-string-constant ~

1---l~IIf,I'1 constant-identifier :1-----....1

'-~:~ ml ~----------------~~:

--.:-.. --..\.;j}J:----@l---,..-tll>lvariable-referencel-------.,.

C-10

Syntax

•
I
I
I'
I
I
I
I
I
I

PasCal Reference Manual

expl7!!ssion

simple-expression :----------------,.---..
)--_--111>1 simple-expressIon

f'tl7f.lfim-c..aJl

---t.~1 function-identifier \. II·
"-+I actual-parameter-list !

8C
fi/8/-oanme1eN

Isl .0 C ·1 actual-parameter 1) .CD---
-------(0 ... -------

actl.lal- 'ammeter expression

procedure-identifier

function-iC1enti fler

set-constructor -CDr I---------------.,.---~ "" \...--.i J .~
(_ I member-group I)
""-----;0,.. .. 1------'"

C-ll

syntax

PaSCal Reference Manual syntax

merrDer-qllJUJ ~I expressIon I ~ ~
_ expression

C.6 staterrelts (see ~ter 6)

simple-statement ~----,..-'

18bel .1 digit-sequence 1-1 --....

sl tie-statement assignment -statement

goto-statement t------""----1.

asslgYJJefJt -statEflJefJt

variable-reference

functlon-ldenU fier expressIon

ptl.JCeaJJ1?-st.atenJefJt

- ___ .,.l1l>I1 procedure-identifier

actual-parameter-llst

@to-st.at.ernent .. ~ label ~

C-12

.1 Pascal Refel'l!l7Ce Ma?ual

..:!.s~tIUC~t~'lJ.!!'T8I:::::'(j:...;-s:.:t=-'8::.:te..:..:.me.=.;..;.'f7",---t_"\" compound-statement t--~

condl tlonal-statement

with-statement 1-----......... - ...

compot/I7d-statement

-...,~(begin) (.1 statement 1) .@
..... ' ----1Ci)M4fJ--------

iF-statement expression

statement 1-:----------[-.
statement

case-statEment express10n

otherwl se-clause

(.1 constant I) .0-+\ statement

~O,...-

..::o:..:::I11e..::::.:..1'WJ;:..:'l:..::.~::;..' -....;;cJ.='Bt_ISe __ -....O--< Otherwise)--./ statement

C-13

syntax

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

re 'etitive-statement

l"t:?pe.at-stBterne.nl

repeat-statennent

whUe-statement

for-statennent

.(repeat >-c+J statement I) .~ expression ~
'-----IG)eJe-----'-

wtJile-statement

--tII""'~ expression ~ statement 1-+

TO[-sta(ement

control-variable initial-value

)------,....-.t final-value statement

Ct.?I7tJl7i -v8JiiKJie ·1 varlable-identi fier ~

in/ljai-value ., expression ~

flnal-valllB .,1 expression ~

wH/J-stat.ement

recora-variable-reference I----<-~ statennent

I/'

C-14

---------- ------------------

~\
syntax ,

I
\

I
(P8SC8/ Reference I'1i:YItIaJ syntax

I C.7 ProcellJres and Ft.reUms (see ~ter 1)

I PIZJCel"iBlJ-Clet:~18lafkYl

-~"~I procedure-heading ~ procedure-body ~

I
I
I PIZ"k.:-:eaUlJ-lJe.8t.t1l'lg

I .(pnx:eam. H identifier I " ;r •
'+j formal-parameter-l1st t-"

;

I
j

-
fUncaon-decla.ration

--j"~1 function-heading ~ function-body ~

-
function-bad

I
I

)

I
3

formal-parameter-list

result-type ,
;

i ..:.Ji:::;.:C'Si::,:::'lI.,:.:;'.It,--::;..{;t y=[)I'e __,..... __ ~ •• : ordinal-t ype-identi fler

I-~ ~,: real-type-identifier :1---..... 1

I ('
\

'-----l~a.t;1 pointer - type-ldentt fler :I----"'----~ ..

I C-15

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Fom18/-paraneter-jjst
~------------~

"""""---.::----.t parameter-deClaratlon ~.......--....,..--e.f

~=~~==~~ 1l1entlfler-Ilst type-ldentl fler

C.8 Pt'Ogr<:mS (see Ctq)ter 8)

pn.yr~n

-+\ program-heading f--t>Q 'Y j:()J ·1 block 1---+
uses-clause ;

pllyram-hear.l1ng
~~~r-l-de-nU-f-le--'r I .-

~ program-parameters ~ 

proqra71--p8l?!!leteJ'S .. Ildentlfler-Ilst ~ 

-=lJ.=:re.=:r--=-C='1a,='{/,=:re=---~ .. ~( ~ H identifier-list ~ 

C-16 

syntax 



Pascal Reference M8ntJ81 Syntax 

C.9 UllU (see ~ter 9) 

LJ"8~'tJ.~"a:::!.If....:-l/I7.~ljt~---411-1 unit-heading 

Interface-part Implementation-part 

uses-clause 

constant-declaration-part 

type-deClaration-part 

varIable-declaration-part 

procecrure-and-function-declaration-part 

lfTl11ementatloo 

constant -declaration-part 

type-declaration-part 

variable-declaration-part 

procedure-and-funcUon-declaraUon-part 

C-17 



Appendix 0 
Floating-Point Arithmetic 

o .1 Preface . ..... _ ............. _ . _ .... ____ . _ . _ . ___ .. _ .. _ . _ .. __ . __ .. _ . _ .. _ . . . .. 0-1 

0.2 Pmcal Real Arithmetic . _. _ ... _. ___ ... _. ___ .. _ .......... _ ..... _ .. _ .. _. _ 0-1 
0.2.1 Introduction .................................................... 0-1 
0.2.2 Rounding ....................................................... 0-2 
0.2.3 Infinity Arithmetic ............................................ 0-2 
0.2.4 NaN Arithmetic ............................................... 0-3 

0.3 FPLib .. . _. .. .. _ .......... _. _ ............... _. _ ... _ ..... _ ............... _ 0-4 

0.3.1 Intwduction .................................................... 0-4 
0.3.2 Data Types ..................................................... 0-7 
0.3.3 Arit.hmetic Operations ........................................ 0-7 

0.3.3.1 Add, Subtract, Mult.iply, and Divide ............ 0-7 
0.3.3.2 Remainder .......................................... 0-8 
0.3.3.3 Square Root ........................................ 0-8 

0.3.4 Conversions .................................................... 0-9 
0.3.4.1 Conversions t.o and from Extended ............. 0-9 
D.3.4.2 Cc'nversions Between Binary and Decimal ..... D-9 

0.3.5 Expression Evaluat.ion ....................................... 0-11 
0.3.5.1 Global Constants ................................. 0-14 

0.3.6 Comparison Functions ....................................... 0-14 
0.3.7 Infinities, NaNs, and Oenormalized I\lumbers ............ 0-15 

0.3.7.1 Inquiries: NumClass and the Class Function. 0-15 
0.3.8 Environmental Control ....................................... 0-16 

D.3.B.1 RoumHny Direction .............................. 0-16 
0.3.8.2 Exception Flags and Halts ...................... 0-17 
0.3.8.3 Managing Environmental Settings .............. 0-17 

0.3.9 Auxiliary Procedures ......................................... 0-18 
D.3.9.1 Round to Integral Value ......................... 0-18 
0.3.9.2 Sign Manipulation ................................ 0-19 
D.3.9.3 Next.-After ........................................ 0-19 
0.3.9.4 Binary Scale and Log ............................ 0-19 

0.3.10 Element.ary Funct.ions ......................................... 0-19 
0.3.10.1 Logarithms ........................................ 0-20 
0.3.10.2 Exponentials ...................................... 0-21 
0.3.10.3 Financial Functions .............................. 0-22 
D.3.10.4 Trigonometric Functions .......................... 0-24 
0.3.10.5 Random Number Generator ...................... 0-24 

0.3.11 Additional FPUb Procedures ................................. 0-25 
0.3.12 FPLib Inteliace ..... . ..................................... 0-28 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

0.4 MathLib ___ . ___ . ___ . ____ . __ .. __ ... _ .. ___ .. _ . __ . _ . __ . ___ .. __ .. _ .. ___ . __ .. __ 0-35 

OA.l How to Use MathLib ........................................ r._"l:c, 

0.4.2 Environment Procedures ..................................... 0-35 
OA.3 Element.e.ry Functions ........................................ 0-36 
0.4.4 UtiliW ProceclLlres ............................................ 0-38 
DAS Sorting............... ....................................... 0-39 

0.4.6 
OA.7 

0.4.8 
OA.9 
0.4.10 

D.4.11 
OA.12 

Free Format Conversion t.o ASCII ......................... 0-41 
Correctl'i Rounded Conversion 
Bet',veen Bin8f1i end Decimal ............................... 0-45 
Financial Analysis ......................................... 0-46 
Zero of a t,Jonlinear runc.tion .............................. 0-51 
Linear Algebra............. . .. ......... .. ............ 0-55 
0.4.10.1 Vectors and Linear Trem:formations ........... 0-55 
0.4.10.2 Transformations Eiet'.l,.een Spa.ces of 

Different Dimension ............................. 0-56 
0.4.10.3 Arrays and ~I\atrices ............................. 0-56 
DA.l0A Ill-Condit.ioned Problems ........................ 0-60 
OA.l0.5 Determinants ..................................... 0-60 
0.4.10.6 It.erative Improvement ........................... 0-61 
OA.l0.7 Statistical Computations \"r'ith AT A ............ 0-61 
D.4.10.8 Lineor Algebra Procedures ..................... D-62 
0.4.10.9 QR Factorization ................................. 0-?6 
DA.10.10 IVlat-hLib qR Procedures ......................... 0-b7 
0.4.10.11 QR Example.............. ..... .......... . 0-68 

. 0-70 IVlat-hUb f\Jat-Js ............................................... . 
r\·1at~ILib Interface ............................................ 0-71 

0.5 Macintosh Floating-POint Programming __ . __ . __________ . ____________ 0-79 
0.:1.1 Assemb1v Language....... ...... . ......................... 0-79 
0.:'.2 Pascal Real Arithmetic ..................................... 0-79 
0.5.3 rPLib and '--1eJhLib ........................................... D-79 
0.:'.4 Restriction::;: ........................... . .................. D-80 



• 
I 
I 
I 
I 
I 

, 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

,.,--~,,~ 

{ 

Floating-Point Arithmetic 

0.1 Prel'ace 
ThIS appendix describes Pascal real arithmetic and t.wo Lisa intrinsic unit.s, 
FPUb and MathUb. FPUb is a Pascal interface for SANE (the Standard 
Apple Numerics Environment). MathUb cont.alns various mathematical 
routines, including routines for sorting, formatting, financial analysis, zero 
finding, and linear algebra. 

This appendix refers to two documents: 

• The stand8Id ~pple Numeric Environment 

• The 68t."I(,'·() Rssemblj.,'-Le.nguage SANE Engine 

These documents are Parts I and III of the Apple Numeric..." Manual, and are 
included in the third volume of this set, the System Software Manuals. (Part 
II of the Apple Numerics MMl.Ja~. The 65<,'"12 Assembly-Language SANE Engin~ 
is not included in this set.) 

LinkinQ; When usinCl Pascal real variables or constants or the units FPLib or 
MathLib, you must fnclude IOSFPLib, in addition to IOSPasLib, in your list. of 
files to be linked. 

fI.1acintosh 
Pascal programs can be compiled on the Lisa to run on the Macintosh. 
Floating- point usage is slightly different., and some restrictions apply, as 
described in Section 0.5. 

0.2 Pascal Real Arittmetic 

0.2.1 Introduction 
Lisa Pascal real arithmetic conforms to as many of t.he requirements of a 
Single-precision implement.ation of IEEE arithmet.ic as can be expressed in 
the standard Pascal language syntax. IEEE arithmetic is described in ~ 
Proposed stand8Td for Bin8TY Floating-Point Arithmetic, Draft 10.0 of IEEE 
Task P754, December 2, 1982. 

SANE (the St.andord Apple Numeric Environment), which contains a 
completely conforming extended-precision implementation of IEEE arithmetic, 
is in the intrinsic unit FPLib. FPLib, which also contains elementary 
functions, and MathLib, which contains the higher mathematical procedures 
used in LisaCalc and Lisa BASIC, are in the file IOSFPLib. FPLib and 
MathLib are described in Sections 0.3 and 0.4 of this appendix. 

If, however, you only wish to use the features of Pescal real arithmetic as 
defined in the Pascal language standard, you do not. need t.o use eit.her of 
these units in your source code. Pascal real arithmetic will then operate 
according to t.he default modes for IEEE single-precision arit.hmetic. IEEE 

D-1 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference f..1anual Floating-Point itrithmetic 

arithmetic works like conventional floating-point arithmetic, except 
sometimes it works better. In particular, results are defined for all 
floating-point operations; invalid operations never terminate execution and 
always supply appropriate results. y,)hen examining printed results produced 
b'y' a write of a real variable: 

• A number that looks normel is a faithful representation, within the 
format specificat.ion, of the binary number held internally. 

• ''0'' or "-0" represent exactly zero with positive or negative sign 
respectively. Positive and negative zeros behave ident.ically most. of the 
time, but 110 yields positive infinity and 1/(-0) yields negative infinity. 

• IIINFII or II-INFII are the representations of positive and negat.ive infinity. 
They can be produced by floating-paint overflow as well as by division 
by zero. 

• 'NaNIi or "·-NaNIi represent Not-a-Number., used t.o represent. an 
undefined or erroneous value. Often the representation includes a 
parenthesized NaN code; for instance, write(sqrt(-l)) produces 
''N~( 1)." NaN codes are described in The stBl7d8J·d 4ppJe Numen·c 
Em·ironment. 

f\Jormal numbers t.hat are printed with nine or more significant digits can be 
read back in to produce the same binary value. The strings printed for 
infinite and NaN values are accepted by read, and produce t.he same binary 
real value that produced the string. The strings for infinity and NaN are not 
accepted by the Compiler as real const.ant.s in Pescel source code, ho ..... ever. 

0.2.2 Rounding 
y.,lhen the result. is not representable exactly as a real value, then it is 
rounded to the nearest representable real value. If the result is exactly half 
way between two represent.able reel values., then it is rounded t.o the even 
representable value which has a zero in its least significant bit. 

0.2.3 Infinity Arithmetic 
Infinity arit.hmetic obeys common mathemat.ical conventions as indicated in 
the tables on the following page. 

D-2 



I 
I 
I 
I 

i 

I 
I 
I 
I 
I 

~ 

I 
; I 

I 
l 

I 
1 

I 
I 
I 
I 
I 
I ~ 

I 
I 

FJosting-Point ffrithmetic 

Table 0-1 
Results of Addition and Subtraction on Infinities 

Left 
Opere.nd -INF 

-INF -INF 
finite + -INF 
+INF NaN 

-INF NaN 
finite - 1'INF 
+INF +INF 

Ft'ight 
Operand 

finite 

-INF 
finitef 

+ It-,IF 

-INF 
finitef 

+INF 

+INF 

NaN 
+INF 
+INF 

-INF 
-INF 
NaN 

f Result is infinite if t.he operation overflows. 

Table D-2 
Results of Multiplication and Division on Infinities 

Left 
Opersnd !O 

:to :to 
finite * :to 
dNF NaN 

:to NaN 
finit.e / :!:INF 
:tINF :!INF 

Right 
Operand 

finite 

:!:O 
finitef 

:dNF 

:to 
f1nite1 

:!:INF 

±INF 

NaN 
!INF 
:tINF 

!O 
!O 

~.JaN 

f Result is infinite if the operation overflm ... s. 

Note: Sign of result is determined by signs of 
operands in the usual manneL 

0.2.4 NaI\I ~ithmetic 
NaNs ere produced ~ the result of an invalid operation such es sqrt(-lt 
IHf-INf, 010, O*INf, In(-l), or sin(ItF). If one or more NaN is an 
operand to any operation that produces a floating-point result, that result 
will be a NaN. 

0-3 



Pascal Reference Manual Floating-Point Arithmetic 

Comparisons involving NaNs are never less tl1al\ equal to, or greater than; 
they are always unequaL So if x is a NaN, xoy will be true, while x<y, 
XiY, x=y, xly, and X>Y ",,111 always be false regardless of y. "If xox" is a 
good t.est of whether x is a NaN. 

Round and trWlC operations upon NaNs procfuce undefinecl values since 
integers do not have NaN values. Round and trunc of numbers too large to 
represent as integers also produce undefined values. 

0.3 FPLib 

0.3.1 Introduction 
This section describes the Lisa intrinsic unit FPLib, which is a Pascal 
interface for SANE (the StandarN Apple Numeric Environment.). SANE ill t.urn 
implements P754, the proposed IEEE Stanclard for binary floating-point 
arithmetic. 

SANE data t.ypes .. operations, and except.ions are described in detail in The 
Stsndsrd ~pple Numeric Environment. This section describes only the FPLib 
interface for Pascal programs. The FP68K interface for assembly-language 
programs is described in The 681.:>1.-'"1(.,1 Assemblv-Langusge S~NE Engine. 

If you are familiar with Pascal, you should be able t.o lise most of FPLib just 
on t.he basis of the comments in the interface in Section 0.3.12. 

",,'hen writing Pascal source code, include 8. uses staternent such as: 

USES FPLib; 

after the program stat.ement in a main program or after the int.erface 
statement in a unit. 

The two examples that follow, a progrB.l1' and a unit, illustrate the use of 
FPLib. \")e encourage you to type in these examples, to compile t.hem, and, 
in the case of the program, t.o ex ecute t.he code file while following this 
discussion. 

Example 1 

This program reads an input string representing a floating-point value and 
echoes it. to the screen. It demonst.rates the lise of SANE dat.a types, and 
how values can be accepted on input and displayed on out.put.. 

progrlD Echdilllber; 

Uses 
FPlib; 

Var: 
InStr, OutStr DeCStr; 
x Single; 
f : OecFaI1I; 

0-4 

{
{ Input and output strings. } 

Single value of InStr. } 
{ Specifies output format. } 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

begin { Ech~ber } 

f .style := fLOATDE:CIHAL; 
f . digits := 9; 

Flo8ting-P.oint ~J'''itl,metic 

{ floating output format 
{ 9 significant digits. 

} 
} 

write ('Enter number: '); 
readln (In5tr); { Read first input string. } 
while IMStr <> II do begin 

Str2S (In5tr, x); { Convert input to Single value x. } 
S2Str (f, X, OutStr); { COrnfert X to string by f. } 
writeln (OutStr); 
write (,Enter ntJlber: '); 
readln (In5tr) Read next input string. } 

end 

end {EchdtUlber} 

In the program EchoNumber, note that: 

• The input and output strings (InSt.r Bnd OutStr) me of type DecStr, B 
Pascal st.ring t.ype defined by FPLib. 

• A variable x of type Single has been declared to hold the value of the 
input string. 

• The variable f is of type DecForm, which specifies the format. of t.he 
output string. In this cese, f is assigned so that the output will be in 
FLOATDECIMAL format (as opposed to FIXEDDECIMAL), and will show 
9 significant digits. 

• The FPLib routine Str2S converts the ASCII characters from the input 
string InStr to the Single value x. 

• The FPLib procedure S2Str converts the Single value x to the output 
st.ring OutStr. The format of this string is determined by the value of f. 

Throughout FPLib, the names of procedures reflect the data types involved. 
For example, Str2S converts to Single. There are also procedures Str2D, 
Str2C, and Str2X for converting to the other SANE data types Double, Comp, 
and Extended, respectively. 

Now compile and execute the program, trying out various input. values. You 
will note that the input string '0.5' is echoed (as you would expect) as 
".OOOOOOOOE-1', whereas the input value '0.1' is echoed as 'l.CO:XXXX)1E-1', 
because of roundoff, as discussed in The stsndsrd Apple Numeric 
Environment. 

0-5 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

PescE:1 Reference Manuel Floating-Point Arithmetic 

Example 2 

The second example shows t.he use of FPLib from another unit. This example 
also shows how expression e\lalu8.tion is accomplisl"ted using Extended 
int.ermediat.e variables. 

The unit. provides a procedure t.o evaluat.e the dot product of two vectors. 
The input vectors v and w (of t'y'pe Vector) are represented as arrays of 
Single values. The desired result is the Single value z. In order t.o compute 
the value of z with maximum accuracy, all of the intermediate calculations 
are performecl in extended precision. This feat.ure is at. the heart of tJte 
design of SANE. 

uni t DotProd; 

INT£RfOCE 
uses 

fPLib; 
const 

N = 20; { Size of Vector. } 
type 

Vector ;: 8ITay [L .N] of Single; 
procedw.-e DotProduct (v, W: Vector; Val" Z: Single); 

ItPlfJ'ENTATIlJi 

procedw.-e DotProduct { (v,w: Vector; Val" Z: Single) }; 
{ Retw.-ns the dot product of V and '" in z, 

accumulated in Extended and retw.-ned in Single. } 

var s, t : Extended; 
i : L .N; 

begin { DotProduct } 

11X (0., s); { s {- 0 
for i := 1 to N do begin 

S2X (v[il, t); { t {- v[i] 
MulS (w[i], t); {t {- v[i] 
{ Accumulate in Extended. } 
AddX (t, s) { s {- s + t 

end-

} 

} 
• w[i] } 

} 

XlS~ (s, z) { Produce Single result. } 

end {DotProduct}; 

end {DotProd} . 

0-6 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I ( 

I 
I 

Pascal h,'eterence Manulll .FloBting-Point ~rithmetic 

In the procedure DotProduct, note that: 

• The sum s is initialized to zero using 12X (I2X provides convenient amI 
efficient assignment of integral constants to Extended). 

• A Single value from v is converted to extended precision in the 
temporary variable t. This conversion is performed by S2X amI is exact. 

• T is directly multiplied bV the corresponding value from w, leaving the 
extended-precision result in t.. 

• The sum is accumulated in extended precision by adding t. directly to 
the Extended value s. 

• When the loop complet.es, the sum in s is converted, using X2S, to the 
desired Single result z. 

• In FPLib, all of the basic arithmetic operations on two values are 
two-address operations; that. Is, the operation Is performed on the t.wo 
inputs and the result is stored in the second argument (as in fv1ulS and 
AddX in the example). 

• All arithmetic operations are performed in extended precision a.nd the 
result is returned in Extended. 

• The names of the procedures again reflect the type of the input 
argument: MulS mult.iplies an Extended by a Single, AddX adds an 
Extended to an Extended, and X2S converts an Ext.ended to a Single. 

0.3.2 ~ata Types 
FPLib fully support.s the SANE data t.ypes Single, Double, Comp, and 
Extended. 

Pascal's 16- and 32-bit integer arithmet.ic remains distinct from SANE 
arithmetic. However, any program using the FPLib unit can use Pascal 
integer arithmetic. 

0.3.3 Arithmetic Operations 
This section discusses the arithmetic operations add, subtract, multiply, 
divide, remainder, and square root.. 

0.3.3.1 Add ... Subtract, IVIultiply, and Divide 
The arithmetic operations add, subtract, multiply .• and divide are provided by 
sixteen procedures: 

AddS, AddD, AddC, AddX; 
SubS, SubD, SubC, SubX; 
MulS, MulD, MulC, MulX; 
DivS, DivD, DivC, DivX. 

Each procedure has two operands. The first is always a value parameter of 
type Single, Double, Comp, or Extended, as indicated by the last letter of the 

0-7 



Pascal Reference tv/anual Floating-Point f.lrithmetic 

procedure name. The second is always a variable parameter of Extended 
type that receives the result. For example, subtraction is provided by the 
procedures SubS (subtract Singlet SubD (subtract Doublet SubC (subtract 
Comp), and SubX (subtract Extended). If x and y are declared by 

var x : Single; 
y : Ex tended; 

then the statement 

SubS (x, y); { y (- y - x } 
causes x to be subtracted from Y and the extended-precision result to be 
stored in y. 

Example 

To compute q = a I b , I,.,.here a, b, and q are of type Double, declare: 

var a, b, q : Double; 
t : Ex t ended; {ex tended t enpormy } 

and write: 

02X (a, t); 
OiVO (b, t); 
X20 (t, q); 

D.3.3.2 Remainder 

{ t (- a ) 
{ t (- a / b ) 
{ q (- t ) 

The remainder operation is provided by 

procedure ReIIX (x : Extended; var y Extended; var quo integer); 

The remainder, y REM XI is delivered t.o y. 

The remainder operation determines n, the nearest integer t.o X/Yi if x/y is 
halfway bet.ween t.wo integers, the even integer is chosen. Thus; Y rem x = y 
- n*x. 

The third argument; quo, delivers the integer .. ,,'hose magnitude is given by 
the seven least significant bits of t.he magnitude of n, and whose sign is the 
sign of n. (Quo is useful for reducmg the arguments of trigonometric 
functiOns .. but. can be ignored if not needed.) 

D.3.3.3 Square Root 
The square root operat.ion is provided by 

procedure SqrtX (var x : Extended); 

for any x ) = O. The argument x is both source and destination. 

0-8 



I 
I 
I 

, - ... *. 

I , 
I 
I 
I 
, 

I 
I 
I 
I ;" \ 

I 
I 
--~ 

PSS'csJ Reterence Manual FloatJng-Point ArJthmetJc 

Example 

To find v = square root of u I where u and v are of type Single, declare 

VfIr U, V : Si ngl e; 
t : Ex tended; 

and writ.e 

{ extended tellpal"my } 

S2X (u, t); 
SqrtX (tl; 
X2S (t, v); 

{ t (- U } 
{ t (- sqrt (u) } 
{ v (- t } 

0.3.4 Conversions 

0.3.4.1 Conversions to and trom Extended 
Conversions between the Extended type and the other numeric types 
recognized by FPLib are provided by the procedures 

12X - integer to Extended 
L2X - longint to Extended 
S2X - Single to Extended 
D2X - Double to Extended 
C2X - Comp to Extended 
X2X - Extended to Extended 

X21 - Extended to integer 
X2L - Extended to longint 
X2S - Extended to Single 
X2D - Extended to Double 
X2C - Extended to Camp 

For example, if x and y are declared by 

VfIr X : CtIIP; 
y : Extended; 

then to convert a Comp-format value in x to an Extended-format in y, write 

C2X (x, V); { y <- x } 

0.3.4.2 Conversions Between Binary and Decimal 

Converting Decimal strings into SANE Types 
The procedures Str2S, Str2D, Str2e, and Str2X convert numeric strings into 
Single, Double, Camp, and Extended formats, respectively. 

0-9 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

PascBl Reference Menuel Floating-Point ilrithmetic 

Example 1 

To assign -0.CXX'10253 to an Extended variable x, write 

var x: Extended; 

Str2X ('-2.531:-5' ... xl; {or Str2X ('-0.0000253' .. x); } 
The st8ndard Apple Numeric Environment describes numeric string svnt.ax. 

Converting SANE Types irto Decimal Strirq; 
The procedures S2Str, D2Str, C2Str, and X2St.r will convert a Single, Double" 
Comp .. and Extended, respectively, into a numeric string (of type DecStr). As 
any numeric value can have many decimal represent.atiorlS, 'yOU must. specify 
the decimal result format. To do SO, pass a record of type OecForm, sl101rlr'n 
below: 

Decfarm = record 

Example 2 

style 
digits 

end; 

(FLOATDECIMAL, FlXEDDECIMAL); 
integer 

To print the vallie of a Double variable ~/ using a fixed-point decimal format 
with t.en digits to t.he right of t.he decimal point., write: 

var y: Doubl e; 
s: OecStr; 
f: DeeF 00'11; 

f.style := flXEDOECIMAL; 
f .digits := 10; 

02Str (f, y, s); 
write!n ('y = " s); 

Numbers that round to zero in the specified DecForm are converted t.o the 
st.ring , 0.0' or '-0.0'. NaN's ere converteel to the st!" ing , Na.N" '-NaN', 
, NaN(n)', or '-NaN(n)', where n is a f\JaN error cocfe in decimal. Infinities 
al'e convert.ed to the string , H,JF' or '-INF'. 

All ot.her numbers behave in an int.uit.ive manner as. long as the DecForm 
specifies no more than SIGDIGLEI\J-l significant digit.s. - Otherwise, the 
formatt.ed number is padded with zeros where necessary_ If the resulting 
:string has more than DECSTRLEN characters, the number is represented in 
floet.ing-point. notetion. (SIGDIGLEN and DECSTRLE~,J are specified in t.he 
interface to FPLib.) 

All st.ring result.s have either a leading negative sign or a lea.ding blank (thus, 
columns of numbers !''r'ill line LIP regardless of ~:ign)_ 

0-10 



I 
I 
I 

~ 

I 
,1 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Floating-Point firitt",71etic 

Decimal Recocd Conversions 
The Decimal record type is specified in the interface as below: 

Sigoig = string [SIGDIGUEN]; 

Decimal = record 
sgn 
exp 
sig 

end-., 

o .. 1; { Sign (0 for pos, 1 for neg). } 
integer; {Exponent. } 
SigDig {String of significant digits. } 

The procedures S2Dec, D2Dec, C2Dec, and X2Dec each convert a Single, 
Double, Comp, or Extended value, respectively, into a record of type 
Decimal. A DecForm operand (shO'.vn in the preceding section) specifies the 
format of Decimal. The maximum number of ASCII digits delivered to sig is 
SIGDIGLEN-l, and the implied decimal point is at the right end of sig, with 
exp set accordingly. Further formatting details are given in The 6&\):) 
AssemblJ. .. -Language SANE Engine. 

The procedures Dec2S, Dec2D, Dec2C, and Dec2X convert a Decimal record 
into Single, Double, Comp, and Extended, respectively. The sig part of 
Decimal accepts up to SIGDIGLEhl-l significant digits, with an implicit 
decimal point at the right end of the significant. digits. If SIGDlGLEN digits 
are passed, then t.he implicit decimal point is between the digits at 
SIGDIGLEN-l and SIGDIGLEN; the last digit, if nonzero, represents one or 
more nonzero digits in the SIGDIGLEN or subsequent positions. Further 
details of the representations of Decimal input values for these routines are 
given in The 68Ot.,it'"l Assembly-Language S~NE Engine. 

0.3.5 Expression Evaluation 
SANE floating-point arithmetic (and the FPLib unit) is designed to operate on 
Extended values. For example, DivD (x, y) operates on the Extended-format 
value in y by dividing the Double-format number x int.o y and leaving the 
result in y. To evaluate more complicated expressions, Extended temporaries 
can be used. 

The following examples illustrate extended-based expression evaluat.ion. The 
first example uses an Extended accumulator to store the results of all 
operations. 

Example 1 

Compute the value of 

r = (a + b - c'j * d + e 
f 

where all variables are of Double type. 

V8[" 8, b, c, d, e, f, r : Double; 
t : Extended; { extended temporary } 

0'11 



P8S'l::.f3;i Reterence l-:tanuai ,Floating-Point Arithrnetic 

begin 

02X (a" t); { t (- 8 ) 
Ad(f) (b, t); { t (- 8 + b ) 
SuW (c, t); { t (- 8 + b - c ) 
MulO (d, t); { t (- (8 + b - c) .. d } 
Adf:I) (e, t); { t (- (8 + b - c) " d + e } 
OiVO (f, t); { t (- ((a + b c) .. d + e) / f } 
X20 (t, r); { r {- t } 

"Jate that although the arithmetic ~tyle is extended-based, not every operand 
need be converted to Ext.ended. In t.he example, only one explicit. conversion 
to Extended was required. 

E);'omple 2 

Compute the value of the root r of larger magnit.ude of a quadratic equation 
from the formula: 

b + sign(b) '" sqrt( b2 - 4 '" a '" c 
r = -

2 '" a 
(,.,'here a, b, c1 and r ere of Single type. 

V8I" a" b, c" r : Single; 
ti, t2" tJ : Extended; { extended temporaries } 

begin 
-

S2X (b, tl); { t1 (- b 
t3 := tl; { t3 (- b 
HulS (b, tl); { t1 (- bA 2 
IZX (4" t2); { "2 (- 4 
MulS (a" t2); { t2 (- 4 .. 8 
MulS (c, tZ); { tZ (- 4 " 8 " C 
Sub){ (t2, tl); { tl (-- bA 2 - 4 .. a .. c 
SqrtX (tl); { tl (- sqrt (b .... Z 4 .. 8 " c) 
CpySgnX (tl, t3); { tl (- same with sign of b 
AddS (b, tl); { tl (- b + sign(b) • sqrt (bAZ - o4.8.C) 
Neg)( (tl) ; { tl (- -(b + sign(b) .. sqrt. __ 
S2X (a" tZ); { tZ (- 8 
AddS (a, tZ); { t2 (- 2 .. 8 
DivX (t2" tl); { tl {- -(b + slgn(b) " 

sqrt (bAZ - 4 • 
8 • e» / (2 • 8) 

X2S (tl, r); { r (- t1 

D-12 

} 
) 
} 
} 
) 
) 
) 
} 
) 
} 
} 
) 
) 

} 
} 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual Floating-Point Arithmetic 

The smeller root may then be computed by evaluating the formula cl(a*tl) in 
extended. ExceptionBl cases include b2 < 4 ... a ... c and a :;; (l. 

Example 3 

Evaluate the polynomial 

y = Co + C1 ... X + Cz ... x2 + .. , + Co * xn 

and its derivative 
Dy = c1 + 2 * C2 ... X + 3 ... C3 ... x 2 + '" + n ... Co ... x(n-1) 

where the coefficient.s Co through en are stored in an array of Single and x.' 
"I, and Dy are of type Single. 

const tI1AX = 100; 

var n, i : O. JflAX; 
x, y, Dy : Single; 
C : array [0 .. tI1AX] of Single; 
ti, 
t2, t3 : Extended; 

12X (0, til; 
t2 := tl; 

far i := n downto 1 do begin 

{ tl {-- c [i] + x • tl : } 
MulS (x, tIl; 
AddS (c [i], tl); 

{ t2 {-- tl + x • t2 } 
MulS (x, t2); 
S2'X (cli]' tJ); 
MulS (i, t3); 
AddX (tJ, t2) 

end; 

{ tl (-- c [0] + x • tl ) 
MulS (x, tIl; 
AddS (c [0], tl); 

X2S (tl, V); 

X2S (t2, Dy); 

D-13 

{ far computation of y. } 
{ far clDputation of Dy.} 

{ tl (-- 0 ) 
{ t2 (-- 0 ) 

{ tl (-- x • tl 
{ tl (-- c [i] + tl 

{ t2 {-- x • t2 

{ tl {-- x • tl 
{ tl (-- c [0] + tl 

{ y (-- t1 

{ Dy (-- t2 

} 
} 

} 

) 
} 

} 

} 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascsl Reference Manusl Floating-Point f1rithmetic 

The method, called Horner's Rule/ used to evaluate the polynomials is based 
on the polynomial representation 

y = ( ... (( en * x + Cn-1) * x + cn-z) * x + ... ) * x + co. 

It is faster and more accurate than the straightforward computation 
suggested by the standard representation, shown at the beginning of the 
example, and is conveniently implemented using SANE's extended-based 
arithmetiC. 

D.3.5.1 GlotJal Constants 
To speed up execution, frequently used constants can be defined globally 
(outside the routines). For example, if pi is declared and defined by: 

var pi: Ex tended; 

begin 

StIZX ('3.141'926'3'6979323646', pi); 

then executing 

X :- pi; 

is significantly faster than 

StrZX ('3.14159265358979323846', x); 
Defining constants globally is particularly helpful when the definition is via 
one of the string conversion rout.ines, such as Str2X. Felr conversion of 
integers, I2X and L2X SJe significantly faster than Str2k 

0.3.6 Cornpar-ison Functions 
Arr,/ two floating-pOint. values in t.he Ext.ended format. can tie compared using: 

function QapX (x : Extended; r : RelOp; y : Extended) : boolean; 

or 
function RelX (x, y : Extended) : RelOp; 

The RelOp values are 

GT greater than 
LT less than 
GL greater than or less than 
EO equal 
GE greater than or equal 
LE less t han or equal 
GEL greater than, equal, or less than 
lNORD unordered 

0-14 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I (.' 

I 
I 

Pascal Refetence Manual Floating-Point Arithmetic 

Single~ Double, or Comp values can be compared by first converting them to 
Extended. 

For every pair of operand value'S, exactly one of the relations L T, GT, EQ, 
and UNORD is true. The value of RelX is the appropriate one of these four 
relations. CmpX (x, r ... y) is true if and only if the relation x r y is true. 

EX8lTlpJe 

If p is greater than q then print 'p ) q is TRUE'i otherwise, print 'p ) q is 
FALSE'. 

var p, q: Extended; 

if QapX (p, GT, q) then 
writeln ('p > q is TRUE') 

else 
writeln ('p > q is fALSE'); 

Note that equivalent results are produced by 

if DlpX (p, LE, q) or QapX (p, l.tIH>, q) then 
wIiteln ('p > q is fALSE') 

else 
writeln C'p > q is TRUE'); 

or by 

case RelX (p, q) of 

GT: writeln ('p > q is TRUE'); 
LT, EO: writeln ('p > q is fALSE'); 
ltIR): begin 

SetXcp (ItflALID, TRUE); 
writeln ('p > q is fALSE') 

end { l.HR) } 

end; { case RelX } 

D.3.7 Infinities, N8Ns, 6Ild Denormalized NuJJjJers 
In addition to the normalized numbers supported by most floating-point 
pac'~ages, FPLib fully supports the special values--infinities, NaNs, and 
denormalized numbers--specified by the IEEE Standard, as described in The 
standard h"'ppJe Numeric Environment. 

0.3.7.1 Inquiries: NumClass 6Ild the Class Functions 
The functions ClassS, ClassO, ClessC, and ClessX can be used to clessify the 
value of a variable. These funct.ions are of type NumClass and return one of 
the values: 

0-15 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pas'cal Fi'ef"erence Mantial FloBting-Point Arithmetic 

SNAN 
!)'>IAN 
INFINITE 
ZERO 
NORMAL 
DENORt1AL 

- signaling NaN 
- quiet NaN 
- infinity 
- zero 
- normal i z ed number 
- denormalized number 

The class functions also return the sign of a value in the parameter 
var sgn: i nt eger. 

0.3.8 Environmental Control 
Environmental cont.rols support.ed in FPUb include the rounding direction, as 
well as exception flags and their corresponding halts. Rounding precision is 
supported in the MathUb unit. 

0.3.8.1 Rounding Direction 
The rounding directions are of the t.ype 

Rount1)1r = (TlJ£FH:.ST, lAIFR>, lXM'MFR>1 l(MFR>2ERO) 

The rounding direction is set b'y the SetRnd and SetEn\l procedures and can 
be interrogated by the GetRnd function. 

Example 

The common rounding function specified by 

(' trunc (x + 0.5 L if x ) = 0 ***insert brad<et*** 
Rnd (x) = ) 

\. trune (x - 0.5 L if x < 0 

can be implemented by: 

function Rnd (x : Extended) : integer; 

{ Sets INVALID and returns -32768 if 
x is a NaN or x (= -3276B.5 or x)= 32767.5. 

Sets lNEXOCT if 
-32768.5 ( x (32767.5 and x is nonintegr81_ 

Sets no other exceptions. 

var t Ex tended; 
i integer; 
r RoundDir; 

0-16 

} 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

( 

~ 

I 
I 
I 
I 
I 
I 
I / 

t : 
\ 

~ 

I 
I 

PasCo:l Fi'eterence Manual 

begin { Rnd } 

Str2X ('0.5', t); 
CpySgnX (t, x); 

r := GetRnd; 
SetRnd (l(lIflAJ2EKJ); 
AddX (x, t); 
X2I (t, i); 
12X (i, t); 
SetXcp (II'EXACT" not 

SetRnd (r); 
Rnd := i 

end {ROO}; 

Floating-Point firitl",metic 

{ t (-- +0.5 if x > 0 or x is +0 } 
{ t (-- -0.5 if x < 0 or x is -0 } 
{ Save roundi ng directi on. } 
{ Set round-t ()I1fard-z ero . } 
{ t (-- x + t ) 
{ i (-- truncate (t) } 
{ No exceptions! } 

(QnpX (t, Ell, x) or TestXcp (INVALID))); 
{ Correct INEXACT setting. } 
{ Restore rounding direction. } 
{ On INVALID, i (-- -32768. } 

0.3.8.2 Exception Flags and Halts 
The exception flags are values of the t.ype 

Exception = (ItflALID, . t.tO:RfUM, OVERfUM, DIVBY2ERl, It£XOCT) 

These five exceptions are signaled when detected, and if the corresponding 
halt is set .. the SANE engine ""ill JSR to the 'halt vector'. The halt vect.or is 
initially 0, so that halts terminate execution with a bus error. However, the 
user can call the procedure SetHltAddress to set t.he halt vector to the 
address of a user-defined halt-handling procedure. See Section 0.3.11 for 
details. 

Initiall~J all exception flags and halts are cleared. You can examine, set, or 
clear individual exception flags and halts using TestXcp and Test HIt 
functions and SetXcp and Set-HIt. procedures. The Set.Env and GetEnv 
procedures can be used to set or get the entire environment (rounding 
direction, rounding precision, except.ion flags, and halts). 

D.3.8.3 Managing Environmentol Settings 
Issues and techniques for managing environmental settings are cO\!ered in The 
Stand8J'd ftpple Numeric Environment. (The Pascal syntax used in the 
examples there does not fully match the syntax in FPLib.) 

The procedlue-entry and procedure-exit routines are provided in FPLib by: 

procedure ProcEntry (var e: Environ); 
procedure ProcE:x it (e: Environ); 

Example 

The following procedure signals underflow if its result is denormal, and 
O\!erflow if its result is infinite, but hides spurious exceptions occurring from 

0-17 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

P$s·csl R-ef-erence MBntlBl Floating-Point ~rjthmetjc 

internal computations. This is Example 3 in Section 8 of The st8/1d8!"d HppJe 
Numeric El7I."ironmen( irnplernented wit.h FPLib calls. 

procedure cmpres (var x: Doubl e); 
uses FPLib; 

var e: Environ; 
c: NlIIIClass; 
sgn: integer; 

{ local storage for envirornent } 
{ for class inquiry } 
{ for class inquiry - not used } 

procedure clea:rxcpsi 
const fIRSTXlP 

lA5TXI:P 

{ more efficient version in Hathlib } 
= INVALID; 
'" It-EXICT; 

var xcp: Exception; { for clearing exceptions 
begin {clearxcps} 

far xcp:= fIR5TX[p to lAS'TXll' do 
SetXcp (xcp, fAlSE) 

end {clearxcps}; 

begi n {cmpres} 
ProcEntry (e); 

{ ca.pute result x } 

{ save call er' s envirornent and } 
{ set default envirornent - } 
{ now halts disabled } 

c := ClassO (x, sgn); { class inquiry } 
cl ea:rx cps; { clear possibly spurious exceptions } 

{ now raise specified exception flags: } 
if c = INfINITE then SetXcp (OMERfUOW, TRUE) 
else if c = lBfR1Al then SetXcp (lI«RfUOW, TRE); 
ProcEx it (e) { restore call er' s envirornent I } 

{ including any halt enables, and} 
{ then signal exceptions from } 
{ subroutine } 

end {cOOlpres} ; 

0.3.9 Aux ilimy Proced .... es 
The FPLib unit includes a set. of special ruut.ine~: RinD\, NegX, f'lbsX, 
CpySgnX, NextS, NextD, l'-lext.X, ScalbX, and LogbX. 

03.9.1 Round to Integral Value 
An Extended variable can be rounded to an integral value by 

procedure RintX (var x : Extended)i 
The res:ult is returned in t.he input x. 

D-18 

} 



( 

( 

--I 

P8S:csl Refel"ence Msnusl Flosting-Point Arith.metic 

0.3.9.2 Sign Manipulation 
Procedures NegX, AbsX, and CpySgnX each operat.e on an Extended variable, 
altering only the sign of the Extended argument. 

The negation operation is provided by 

procedure NegX (V8I" X : Extended); 

The absolute value operation is provided b'y 

procedure AbsX (ver x : Extended); 

An operation to copy the sign of one Extended variable to the sign of 
another is provided by 

procedure CpySgnX (V8I" X : Extended; y : Extended); 

which copies the sign of y into the sign of x. 

0.3.93 Next-After 
The procedures NextS, NextD, and ~,JextX each generate the next 
representable neighbor in its respective formato' given an initial value and a 
direction. The first argument (x) to each of these routines is "bumped" to 
the next representable value in the diredion of the second argument (y). 

Tr,e procedure NextS bumPs the Single value x to the next representable 
Single value in the direction of y: 

procedure Hex tS (V8I" X : S1 ngl e; y: S1 ngl e); 

The procedure NextD blimps the Double value x to t.he next. representable 
Double value in the direction of y: 

procedure Hex tD (var x : Doubl e; y: Doub! e); 

The procedure NextX bumps the Extended value x t.o the next representable 
Extended value in the direction of y: 

procedure HextX (V8I" X : Extended; y : Extended); 

0.3.9-4 Binary Scale md Log 
An Extended variable can be efficiently scaled by a power of two by 

procedure ScalbX (n : integer; V8I" y : Extended); 

The procedure ScalbX computes y * ZO, and returns It 1n ~/. 

The binary exponent of an Extended variable can be determined by 

procedure logbX (var x : Extended); 

The procedure LogbX returns in x the binary exponent of x as a Signed 
integral value. 

D3.10 Elementary FlM1Ctions 
FPUb provides a number of mathematical functiOns, including logarithms and 
exponentials, two important financial functions, trigonometric functions, and a 

D-19 

- -- - ---- ------- --- - ------- ~~-



I -
I 
• -
I 
I 
I 
I 

Pascal Reference Manual Floating-Point Arithmetic 

random number generator. The logarithms and exponentials are provided in 
base-2 and base-e versions, 

D.3.10.1 Logarithms 
The procedures Log2X/ LnX, and LnlX each operate on an Extended variable, 
returning the result, in the input argument. 

The base-2 logarithm 1092 x is computed bV 

procedure Log2X (var x : Extended); 

for any nonnegative x. 

The natural (base-e) logarithm lOQe x is computed by 

procedure LnX (var x : Extended); 

for any nonnegative x. 

The natural (base-e) logl'lfithm I09€: (1 ... x) is cumput.ed by 

procedure lnlX (var x : Extended); 

for any x >= -1. 

D.3.10.2 Exponentials 
Procedures Exp2X/ ExpX, and ExplX each operate on an Extended variable/ 
rettu'ning the result in the input argument. Procedure Xpwrl operates on an 
Extended variable using an integer value, returning the result in t.he Ext.ended 
input, argument.. Procedure XpwrY operat.es on tl/'r'O Extended vl'Ifiables., 
returning the re.sult in the second input argurnent. 

The procedure Exp2X calculates 2x and ret.urns this value to x: 

procedure Ex p2X (var x : Ex tended); 

The procedure ExpX computes eX and returns this value to x: 

procedure Ex pX (var x : Ex tended); 

The procedure ExplX computes eX - 1 and returns this value to x: 

procedure ExplX (var x : Extended); 

The procedLQ'e XpwrI computes;: xi and returns this value to x: 

procedure XJMI'I (i : integer; V8I' X : Extended); 

The procedure XpwrY computes x'i and returns this value to x: 

procedure XpwrY (y : Extended; var x : Extended); 

D-20 

!~ 
, J 



• -

--• 

Floating-Point flrithmetic 

0.3.10.3 Financial Ftn::tioos 
FPLib provides two procedures, Compound end Annuity, t.hat can be used to 
solve various financial problems. Each of these procedures takes two input 
argument.s of type Extended .. and produces an Extended result.. The two input 
arguments, rand n, represent in each case an interest rate 8.nd a number of 
periods, respectively. 

Compound Imerest 
Compound interest can be computed using 

procedure Conpound (r, n ; Extended; var x : Extended); 

n,is procedure computes the valLIe 

x = (1 + r )n, 

where r is the interest rate and n is the number of periods. 

Example 

If $1000 is invested for 6 years at 9% compounded quarterly, then what is the 
future value of the principal? Compute: 

VBr r, n, four, years, rate, PV, FV : Extended; 
f : Decfmm; 
s : DecStr; 

with f do begin style := flXEDOECIHAL; digits := 2 end; 

12X (4, four h { four (-- 4 
12X (6, years); { years <- 6 
Str2X ('0.09', rate); { rate (- 9% 
12X (1000, PV); { PV (- 1000.00 

r := rate; 
DivX (four, r); 
n : = yellI"s; 
HulX (four, n); 

{ r (-- rate / 4 

{ n (- 4 • years 

Cmpound (r, n, FV); { 
HuIX (PV, fV); { 

FV <- (1 + r)An 
fV <- PI( • (1 + r)"n 

) 
} 
} 
} 

) 

} 

} 
} 

X2Str (f, fV, s); { 
writeln ('fV = $', s); 

f is fIXED with 2 fraction digits.} 

The fLiture valLIe FV is $ 1705.77. 

0-21 



PfJScal Ref'erence Manual Floating-Point ~rithmetic 

Example 

How much must a person invest today at 9% compounded Quarterly to have 
$15,000 in his account in 6 years? Assuming f, rate, years, r, and n have 
values as in the ex ample above, compute: 

var r, n, nn, four, years, rate, PV, FV : Extended; 
f : Decf tll1I; 
S : OecStr; 

with f do begin 
style := fIXEIJ.E:IMAL; 
digits := 2 

end; 

12X (15000, FV); 
nn := n; 
Neg)(; (nn); 

{ FV (- 15000.00 

{ nn {- -n 

Compound (r, nn, PV); { PV {- (1 + r)"-n 
MulX (FV, PV); { PV {- FV • (1 + r)A-n 

} 

} 

} 
} 

X2Str (f, PV, s); { f is fIXED with 2 fraction digits.} 
writeln ('PV = $', s); 

The present value PV is $ 8793.70. 

The present value and future value of an annuit.y can be computed using 

procedure Annuity (r, n : Extended; var x : Extended); 

This proceclllre computes the value 

x = 1 - (1 + r )-n I 

r 

where r is the interest rate and n is the number of periods. 

E:t:8mple 

Suppose that a loan at 12% compounded monthly is to be paid off at a rate 
of $225 per month in 36 months. What is t.he present value of the loan? 
Compute: 

var r, n, twelve, rate, PV, PMT : Extended; 
f : Decfarm; 
s : DecStr; 

0-22 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascsl ,~"eteTence MStUlal Flosting-Point Arithrnetic 

with f do begin 
style := f1XEDDECIMAL; 
digits := 2 

end; 

12X (12, twelve); { twelve {- 12 
Str1X ('0.12'" rate); { rate (- 12% 
Str1X (' 36'" n); { n {- 36 
12X (225" PHT); { PMT (- 225.00 

r := rate; 

} 
} 
} 
} 

DivX (twelve, r); { r (- rate / 12 } 

Amuity (r, n, PV); 
MuIX (PHT, PV); 

{ PV (-- (1 - (1 + r)A-n) / r } 
{ PV (- PMT • (1 - (1 + r)A-n) / r } 

X2Str (f, PV, s); { f is fIXED wit h 2 fra.cti on di git s _ } 
writeln ('PV = $', s); 

The present value PV is $ -6774.19. 

Example 

If $XJ is deposited each month to a savings account that pays 12% 
compounded monthly, what is the future value of the account after 10 years? 
Compute 

var r, n, twelve, rate, years, FY, R'IT, t : Extended; 
f : Oecfmm; 
s : DecStr; 

with f do begin 
styl e : = flXEDDECIMAL; 
digits := 2 

end-'I 

12X (12, twelve); { twelve {- 12 
Str2X ('0.12', rate); (rate (-- 12% 
12X (10, years); { years (- 10 
I2X (50, PHT); { PHT {- 50.00 

r := rate; 
OivX (twelve, r); 
n := years; 
MulX (twelve, n); 

{ r (-- rate / 12 

{ n (- years • 12 

D-23 

} 
} 
} 
} 

} 

} 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pas"cel Reference Menuel Floeting-Point Arithmetic 

COOlpound (r, n, t); 
Annui ty (r, n, FV); 
NulX (t, FV); 

{ t (-- (1 + r)An ) 
{ FV (-- (1 - (1 + r)A-n) / r } 
{ FV (-- ((1 + r)An - 1) / r } 

NulX (PNT, FV); { FV (-- PNT • ((1 + r)An - 1) / r } 

X2Str (f, FY, s); { f is fIXED with 2 fraction digits.} 
write!n (' FV = $', s); 

The final value FV is $ 11501.93. 

0.3.10A Trigonometric Functions 
The trigonometric functions are provided by the procedures CosX, SinX, 
TanX, and ATanX (arctangent or inverse t.angent.), which operate on an 
Extended variable and return the result in the input argument. 

The cosine is computed by 

procedure Cos-X (V8I" X : Extended); 

The sine is computed by 

procedure SinX (V8I" X : Extended); 

The tangent is computed by 

procedure T8IlX (V8I" X : Extended); 

The arctangent is computed by 

procedure ATanX (V8I" X : Extended); 

0.3.10.5 RW1dom Numbec Genenltm 
Pseudorandom numbers are provided by 

procedure RandomX (V8I" X : Extended); 

RandomX uses the iterat.ion formula 

x = (75 * x) mod (231 - 1) 

A sequence of psuedorandom integral values r in the range 

1 i r i 231 - 2 

can be generated by initializing an Extended variable r to an integral value 
(the seed) in t.he range and making repeated calls RandomX (r); each call 
delivers in r the next pseudorandom number in the sequence. 

If seed values of r are nonintegral or outside the range 

1 i r i 231 - 2 

then results are unspecified. 

D-24 



I 
I 
I 
I 

, 

I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 

-
-I 
I 

( 

( 

PlJS'C8l Referf!mC'e M8nu8l Floating-Point flrithmetic 

Example 

A procedure yielding a pseudorandom rectangular distribution on (0, 1): 

Exterior t.o the procedure declare and initialize 
const SEED = 1018375230 {arbitrary seed } 

V8[' P, one, r: Extended; 

begin 
11)( (1, one); 
P := one; 
ScelbX (31, P); 
SUbX (one, P); 

l1X (SEED, r); 

{ one (- 1 
{ P (- 1 
{ P (- 2"31 
{ P (-- 2A Jl - 1 

{ r <- SEED 

The desired procedure can be written 

procedure Rand (var x Extended); 
begin 

Randc:a'( (r); 
x := r; 
OivX (P, x) 

end; 

0.3.11 Additional FPLib Proced..-es 

{ r (- randcJI int value ) 
{ X (- r ) 
{ OOJ.1I81ize to (0, 1) } 

} 
} 

I 
} 

Fooction SM_Environ : longint ; { Internal use only. } 
Procedure InitfPlib ; { Initializes FPlib. } 
function GetHltAddress: longint ; { Returns halt address.} 
Procedure SetHltAddress ( HltAddress : longint ) ; { Sets halt address. } 

SANE_Environ is for internal use of other FPUb procedures. 

InitFPUb resets the environment and the halt address to default values. 

This initialization occurs automatically at the beginning of the outer block of 
a Pascal main program. InitFPUb may be called late.r to reestablish default 
conditions if desired. 

The halt address is the address to which control passes when a floating-point 
halt occurs, as described in detail in The 6lJ()(X) Assemb1v-Language S~NE 
Engine. GetHltAddress and SetHltAddress may be used to obtain the halt 
address. SetHlt Address may be used to change the halt address to the entry 
point of a halt- handling procedure. 

The following demonstrates a sample halt procedure: 

0-25 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference ",1anual 

type IIi screc = recard 
hal terrars : integer; 
ccrpending : integer; 
depending : longint; 

end; 

procedure hal troutine 
( V8I' IIi sc : .i screc; 

src2, src" dst : longint; 
opcode : integer ) ; 

Floating-Point ~ithmetic 

(. Prints out the op ward and address partneters of the floating
point operation that halted, then displays the name of each 
exception that occurred in that operation and whose halt was 
enabled. After perusing this infamation, the user presses 
J£T1..RH to continue execution as if no hal t had occurred. • ) 

var emf : Environ ; 
x : Exception ; 

begin (* haltroutine *) 
ProC£ntry( env) ; 
wxiteln(' floating point halt taken on op code', opcode) ; 
Mriteln(' Destination address ',dst ) ; 
Mr1teln(' Source address ',src ) ; 
wrHeIn( , 2nd Source address .... STc2 ) ; 
write(' Exceptions signaled with enabled halts: ) ; 
SetEnv( IIi sc. hal t errars) ; 
far x := INVALID to INEXACT do if TestHlt(x) then case x of 

INVALID : writer Invalid ') ; 
l..tf:ERflJltl : write(' Underfl(M ') ; 
O\IERfUM : write(' OVerflOlf ') ; 
DI'IJBY2ERO : ..-rite(' DivByZero ') ; 
INEXACT : write(' Inexact ') ; 

end (* case x *) ; 
writeln; 
writeln(' Press RETURN to continue. ') ; 
readln ; 
ProcExi t (env) ; 

end (. hal trouti ne .); 

....................... (* Elsewhere in the progI"m ...• ) 

(* This code is executed priar to the floating-point operations far 
which the halts are to be enabled. Oldhltaddress is 
declared to be a longint .• ) 

0-26 

"l 



Pascal Reference Manual Floating-Point f1rithmetic 

oldhltaddress := GetHltAddress; (- Save old halt address. -) 
SetHltAddress( ord4(lhaltroutine) ) ; (* Set new halt address to go to 

haltroutine. *) 

(* Enable halts on 'severe' exceptions. -) 

SetHIt ( INVAlID, 1A.E ) ; 
SetHlt( (MRftJ:l!l, 1A.E ) ; 
SetHlt( DIVBY2ERO, lRl.E ) ; 

(. If 81f/ of these three exceptions subsequently occur, control 
will pass through haltroutine. *) 

0-27 



I 
; 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference f>.1snu8l Floating-Point Arithmetic 

D.3.12 FPUb Interface 

UNIT FPLib i INTRINSIC i 

INTERFOCE 

{ Lisa Floating Point Library. } 

{$C Copyright 1983, 1984, Apple Computer Inc. } 

o:::ffiT 

SANE: Standard Apple Numeric Environment 

Comments like !AII denote differences from the Apple II and III SANE unit 
interface. } 

TYPE 

SIGDIGLEN = 20; 

Il:CSTRLEN =255; 

Maximum length of SigDig. !AII: 28 

Maximum length of DecStr. ! All: 80 

{-----------------------------------------------------------------
•• Numeric types. 
-----------------------------------------------------------------} 

Single = real; { ! All: array [0 .. 1] of integer } 
Double = array [0 .. 3] of integer.: 
Camp = array [0 .. 3] of integer; 
Extended = array [0 .. 4) of integer; 

Decimal string type and intermediate decimal type, 
•• representing the value: 
** (-1)Asgn * 10A exp * sig 
-----------------------------------------------------------------} 

SigDig 

DecStr 
Decimal 

= string [SIGDIGLEN]; 

= string [DECSTRLEN); 
== record 

sgn O .. 1; 
exp integer; 
sig SigDig 

end; 

0-28 

Sign (0 for pos, 1 for neg). } 
Exponent. } 
String of significant digits } 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

~ 

I 
I 

Pascal Reference Manual Floating-Point Rrithmetic 

{-----------------------------------------------------------------** Modes, fla.gs, a.nd selections. 
** NOTE: the values of the style element of the DecForm record 
** have different names from the Apple // and /// version to 
** avoid name conflicts. 
-----------------------------------------------------------------} 

Environ = integer i 
RouncDir == (TONEAREST, lJPI,oIARD, [)IJI,oJt'II,oIARD, TOWARD2ERO); 
RelOp == (GT, LT, GL, EO, GE, LE, GEL, UNORD); 

{) < (> = )= <= <=)} 
Exception ~ (INVALID, UNDERFLOW, OVERFLOA, DIVBY2ERO, INEXACT); 
NlIfIClass = (SNAN, ON ANI INFINITE, ZERO, NORMAL, DEtrnMAL); 
DecForm = record 

style 

digits 
end; 

(FLOATDECIMAL, FlXEDDECIMAL); 
{ !Al/: FLOAT, FIXED} 
integer 

Two address, extended-based arithmetic operations. 

-----------------------------------------------------------------} 
procedure AddS (x Single; var y Extended); 
procedure Add[) (x Double; var y ExtendedL 
procedure AddC (x Comp; var y Extended); 
procedure AddX (x Extended; var y Extended); 

{ y := y + X } 

procedure SubS (x : Single; var y Extended); 
procedure Sub{) (x : Double; var y Extended); 
procedure SubC (x : Cornp; var y ExtendedL 
procedure SubX (x ; Extended; var y Extended); 

{ y :~ y - X } 

procedure MulS (x : Single; var y Extended); 
procedure MulD (x : Double; var y Extended); 
procedure MulC (x : Cornp; var y Extended); 
procedure MulX (x : Extended; var y Extended).: 

{ y := y • X } 

procedure DivS (x Single; var y Extended); 
procedUTf'l DivO (x Double; var y Extended); 
procedure DivC (x Cornp; var y Extended); 

0-29 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pss"Cs) Reference "'1snus) Floating-Point Arithmetic 

procedure Di vX (x : Ex tended; var y : Ex tended); 
{ y ;= y / x } 

function CmpX (x : Extended; r : RelOp; y : Extended) boolean; 
{ CmpX := X r y } 

function RelX (x, y : Extended) : ReIO~ 
{ x RelX y, where RelX in [GT, LT, EO, UNORD) } 

Conversions bet\l/een Extended and the other numeric types, 
"'''' including the types integer and longint. 
-----------------------------------------------------------------} 
procedure 12X (x integer; var y 
procedure S2X (x Single; vex y 
procedure D2X (x Double; var y 
procedure C2X (x Cemp; vex y 
procedure X2X (x : Extended; vex 'Y : 

{ y := X (arithmetic assignment) 

Extended); 
Extended); 
Extended); 
Extended); 
Extended); 
} 

procedure X21 (x : Extended; var y : integer); 
procedure X2S (x : Extended; VBI' y : Single); 
procedure X2D (x : Extended; VBI' y ; Double); 
procedure X2C (x : Extended; VBI' y : Cemp); 

{ y := X (arithmetic assignment) } 

{-----------------------------------------------------------------** !These conversions are not in the Apple // 8: /// SANE unit. 
-----------------------------------------------------------------} 
procedure L2X (x : longint.; VBI' y : Extended); 
procedure X2L (x : Extended; VBI' y : longint); 

{ y := X (arithmetic assignment) } 

{-----------------------------------------------------------------
"'''' Conversions between the numeric types and the intermediate 
"'''' decimal type. 
-----------------------------------------------------------------} 
procedure S2Dec (f : DecForm; x : Single; 
procedure D2Dec (f : Decf orm; x : Doubl e; 
procedure ClOec (f : DecForm; x : Camp; 
procedure X2Dec (f : Decform; x : Extended; 

{ y := X (according to the format f) } 

VBI' Y 
var y 
var y 
var y 

procedure Dec2S (x : Decimal; var y : Single); 

0-30 

Decimal ); 
Decimal ); 
Decimal ); 
Decimal ); 

~ 
\~ 



- j 

-• -
-

i 
\ 

Pascal Reterence Manual FloMing-Point Arithmetic 

procedure Dec2D (x 
procedure Dec2C (x 
procedure Dec2X (x 

{ y := X } 

Decimal; var y 
Decimal; var y 
Decimal.; ve.r y 

Double); 
Comp); 
Extended); 

{-----------------------------------------------------------------
** Conversions between strings and the intermediate decimal type. 
-----------------------------------------------------------------} 
procedure Str2Dec (8 : DecStr; var index : integer; 

var d : Decimal i var ValidPrefix : boolean ); 

d := s, starting at s[index]; on output index points to 
first character past accepted token; ValidPrefix is 
true if the token, concatenated with the characters 
following it, is a valid prefix of a numeric token. 

procedure Dec2Str (f: Decf orm; d: Decimal; var s: DecStr); 
{ s := d (according to the format f) } 

ConverSions between the numeric types and strings. 
-----------------------------------------------------------------} 
procedure S2Str (f Decform; x : Single; var y DecStr ); 
procedure D2Str (f DecForm; x Double; var y DecStr); 
procedure C2Str (f DecForm; x Comp; vax y DecStr ); 
procedure X2Str (f : Decform; x : Extended; var y DecStr); 

{ y := X (according to the format f) } 

procedure Str2S (x DecStr; var y Single); 
procedure Str2D (x DecStr; var y Double); 
procedure Str2C (x DecStr; ve.r y Comp); 
procedure Str2X (x DecStr; var y Extended); 

{ y := X } 

{-----------------------------------------------------------------** Numerical 'library' procedures and functions. 
-----------------------------------------------------------------} 
procedure RemX (x: Extended; var y : Extended; 

vax quo : integer); 
(new y) := (old y) - x • n, where n is the integer closest 

to y/x; n is even in case of tie. 
quo := low order seven bits of integer quotient y / x, 

so that -127 <= quo <= 127. 

0-31 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal RefeJ"'ence fl.1anual Floating-Point fffithmetic 

procedure SqrtX (ver x : Extended); 
{ x : = sqrt (x) } 

procedure RintX (ver x : Extended); 
{ x := rounded to integral value of x } 

procedure NegX (var x Extended); 
{ x : '" -x } 

procedure AbsX (ver x : Extended); 
{ x := Ixl } 

procedure CpySgnX (ver x : Extended; y Extended); 
{ x := X with the sign of y } 

procedure NextS (var x Single; y Single); 

procedure NextD (var x Double.: y Double); 
procedure NextX (ver x : Extended; y : Extended); 

{ x := next representable value from x toward y 

function ClassS (x : Single; var sgn integer) 
function ClassD (x : Double; ver sgn : integer) 
function ClassC (x : Comp; var sgn : integer) 
function Cla.ssX (x : Extended; var sgn ; integer) 

{ sgn := sign of x (0 for pos, 1 for neg) } 

procedure ScalbX (n : integer; var y Extended); 
{ y := y • 2A n } 

procedure LogbX (var x ; Extended); 
{ returns unbiased exponent of x 

NumClass; 
NumCla.ss; 
NlIlICl ass; 
NumCla.ss; 

{-----------------------------------------------------------------** Manipulations of the static numeric state. 

procedure SetRnd (r: RoundOir); 
procedure SetEnv (e: Environ); 

function GetRnd : RoundDir; 
procedure GetEnv (var e : Environ); 

function TestXcp (x 
procedure SetXcp (x 
function TestHlt (x 
procedure SetHlt (x 

Exception) : boolean; 
Exception; Onaff : boolean); 
Exception) : boolean; 
Exception; Onaff : boolean); 

0-32 

n "~~'JJ.:Itt:~> 



I 
I 
I 
I 
I 
I 
I 
I 

i 

I 
1 ."""----;" 

• I 
I 

, 

I 
1 , 

I 
I 
I 
I 
I 
I 

Pascal Reference fo.1anuaJ Floating-Point Arithmetic 

! Lisa and Mac only. 

{ Procedures to Get and Set Extended Rounding Precision are in MathlibJ 

procedure ProcEntry (var e : Environ); { Procedure entry protocol.} 
procedure ProcExit(e : Environ); { Procedure exit protocol. } 

{------------------------------------------------------------------------} 
ELEMS: Elementary Functions. } 

procedure Log2X (var x : Extended); 
{ x : = log2 (x) } 

procedure LnX (var x : Extended); 
{ x := In (x) } 

procedure LnlX (var x : Extended); 
{ x := In (1 + x) } 

procedure Exp2X (var x : Extended); 
{ x : = 2"x } 

procedure ExpX (var x : Extended); 
{ x :'" e"x } 

procedure ExplX (var x : Extended); 
{ x : = e"x - 1 } 

procedure XpwrI (i integerj var x : Extended); 
{ x := x"i } 

procedure XpwrY (y : Extended; var x : Extended); 
{ x := x"y } 

procedure Compound (r, n : Extended; var x : Extended); 
{ x :== (1 + r)"n } 

procedure Annul ty (r, n : Extended; var x : Extended); 
{ x := (1 - (1 + r)A-n) / r } 

procedure AtanX (var x : Extended); 
{ x := atan(x) } 

0-33 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

P8S'cal Reference f>.1anual 

procedure SinX (ver x Extended); 
{ x := sin(x) } 

procedure CosX (ver x Extended)i 
{ x := cos(x) } 

procedure TanX (ver x Extended); 
{ x := tan(x) } 

procedure Random>< (ver x : Extended); 
{ x := (7A 5 • x) mod (2A 31 - 1) } 

Flo8ting-Point Arithmetic 

{------------------------------------------------------------------------) 

{ Procedures for Lisa and Mac only. } 

function GetHltAddress : longint ; 
procedure SetHltAddress ( HltAddress : longint 
procedure InitFPLib i 
function SANE_Environ : longint i 

D-34 

Returns halt address. } 
Sets halt address. } 
Initializes FPLib. } 
Internal use only. } 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual Floating-Point Arithmetic 

0.4 Mathlib 
The intrinsic unit MathUb, contained in the file IOSFPUb, contains 
procedures in the following areas: 

• Environment Procedures. 
• Elementary Functions. 
• Utility Procedures. 
• Sorting. 
• Free-Format Conversion to ASCII. 
• Correct.ly Rounded Conversion bet.ween Bin8l"y and Decimal. 
• Financial Analysis. 
• Zeros of Functions. 
• Linear Algebra. 

0.4.1 How to Use M6thLib 
MathLib is a Usa intrinsic unit. Thus it may be conveniently used by Pascal 
programmers. MathLib procedures may also be used by essembly-language 
programmers who observe the Pascal conventions for data structures and 
procedure cal Is. 

W~,en writing Pascal source code, include a USES statement such as: 

USES FPLib, MathLib ; 

after the program statement in a main program or after the interface 
statement 1n a unit. If you are also using other units, include FPLib and 
"'1athUb in the list of units in your one USES statement. They may be listed 
before or after other units you are using, but FPUb must appear in the list 
before MathUb. 

0.4.2 Environment Procedures 

Type RourMPrecision ::: ( ExtPrecision, OblPrecision, RealPrecision) ; 

Procedure SetPreci sion ( 

function GetPrecision 

Procedure ClearXcps ; 
Procedure ClesrHl ts ; 

p : RoundPrecision ) ; 
{ Set roooding precision. } 

RoundPrecision ; 
{ Get rounding precision. } 
{ Turn off all exception flags. } 
{ Disable all halts. } 

The environmental control procedures in MathUb supplement those in FPUb. 
They work on the global floating-point environment. 

ClearXcps turns off all the exception flags at once. It is fa<ster than the 
equivalent code: 

for e := INVALID to INEXACT do SetXcp( e, FALSE ) ; 
In the same way, ClearHlts disables all the halts at once. 

0-35 



Pascal RefBi'ence t4a1711al Floating-Point An"tllmetic 

The MathLib type RoundPrecision defines the possible settings of the 
rounding precision mode. The procedures SetPrecision and GetPrecision are 
used "'vith RoundPrecision in the same way that SetRnd and GetRnd are used 
with RoundOir. 

Rounding precision is usually used to simulate single-only or double-only 
arithmetic on a system which uses extended-precision expression evaluation. 
Thus to simulate 

Z := X • Y ; 
as it would occur in a double-only system, the following suffices: 

savepre : = GetPreci si on; { Savepre of type Roum:Preci si on. } 
SetPrecision( DblPrecision ) ; 
01X( X, xx ) ; 
Ac:.kI)( Y, xx ) i 
X2D( XXI Z ) ; 
SetPrecision( savepre ) ; 

In this example the rounding precision affects only the AddO operation. The 
extended result xx is rounded as if the final destination were double 
precision" with inexact, underflow, and overflow signalled accordingly. The 
X20 operation will then raise no further exception. 

0.4.3 Elementary Ft.ntions 

Canst Rand10dulus = 2147483647 i 
{ Prime modulus for random number generation = ~31-1. } 

fooction NextRandm ( lastrand(JI : longint ) : longint i 
{ Retw-ns next 'rWldlD' longint "ith 1 <= nextramkn (= 

Rar d1c:dIl.us.--l. } 

Procedure ASinX ( var x : Extended); { X :'" asin(x) } 
Procedure fl:osX ( VBr X : Extended) ; { X := acos(x) } 

Procedure SinhX ( VB[" X : Extended ) ; { X : = sinh( x) } 
Procedure Cosh)( ( var x : Extended ) ; { X : = cosh( x) } 
Procedure Tanh)( ( VB[" X : Extended ); { X : = t8l1h( x) } 

Procedure Abs2X ( x, Y : Extended; VBr Z : Extended) ; { z := 8bs(y+ix) } 
Procedure ATan2'X( x, y : Extended; VBr Z : Extended) i ( Z := Brg(y+ix) } 

FPLib provides the procedure RandomX which operates on an extended 
argument. A valid argument for RandomX is an integral value between 1 
and 231-2, and RandomX replaces a valid argument with the next such valid 
argument. MathLib provides a more efficient function NextRandom, which 
operates on and returns longints. The following is equivalent to 

0-36 



-
-

Pascal Fi'eterence Manual 

RandomX( x ) for valid arguments x: 

X2L( x, Ix ) ; 
LX : = Hex tR8ndool ( Ix ) ; 
L2X( lx, x ) ; 

Floating-Point Arithmetic 

NextRandom uses integer rather than floating-point arithmetic and thus is 
fester. The result of supplying an invalid argument to NextRandom is 
undefined. 

The constant RandModulus can be used as in either of the following 
examples to produce an array of numbers distributed uniformly strictly 
between 0 and 1: 

OR 

L2X( Rard1odulus, XRard10dulus ) ; 
12X( 1234, r ) ; 
far i := 1 to n do begin 

R8IMkaX( r ) ; 
t := r ; 
DivX( XRand1odulus, t ) ; 
ali] := t ; 

end ; 

L2X( Rardtodulus, XRand10dulus ) ; 
lr := 1234 ; 
far i :"" 1 to n do begin 

lr := HextRandc:n( lr ) ; 
L2X( lr, t ) ; 
DivX( xRard1odulus, t ) ; 
ali] :"" t ; 

end ; 

The elementary functions ASinX, ACosX, SinhX, CoshX, and TanhX provide 
inverse sine and cosine, and hyperbolic sine, cosine, and tangent. Arguments 
in the interval [- t + 1] are valid for inverse sine and COSine; for these 
arguments, ASinX returns a value in [-pi/2, +pi/2] while ACosX returns a 
value in [+0, +pi]; the NaN for i!"Werse trigonomet.ric functions is returned for 
other arguments. The hyperbolic sine, cosine, and tangent are defined for all 
arguments, but SlnhX and CoshX signal overflow for large arguments. 

Abs2X and ATan2X are provided to facilitate coordinate conversion. Abs2x 
computes the square root of the sum of squares of its arguments; ATan2x 
computes the angle between a point (X, y) and the positive x-axis. ATan2x 
returns a number in [-pi, + pi], even if x or y is zero or infinite. 

To convert from rectangular coordinates (x, y) to polar coordinates (r, t) : 

Ab&2X( y, x, r ) ; 
ATan2X( y, x, t ) ; 

0-37 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascsl Reference "''IslUisl 

To convert back to rectangular coordinates: 

x := t ; y := t ; 
COSX ( x ) ; S1nx ( y ) ; 
tkllX ( r, x ) i I1ulX( r, y ) ; 

0.4.4 utility Procedures 

Floating-Point Arithmetic 

Type FP _Type = ( TFP _bvte, TFP _integer, TFP _longint, TFP _C(IIP, TFP _real, 
TfP_Double, TFP_Extended ) ; 

{ HuIbm: type mnes farFP _size.} 

Procedure fP _Size ( x: Extended; vor sgn: integer; vor class: tflnClass ; 
vor size: FP _Type) ; 

{ Returns sign bit, class, and size or s.ellest type that 
~d hold x exactly. } 

fw.ction SigRlfX ( x : Extended) : boolean; {True if x has neg sign. } 

function FP _HeIf ( n : longint ) : longint ; 
{ Attempts to allocate n bytes on heap, returning address. 

Returns ard4(nil) if space not available. } 

The utility procedures simplify common programming tasks. SignOfX returns 
TRUE if x has negative sign, and FALSE if x has positive sign. Remember 
that zero, infinity, and NaN have sign bits too. The following are equivalent 
but the first is more efficient if only the sign is of interest: 

OR 

ir SignOfX ( x ) then ... 

C : == Cla.ssX ( X, s:gn ) ; 
if sgn == 1 then ... 

FP _Size tells the smallest storage type that can contain the value of XI and 
as e side benefit returns the class of x and its sign in the same format that 
ClassX uses. If x contains an integral value that can be contained in a 
Comp variable .. then FP _Size will return TFP _byte; TFP _integer, TFP _longint, 
or TFP _comp if the smallest integral container that will contain x is a byte 
-128 .. +127; an integer, a longint, or a comp, respectively. Otherwise FP _Size 
w111 return TFP _real, TFP _double, or TFP _extended if t.he smallest 
floating-point container that will contain x is real, double, or extended, 
respectively. Thus the size of positive zero is TFP _byte, of negative zero is 
TFP _rea], of infinity is TFP _real, of denormal is TFP _extended, and of NaN is 
always one of the floating-paint sizes. 

0-38 



I 
I: 

I 
( 
\. 

I 
I 

i 

I 
! 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I ( 

I 'c 

I 
I 

Pascal Reference !"-78nU81 FloBting-Point t+rithmetic 

FP _~,Jew is a ShOltcut wery to allocate a number of bytes on the Pascal heap 
without specifying the data struct.lIre to be placed there. It is used 
internally in MathLib to implement temporary arr8.'YS needed by the sorting 
and linear algebra procedures, but it is also useful for allocating space for 
other dynamic storage structures. The number of bytes to be allocated is 
specified by a longint argument and thus can be as large as desired, although 
the Lisa Pascal heap will rarely have more than about 600000 bytes 
available. If the requested space is available, t.hen FP _New ret.urns the 
address of the first byte of the allocated st.oragei if not available then 
FP _"Jew ret.urns ord4(nil). For instance, to allocat.e an array of 10000 double 
preciSion, do the follo\~'ing: 

const roB! ESI2E = 8; { 8 = SizeOf(Double) } 

dpa := fP jlew( ard4( 10000) • IXl.BlESI2E ) ; 
if dpa = ord4(nil) then { error } else { ok } 

Assuming the array is to be indexed from 0 to 9999, to access element k: 

type pd = A Doubl e ; 

pd := pointer( dpa + ard4(k) • IXUllESI2E ) ; 
ak := pd" ; 

Just. as in using the built-in Pascal procedure new, appropriate use of mark 
and release allows reuse of heap space: use marl<'~p) just before calling 
FP _New" and then release(p) when that and any other heap space subsequently 
allocated with new or FP _New is no longer in lise. 

DA.5 Scrting 

Procedure Math_Sort ( { General procedure to stably sort an arbitraxy list _} 
first, last : integer; {Records first .. last will be sorted. } 
Function Sorted ( i, j : integer ) : boolean i 

{ User-supplied procedure called by Math_Sort to compm-e order of 
records i and j _ Math_sort guarantees first ("" i ( j (- last_ 
SOrted returns true if records i and j are already co:rrectly 
sorted wi th respect to each other _ } 

Proce<lJre swap ( i, j : i nt ege:r ) ; 
{ User-Sf.4)plied procedure called by Math_Sort to swap records i 

and j. Math_sort guarantees first (= i ( j (= last. } 
Var error : boolean ); {True if sort routine failed due to 

insufficient heap spare available. } 

D-39 



PfJS'cal Refertmce MMul!11 FloMing-Point flrithmetic 

Math_Sort is a generalized merge sorting procedure. It has no knowledge of 
the structlQ"e of the records being sorted; it obtains the information it needs 
through the user-supplied procedures Sorted and Swap. Math_Sort only calls 
Sorted and Swap with i and j satisfying first .i i < j .i lest. 

Math_Sort contains two phases: sorting and swapping. To sort n records, the 
number of calls of Sorted is proportional to n*log(n). The number of calls of 
Swap is at most n-l. 

The algorithm is stable: If prior to the sort, two records i followed by j are 
correctly ordered with respect. to each other, then after the sort, the record 
that was originally at i will still be followed by the record that was 
originally at j. This is true even if Sorted( i, j ) and Sorted( .1, i) are true, as 
might happen if Sorted were implemented by a comparison like 
, key[i] < = key[j] '. 

Int.ernally, Math_Sort. creates and disposes of a temporary array on the Pascal 
heap of size 4 * (last - first + 1) bytes. Jf there is insufficient heap space 
available then error will be set TRUE and no sorting will be done. 

The following sorting example is based on an array of 1M records 
containing a primary key, which is: a double precision number, and a 
secondary key, which is binary. For this example, records with NaN keys are 
to go to the end of the list. 

type srec = record 
key : Doubl e ; 
subkey : 0 .. 1 ; 

end; 

var a : ar.ray [1 .. 1000] or srec ; 

function srecsorted ( i, j : integer) ; (* User Sorted function. *) 

var ki, kj : Extended ; 

begi n (* srecsort ed *) 
OZX( a[i].key, ki ) ; 
01X( a(j] . key, kj ) ; 
case RelX( ki, kj ) of 

IT : srecsorted := TRl..E ; 
GT : srecsorted : = FAlSE ; 
EO : srecsorted := a[i].subkey (= a[j].subkey ; 
l.NH) : srecsarted := ClassX( ki, sgn ) <= ClassX( kj, sgn ) ; 

end (* case *) ; 
end (,. srecsort ed ,.) ; 

procedure srecSlf8p ( i, j : integer ) ; (. User SWap function. *) 

0 .. 40 



I 
I 
I 
I 
I 
I 
I 
I 

J , 

I 
I', -, 

I 
\ 

I 
I 
I 
I 
I 
I 
I 
I 
I 

P8SCIJ} Reference MflfUifll Floating-Point Arithmetic 

vor t ; s::rec ; 

begi n (. s:recswap .) 
t :"" ali] ; 
ali] := a[j] ; 
a[j] := t ; 

end (. s:recSilltap .) ; 

... (. In the user's llain prognlll ...• ) 

Hath_Sort ( 1, 1000, srecsorted, s:recswap, error ) ; 
if error then { not enough heap space} else { sorted (]( ) 

0.1.6 Free Format ClJIlVersion to ASCII 

Type free_fDnDBt "" record 
MaxSig : integer ; 
Si~ffmll, 

Trailyoint, 

I nt J:F 0llIl, 

{ Specifications for f.ree-f~ output. } 
{ Maximum number of significant digits. } 
{ True if -fixed- style applies HaxSig to 

significant digits; false if to digits 
after the point. 

{ True if trailing point should be printed 
for inexact values in nintegral- style. } 

{ True if "exponential" style acceptable for 
i nt egral val ues . } 

PlusJ:FOllIl boolean; True if "exponential- style should exhibit 

end ; 

Procedure FP Free ASCII ( 
x : Extended ; 
Width : integer ; 
form : Free_fDnDBt; 
var s : Oecstr ) ; 

+ sign for positive exponents. } 

{ Procedure to provide free fOllll ASCII output. } 
{ HlIIIber to be converted frOOl binmy to ASCII. } 
{ Max imtJn ntJnber of charact e:rs in out put stri ng. } 
{ Detailed format specifications. } 
{ Output destination string. If, after call, 

length( s) } Width, then x was inconsistent with 
the constraints Width or MaxSig. } 

D-41 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manu& FlaMing-Point Arithmetic 

FP _Free_ASCII provides a solution to the following problem: Given a number 
to be displayed in ASCII in a fixed field width" choose an ASCII format that 
displays as much informat.ion about. the number as possible with as few 
ASCII characters as possible, not exceeding the fixed field width unless 
absolutely necessary. 

Thus the number one should be displayed as '1' and not '1.0' or 'leO'. 
Positive zero should appear as '0' and not 'O.(XX)e-Q'. Pi, to be displayed in 
columns of width 1, 5, 10, and 15, should appear as '3', '3.142', '3.14159265', 
'3.1415926535898'. -0.00001 should appear as '-lE-5' unless Width );7, in 
which case '-.()()(X)l' should appear. 

The following special cases are formatted strictly according to Width: 

For positive zero, s := '0'; for negative zero, s := '-0' unless Width (= 1, in 
which case s := '0'. 

For positive infinity, S := 'Inf'; for negative infinity, S := '-lnf'. 

For NaNs, s will have the value that X2Str would return, unless that would 
exceed Width; then s := 'NaN' or '-NaN' depending on the sign bit" unless 
Width (c 3; then s :'" 'NaN' regardless of sign. 

The essential method for formatting normal numbers is to first attempt a 
representation with integral formm, then with a fixed decimal point format, 
and then with an exponential format with a minimal number of decimal 
digits in the exponent. (FORTRAN programmers are familiar with these as I, 
F, and E formats, respectively.) At each stage, a representation is rejected 
if it would require more than Width ASCII characters to represent the 
number according to the specifications in the Free_Format record. 

The number of significant digits never exceeds 19 and may be further limited 
by MaxSig. 

Integral format is attempted only if x contains a value that would fit 
exactly in a Compo The integral format of ten billion is 10000000000, but 
3.14, not being an integral value, is not displayed in integral format. When 
the Free_Format field Int_EForm is true, then numbers like ten billion are 
shortened to lE10 by converting three or more trailing zeros to an E and 
exponent. 

A string in fixed decimal point format might look like '123.456' or 
'.000Q0()()()(XX)234565'. MaxSig specifies the maximum number of digits that 
will be displayed. Sig_FForm determines how MaxSig is applied. If 
Si'LFForm is TRUE then there will be no more than MaxSig significant 
digits. Significant digits are counted from the first nonzero digit to the last 
nonzero digit. Thus 12345~., 123.456, and J)OOOO()()()()()123456 all have 
six significant digits. If Sig_FForm Is FALSE then there wtll be no more 
than MaxSig digits after the point. Thus 1(x)()(xxx)()()(.123456, .123456, and 
.000001 all have six digits after the point. 

0-42 



I • 

• • Pasc81 Reference ,"'18"U81 Floating-Point Arithmetic 

After rounding to the specified number of decimal digits, which m8'y' be 
reduced t.o fit in Width, trailing zeros after the point are ignored. Thus if 
the number, rounded to six digits after the point, was 123.456000, the last 
three zeros would be deleted. Sometimes all the digits after the point might 
be removed, as in the case of 123.000000, which would be truncated to '123.'. 
Whether a trailing point is retained is determined by the Free_Format field 
Trail_Point: if TRUE, then s := '123.'; if fALSE" s := '123'. Note that the 
original value of x in this example could not have been 123 exactlYi x would 
then have been displ8'y'ed as '123' in integral format. Instead it might have 
been 123.()(X)()()()()()1 before rounding to six digits after the point. 

Finally exponenti81 format is tried. MaxSig specifies the maximum number 
of significant digits to be displ8'y'ed. If x is ten billion, then the exponential 
dIsplay will depend on the specification as follows: 

Trail_Point: Plus_EForm: String: 

false 
True 
false 
True 

false 
false 
True 
True 

lElO 
1.E10 
1E+10 
1.E+l0 

When a slngle- or double-precision number Is converted to extended and then 
converted to ASCII in free format with no more than 18 significant digits, 
then the ASCII string will satisfy the requirements of the IEEE Standard. But 
a free form string that, for instance, displays 12 digits in exponential 
format, may differ by one in the last digit from the st.rIng t.hat would be 
obtained by calling S2Str or 02Str with form = FLOATOECIMAL and digits = 
12. Both strings satisfy the IEEE Standard; a difference m8'y' only arise in 
the extreme exponent cases for which the Standard allows more than one 
possible result for conversion from binary to decimal. 

Oenormal x is always represented in exponential form with four exponent 
digits. 

In LisaCalc, the default formatting conventions are MaxSig = 14, Trail-point 
= FALSE, Int_EForm = FALSE, Plus_EForm = FALSE. Sig_FForm is set 
FALSE for numbers less than one in magnitude, and TRUE otherwise. 

ExampJes: 

MaxSig 
Sig_fform 
Trailyoint 
Int_Eform 
Plus_EForm 

• 19 
= TRlE 
'" TRlE 
= TRlE 
= FALSE 

0-43 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual Floating-Point flrithmetic 

Input = 1234567890.0123456789 

Width 

)= 20 
19 
18 
17 
16 
15 
14 
13 
12 
11 
10 
9 
8 
7 
6 
5 

<= 4 

Input = .00001234 

)= 25 
23 .. 24 
8 .. 22 
7 
6 

<= 5 

Input = -6.023e-23 

)= 25 
10 .. 24 

9 
8 

<'" 7 

String 

'1234567890.012345678' 
'1234567890.01234568' 
'1234567890.0123457' 
'1234567890.012346' 
'1234567890.01235' 
'1234567890.0123' 
'1234567890.012' 
, 1234567890 .01' 
, 1234567890. ' 
, 1234567890. ' 
'1. 23456BE9' 
'1. 23457E9 , 
, 1.2346£9' 
, 1. 235E9 , 
'1.23E9' 
'1. 2E9' 
'1.E9' 

. , .00001233999999999999999' 
'l.233999999999999999E-5' 
, 1. 234E-5' 
'1.23E-5' 
'1.2E-5' 
, 1.E-5' 

'-6.022999999999999999E-23, 
'-6 .023E-23 I 

'-6.02E-23' 
'-6.E-23' 
'~6.E-23' 

0-44 



I 
1 
1 

~ -~ .. ~ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

~ 
I 
I 

Pascal Reference Msnual Floating-Poirft Arithmetic 

0.4.1 Carrectly Rounded Conversion Between Binary and DecifTlBl 

Canst LSi~iglen = 30 i { length of significand string. } 

Type longSi~g = string[LSi~igLen] i 

lOl'"9>ecill8l = record 
sgn 
exp 
sig 

end i 

0 .. 1 ; 
integer i 
lomJSi~iO ; 

Procedure XZLDec ( f : Oecftllll; X : Extended; VBI' Y : lomj)ecill8l ); 
{ Converts x to Y, correctly rounded according to f. } 

Procedure lDec2X ( prec: Rount:Precision; x: Lon~ecill8l.; var y: Extended ); 
{ Converts x to Y, correctly rounded according to prec. } 

The procedures X2LDec and LDec2X correspond to X2Dec and Dec2X, and 
work similarly, only more accurately and much more slowly. The IEEE 
Standard does not require correctly rounded conversion for single- and 
double-precision numbers for extremely large and small exponents, and does 
not specify conversion at all for extended-precision numbers. The results 
returned by Oec2S, S20ec, Oec20, and 020ec may differ by one unit in the 
least significant bit or digit from the correctly rounded results ... while the 
results returned by Oec2X and X20ec may differ by more than one unit from 
the correctly rounded results. 

The correctly rounded conversion routines accept. or produce lip to 30 decimal 
digits. X2l0ec produces correctly rounded longDecimal records according to 
it.s OecForm parameter. To obtain cOl'rectly rounded result.s from Single, 
DOUble, or Extended arguments, use one of the sequences: 

OR 

OR 

S2X( s, x ) ; 
X2lDec( f, x, y ) ; 

02X( d, x ) ; 
X2LDec( f, x, y ) ; 

X2lDec( f, x, Y ) ; 

LDec2X rounds correctly according to its RoundPrecision parameter. To 
obtain correctly rounded single, double, or extended result.s, use one of the 
sequences: 

D-45 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual 

OR 

OR 

L.Dec1X( J£Al..REISl(Ii, x, Y ) ; 
X2S( y, s ) ; 

L.Dec1X( I:II.PA:CISICfl, x, Y ) ; 
X2D( y, d ) ; 

l.Oec1X( EXTPIHISICfl, x, y ) ; 

Floating-Point frithmetic 

No correctly rounded conversions to Oecstr strings are provided~ but the 
routines Str20ec and Oec2Str may be tricked to apply to LongDecimal 
arguments. To convert a DecStr x with no more than 19 significant digits to 
a correctly rounded Extended y, do: 

var t : Deci.al ; 
pd : " Lor9)ecill8l ; 

index := 1 ; 
Str2nec( x, index, t, ValidPrefix ) ; 
pd := pointer ( ard4( @t) ) ; 
LDec1X( EX1'PIH:ISICtl, pd" , Y ) ; 

and to convert an Extended x to a string y correctly, do: 

var t : Lor9>eci.8l i 
pd : " Decimal ; 

X2lDec( f, x, t ) ; 
pd := pointer ( ard4( It) ) ; 
Oec2Str ( f, pd", y ) ; 

X2LOec sets the inexact flag appropriately. LOec2X sets the inexact, 
underflow, and overflow flags appropriately. 

The time required to convert correctly rounded is: proportional to the square 
of the exponent. The most ext.reme double precision numbers take a few 
seconds, but extendeds with very large or small ex ponents require up to 
twenty minutes. Thus these routines are too slow to lise habitually for 
converting the full range of extended-precision numbers; use these routines 
for applicat.ions such as obtaining the best possible approximations to 
tabulated values of mathematical constants such as pi or e. 

D.4.8 Financial Analysis 

Procedure Fin_Npv 
first, 
last, 

( { Compute net ~ue of series of payaents. } 
{ f1rst payment per1od. } 
{ last p~nt period. } 

0-46 



Psscal Reference Manual Floating-Point Arithmetic 

net : integer; { Period at which net value is to be 
COIpUt ed; need not be between first and 
last. } 

rate : Extended; {Periodic interest rate. } 
WI' Npv : Extended; {Net p8IJIIeflt value. } 
Procedure payllent ( i : integer; var JOt : Extended ) 

) ; 

{ User-supplied procedure to provide JOt, the Paylleflt at 
period i. } 

{ fin_Npv guarantees first (= i <= last. ) 

Procedure Fin_Return ( { Analyze series of p¥ents for external or 
internal rate of return. Discoooting by 
external rates -BY be specified for positive or 
negative payments or both or neither. Standard 
internal rate of return is obtained by 
specifying, tor exmple, negpariod, posperiod :'" 
first-I. A conservative external rate of return 
is obtained by considering negative payments as 
out frill the investor, positive payllents as in 
to the investor, and specifying: 

negperiod := first; 
posperi od : = 1 ast ; 
negrate := gunranteed safe rate of return ; 
posrate := expected average portfolio 

reinvestment rate of return. } 

first, { Initial payllent period. } 
last : integer ; { final pftYllent period. } 
negperiod; posperiod : integer ; 

{ Periods to which negative or positive ~ents 
are to be discounted; if < first or > last then 
corresponding payments are not discounted. } 

negI"ate, pDSrate : Extended ; 
{ Ddscount rates for negative and positive p~ents 

respectivel y; i gnared if correspondi ng period 
does not satisfy first <= ... period (= last. } 

var nes integer; { Error code = rnabm" of changes of sign 
8DOng adjusted payllents; on nllIWal return 
nes = l.nes = -2 if an inf or NaN 
~ent was supplied. } 

var ret : Extended; { Rate of return: if ncs = 1 then ret will 
contain the single real root > -1; if nes 
> 1 is odd" then ret will contain sene 
real root > -1; if ncs > 1 is even ret 
fI8IJ contain a real root > -1; otherwise 
ret will contain NaN. } 

0-47 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal F\'eterence Manual Floating-Point Arithmetic 

ProcedlU"e paynaent ( i : i nt eger ; var JOt : Ex tended ) 
{ User-supplied procedlU"e to provide JOt, 

the payment at period i _ } 
{ fin_Hpv guarantees first (= i (= last _ } 

) ; 

Fin_Npv is used to calculate the time value of a series of payment.s. 
Typically, a series of payments, to occur at times 1 through n, is to be 
discounted to a net present. value at t.ime 0 using a fixed discount rate r. 
The contribution of the first payment pi will thus be pll(ltr)i the next will 
be p21(1+r)"2i the last pn/(l+rfn. For this t.ypical problem, first::l, last"n, 
net=O, and ratemr. 

For a fixed series of payments, Vi, the net value at time i, and Vj, the net 
value at time j, are related by: 

Vi :: Vj * compound( rate, i-j). 

So if the net value is zero at one time, it will be zero at. any other time. 

Note that discount rates {= -1 are meaningless from a financial point of 
view. 

Often a transaction involving payment.s between two parties at different 
times is regarded as fair if the net discounted value of the payment series is 
zero at the agreed upon discount rate. Alternately, given a series of 
payments regarded as fair, we might interpret t.he effective interest rate as 
one making the net value of the payments zero. Note that roundoff error 
may prevent the net value from ever being exactly zero. Furthermore, the 
net value can not be zero if any payment is infinite or a NaN, or if all the 
nonzero payments have the same sign. 

Fin_Return is designed to solve the problem mentioned above: given a series 
of payments, what. discollnt rate would result in a net value of zero? This is 
the conventional form of the Internal Rate of Return (IRR) problem. In this 
form, it should be obvious that there will not always be a rate corresponding 
to every series of payments: if any payment is infinite or Nat\t or if all the 
payments have the same sign, then no discount rate can ever make the net 
value zero. It turns: out in other CBSes that there may be no such rate or 
there may be several rates with equally valid right to be called "internal rate 
of return." Modified methods for solving such problems will be discussed 
later. 

To obtain a conventional internal rat.e of return, in the Fin_Return calling 
sequence set negperiod and posperiod to, for instance, first-lor last+ 1. Then 
after the call, the output parameter ncs ret·urns a code to aid in 
interpretation of the result ret. 

Fin_Return will not attempt to compute an internal rate of return if any 
payment is infinite or NaN or if all payments are zero or all nonzero 

0-48 

{J 
,~ ,"7' ..;\" 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I (' 

I 
I 

Pascal Refei"'ence Manaal Floating-Point Arithmetic 

payments have the same sign. Fin_Return will return a NaN with code 
NaNIRR in these cases. Ncs = -2 if any payment was infinite or NaN; 
ncs = 0 in the other cases mentioned. 

If ncs )= 1 then its value is the number of changes of sign in the payment 
series. A change of sign occurs whenever a nonzero payment has different 
sign from the previous nonzero paymenL Thus, in the sequence: 

10,8,7,0,13,0, -0, 1,0, -1, 0, 0,-7, 0 

there is exactly one change of sign, between + 1 and -1. The zero payments 
are ignored in computing changes of sign. 

The number of changes of sign is important: if it is an odd number then the 
internal rate of return problem has one or more solutionsi if it is an even 
number > .. 2 then the internal rate of return problem may have one or more 
solution. Generally, the number of real solutions> -1 is the number of 
changes of sign or is less than that number by an even integer. So a series 
with three changes of sign has three or one internal rates of return while a 
series with four changes of sign has fOLlr, two, or none. 

Fin_Return always computes an internal rate of return if ncs is odd. If ncs 
'" 1 then assuredly ret contains t.he only int.ernal rat.e of return. If ncs > == 3 
then ret contains an internal rate of ret.urn but there may be others and 
there is no assurance that the value in ret is appropriate in the user's 
context. 

If ncs }= 2 is even, Fin_Return ""'ill search for an internal rate of return but 
will soon give up if it can't find any. In the latter case ret will be NaNIRR. 
There is no way to distinguish the CBSes in which no internal rate of return 
exists from those in which Fin Return is unable to find one. If ret is not a 
NaN then it is a valid rate of return but there is at least one other that may 
be equally valid. 

When there are two or more changes of sign the interpretation of the 
internal rate of return is evidently not a simple matter. One may plot the 
net present value of a series as a function of discount rate. Points where 
the graph crosses the x -ax is ere internal rates of return. Perhaps one of 
these pOints w111 be otNiously suitable. 

Another approach to rate of return is to simplify the series of payments until 
there is only one change of sign. For instance, if there ere only two 
payments of different sign, Pi at time i and Pj at time j, then the internal 
rate of return r is defined by the equation: 

(l+r),H = -PjJPi 

which should be solved by the formula: 

r :- expl( Inl( -(Pi+Pj)lPi )/(j-i) )i 

Verious methods based on this approach are called adjusted, modified, 
financial management, or external rate of return. A subseries such as all the 

0-49 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pas-em Reference Msnua/ Floating-Point Arithmetic 

positive p~ments is replaced by its discounted value at some time, using an 
externally defined discount rate. If thest positive subseries is replaced by a 
single positive payment, either before or after all the negative payments, 
then there will be exactly one change of sign and exactly one internal rate 
of return. Either the positive subseries or the negative subseries or both 
may be discounted; the same external discount rate may be applied to both, 
or different ones may be applied to the negative and positive subseries. 

As an example, consider the following series of payments: 

-3, -2, 2, -1, 1 IRR = -.325 

It has three sign changes, so there are either one or three internal rates of 
return. We might discount all the negative payments to the beginning,. using 
a discount rate of 0.5, to get a different series: 

-43/9, 0, 2, 0, 1 IRR = -.156 

or we might disoount all the positive payments to the end, using e. disoount 
rate of 0.75, to get: 

-3, -2, 0, -1, 57/8 

or we might do both to get: 

-43/9, 0, 0, 0, 5718. 

IRR = +.055 

IRR = +.100 

Each of these three series has a unique internal rate of return, but these 
rates differ according to the choices made to simplify the problem. 

Fin_Return allows for all these possibilities. To discount the subseries of 
negative payments to a single time between first and lest, simply specify 
negperiod to be that time and specify a discount reste in negrat.e. Similarly, 
posperiod and posrate may be used to discount the subseries of positive 
payments. 

The following code fragments correspond t.o the previolls examples: 

V8I' 

P : Brray[l .. n] of r~; 

procedure payIIBtlt(i: integer; var p!lt: Extended); 
begin 

S2X(p[i], JIlt); 
end; 

begin 
S2X(0.5, negrate); S2X(O.75, posratel; 

fin~turn(1, n, 0, n+l, negrate, posrate, ncs, retirr, p&yIIent); 
if ncs )= 1 then if not (ClassX(retilT, sgn) in [ fJ'Wi,SNIfl ] ) then 

{ retirr is a conventional internal rate of return. } ... 

D-50 



( 

..... " 

Pas-cal Reference Manuel Floating-Point Arithmetic 

Fin...Return(1, n, 1, n+1, negI'ste, poSI'ste, ncs, retneg, payIIIeI'lt); 
if ncs )= 1 then {retneg is s return rate based on discounting 

negati ve payIIeflts to the begi mi ng. } ... 

fin_Return( 1, n, 0, n, negI'ste, pos:rate, ncs, retpos, p&yIIent); 
if nes )= 1 then {retpos is s return rste based on discounting 

positive payaents to the end. } ... 

Fin_Return( 1, n, 1., n, negrate, posrate, ncs, retx, P&yIIent); 
if ncs )= 1 then {retx is a return rate based on diseotmting all 

p8IJIIent s to the begi nni ng or end. } ... 
end· ., 

LisaCalc adopts the convention that negative payments are discounted to the 
first time period, and positive payments are discounted to the lest time 
period. If only one discount rate is specified, it is used for both negrate and 
posrate. 

A common type of complex investment involves several payments in followed 
by several payments out. Even thOUgh with only one sign change there is a 
unique internal rate of return, it may not be meaningful since it does not 
reflect external conditions. A frequent basis for analysis is to require that 
at the beginning, sufficient funds must be on hand to be able to guarantee 
aU payments in. So all the payments in are discounted to the first period 
USing a "safe" guaranteed rate of return such as the return on a conventional 
savings account. Payments out, on the other hand, are to be reinvested at 
another rate which is probably higher than the safe rate. This rate is 
sometimes called the "portfoliO" or ''reinvestment.'' rate and represents the 
average return of t.he investment portfolio. These externally defined safe and 
reinvestment rates modify t.he rate of return of the investment. 

y..,lhen analyzing complex investments, remember that the computed results 
are no better than the assumptions from which they were developed. In 
particular, measures of rate of return do not reflect the risk that some of 
the payments might not occur as expected. 

0.4.9 Zero or a Nonlinear FtAlCtlon 

Procedure Math_Solve ( 
est 1" est2 : Extended; 
var l-es : Extended ; 

{ C(IIJ)Ut es zero or functi on. } 
{ A pri ori estillat es or zero. } 
{ r(res) II8Y' = 0 or NaN or 1ts sign may 

differ trOll one of its neighbors or it 
D8V merely be the x with minimal 
abs(f(x)) flDong those x s.-pled by 
Math Solve. The user must decide the 
significance of the result res. } 

D-51 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascl.1l Reference ManuM Floating-Point firithtTu!tic 

procedure f ( x : Extended; var fx : Extended ) 
{ User-supplied procedure to evaluate fx = f(x). } 

) ; 

IVlath_Solve is used to find a zero z of a nonlinear function f(xt that is; e. 
place where f(z) = O. Z is also called a root of the equalion f(x) = O. 

The user must specify the function f which should be at least piecewise 
continuous; the better t.he function; the better Math_Solve can perform. The 
user may also specify one or two starting guesses. The user may supply 
NaNs as guessesi then Math_Solve will generate its: own guesses: which 
usually ""'ill not be as efficient as: those the user might have supplied. Zero 
finding is tricky enough with good guesses; so t.he user should supply the best 
information he can. 

Internally, IVlath_Solve has two main phases: the search for a sign change 
interval and the refinement of such an interval. A sign change interval is an 
interval for which the values of f at the endpoints have different signs. If 
the function is continuous it will have a zero in the int.erval; if I/f(x) is 
continuous then f will have a pole in the interval. Thus finding a Sign 
change interval is critical. That interval is sought using a secant method 
whenever that is productive, and a parabolic method otherwise. After the 
Sign change interval is found, the secant method is used unless: bisection is 
faster. If no sign change interval is found, Math_Solve eventually gives up, 
leaving in res the point at which the sampled function's magnitude was 
minimal. 

Only the user can determine the ultimate significance of res. That's because 
nonlinear functions display a variety of complicated behaviors that can't be 
handled equally efficiently by one subroutine. Many functions such as f(x) = 
1 + x * x have no real zeros while others may hide their zeros where 
Math_Solve can not find them. 

To interpret res, compute f(res). Seldom do we find the happy circumstance 
that f(res) is 0 without generating any exceptions. If inexact; underflow, or 
other exceptions were signalled then the user must decide whether to ignore 
them or to subject res to the further tests described below. If f(res) is a 
NaN then Math_Solve has wandered outside the domain of validity of f. The 
user might want to extend the domain of f and try again. Sometimes such 
extension is trivial, as in the case of a removable discontinuity. 

Suppose f(x) were defined as sin(x)/x; then at x = 0 its value is a NaN; and if 
IVlath_Solve were to look there it would stop with res = O. Remove this 
discontinuity by defining f(x) by 

it x = 0 then ((x) := 1 else 1(x) := sir(X)/Xi 

A tougher cese is a function like f(x) = sqrt(x) - 2 i if Math_Solve happens to 
look at x < 0 it will stop on a NaN. In this case, extend this definition of 
f(x) leftward: 

0-52 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual Flo6.,ting-Point ~nthmetic 

if x (= 0 then f(x) := -2 else f(x) := SCJ1:(x) - 2; 

Many such domain problems can be avoided if the starting guesses are 
sufficiently close to the desired zero. 

Suppose now that f(res) is a nonzero number or infinite. One possibility is 
that res is actuaUy a zero of f but that the computed value f(res) is nonzero 
because of roundoff. Another possibility is that the true zero of f does not 
lie at a machine representable number but lies: between res and one of its 
adjacent machine representable numbers. A tl1ird possibility is that res lies 
at or near a pole rather than a zero of f. Let's consider these cases in turn. 

Often it is possible to compute an analytical error bound ef(x) for a function 
f(x) that indicates a bound on the roundoff error in the function at x. Then a 
reasonable approach Is to evaluate f(res) and ef(res:) and accept res as an 
approximate zero of f if the error bound dominates the function value, that 
is, abs(f(res)) <= abs(ef(res)). 

Books on rounding error analysis provide examples for constructing analytical 
formulas for error bounds. Another possibility is to use interval arithmetic 
to obtain computational error bounds. The directed rounding modes of IEEE 
arithmetic are helpful in implementing interval arithmetic. 

A simpler alternative that suffices in many cases is simply to evaluate f(res) 
in each of the four IEEE rounding directions. If f is typical, then f(res) will 
be different in each rounding direct.ion. If all four values: ere nonzero with 
the swne sign, it is usually safe to ~ume that the true value of f(res) is 
not O. If one of the four values is 0 or if the signs very, then the true value 
of f(res) may well be 0 and res may be taken to be an approximate zero of f. 
Furthermore, it orten suffices: to compute f(res) only in upward and downward 
directions. 

Turning now to the case that the true zero of f is not a machine 
representable number, we may evaluate f at both of res's neighbors. If the 
sign of f at a neighbor differs from the sign of f(res), then f mllst have 
either a zero or a pole between res and its neighbor. On an interval in 
which f changes sign, it's not possible to dist.inguish zeros from poles. other 
knowledge of the function, such as a bound on a derivative, may be helpful if 
this issue is in doubt. 

If f is known to have a pole In t.he region of interest, it may be useful to 
remove the pole analytically before calling Math_Solve. For example, instead 
of solving f(x) = 3 - l/x, solve r(x) = 3x - 1 to avoid the pole at zero. But 
beware of introducing spurious zeros this way. 

If none of the above produces an indication of a zero at or near res, then it 
may be that res is merely that point at which abs(f(x)) was minimized among 
those x sampled by Math_Solve. Since many functions do not have real 
zeros, Math_Solve will eventually give up searching if for each point it tries, 
f has the same sign and there is no significant decrease in the magnitude of 
f. If Math_Solve ever finds two points for which l' has different signs, then 

0-53 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual Floating-Point Arithmetic 

it will persist in searching for a solution until it finds a point x .... ·here f(x) is 
o or NaN; failing that, the sign change interval will be reduced in size until 
the endpoints are adjacent machine representable numbers. But if the 
function value seems to vanish between two such nLlmbers, then it makes 
sense to accept one of them a'S a reasonable approximation of the zero. 

It must be emphasized that at. best Math_Solve will find a zero of the 
function defined by the procedure f, which may not be the same function the 
user had in mind when he wrote that procedure. Because one function may 
have many mathematically eQuivalent expressions, it is the user's 
responsibility to find an expression that will not. produce gratuitously wrong 
results in the presence of roundoff. Two examples of helpful principles: 
Avoid or minimize rounding error when possible (e.g., x/10 instead of 0.1 * x), 
and cancel early rather than late (e.g., (x+y)*(x-y) rather than x**2 - y**2). 

The following example is intended to find a zero of a polynomial function 

~x) .. Co * xn ... Cl, • xn-1 ....... Cn-l * X + Cn 

Note that the function is evaluated in extended precision using Horner's 
method of nested multiplications and additions, and the Math_Solve result r 
is evaluated according to the guidelines discussed above: 

const n = { degree of pol yrKIIi al ) = 0 } ; 

V8I" C : f:lITay [ 0 .. n ] of real ; 

procedure peval ( x : Extended; V8I' px Extended); 

V8I" i : integer ; 

begi n { peval } 
S1X( c[o], px ) ; 
far i := 1 to n do begin { px := px • X + ci } 

tlulX( x, px ) ; 
AddS ( c(i], px ) ; 

end {px:= px • X + cl }; 
end {peval}; 

Hath_Solve( g1, g2, r, peval ) ; 
CletlI'Xcps ; 
f:r := peval(r) ; 
if ClessX.(f'r, sgn) in [t)nan, Snan] then 

{extend function dc:aain and try again} 
else if (ClassX( tr, sgn) = 2ERl) and { no exceptions } then 

{ accept r as zero ) 

0-54 

,~ 
.J' 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Ref'erence Manual 

else begin 
SetRnd( 1XJtI!IfR) ) ; 
fd := peval(r) ; 
SetRnd( l.fIWfR) ) ; 
fu := peval (r) ; 
SetRnd( 1lJ£fR:ST ) ; 
if SignofX( fd ) () SignofX( fu ) then 

{ accept r 8S zero } 

Floating-Point flrithrnetic 

else begin 
left := NextX( r, neginf ); {neginf contains negative infinity} 
right := NextX( r, posinf )i{posinf contains positive infinity} 
fleft := peval(left) ; 
fri ght : = peval (ri ght) ; 
if (SignOfX( fleft ) () SignofX( fr ) ) 

or (SigrOfX( fright) () Sigri)fX( fr ) ) then 
{ accept r 8S a zero } 

else { no zero was found } 
end ; 

end ; 

004.10 linear Algema 
The linear algebra routines in MathLib solve common algebraic and 
statistical problems lIsing methods that are independent of the storage 
formats of vectors and matrices. Prior to discussing specific routines we 
shall review relevant aspects of linear algebra. 

004.10.1 Vecttn and Linea" Transformations 
Linear algebra is concerned with elements in vector spaces and the class of 
linear t.ransformat.ions Llpon t.hem. If that sounds too abstract, think about. 
this specific example: The vector space is the set of POints in a graphics 
\Olinda .... ·, forming a picture. One point, t.he origin, is speciali often it is one 
of t.he corners. Typical linear transformations include the identity 
transformation, which does nothing, scaling t.ransformations, which act like a 
zoom lens t.o magnify or reduce the pict.ure, and rotations, y,'hich rotate the 
picture by a fixed angle relative to the origin. It is possible to combine 
linear transformations to create new ones. 

The simplest. W8!j to understand t.he effect of a linear transformation in two 
dimensions is to consider what it does to the unit Circle, which is a circle of 
radius one around t.he origin. The identity transformation leaves the circle 
unChanged; scaling transformations make the circle bigger or smallerj 
rotations leave the unit circle seemingly unchanged, although circles cent.ered 
elsewhere are rotated as a whole. The unit sphere is the three-dimensional 
counterpart to the unit. circle. 

Most linear transformations can be inverted. For instance, a scaling 
transformation that magnifies by two can be inverted by the inverse 

0-55 

------------------ -------- - ---



~ --• 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Refei""ence 1'4al?uel Floating-Point Arithmetic 

transformation: a scaling transformation that reduces by two. A 4S-degree 
clockwise rotation can be inverted by a rotation of 45 degrees 
counter-clock wise. 

Transformations that have inverses are called nonsingu1ari transformations 
without inverses are called singular. To understand singularity, consider the 
cases of ordinary multiplication and division of numbers. The transformation 
"multiply by x", as in z := X * y, is nonsingular unless x = O. The inverse 
transformation "divide by x", as in y := Z I x, does not exist. when x "" O. 
"'-Ie could define e. "pseudo-inverse" t.ransformation: 

if x = 0 then y := 0 else y := z/x ; 
which exists for any X, but we would not expect to recover the original value 
of y unless b'y luck it were O. 

Two-dimensional linear transformations can only map the unit circle in 
certain ways. Nonsingular transformations map the unit circle into a circle 
or an ellipse. Singular transformations map the unit circle into a line 
segment or point. There are no other possibilities. A singular linear 
transformation that maps the unit circle to a line segment is not one-to-onei 
it maps more than one point in the unit circle t.o the same point on the line 
segment. Such a transformation has no inverse because a point on the line 
segment ma:.' have come from more than one point on t.he unit circle, and 
tllere's no wa:,:/ to tell from which it came. Hm'r'ever, pseudo-inverses have 
been defined which make somewhat arbit.rary choices.; all linear 
transformations have pseudo-inverses. 

0.4.10.2 Transformations Between Spaces £t" Different Dimension 
Transformat.ions may be defined which map elements of one vector space 
into elements of another. For instance, a painting of a three-dimensional 
scene is based on artistic perspective convent.ion for mapping t.hree 
dimensions into t.wo. 

linear t.ransformations t.hat map vect.ors from two dimensions t.o three can at 
best map tile unit circle into a two-dimensional object in the 
three-dimensional space. Transformations from t.hree dimensions to two map 
the unit sphere into at most a tv/o-dimensional object .. of course. Generall~1 
speaking, a transformation that maps the unit circle or sphere into an object. 
of the maximum possible dimenSionality is said to be of full rank. 
Otherwise it is said t.o be rank-deficient.. When t.he two spaces are of t.he 
same dimension, then "full rank" is the same as "nonsingular" and 
''ranl<.-deficient" is the same as "singular." 

OA.10.3 Arrays and Matrices 
Programming languages deal with arrays of numbers rather than elements of 
a vector space and t.ransformat.ions upon t.hem. Arra\/s of numbers can have 
any meaning that the programmer wishes to assign .. but conventionally 
vectors are represented by an array I,\,'ith one climension. Thus an element. of 
a two-dimensional vector space might. be declared as 

D-56 



/ 
l 

Pascsl Reference f..1aniJsl Floating-Point flrithmetic 

U : array [1. .2] of real ; 

where u[1] is the first coordinate, along the x axis, and t(2] is the second 
coordinat.e, along the y axis, of a point in a two-dimensional space. The size 
of a vector is measured by its Euclidean length, which is the square root of 
the sum of the squares of its elements: 

lengthu := sqrt( sqr(u[l]) + sqr(u[2]) ) ; 
Linear transformations mapping n-dimensional spaces to m-dimensional 
spaces are conveniently declared as 

a : array [1. .11, 1.. n ] of real ; 

The following discussion uses the term "matrix" to refer to an array 
representing a single linear transformation. The individual components of a 
matrix A depend on the linear transformation that A represents. 

In general, the components of an array representing a two-dimensional linear 
transformation can be determined by examining the effect of the 
transformation on the unit vectors El and E2 corresponding to the 
coordinates (1,0) and (0,1). The first column of A contains the coordinates of 
the result of applying the transformation to El and the second column 
contains the coordinates corresponding to E2. 

In two dimensions, to represent the identity transformation: 

far i := 1 to 2 do far j := 1 to 2 do 
if i=j then ali, j] := 1 else ali, j] := 0 ; 

while to represent a three times magnification: 

far i := 1 to 2 do far j := 1 to 2 do 
if i=j then a[i,j] := 3 else a[i,j] := 0 ; 

and to represent a rotation through angle t: 

a[1,1] := cos(t); a[1,2] := +sin(t) ; 
a[2,l] := -sin(t) ; a[2, 2] ;= cos(t); 

One singulsr transformation is the zero transformation which maps everything 
to the origin: 

far i := 1 to 2 do far j := 1 to 2 do 
ali, j] := 0 ; 

Another singular transformation maps any vector vert.ically onto the x-axis: 

far i := 1 to 2 do for j := 1 to 2 do 
ali, j] := 0 ; 

a[1,l] := 1 i 

It maps t.he unit circle into a line segment on the x-axis. 

Sometimes it is convenient to think of a two-dimensional array [1..m, 1 .. n1 
not as a transformation from an n-dimensional vector space to an 

0-57 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Floating-Point flrithmfftic 

m-dimensional vector space, but as a collection of n distinct vectors of 
dimension m. For instance, a triangle is defined by specifying its three 
vertices, so an array of three columns may be used to represent a triangle. 

With the conventions for vectors and transformations outlined above, there 
are operations for applying transformations to one or more vectors, 
composing transformations" finding the vector that would be transformed to a 
given one, and computing inverse and pseudo-inverse transformations. 

Composing TranstmnatiOl'1S 
To represent a transformation C which first performs A, then performs B, 
multiply the matrix B times the matrix Ai in mathematical notation, C := B 
.. A. In Pascal you could write 

V8I' 
a, b, e : array [1. _n, 1. _n] of real ; 

far i := 1 to n do far j := 1 to n do begin 
t := 0 ; 
far k := 1 to n do t := t + b[i, k]·a[k, j] ; 
e(i, j] :- t ;. 

end ; 

although the matrix multiplication rout.ine in MathUb is better. If you ever 
wondered why the textbook definition of matrix multiplication is so 
complicated, it is to insure that transformations can be combined by 
multiplying their matrices in this way. Matrix multiplication only works 
when the second dimension of B is the same as the first dimension of A, 
because it only makes sense to compose two such transformations when the 
result space of A is the same as the operand space of B. 

To apply a transformation represented by an array A to a vector X, simply 
multiply them together to get the transformed vector B: 

B := A .. X 

Note that X might represent one or more vectors depending on the nllmber of 
columns of X. 

Linem" E(JJBt.ions 
The assignment B:=A* X computes 8, given A and X. The inverse problem, to 
compute X, given A and B, is usually called "solving a system of linear 
equations." The dimensions of B, A, and X must conform so that A and X 
could be multiplied to get B. If A is square and nonsingular, there will 
always be a unique X satisfying B=A* X. 

MathUb procedures find X directly from B and A. Another way to find X is 
to find P, the inverse transformation of A, and apply it to B: 

X := P * B 

0-58 

I~ 
.~J<J 



I 
I 

( 
\ 

I 
I 
I 
I 
I 
I 
I 

) /,"'-~:.." ":-

I ( 

I 
I 

; , 
I 
I 
I 
I 
I 
I 

Pas-cal h'eterence Manual Floating-Point Arithmetic 

But computing P explicitly is always slower and less accurate than computing 
X directly from B and A. 

Linear Lemt Squares 
The equation B=A*X sometimes has solutions X even when A is singular or 
not square. Sometimes there is more than one such X, at other times there 
is none. All these cases can be generalized as the "linesr least squares" 
problem: Given B and A, find an X that minimizes the length of the re.sidual 
R:=B-A* X. Such an X always existsi X will be unique if and only if Y=O is 
the unique solution of the equation O=A*Y. 

Clearly X solves the linear equation problem B=A*X if and only if R:=B-A*X 
is zero. Therefore, MathLib provides just one set of procedures to solve the 
linear least squares problem; these procedures CBn also be used to solve 
linear equations. A solution X is always computed directly from B and A; if 
there is more than one solution X, Mathlib returns an X whose length is 
small, but not necessarily minimal among all X minimizing the length of R. 

Only square nonslnQular matrices A have inverses, but every matrix A has a 
pseudo-inverse P, which may be applied to B to compute X: 

X ;= P • B 
But computing P explicitly Is always slower and less accurate than computing 
X directly from B and A. 

An even more inaccurate method for obtaining X is to solve the linear 
equation system: 

(AhB) = (AhA) * X 

using AT, the transpose of A. 

Avoid methods that require P or Ah A rather than Ai they are inaccurate, or 
slow, or both. 

Existence 
Mathlib always computes an x to solve a linear least squares problem. How 
can you tell whether that x is also a solution of t.he system of linear 
equations B= A* X? 

That depends on the shape of A. If A has at least as many columns as rows" 
!.tnd A 1s of full rank, then x would satisfy, in the absence of rounding 
errors, B=A* X. Fullness of rank is indicated by a condition number greater 
than zero, discussed in Section 0.4.10.4. 

If A has more rows than columns or is rank deficient, then it wilt be 
necessary to actually compute the residual R:"'B-A* X to see if it is zero or 
negligible compared to B. 

Uniqueness 
MethUb always computes some X, even when the linear equation system 
B=A* X has zero, one, or many solutions. The multiplicity of solutions may 

D-59 

f 

l 
! 
t 

I 
I 
f 

I 
t 
I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pas'cal Reference Manual Floating-Point flrithmetic 

be seen even for b=a*x where b~ a, and x are real numbers. This equation 
has a unique solution x=b/a if a-O. But if a=O, then b determines the number 
of solutions. When a==O and b .. O .. any value of x is a solution; when a=O and 
b-O, no value of x is a solution. 

But the related problem "minimize I b - ax I" always has at least one 
solution x. When a==O, then MathUb chooses the solution x-O, regardless of 
b. This is because among all the solutions x, namely a)) the real numbers, 
x=O has the smallest magnitude. 

""hen MathUb has computed a solution :x thBt minimizes R=B-A'" X, how can 
you tell that is is unique? That depends on the shape of A. If A has more 
columns than rows, then X is never unique. If the number of A's rows is 
greater than or equal to the number of A's columns; then X will be unique if 
and only if A is of full rank. Fullness of rank is indicated by a condition 
number greater than zero. 

0.4_10.4 Ill-Conditioned Problems 
All the operations we have discussed are subject. to roundoff errors during 
each floating-point operation. This has important implicatiOns because 
roundoff errors blur the distinction between matrices of full and deficient 
rank. A matrix may be of full rank, but if it is close enough to a 
rank-deficient matrix, the result X may not be satisfactory: it may be far 
from the correct solution XI and the residual R :"" B - A * X might not be 
minimal. The condition number COND supplies an estimate of the effect of 
roundoff; CONO will be zero for singular and rank-deficient matrices A and 
greater than zero for nonsingular and full rank A. The largest possible value 
of COND is 1, which is attained by the identity and rotation matrices, among 
others. Generally, you can not count on more than 18+LOG10(CONO) 
significant digits being correct in the largest component of X, with fewer 
relia.ble digits: in smaller components:. But occasionally X wiJ1 by chance be 
more accurate than CONO suggests. 

CO NO is actually an estimate of the relative change in A to make A into 
the nearest rank-deficient matrix. Matrices with small COND often cause 
trouble because they are close to rank-deficient. The corresponding 
transformations: map the unit circle into very skinny ellipses, which from a 
distance look much like the line segments generated by rank-deficient 
transformations:. Two points on opposite sides of such a skinny ellipse may 
be very close together, perhaps within a rounding error, but the corresponding 
points on the unit circle that they were mapped from may be much further 
apart. So small errors like rounding errors can cause big errors when 
computing solutions X to linear equations or least squares problems. 

D..4.10.5 Oetecminants 
l'1athLlb provIdes routInes to obtain the determinant of a squme matrix. The 
determinant is not defined if the matrix is not square. 

The determinant of a square matrix has valid uses in statistical 
computations, but the determinant is most often used inappropriately as a x 

0-60 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

P8S"Ca} Retertme:e t.,,/tmua} Floating-Point Arithmetic 

criterion for singularity. The determinant of a singular square matrix is zero 
and t.he determinant of a nonsingular square matrix is not. zero, but a 
nonzero determinant tells nothing about the condition of the problem. 
Consider a two-by-two matrix A with u and v on the diagonal, lui i Ivl, and 
zeros off the diagonal. The determinant is u*v, and the condition number is 
IUNI. The distance to the nearest singular matrix is luI; this distance 
relative to A is lu/vl, the condition number. Both the determinant and 
condition number are zero if A is singular, an infrequent occurrence; only the 
condition number is helpful in the far more common case when A may be 
nearly, bllt not quite, singular. Since the determinant can only be used to 
distinguish singular from nonsingular, and rounding errors blur this distinction, 
the use of the determinant is not recommended. Use CO NO instead. 

0.4.10.6 Iterative Improvement 
Iterative improvement is a technique for refining a first approximation to a 
solution of a linear equations or linear least squares problem. Given an 
approximate solution XO, iterative improvement computes a residual R := B -
A * XO and then solves the equation R = A * OX using a factorization of A. 
Then the improved solution is Xl := XO + OX. Usually one iteration 
improves the residual and moves Xl clos:er to the correct answer. 
Subsequent iterations are sometimes helpful but they may worsen R, Xn, or 
both. 

The linSys operators in lisaCalc and Lisa BASIC always perform one 
it.eration of iterative improvement. 

0.4_10.7 statistical Computations with AlA 
Many important statistical problems of regression are formulated in terms of 
the matrix AT A, which is the matrix product of AT, the transpose of A, with 
A itself. For instance the solution of the linear least squares problem 
"choose X to minimize the length of 8-A* X" is the same as the solution of 
the linear eqllation 

AT A * X = AT * B 

in exact arithmetic. But since the solution must be computed in the 
presence of rounding errors and A may be rank-deficient or nearly so, least 
squares problems are better solved without forming AT A. 

MathUb does provide two procedures for solving problems formulated in 
terms of AT A. Neither computes AT A or its factorization; instead the 
solutions are more accurately determined from the factorization of A itself. 
Standard errors can be determined from the diagonal elements of the inverse 
of AT A; these can be obtained by solving 

AT A * X = Identity 

Determinants of AT A are of interest when AT A is a correlation matrix. 

0-61 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

P~caJ Retel·ence ,it,,1snusl 

0.4.10.8 Linear Algebra Procedl.-es 

Procedure HatJ1u1 t ( 
n" 
p, 
.. : integer ; 
overlap : boolean ; 

Floating-Point Arithmetic 

{ Hatrix .ultiplication B := A • X. } 
{ Rows of A = rows of B. } 
{ Columns of A = rows of X. } 
{ Columns of X = columns of B. } 
{ True if B overlaps A or X; tempararv 

B is created on heap and copied at 
end. } 

vor error boolean; {True if failure due to lack of heap 
space. Not possible if overlap 
false. } 

procedure afetch ( i ... j : integer; var aij : Extended ) ; 
{ User routine to provide aij := Ali, j]. } 
{ Afetch may assume 1 <= i <= n, 1 <= j <= p. } 

procedure xfetch ( i, j : integer ; var xij : Extended ) ; 
{ User routine to provide xij := X[i,j]. } 
{ Xfetch may assume 1 (= i (= P, 1 <= j <= II. ) 

procedure bstore ( i , j : integer ; bij : Extended ) 
{ User routine to store B[i,j] ;= bij. } 
{ Bstare .ay assume 1 <= i (= n, 1 <= j (= m. } 

) ; 

Procedure ~_Factor ( 

n, 
p : integer ; 
pivot : boolean ; 

{ C(JIpute the l;.R factorization of 
I18trix A.} 

{ Nt.aber of rCMfS of A. } 
{ Number of coluans of A. } 
{ True if pivoting is to be perfmaed, 

false if not. } 
VBr al : P _al-Fecard; {Pointer to factorization of A, tthich 

will be created in the heap in an 
internal ramat. al will be ord(ttIL) 
if insufficient heap space is 
available. } 

procedure afetch ( i, j : integer ; var aij : Extended ) ; 
{ User routine to provide aij := Ali, j]. } 
{ Aretch IIay asstne 1 <= 1 <= n, 1 <= j <= p. } 

) ; 

Procedure al_Condition ( 

CR : P _OR_Record ; 

var cond : Extended 
) ; 

{ Estiaate condition number of 
matrix whose factorization is in 
~A. } 

{ ORA is a decomposed matrix 
produced by OR_Factor. } 

{ Estimate of condition number. } 

0-62 

--... , 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pas-cal Reference Manual Floating-Point ~ithmetic 

Procedure ~~tEmlinant ( { Compute deten.inant of 
I18trix whose factorization is in 
or. } 

{ ~A is a decfJIPosed I18trix 
produced by ~_factor. } 

var det : Extended 
) ; 

{ Determinsnt. } 

Procedure c;;R_Solve ( { Cmpute X = pseudo-i""erse(~A) • B 
to solve linear equations or linear 
least squares problems. } 

II : i nt eger i { Ntaber of columns of X and B. 
t;R : P _t;R_Record ; { at" is a decfJIposed matrix 

produced by lJl_factar. } 
var error : boolean ; {True i r procedure failed 

due to lack of heap space. } 
procedure bfetch ( i, j : integer ; var bij : Extended ) 

{ User routine to provide bij := B[i,j]. } 
{ Bfetch II8V as~ 1 {= i {= n, 1 {= j {-.. } 

procedure xstare ( i,j : integer; xij : Extended) ; 
{ User routine to store X{i,j] := xij. } 
{ Xstore may assume 1 {= i <= p, 1 (= j <= II. ) 

) i 

Procedure ~_Residual ( { Ctnpute residual R := B - AX far a 
linear equations or linear 
least-squares proble. } 

n, { Nlnber of rOlfs of A. } 
P : integer ; { Number of columns of A. } 
II : integer; { NlDber of coltonS of X and B. } 
procedure afetch ( i, j : integer ; var aij : Extended ) ; 

{ User routine to provide aij := A[i,j]. } 
{ Afetch IMY' asSlJIe 1 <= i <= n, 1 <= j <= p. } 

procedure bfetch ( i, j : integer ; var bij : Extended ) 
{ User routine to provide bij := B[i,j]. } 
{ Bfetch may asStne 1 {= i {= n, 1 <= j (= II. ) 

procedure xfetch ( i, j : integer ; var xij : Extended ) ; 
{ User routine to provide xij := X[i,j]. } 
{ Xfetch lIay assume 1 {= i {= P, 1 (= j (= II. } 

procedure rstare ( i, j : integer ; rij : Extended ) 

) ; 

{ User routine to store R[i,j] := rij. } 
{ Rstore may asslIIe 1 {= i (= n, 1 <= j <= II. ) 

0-63 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

\ 

I 
I 
I 
I 
I 

Pascsl Reference fo,1snual FloBting-Point ~ithmetic 

Procedure ~_IlIprOV'e ( { Perfam one iteration to illPl"DVe 
the solution X of a linear equations 
ar lineBI' least squares problell 
A • X = B. } 

.. : integer i { NUIIber of collllns of X and B. } 
~ : P _~_Recard ; { ~A is a deccnpos:ed lIatrix 

produced by l;.R_factar. } 
VBI' errar : boolean; {True if ~_I.prove failed 

due to lack of heap space. } 
procedure (lfetch ( i, j : integer ; vor aij : Extended ) ; 

{ User routine to provide aij := A[i, j]. } 
{ Afetch may aSSUMe 1 (= i (= n, 1 (= j (= p. ) 

procedure bfetch ( i ... j : integer ; VBI' bij : Extended ) 
{ User routine to provide bij := 8[i, j]. } 
{ Bfetch II8Y assume 1 (= i <= n, 1 <= j (= II. ) 

procedure xfetch ( i, j : integer ; VBI' xij : Extended ) i 
{ User routine to provide xij := X[i,j]. } 
{ Xfetch .ay assuae 1 (= i (::: p, 1 (= j (= II. ) 

procedure xstare ( i, j : integer i xij : Extended ) 
{ User routine to store X[i,j] :~ xij. } 
{ Xstare lIay assu.e 1 <= i <= p, 1 <= j <= II. } 

) ; 

Procedure ~_lrar6olve ( { CfJlpUte a solution far (AlA) X = 8, 
where T denotes transpose, given 
factorization of A in l;.RA. } 

II : i nt egar ; { tfUliber of col uans of X and B. } 
~ : P _~~ecard ; { ~A is a decc:nposed .otri x 

produced by ~_factar. } 
var error : boolean; {True if procedure failed 

due to lack. of heap space. } 
procedure bfetch ( i, j : integer; VBI' bij : Extended ) 

{ User routine to provide bij := BU, j]. } 
{ Bfetch IIay asSllle 1 (= i (= p, 1 (= j (= ... ) 

procedure xstare ( i, j : integer ; xij : Extended ) 
{ User routine to store X[i,j] := xij. } 
{ Xstore may' asSUle 1 (= i (= p, 1 (= j (= II. ) 

) ; 

Procedure OR_lranDetenainant ( {COlipute detenainant of AlA 
given factorization of A in (R". } 

~ : P _~_Recard ; { ~A is 0 decOllPOsed etrix 
produced by ~_factar. } 

VBI' det : Ex t ended { Det emi nant. } 
) ; 

0-64 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

J 

I 
I 

Pascal Fi'efertmC'tt Manual Floating-Point Arithmetic 

Mat_Mult performs matrix multiplication in order to determine the effect of 
a linear transformation upon one or more vectors or upon another linear 
transformation. The user specifies the dimensions of arrays A, X, and B, and 
defines procedures that provide access to the elements of these arrays. 
Mat_Mult is not concerned with the internal organization of the arrays, which 
may be more general or of a different. struct.ure than the array type defined 
in the Pascal language. Mat_Mult calls the user-defined -fetch and -store 
procedures (afetch, xfetch, etc.) to fetch or st.ore the (i,j) element of the 
user's arrays. 

The result B may overlap the inputs A or X. If so, MatJ-1ult must compute 
a temporary copy of B prior to st.oring any of it lest. an input be oven,,rritten 
prematurely. The boolean overlap is specified by the user accordingly. If 
the user has specified that the data overlap, then Mat_MuIt creat.es its 
temporary copy of B on the Pascal heap. If the heap is nearly full then 
there may not. be sufficient room to hold B. Then Mat_Mult will terminate 
and set the boolean error true prior to performing any computation. If the 
user sets overle.p true prior to the call t.hen he must. checl.; error after the 
call. Any heap space used by Mat_Mult is released prior to returning. 

The following example illustrates a typical use of Mat_Mult and 
demonstrates overlapping X and B as well as how to create and access a 
matrix A which is larger than 32768 bytes, the limit for a Pascal data 
structure. 

coost n = 1000 ; 
P = 100 ; 
.. = 2 ; 

var a : 10ngint ; 
B1factar 1ongint; B1factar· i (= 400000 requires 32 bit 

integers ) 
ajfactar : integer; { ajfactar • j (= -400 requires 16 

bit integers) 

b : array [ L. nl L.II ] of rool. i 

errar : b001 ean ; 

procedure fetcha( i.. j : integer ; vsr B1j : Extended ) ; 
vsr pr : A real ; 
begin 

PI" : = pointer( a + ai factar • i + ajfactar • j ) ; 
S2X( pr'''' aij ) ; 

end ; 

0-65 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pss-csl /;'eterence f>.18J7uaJ Floating-Point Arithmetic 

procedure fetchx( i, j integer; var xij Extended); 
begin 

S1X( b[i, j], xij ) ; 
end ; 

procedure stareb( i, j : integer ; 
begin 

X.2S( bij, b(i, j] ) ; 
end ; 

{ Create space far a on heap. } 

bij Extended); 

a : = FP _tfelf( ard4( n ) • ard4( p ) • SizeOf( real ) ) ; 

if a = ard4(nil) then 
{ no rom far a! } 

else begin 
aifactar := SizeOf(real) • ard4( p ) ; 
ajfactcxr := SizeOf(real) ; 
a := a - aifactar - ajfactar ; 

{ a will point to a [0, 0] to illprove the efficiency of afetch. } 

{ How fill a with its elements, and b with the elE!llents of x. } 

Hat_ttult( n, p, II, true, errar, fetcha, fetchx, stareb ) ; 

if errar then { not enough rom on heap } else { (]( ) 
end ; 

0.4.10.9 QR Factorization 
The MathUb Toutines t.o solve syst.ems of linear equations A • X = Band 
linear least squares problems depend on first obtaining the QR factorization 
of the matrix A. Every n-by-p matrix A can be factored into a product of 
two matrices Q and R. 

The n-by-n orthogonal matrix Q represents an n-dimensional rotation of the 
coordinate axes and so preserves lengths of vectors. The inverse of Q is just 
its transpose f:il. 
The n-b'y-p triangular matrix R has zeros below the diagonal: if i > j then 
R[i;] = O. This form makes R * X = QT * B easie.r to solve for X than 
A • X = B. In MathUb, QR_Factor performs the factorization A = Q • R, 
and QR_Solve computes X. 

It turns out that smaller residuals B-A· X can often be obtained if a process 
called column pivoting is performed during the QR factorization. This 

0-66 



I 
I 
: 

( 
\ 

I 
I 

1 

I 
I 
I 
I 
I 

1 
/' \.':. 

I 
( 

: 

I 
I 
I 
I 
I 
I 

; 

I ( 

i .. 

I 
I 

... -~--------- --

P8s'cal Reference Manual Floating-Point Arithmetic 

amounts to performing the factorization first on the column of largest norm, 
then on the column of largest norm among those remaining, and so on. The 
effect is to produce three factors Q * R * P = A, where P is a p-by-p 
permutation matrix: an identit.y matrix with some of the rows int.erchanged. 
Column pivoting is optional in QR_Factor since some matrices can be 
analyzed in advance to show that they do not require it. But if column 
pivoting has not been shown to be unnecessary then it should be performed. 
Pivoting usually improves accuracy but it may slow down the factorization by 
a factor of five to ten per cent for square matrices. LisaCalc and Lisa 
BASIC always perform column pivoting. 

QR_Factor stores the factorization QRP In a condensed internal form on the 
Pascal heap. QR_Factor returns a pointer to the factorization for use by the 
other QR routines. None of these other routines releases the heap space 
allocated by QR_Factor, so it is up to the user to mark the heap before 
calling QR_Factor and t.o release the heap to the same mark when that 
factorization is no longer required. The other QR routines that allocate 
space on the Pascal heap release that space before returning. All the QR 
routines that require heap space contain an error flag in their calling 
sequences and terminate without storing any result if sufficient heap space is 
not available. 

OA.10.10 MaUllib QR PtocecUes 
QR_Factor is: the factorization routine. Its inputs describe Ai its output is a 
pointer to the factorization ~)RP. That pointer and factorization Me only 
useful to the other QR routines in MathLib. About 18 + 10np bytes are 
allocated on the heap if pivoting is not requested; pivoting requires an 
additional 20p bytes. Execution time is proportional to n3 for an n-by-n 
matrix. 

QR_Determinant computes the determinant of A very quickly given A's QR 
factorization. A NaN is returned if the matrix A is not square. 

QR_Condition provides an estimate of the condit.ion number of A with 
respect to solving linear equations or least squares problems. Conventionally 
this condition number is defined to be t.he ratio of the largest singular value 
of A to the smallest, and thus ranges from 1 upward to infinity. 
QR_Condition invert.s this ratio and so returns a number ranging from 1 down 
to O. Furthermore, since computation of singular values is fairly time 
consuming, QR_ Condition only makes an estimate of the largest and smallest 
singular values, which sometimes may vary substantially from the correct 
values. Execution time is about twenty percent. of the time required for the 
factorization. Q~_Condition requires lOp bytes of heap space. 

QR_Solve finds the X in A '" X = B given A's factorization. It requires 
10 '" max(n,p) bytes of heap space. The j'th column of X may overwrite the 
j'th column of 8. 

0-67 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

P8Scai Reference M8.I1U8.1 Floating-Point Arithmetic 

QR_Residual provides a convenient computation of the residual 
R := B - A * X, not to be confused with the R in the QR factorization! 

QR_Improve uses QR_Residual and QR_Solve to perform one iteration of 
improvement of the solution X. 

QR_ TranSolve computes a solution X of AT A .. X = B from the QR 
factorization of A. 

QR_ TranDeterminant computes the determinant of AT A from the QR 
factorization of A; even if A has no determinant, AT A is always square and 
always has a determinant. 

0.4.10.11 QR Example 
The following example codes a procedure linSys that works somewha.t like 
the linSys in lisaCalc and lisa BASIC, but its arguments are limited to 
Pascal real arrays. 

linSys solves m linear least squares problems: 

"For k=1 to m, find xi,I.< to minimize the length of 

ri,k = (6:l,iXi,k + 6:l,2X2,k + ... + 6:l,pxp,J.() - bj"k 

rn,1< :: (an,lXl,k + Bn,2x2,1< + ... + an,pXp,k) - bn,\( " 

If r j,l< = 0 then xi,I< also solves the m systems of linear equations 

~,ixi,k + ~,2X2,1< + ... + ~,pXp,k = bi,k 

type atype = array [L. n, L . p] of real ; 
btype = mTay [1.. n, 1. .11] of real ; 
xtype = array [1. .p, 1. .m] of real ; 

var BlDstri x atype ; 
tnatri x : btype; 
xmatri x : X type ; 

det I cond : real ; 
{ Last deter.inant and condition number computed by linsys. } 

ftvlCti on Ii nsys ( a: atype; b: btype; V8I' x: X type ) : bool ean ; 

{ Linsys will find x to minimize b-a·x, if possibl~ will return 8 
f...action value of fAL!X: if successful, TR.E othtmfisei will 

D-68 

fn,,"',,:~ 
" 

'.I',~;J' 



I 
I , 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

( Pascal Reference Manual Floating-Point l1rithmtftic 

update det and cond with the deten.inant and condition estimate 
for a. } 

vsr I18rker : 1\ i nt egel" ; 
qr : P J;'R.flecard ; 
error : bool eon ; 

procedure fetch8( i, j integer; var aij extended); 
begin 

S2X( a[1, j], 81j ) ; 
end ; 

procedure fetchb( i, j : integer ; var bij 
begin 

extended) ; 

S2X( b[i, j], bij ) ; 
end ; 

procedure storex( i, j : integer ; xij 
begin 

X2S( xij, b[i, j] ) ; 
end ; 

extended) ; 

procedure fetchx( i, j : integer; var xij extended); 
begin 

S2X( b[i, j], xij ) ; 
end ; 

begin { linsys } 
mark(lIarker) ; {Hark heap starage far subsequent release. } 

lll_factar( n, p, {pivot} true, qr, fetcha ) ; 
if qr =: ard4(nil) then error := true 
else begin { factorization (J{ } 

tRJ)eterainant ( qr, det ) ; 
lll_Condi tion ( qr, cond ) ; { Cond error represented by NaN.} 
tR_Solve( ., qr, error, fetchb, starex ) ; 
if not error then begin { solve (]{ ) 

tR_Intprove ( II, qr, errar, fetch&, fetchb, fetchx, storex); 
{ Onl y one improvement it erati on. } 

end {solve (J{ } ; 

end {factorization (J{ } ; 

l1nsys := error ; 
release(lIfIl"ker) ; { Release heap storage. } 

end {Ii nsys } ; 

0-69 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pasc81 Reference MsnlJB1 Floating-Point f1Tithmetic 

0.4.11 MathLib NeNs 
Besides the NaNs that can be generated by the procedures in FPLib, there 
are some NaN codes that are used by the procedures in MathLib to signify 
unusual results: 

NeKlet 
NaN:ond 

Dec 

39 

49 
50 

Hex 

$27 

$31 
$32 

Meanina 

Internal rate of return 1s not real, does 
not exist, or was not found. 
nonsquare matrix has no determinant. 
Condition estimate could not be computed 
because of inadequate heap space. 

D-70 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pas'C'81 Reference Manu81 

0.4.12 MaULib Interface 

~IT MathLib; INTRINSIC; 

INTERFFCE 

{ Lisa Math Library. 

Floating-Point flrithmetic 

{$C Copyright 1983, 1984, Apple Computer Inc. } 

USES FPLib i 

CCffiT 

Lisa Math Library constants. 

Ranct10dulus = 2147483647 ; 
{ Prime modulus for random number generation = 2A 31-1. } 

LSigDigLen = 30 ; 

TYPE 

{ Length of significand string. } 

Lisa Math Library types. } 

RoundPrecision = ( ExtPrecisio~ DblPrecisio~ RealPrecision) ; 

Type fP_Type = ( TFP_byte, TFP_integer, TFP_longint, TfP_Comp, TFP_real, 
TFP_Double, TfP_Extended ) ; 
{ Number type names for FP_size.} 

Free Format = record 
- HaxSig ; integer i 

Sig_fform, 

lrailyoint, 

Int_EForm, 

Plus_Eform boolean i 

end; 

P_OR_Record = longint ; 

Specifications for free-form output. } 
Maximum number of significant digits. } 
True if "fixed" style applies MaxSig to 
significant digits; false if to digits after 
the point. } 
True if trailing point should be printed for 
inexact values in "integral" style. } 
True if "exponential" style acceptable for 
integral values. } 
True if "exponential" style should exhibit 
+ sign for positive exponents. } 

{ Pointer to matrix factored as ORP. 

D-71 



-• --
I 
I 
--
i 
I 
I 
I 

Pascal Fi'eference M8.m.l8.1 Floating-Point Arithmetic 

LongSigDig = string[LSigDigLen) 

LongDecimal = record 
sgn 
e:<p 
sig 

end; 

0 .. 1 ; 
integer i 
LongSigOig ; 

{ Elementary functions to support BASIC and Fortran. 

procedure ASinX var x Extended x ;'" asin(x) 
procedure ACosX var x Extended x := acos(x) 

procedure Si nhX var x Extended { x := sinh(x) 
procedure CoshX var x Extended { x := cosh(x) 
procedure T anhX var x Extended ( x := tanh( x) 

{------------------------------------------------------------------------} 
{ Procedures to support polar coordinates. } 

procedure Abs2X ( x, y 
procedure ATan2X( x, y 

Extended; var z 
Extended; var z 

Extended )) 
Extended 

{ Z := abs(y+ix) 
{ z : = ar g ( y+ i x ) 

{ Random number procedure. } 

function NextRandom ( lastrandorn : longint ) : longint ; 
{ Returns next "random" longint wi th 1 <= nextrandom <= RandNodulus-l.} 

{ Floating point status and mode procedures_ } 

procedure Cl earXcps i 
procedure ClearHlts i 
procedure SetPrecision 

function GetPrecision 

{ Turns off all exception flags. 
{ Turns off all halt flags. 

p : RoundPrecision ) i 
{ Set extended rounding precision. 

RoundPrecision i 
{ Get extended rounding precision. } 

{------------------------------------------------------------------------} 

0-72 



Pascal h'eterence Manual Floating-Point Arithmetic 

{ Sort procedure. } 

procedure Math_Sort ( { General procedure to stably sort an arbitrary lht.} 
first~ last : integer; {Records first .. last will be sorted. } 
function Sorted ( i~ j : integer ) : boolean i 

{ User-supplied procedure called by Math_Sort to compare order of 
records i and j. Math_sort guarantees first <= i < j <= last. 
Sorted returns true if records i and j are already correctly 
sorted with respect to each other. } 

procedure Swap ( i, j : integer ) ; 
{ User-supplied procedure called by Math_Sort to swap records i 

and j. Math_sort guarantees first <= i < j <= last. } 
var error : boolean ); {True if sort routine failed due to 

insufficient heap space available. 

{------------------------------------------------------------------------} 
{ Miscellaneous utility procedures. } 

function SignOfX ( x : Extended) : boolean; { True if x has neg sign. 

function FP_New ( n : longint ) : longint i 
{ Attempts to allocate n bytes on heap .. returning address. 

Returns ord4(n11) if space not available. } 

procedure FP_Size ( x: Extended i var sgn: integer j var class: NumClass i Val 
size: fP_Type ) i 

{ Returns sign bit, class, and size of smallest type that 
~'1ould hold x exactly. } 

procedure FP_Free_ASCII ( 
x : Extended i 
width : integer i 
form : free_format; 
var s : Decstr ) i 

Procedure to provide free-form ASCII output. } 
Number to be converted from binary to ASCII. } 
Maximum number of characters in output string. } 
Detailed format specifications. } 
Output destination string. If~ after call,l 
length(s) ) width, then x was inconsistent with 
the constraints Width or MaxSig. } 

{ Financial analysis procedures. } 

procedure Fin.-Npv ( 
first" 
last, 
net : integer i 

Compute net value of series of payments. } 
First psyment period. } 
Last payment period. } 
Period at which net value is to be computedi 
need not be between first and last. } 

0-73 

I 
I. 
I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

PascBi Reference MBnuaJ Floating-Point Arithmetic 

rate : Extended; {Periodic interest rate. } 
var Npv : Extended; {Net payment value. } 
Procedure payment ( i ; integer; var pmt ; Extended ) 

) ; 

{ User-supplied procedure to provide prot, the payment at 
period i. } 
{ Fin_Npv guarantees first (= i (= last. } 

procedure Fin_Return ( { Analyze series of payments for external or internal 
rate of return. Discounting by external rates may be 
specified for positive or negative payments or both or 
neither. Standard internal rate of return is obtained 
by specifyin~ for exemple, negperiod, posperiod :; 
first-l. A conservative external rate of return is 
obtained by considering negative payments as out from 
the investor; positive payments as in to the investor, 
and specifying: 

negperiod := first; 
posperiod := last; 
negrate := guaranteed safe rate of return i 
posrate := expected average portfolio reinvestment 

rate of return. } 

first, { Initial payment period. } 
last : integer i { Final pa:yment period. } 
negperiod, posperiod : integer; 

Periods to which negative or positive payments 
are to be discounted; if < first or > last then 
corresponding payments are not discounted. } 

negrate, posrate : Extended; 
{ Discount rates for negative and positive payments 

respectively; ignored if corresponding period 
does not satisfy first <= ... period <= last. } 

var nes integer; { Error code = number of changes of sign emong 
adjusted payments; on normal return ncs = 
l_ncs = -2 if an inf or NaN payment was 
supplied. } 

var ret Extended; { Rate of return: if ncs = 1 then ret will 
contain the single real root > -1; if ncs > 

1 then ret will contain some real root > -1 if 
ncs is odd; if ncs > 1 is even ret may contain 
a real root ) -1; otherwise ret will contain 
NaN. } 

Procedure payment ( i : integer i var prot : Extended 
User-supplied procedure to provide prot, 
the payment at period i_ } 

0-74 



I 
I 

(, 
ill ---1 

I 
.. 
• 
I 
1 

I 
I 
I 
I 

( . 

I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Rftferl!f'tCe Manual Flaming-Point f#rithmt!tic 

{ FinJNpv guarantees first <= i <= last. } 
) i 

{------------------------------------------------------------------------} 
{ Numeri cal a1 gebra . 

procedure Mat_Mult ( 
n, 
p, 
m : integer; 
overlap : boolean i 

var error : boolean; 

procedure afetch i,j 

procedure xfetch i,j 

procedure bstore i,j 

) i 

procedure OR_Factor 
n, 
p : integer i 
pi vat : bool ean ; 

var OR : P _OR_Record ; 

procedure afetch i,j 

) i 

procedure OR_Condition 

~ : P _OR_Record; 

var cond : Extended 
) i 

{ Matrix multiplication B := A • X. 
{ Rows of A = rows of B. } 
{ Columns of A = rows of X. } 
{ Columns of X = columns of B. } 
{ True if B overlaps A or Xi temporary B is 

created on heap and copied at end. } 
True if failure due to lack of heap space. 
Not possible if overlap false. } 

: integer; var aij : Extended ) ; 
{ User routine to provide aij := A[i,j]. p. J} 

{ Afetch may assume 1 (= i <= n, 1 <= j <= 
: integer; VB! xij : Extended ) i 
{ User routine to provide xij ;- X[i,j). 
{ Xfetch may assume 1 (= i <= p, 1 <= j <= m. 

: integer; bij : Extended) 
{ User routine to store B[i,jJ := bij. } 
{ Bstore may assume 1 (= i (= n, 1 (= j (= m. } 

Compute the OR factorization of matrix A. } 
Number of rows of A. } 
Number of columns of A. } 
True if pivoting is to be performed, false if 
not. } 
Pointer to factorization of A, which will be 
created in the heap in an internal format. 
OR will be ord(NIL) if insufficient heap 
space is available. } 

integer; VB! aiJ : Extended) ; 
{ User routine to provide aij ,,,, A[i, j]. 
{ Metch may assume 1 (= i <= n, 1 <= j <= p. 

Estimate condition number of 
ma.trix whose factorization is in ORA. } 
ORA is a decomposed matrix produced by 
OR_fa.ctor. } 
Estimate of condition number. } 

0-75 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference f..18nual 

procedure OR_Determinant ( 

~ : P JJRyecord ; 

var det : Extended 
) i 

procedure OR_Solve ( 

m : integer; 
OR : p ~QR_Record ; 

var error : boolean; 

Flosling-Point fU'ithmetic 

Compute determinant of matrix whose 
factorization is in ~A. } 

{ ORA is a decomposed matrix produced by 
~_Factor. } 

{ Determinant. } 

{ Compute X = pseudo-inverse(ORA
) • B to Solve 

linear equations or linear least squares 
problems. 
Number of columns of X and B. 
QRA is a decomposed matrix produced by 
OR factor. } 
True if procedure failed due to lack of heap 
space. 1 

procedure bfetch i/j integer; var bij : Extended ) 
{ User routine to provide bij := B[i,j]. l} 
{ Bfetch may assume 1 <= i <= n, 1 <= j <= m. 

procedure xstore ( i,j integer; xij : Extended ) ; 

) i 

procedure OR_Residual 

n, 
p : integer; 
m : integer; 
procedure afetch i/j 

procedure bfetch ( i,j 

procedure xfetch i,j 

procedure rstore i, j 

) i 

procedure OR_Improve 

m integer i 

User routine to store X{i,j] := xij. } 
Xstore may assume 1 <= i <= p, 1 <= j <= m. } 

Compute residual R := B - AX for a linear 
equations or linear least squares problem. } 
Number of rows of A. } 
Number of col umns of A. } 

{ Number of columns of X and B. } 
: integer i var aij : Extended ) ; 
( User routine to provide aij := A[i,j). } 
{ Afetch may assume 1 <= i <= n, 1 <= j <= p. } 

: integer; var bij : Extended ) 
{ User routine to provide bij := B[i/j]. } 
{ Bfetch may assurne 1 (= i (= n, 1 (= j (= m. } 

: integer ; var xij : Extended ) ; 
{ User routine to provide xij := X[i,j). } 
{ Xfetch may asslIne 1 <= i <= P, 1 <= j <= m. } 

: integer i rij : Extended ) 
{ User routine to store R[i,j) := rij. 
{ Rstore may assume 1 <= i (= n, 1 (= j <= m. 

Perform one iteration to improve the 
solution X of a linear equations or linear 
least squares problem A * X = B. 
Number of columns of X and 6. 

0-76 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal fi'eterence Manual Floating-Point Arithmetic 

(R : P _~yecord ; ORA is a decomposed matri x produced by 
OR Factor. } 

var error : boolean; True if procedure failed due to lack of heap 
space. } 

procedure afetch ( i, j : integer; var aij : Extended ) ; 
{ User routine to provide aij := A[i,j). }} 
{ Afetch may assume 1 (= i <= n, 1 <= j <= p. 

procedure bfetch i,j: integer i vex bij : Extended) 
{ User routine to provide bij ;= B[i,j]. } 
{ Bfetch may assume 1 <= i <= n, 1 <= j (= m. } 

procedure xfetch i, j : integer; var xij : Extended ) i 

{ User routine to provide xij := X[i,j). }} 
{ Xfetch may assume 1 (= i (= p, 1 <= j <= m. 

procedure xstore ( i,j : integer i xij : Extended) 

) ; 

procedure QR_TranSolve 

m : integer i 
(R : P _OR_Record ; 

var error : boolean ; 

procedure bfetch i,j 

procedure xstore i,j 

) i 

procedure OR_TranDeterminant 

(R : P _OR_Record ; 

var det : Extended 
) ; 

{ User routine to store X[i,j] := xij. 
{ Xstore may aSSLrne 1 <= i {= p, 1 {= j {= m. 

Compute a solution for (ATA) X = B, where T 
denotes transpose.. given factorization of A 
in OR .... 
NLKnber of col umns of X and B. 
ORA is a decomposed matrix produced by 
OR_Factor. } 

{ True if procedure failed due to lack of heap 
space. } 

: integer; var bij : Extended ) 
{ User routine to provide bij := B[i,j). 
{ Bfetch may assume 1 <= i (= p, 1 (= j <= m. 

: integer i xij : Extended ) 
{ User routine to store X[i,j] ;= xij. 
{ Xstore may assume 1 <= i <= p, 1 <= j (= m. 

Compute determinant of ATA given 
factorization of A in ORA. } 
ORA is a decomposed matrix produced by 
OR factor. l 

{ Determinant". } 

{------------------------------------------------------------------------} 
Procedures for correctly rounded conversion between binary and 
decimal. } 

0-77 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I-
I 
I 
I 
I 
I 
I 
I 

Pascal Reference f..'IanuaJ Floating-Point f/rithmetic 

procedure X2LDec ( f : DecForm; x : Extended; var y : LongDecimal ) ; 
{ Converts x to y, correctly rounded according to f. } 

procedure LDec2X ( prec: RoundPrecision; X: LongDecimal; var y: Extended) ; 
{ Converts x to y, correctly rounded according to prec. } 

{------------------------------------------------------------------------} 
{ Numerical analysis. 

procedure Math_Solve ( 
est 1, est2 : Extended; 
var res : Extended; 

Cooput es zero of funct i on. } 
A priori estimates of zero. } 
f(res) may = 0 or NaN or its sign ma:y differ 
from one of its neighbors or it may merely 
be the x with minimal abs(f(x)) among those x 
sampled by Math_Solve. The user must decide 
the significance of the result res. } 

procedure f ( x Extended; var fx : Extended ) 
{ User-supplied procedure to evaluate fx = rex). } 

) i 

{------------------------------------------------------------------------} 

0-78 

o 



I 
I 

( 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I ( . 

I 
I 

Pssc'al Reference />-fanual Floating-Point Arithmetic 

D.5 Macintosh Aoaling-Point. PrOglSllming 
Sections 0.2, 0.3, and 0.4 describe floating-point programming for the Lisa. 
Floating-point programming for the Macintosh is simileri the changes are 
described below. 

Assembly-language programs that. use FP68K may be assembled on the Lisa 
and run on the Macintosh or on MacWorks. Pascal programs that use real 
arithmetic or the intrinsic units FPLib or MathLib may be compiled with the 
Lisa Pescal Compiler and run on Macintosh or Macworks. 

WARNING 
Early Macintosh developers received the files: 

INTRFC/SANE.TEXT OBJ/SANE.OBJ OBJ/SANEAsm.OBJ 
INTRFC/Elems.TEXT OBJ/Elems.OBJ OBJ/ElemsAsm.OBJ 

which are no longer recommended, and older versions of t.he files: 

OBJ/MacPasLib.OBJ TL ASM/TooIMacs. TEX T TL ASM/SANEMacs. TEX T 

which have been replaced by newer versions distributed with the 
MaCintosh software supplement. Do not mix any of these older files 
with t.he newe.r ones described below. 

D.5.1 Assembly Language 
Include the files TLASM/SANEMacs, TLASM/ToolEqu, and TLASM/ToolMacs 
with your assembly-language source files. It is not necessary to link with 
any other Lisa files to get assembly-language flotrt.ing-point arithmetic. In 
the file TLASM/SANEMacs, the first equate, FPByTrap, must be 1 to run on 
Macintosh or MacWorks, or 0 to run on the Lisa Operating System. 

D.5.2 P8SC8l Real Ar1thmetlc 
It. is not necessary to USE any Pascal files to compile Pascal real arithmetic. 
Link with the files: 

OBJ/RealPesUnit OBJ/FPUnit OBJ/FPSub OBJ/MacPasUb 

05.3 FPLib and MathLib 
Regular versions of the units FPLib and MathLib, called FPUnit and 
MathUnit, ere available in the files OBJ/FPUnit and OBJ/MathUnit. Change 
'Your USES statement accordingly: 

lEES {SU mJlFPUn1 t} FPUni t, 
{$U c:B.lh1attftai t} HatttJrrl t ; 

Do not include {$U INTRFC/SANE} SANE or {$U INTRFC/Elems} Elems in 
your USES statement. 

0-79 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference f.,1a.nlJaJ Floating-Point Arithmetic 

Link with the files: 

OBJ/MathUnit OBJ/FPUnit OBJ/RealPasUnit 
OBJ/FPSub OBJ/MacPasLib 

Only the procedures you actually need will be linked into your object file. 
Do not link with: 

OBJ/SANE OBJ/SANEAsm OBJ/Elems OBJ/ElemsAsm 

D..5.4 Restrictions 
Assembly-language programmers should clear the floating-point environment 
with FSetEnv prior to any floating-point. operations. Pascal programmers 
should call 

Procedure InitFPlib ; 

which is declared in the FPUnit interface, prior to any floating-point 
operations. 

tvtathLib depends on certain lOSPasLib procedures that are not implemented 
in OBJ/MacPasLib. Consequently, certain MathUnit procedures do not work 
reliably. Affected procedures include financial rate of return, matrix, and 
sorting. 

0-80 

.... ~ --



Appendix E 
QuickDraw 

E.1 ,A,bout lllis ~x ........................................................................ E-1 

E.2 ,A,bout QJickDraw ....................................•..•...................•...............• E - 2 

E.2.1 How To Use QuickDraw ........................................................... E-3 
E.2.2 QuickDraw Data Types ........................................................... E-4 

E3 1he tvlathematlcal F OlJ'ldatlm of QuickDraw .......... ...... ................ ........ E-4 

E.3.1 The Coordinate Plane ............................................................. E-4 
E.3.2 Points.. ..... ..... . .... .. .. .. .. ...... . .. ... . . .. . . .. . . . . . .. . . .... . . .. ...... . . ... . ... ... .. E-5 
E.3.3 Rectangles ........................................................................... E-6 
E.3.4 Regions ................................................................................ E-7 

E.4 Graphic Enti ties .................................••.•.•........•...•.•.•........•............. E-9 

E.4.1 The Bit Image ........................................................................ E-9 
E.4.2 The Bitmap .......................................................................... E-11 
E.4.3 Patterns .............................................................................. E -13 
E.4.4 Cursors ............................................................................... E -13 

E5 1he Drawirg Envin:.llllIeI1t.: GrafPort .................................................. E -15 

E.5.1 Pen Characteristics ............................................................... E -18 
E.5.2 Text Characteristics ............................................................. E-20 

E.6 0:J0rdinates in Graff'orb ................................................................. E -22 

E.7 I3eneral Disetmim of Drawing .•.......••....••.......•.•.•.....•.•...•.•....•..•....... E-24 

E.7.1 Transfer Modes ..................................................................... E-26 
E.7.2 Drawing in Color ................................................................... E -28 

E.8 Pictures and Polygons ...................... 0 •• 00.000.0 ..................................... E-28 

E.8.1 Pictures .............................................................................. E-29 
E.8.2 Polygons .............................................................................. E - 30 

E. 9 Q.dckDraw Routines .......... 00.0.0 ........ 0 •••••••••••• 0 ................................. E - 31 

E.9.1 GrafPort Routines ................................................................. E - 32 
E.9.2 Cursor-Handling Routines ...................................................... E - 36 
E.9.3 Pen and Line-Draw1ng Routines .............................................. E - 3 7 
E. 9.4 Text-Drawing Routines ......................................................... E -40 
E.9.5 Drawing in Color ................................................................... E -43 



Pascal Reference Haf7t./8l 

E.9.6 Calculations with Rectangles ................................................. E-ll3 
E.9.7 Graphic ~erations on Rectangles ............................................ E-46 
E.9.8 Graphic qJeratlons on (}Jals .................................................... E -47 
E.9.9 Graphic ~erations on Rounded-Corner Rectangles .................... E-47 
E.9.10 Graphic qJerations on Arcs and Wedges .................................... E-ll9 
E.9.11 Calculations wi th Regions ...................................................... E -5 1 
E.9.I2 Graphic qJerations on Regions ................................................ E-SS 
E.9.13 Bt t Transfer q>erations .......................................................... E-56 
E.9.Ill Pictures .............................................................................. E-SB 
E.9.1S Calculations with Polygons ..................................................... E -59 
E.9.16 Graphic qJerations on Polygons ............................................... E-61 
E.9.17 Calculations with Points ........................................................ E -62 
E.9.I8 Miscellaneous Utilities .......................................................... E-6ll 

E.lD OJs11Jnizlng QJ1c::kDraw (lJeratlons ..............................•.........•...•...... E-67 

E.ll Using QuickOraw from Asterml y L8r9J89B ................................... oo .... E -71 

E.ll.l Constants ............................................................................ E-7l 
E.I1.2 OataTypes .......................................................................... E-71 
E.l1.3 Global Variables ................................................................... E-73 
E.l1.ll ProcedUres and Functions ....................................................... E -73 

E.12 Graf3O: Three-Dlmemlcnal Gr~lcs ................................................ E-7S 

E.12.1 How Graf30 is Related to QuickOraw ....................................... E-75 
E.l2.2 Features of Graf30 ............................................................... E -75 
E.12.3 Graf30 Data Types ................................................................ E -76 
E.12.4 Graf30 Procedures and Functions ............................................ E-77 

E.13 QJj.ckOraw Interface ...•.............................................................••.... E -80 

E.13.1 Graf3D Interface .................................................................. E -89 

E.14 Q,dckOraw ScI"rlJle PIograrns ................. ow. ow ....................... oo.oooo ........ E -91 

E.14.l QOSarnple ........................................................................... E -91 
E.lll.2 Boxes ................................................................................ E-lOl 

E.1S ~ ••••..••••..••.•..••••••••••..•...•................•••••••••••••••••...•••••...•••• E-l(]f) 

E.16 Glossary ..........................................................................•........... E -108 

,~ 
.. ,./ 



( 

Pascal !i'eference ..,\.0 Notes 

Appendix E 
QuickDraw 

linking QuickDraw PrO!J"8ITIS (See Section E.2.1) 

~ick.Draw 

The list of files you link a QuickDraw program to has changed; you should 
link to IOSPasLib, QDISupport, and Sysllib. 

Drawing Text (See Section E.9A) 
If you are drawing text using QuickDraw, the Worl(shop files Fort.lib and 
Font.Heur must be on your prefix volume. If your prefix volume is not set 
to the volume your Pascal Workshop is on, copy these two files to your 
prefix volume before calling any text-drawing routines. 

Minor changes have also occurred in the interface to QuickDraw. 

/Votes E-l 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

QuickDraw 

E.1 ~ ltds AppEnllx 
This appendix describes QuickDraw, a set Of graptllcs procedUres, functions, 
ano oata types tnat allows a Pascal or assembly-language programmer of LIsa 
to perform highly complex graphiC operations very easlly and very quickly. It 
covers the graphic concepts behind QuickDraw, as well as tne technical 
details of the data types, procedures, and functions you w111 use in your 
programs. 
We assume that you are fammar with the Usa Workshop Manager, LIsa Pascal, 
ana tne LIsa q>eratlng System's memory management This graptllcs package 
Is for programmers, not end users. AlthoUgh QuickDraw may be used from 
either Pascal or asserTlOly language, all examples are given In thetr Pascal 
form, to be clear, concise, and more intuitive; Section E.ll describes the 
Cletalls Of the aSsembly-language Interface to QulckDraw. 
The appenolx begins with an intrOdUCtion to QulCkDraw and what you can do 
with it (Section E.2~ It then steps back a l1ttle and lOOkS at the mathemat
Ical concepts that form the foundation for QulckDraw: coordinate planes, 
points, and rectangles (Section E.3~ O1ce you understand these concepts, read 
on to section E.4, which cJescribes the graphic entities based on them--how 
the matnematlca! worlO of planes ana rectangles Is translateO Into ttle 
physiCal phenomena of llght and ShadOw. 
Then comes some discussion of how to use several graphiCS ports (section E.6), 
a summary of tne baste arawing process (sectIon E.7), ana a alscusslon of two 
more parts of QuickDraw, pictures and polygons (Section E.8~ 
Next, In Section E.9, there's a detailed description of all QulckDraw proce
elures and functions, tneir parameters, Call1ng protocol, effects, sIde effects, 
and so on--a11 the technical information YOU'll need each time you write a 
program for the Usa. 
Following these oescrlptions are sections that will not be of interest to all 
readers. Speclal lnformatlon Is given In Section E.lO for programmers WhO 
want to customize QuickOraw operations by overriaing the standard orawing 
procedures, in Section E.ll for tnose who will be using QuiCkOraw from 
assembly language, and in Section E.12 for those interested in creating 
three-dimensional graphIcs using the Graf30 un1t 
Finally, there are llstlngs of the QulckDraw interface (sectlon E.13), two 
sample programs (Section E.14), and the ~ unit (E.15); and a glossary 
that explains terms that may be unfamlUar to you (sectlon E.16~ 

E-l 



---

• 

• 

I 
I 
I 
I 

--• 
ii 
-

Pascal Reference /I18f7(Jal qulckDraw 

E2 Abrut QulckDraw 
QulckDraw allows you to organize the Usa screen 1nto a number of indiv1dUai 
areas. WithIn each area you can araw many thlngs~ as lllustratea tn FIgure 
E-1. 

Text Lines Rec1an~les Ovals 
'-

Bold DO (~O Its/it'! 
Underline 
OJnnDDIibi • eEJ ... 

RoundRects Wedges Polygons Regions 

CJO ClCl c?tP 
.a we ~ ~'~ 

~,~ ,~ 
, , , , , , 

Fl~ E-l 
SCITllles of Q.J1ckDraw's Abl11tles 

You can draw: 
• Text characters In a number of proportIonally-spacea fonts, wIth varIations 

that include boldfacin~ italicizing, Underllnln~ and outlining. 
• Straight lines Of any length and width. 
• A variety of Shapes" either solid or hollow, InClUding: reCtangles, with or 

without rounded corners; full circles and ovals or wedge-Shaped sections; 
and polygons. 

• My other arbItrary Shape or cOllect1on Of Shapes, agaIn eIther sol1d or 
hollow. 

• A pIcture consIsting Of any combInation Of the aoove items, with just a 
single procedure call. 

In addition, QulckOraw has some other abllities that you won't find in many 
other graphiCS packages. These abll1tles take care of most of the "hause-

E-2 



Pascal Reference /'1antJal QulckDIBW 

keeplng"--the trivial bUt tlme-consumlng and bothersome overhead that·s 
necessary to keep thIngs In order. 

I The ablllty to define mcny distinct WIts on the screen, each wIth Its own 
complete drawing envlronment--lts own coordinate system, drawing 
location, character set, location on the screen, and so on. You can easlly 
swItch from one such port to another. 

• Full and complete ClWlng to arbItrary areas, so that drawing w111 occur 
only where you want It's Uke a super-dUper coloring book that won't let 
you color outsIde the 11nes. You don't have to worry about accIdentally 
drawing over something else on the screen, or drawing off the screen and 
destroying memory. 

• Off-screen drawIng. AnythIng you can draw on the screen, you can draw 
Into an Off-screen OUffer, so you can prepare an image for an output 
device wIthout disturbing the screen, or you can prepare a pIcture and 
move it onto the screen very quickly. 

,And QulckDraw llves up to Its name! It's very fast. The speed and 
responsiveness of the Usa user Interface aTe due prlmarlly to the speed Of the 
QJlckDraw package. You can do good-quality animation, fast interactive 
graphIcs, and complex yet speedy text displays using the full features of 
QJickDraw. This means you don't have to bypass the general-purpose 
QulckDraw routines by wrIting a lot of special routines to improve speed. 

E.2.1 How To use QuickDraW 
QuickDraw can be used from eIther Pascal or 1'1C68000 machine language. It 
has no user interface of I ts own. 
If you're using Pascal, you must write a Pascal program that inclUdes the 
proper QulckDraw calls, complle It against the f1les QDlQUlcI<DraW.(BJ and 
QD~rt.(BJ, link It wIth the files Usted In QDlQOStuff.TEXT, and 
execute the linked object file. 
If you're using machine language, your program should inclUde the proper 
QtdCkDraw callS, and .IN::LUJE the file QDIGRAFTYPE8. TEXT. Assemble the 
program, link it with the fUes listed in QO/QDStuff.TEXT, and execute the 
linked object file. 
A programming model, ~le, Is InCluded wIth the WOrksnop software In 
the file QD/~le.TEXT (Hsted In Section E.14.1); It shows the structure of 
a properly organIzed QulckDraw program. What's best for begInners Is to read 
through the text, and, using the superstructure of the program as a "shell", 
modI fy it to suI t your own purposes. Chce you get the hang of wrl tlng 
programs insIde the presupplled shell, you can work on Changing the shell 
Itself. 
NOte that all mes related to QuickDraw are prefixed lJy "WI'. 

QuickDraw includes only the graphiCS and ut1l1ty procedUres and functions 
you'll need to create graphics on the screen. Procedures for deallng wIth the 

E-3 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal RefeJ'8f1Ce I'18rN.IaJ QuICkDraw 

mouse, cursors, keybOard, and screen settings, as well as those allowIng you to 
generate sounds and read and set clOCks and dates, are described In .AWendix 
F" HardWare Interface. 

E.2.2 QJlcI<DIcN Data Types 
QuickOraw defines three general data types, Q(:Byte, Q[PtI, and Q[)-tcrldle: 

type ~yte = -128 •• 127 
fDJtr • "~yte 
(lRn:lle = "Wltr 

Other data types are described throughout this appendix In the sections In 
whIch they're relevant For a summary of all QulckOraw data types, see 
Section E.13.2. 

E.3 The Mathematical FOU'l(jation of QulCl<.Oraw 
TO create graphics that are both precise and pretty requIres not super-charged 
features but a firm mathematical foundation for the features you have. If the 
mathematIcs that underlle a graphIcs package are ImprecIse or fUZZY" the 
graphics wlll be, too. QulckOraw defines some clear mathematical constructs 
that are wl081y used In Its procedUres, functions, and data types: the coordI
nate plane, the paln(, the rect8l7!11e, and the regIon 

E.3.1 The Coordinate PIClle 
All Information about location, placement, or movement that you give to 
QulcKDraw Is In terms of coordinates on a plane. The coordinate plane Is a 
tWO-dimensional grid, as lllustrated In Figure E-2. 

-32768 
t 

- 32768 t- l-+-4-++o++~t++++"M-t-t-I-t 32767 

+ 
32767 

Fl~ E-2 
The COordinate Plane 

E-4 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

( 

I 
I , 
I 
I 
I 
I 
I 

• 
I 

Pascal Reference Hantlal QufckDmw 

Tl1ere are two dIstinctIve features of the QuickDraw coordInate plane: 
• All grid coordinates are Integers. 
• All grid llnes are infinitely thin. 

These concepts are Important! First, they mean that the QulC1<Draw plane Is 
finIte, not InfInite (alUlOUgh It's very large~ Horizontal coordInates range 
from -32768 to +32767, End verUcal coordinates have the SOOle rCJ'lge. . 
8eCOn(j, they meCW'l Ulat all elements represented on the coordinate plane are 
mathematically pure. Mathematical calculations using integer arithmetic will 
prodUCe intuitively correct results. If you keep In mind that grid l1nes are 
Infinitely thin, yOU'll never have "endpOint paranola"--the confusIon that 
results from not knowing Whether that last dot Is InclUded In the line. 

E.32 PoInts 
01 the coordinate plane are 4.294.,967296 unIque points. Each point is at the 
intersection of a horizontal grid Une and a vertical grid llne. As the grid llnes 
are infinitely thin, a point is infinitely small. Of course there are more points 
on this grid than there are dots on the Usa screen: when using QulcKDraw you 
associate small parts of the grid with areas on the screen, so that you aren't 
bol.nl Into an arbitrary, limited coordinate system. 
The coordinate origin (0,0) is in the middle Of the grid. Horizontal coordinates 
increase as you move from left to rigtlt, and vertical coordInates increase as 
you move from top to bOttom. This is the way both a TV screen and a page 
of English text are scanned: from the top left to the bottom right. 
You can store the coordinates of a point in a Pascal variable Whose type is 
defined by QulckDraw. The type Point Is a record of two integers, and has 
the following structure: 

type VHSelect .. (V, H); 
POint = record case integer Of 

0: (v: Integer; 
h: integer); 

1: (vtl: array [VHSeleot] of integer) 

eM; 

The variant part allows you to access the vertical and horizontal components 
of a point either indivlOJally or as an array. For example, if the variable 
gcxxPt were declared to be of type PoInt, the following would all refer to the 
coordinate parts of the point: 

gooc:Pt • v gocxPt.h 
goodPt.Vh(V) goodPt.Vh(H) 

E-S 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual QufckDraw 

E.3.3 Rect.crYJles 
My two points can define the top left and bottom right corners of a 
rectangle. As these points are Infinitely small .. the borders of the rectangle 
are infinitely thin (see Figure E-3~ 

Left 

TOpHH~++HH~++~HH 

Righi 

Figure E-3 
A Recta'YJle 

Rectangles are used to define active areas on the screen, to assIgn coordinate 
systems to graphIc entities .. and to specify the locations and sIzes for various 
drawIng commands. QulcKDraw also allows you to perform many 
mathematical calculations on rectangles--Changlng their sizes, Shifting them 
arouna, and so on. 

Remember that rectangles, like points, are mathematical concepts that 
have no 01rect representat10n on the screen. The association between 
these conceptual elements and their physical representations Is m80e by 
a bitmap, descrIbed below. 

E-6 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference fv1aIV81 c;t;fckDraw 

TIle Clata type for rectangles Is Reet, and consIsts Of four Integers or two 
points: 

type Rect = record case integer Of 

0: (t~: integer; 
left: integer; 
bottom: integer; 
ri~t: integer); 

1: (tqLeft: Point; 
botRi~t: Point) 

encJ; 

Agaln, the recorCl variant allows you to access a varlable of type Reet eIther 
as four boundary coordinates or as two diagonally opposing corner points. 
COmbined with the record variant for points, all of the fallowing references to 
the rectangle named lJRect are legal: 

~t {type Rect} 

DReCt . Ull-eft DReCt . txJtR1glt {type Point} 

tfreCt.~ ~t.left {type integerl 
bRect.topLeft.v bRect. topLeft.h {type integer 
~t.topLeft.vh[V] DRect.topLeft.Vh[H] {type integer} 

~.lJottom tfleCt . riglt ttype integer} 
bRect.botRight.v bRect .lJotR1ght . h type 1nteger} 
bRect.botRight.Vh[V] DRect .botRight. Vh[H] {type integer} 

WAANING 

If the bottom coordinate of a rectangle is equal to or less than the top, 
or the rIght coordInate is equal to or less than the left, the rectangle 
is an enpty rectangle (I.e., one that contains no blts~ 

E.3.4 Regions 
Unlike most graphiCS packages that can manipUlate only sImple geometric 
structures (usually rectilinear, at that), QuickDraw can gather an arbitrary set 
of spatially coherent points into a structure called a reglon, and perform 
complex yet rapid manipulations and calculations on such structures. This 
remarkable feature not only will make your standard programs sImpler and 
faster, bUt wUl let you perform operations that would otherwise be nearly 
Impossible; It Is fundamental to the Usa user Interface. 

E-7 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual t;;Ju/ckoraw 

YOU aeflne a regIon oy orawlng I1nes, snapes sucn as rectangles anO ovals; or 
even other regions. The outUne of a region snould oe one or more closed 
loops. A region can oe concave or convex., can consist of one area or many 
disjoint areas, and can even have "holes" in the middle. In Figure E-4 .. the 
region on the left has a hOle In the middle, and the region on the right 
consists of two disjoint areas. 

Fl~ E-4 
Regions 

Because a reglon can oe any artll trary area or set of areas on the coordinate 
plane, It takes a variable amount Of Information to store the outline of a 
region. The data structure for a regIon .. therefore, is a variable-length entity 
wlm two flxeo fieldS at the oeglmlng., followeO oy a varl801e-lengtn oata 
field: 

type Regioo = IeCOld 
1lJlS1ze: 1nteger; 
IVfDJx: Rect; 
{optional reg100 def1n1t1on data} 

end; 

The r(JlSlze fIeld contaIns the size .. In bytes, of the region varlaOle. 1l1e 
f9830x field is a rectangle which completely encloses the region. 
The simplest region Is a rectangle. In this case, the IglBBox fIeld def1nes the 
entire region, and there is no optional region data F or rectangular regions (or 
eflllty regIons), the IlJlSlze fIeld contains 10 (two bytes for IlJlSlze, plus 
etlJlt for I~ tBBox). 
The region definition data for nonrectangular regions is stored in a compact 
way which allows for hi(1lly efficient access by QulckDraw procedures. 

E-8 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Refel8l7C8 Manual Qulcl<Draw 

As regIons are Of varIable sIze, tney are storea dynamIcally on tne heap, and 
tne q>eratlng System's memory management moves them around as their sizes 
change. BeIng dynamIc, a regIon can oe accessed only through a pointer; but 
wnen a reglon Is moved, all pointers referring to It must be updated. For tnls 
reason, all regIons are accessed through lJEn1Ie$ whICh point to one master 
pointer whiCh In tum points to tne region. 

type rq-tJtr = "Reglm; 
~le = "Rg1>tr; 

When tne memory management relocates a region's data In memory, It updates 
only the R(JAr master poInter to that regIon. The references through the 
master pointer CM flna the region's new hOme, out any references polnUng 
directly to the regIon's previous position In memory would now poInt at dead 
bits. To access indivlOUal fields of a region, use the region handle and double 
lncJ1rection: 

IftYR9'l A A .11JlSlze 
~"".IQiOktX 
myRglA" .11J1BlX. ~ 

myRg\A .11J&)Ox 

lstze Of region \!i/hose t&ldIe Is myR~ 
rectcl'lgle enclosing the are region} 
mlnlnun vertical coordlnate Of an points 
in tne reg1m} 
{semantically incorrect; will rot COO1)l1e If 
myR~ Is a I Qi ~ IaIldle} 

Regions are created by a QulckDraw function whICh allocates space for the 
region, creates a master pointer, and returns a region handle. When you're 
done wIth a regIon, you dispose of It with another QulckDraw routIne which 
frees up the space used by the region, O1ly these calls allocate or deallocate 
regions; dO not use tne Pascal proceaure new to create a new region! 
You specify the outUne of a region with procedUres that draw Unes and 
shapes, as described in SectIon E.9, C)UlckDraw Routines. M example is given 
In the discussion of CloseRgn In Section E.9.H, Calculations with RegIons. 
Many calculatlons can be performed on regions. A region can be "expanded" 
or "shrunk" and, given any two regions, QuICkDraw can find their union.. 
intersection, difference, and excluslve-CR; it can also determine Whether a 
given poInt or rectangle Intersects a gIven regIon .. and so on. There Is of 
course a set of graphiC operations on regions to draw them on the screen. 

E.4 ~c EntIties 
Coordinate planes, points, rectangles, and regions are all goOd matnematlcal 
mOdelS, out they aren't really graphiC elements--they dOn't have a direct 
physiCal appearance. some grapnlc entltles tnat do have a direct graphlc 
interpretation are the bIt I~ bltmc:p, pattem and cursor. This section 
describes the data structure of these graphiC entltles and hOw they relate to 
the mathematical constructs described above. 

E.4.1 TIle Bit Image 
A bit Image Is a collectlon Of bits in memory which have a recUlinear 
representatlon. Take a collection of words In memory and lay them end to 

E-9 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Refemnce fvfanUal c;,tJickOraw 

end so that Oit 15 Of the lowest-numbered word Is on the left and Oit 0 of 
the hIghest-numbered word Is on the far righL Then take thIs array of Olts 
ana dIvide It, on word boUndarIes, Into a number Of equal-sIze rows. Stack 
these rows vertically so that the first row is on the top and the last row Is on 
the OOttom. The result Is a matrix liKe the one ShOwn In Figure E-5--rows 
and columns of oIts" wIth each row contaInIng the same number of oytes. The 
runber Of bytes In each row Of the bl t 1mage Is callaa the row WRlt17 Of tnat 
image. 

Byte 

FI~ E-5 
A Bit Image 

Row width 
is 8 bytes 

Last 
Byte 

A bIt Image can be stored In any static or dynamic varIable, and can be of 
any length ttlat Is a multiple Of the row wldttl. 
The Usa screen Itself Is one large vIsible bIt Image. There are 32,760 oytes of 
memory that are displayed as a matrIx Of 262,080 pixelS on ttle screen .. each 
bit correSpondIng to one pixel. If a bIt's value Is 0, Its pIxel is White; If the 
bit's value Is 1" the p1xel Is blacK. 
The screen Is 364 pixels tall and 720 pIxels wide .. and the row width of Its bit 
Image is 90 bytes. Each pIxel on the screen Is one and a half times taller 
than it Is wide, meaning a rectangle 30 pIxels wide oy 20 tall looks square, 
and a 30 by 20 oval looks cIrcular. There are 90 pIxelS per inch horizontally, 
and 60 per Inch vertically. 

E-10 



Pascal Reference MantJaI QuickDraw 

Since eacn pixel on the screen represents one btt In a bit Image, 
Wherever this appendix says "blt .. ~ you can substitute "pixel" if the bit 
Image Is the LIsa screen. LIkewise, this appendix often refers to pixelS 
on the screen Where the discussion applles equally to bits in an 
off-screen bit Image. 

E.4.2 The Bl~ 
When you combIne the physIcal entlty Of a bit Image w1th the conceptual 
entltles of the coordinate plane and rectangle" you get a bitmap. A bitmap 
nas three parts: a pointer to a bIt Image, the row width (In bytes) of that 
image, and a boUndary rectangle wtllCh gives the bitmap both its dimensions 
and a coordinate system. Notlce that a bltmap does not actually inclUde the 
bits themselves: it points to them. 
There can be several bltmaps pointing to the same bit image, each imposIng a 
different coordInate system on it This important feature is explained more 
fully in Section E.6, COOrdinates in GratPorts. 
As shown In Figure E -6 ... the data structure of a bItmap Is as follows: 

type B1 tt1ap = record 
baseAa1r: t:XPtr; 
rotI8ytes : integer; 
bOln1s: Rect 

end; 

~-- Row wiclth --~ 

Fl~ E-6 
A 81trl~ 

E-ll 



---• 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual QulckDI8W 

Tne DaSeAcXJr fIeld Is a poInter to the begiming of the bl t Image In memory, 
and the rowBytes field is the number Of bytes in each row of the image. Both 
of these should always be even: a bitmap should always begIn on a word 
boUndary and contaIn are lntegral number of words In each row. 

The tx:ulds field Is a ooundary rectangle that both encloses the active area of 
the bIt Image and Imposes a coordinate system on it. The relationshIp 
between the OOUt1CJary rectangle and the 01t Image In a Oltmap Is SImple yet 
very Important. First, a few general rules: 

• Bits in a bit Image fall oetween points on the coordinate plane. 
• A rectangle dIvIdes a bit image into two sets of bits: those bits inside the 

rectangle and those outslcse the rectangle. 
• A rectangle tnat Is H points wlde ana v points tall encloses exactly 

(H-l) lit (V-i) bits. 

The top left comer of the boundary rectangle is aUgned around the first bit in 
the 01t Image. The wlCJth of the rectangle determ1nes how many Olts of one 
row are logIcally owned oy the bItmap; the relatlonship 

8 * map.rowBytes >~ map.bounds.right-map.bounds.left 
must always be true. The height of the rectangle determInes how many rows 
of the image are logically owned by the bItmap. To ensure that the number 
of Oits in the logIcal bitmap Is not larger than the number of bits In the bit 
image, the bIt image must be at least as big as 

(nq> . bounds .bot~ . bounds • top)~. rowBytes 

• Normally, the bOundary rectangle completely encloses the bit image: the width 
of the bOUndary rectangle Is equal to the number of bIts In one row Of the 
image, and the heIght of the rectangle Is equal to the number of rows in the 
image. If the rectangle Is smaller than the dimensions Of the image, the least 
signIficant bits In each row, as well as the last rows In the image .. are not 
affected by any operatlons on the bitmap. 
The bitmap also imposes a coordinate system on me image. Because bIts fall 
between coorcllnate pOints, the coordinate system assIgns Integer values to the 
lines that border and separate bits, not to the bIt positions themselves. For 
example" If a bitmap Is assigned the boundary rectangle wIth corners (10,,-8) 
and (34.,8), the bOttom rignt btt in the lmage w1l1 be between horizontal 
coordinates 33 and 34, and between vertical coordInates 7 and 8 (see FIgure 
E-n 

E-12 



-

I 
• .. 

• • 
I 

( 

( 

Pascal Reference ManlJal 

(10,-8) 

(10,8) 

E4.3 Patterns 

Fl~e E-7 
COOrdlnates and Bitmaps 

(34, -8) 

(34,8) 

~jckDraw 

A pattern Is a 61l-bit imagel organized as an 8-by-8-bit rectanglel which Is 
used to define a repeating desIgn (SUCh as stripes) or tone (SUCh as gray~ 
Patterns can be used to draw llnes and shapes or to f1l1 areas on the screen. 
When a pattern Is drawnl It Is aligned such that adjacent areas Of the same 
pattern in the same graphics port wlll blend with each other Into a contln
uous, coordinated pattern. QulckDraw provides the predefined patterns white, 
bleD<, gray, ItGraYI and t:J<Gray. My other 6lI.-blt variable or constant can be 
used as a pattern; too. The data type definItion for a pattern Is as follows: 

type Pattern = J)fd<ed array [0 .. 7] of 0 .. 255; 

The row wldth of a pattern Is 1 byte. 
E.4.4 CUrsors 

A cursor Is a small Image that appears on the screen and Is controlled by the 
mouse. (It appears only on the screen, and never in an off-screen bit image.) 
A cunor h defined as a 256-01t lmagel a 16-by-16-blt rectangle. The row 
width Of a cursor is 2 bytes. Figure E -8 111ustrates four cursors. 

E-13 

I 
i'. 

I 
I 



Pascal Refe.l'l1lVe fv1an.18l 

(I 

0-.' • 
8 , 8 

I 

c;tI1CkDraw 

I'W-H-H+H 8-_mm _-8 _m-9 

Figure E-8 
cursors 

A cursor has three fields: a 16-word data field that contains the image itself, 
a H,-word maSk field that contains Information aoout the screen appearance 
of eaCh oit of the cursor, and a I7otspot point that aligns the cursor with too 
position of the mouse. 

type cursor = record 
data: 
mast<: 
tlltspot: 

eno; 

array [0 .. 15] Of integer; 
array [0 .. 15] of integer; 
P01nt 

The data for the cursor must oegin on a word boundary. 
The cursor appears on the screen as a 16-by-16-bit rectangle. The appear
ance of each bit of the rectangle Is determined by the correspondIng bits in 
the data and masK and, If the masK blt ls 0, by the plxel "under" the cursor 
(the one already on the screen in the same position as this bit of the cursor~ 

Data MasK ReSUlting pixel on screen 
-0 - --1- Whlte 

1 1 Black 
o 0 Same as pixel unoer cursor 
1 0 Inverse Of pixel under cursor 

Notice that If all masK blts are 0, the cursor Is completSly transparent, In 
that the Image under the cursor can sUIl De viewed: pixels unoer the white 
part Of the cursor appear unchanged, whlle under the macK part Of the cursor, 
black pixels show through as white. 
The hOtspot allgns a point in the image (not a bit, a point!) with the mouse 
position. Imagine the rectangle with corners (0,0) and (16,16) framing the 
Image, as In each of the examples In FIgure E-8; the hOtspot Is defined In this 
coordinate system. A hotspot of (0,0) Is at the top left of the image. For the 
arrow in Figure E-8 to point to the mouse position, (0,0) would be its hotspot 
A hotspot of (8,8) 1s In the exact center of the Image; the center of the plus 

E-l11 



.. --..,., 

[ , 

Pascal Reference /'1af7UaJ QuickOraw 

E.5 

sign or oval In Figure E-8 would coincide with the mouse position If (8.8) were 
the hotspot for that cursor. SImilarly, the hotSpot for the poInting hand would 
be (16,9~ 
Whenever you move the mouse, the low-level Interrupt-driven mouse routines 
move the cursor's hotspot to be al1gned with the new mouse poSition. 
Qulct<Draw suppJles a predeflned arrow cursor, an arrow polntlng north
northwest 
Refer to Appendix F, Hartlware Interface, for more Information on the mouse 
and cursor control. 

llle D~ Envhor 1.1ef It: GIafPort 
A g.rafPoft is a complete drawing envIronment that defines how and where 
graphic operations w1ll have their effect. It contains all the information 
about one Instance Of graptllc output that Is Kept separate from all oUler 
instances. yOU can have many grafPorts open at once, and each one w1l1 have 
Its own coordinate system, drawing pattern, background pattern, pen size and 
location, character font and style, and bitmap In which drawing takes place. 
You can Instantly switch from one port to another. GrafPorts are the 
structures on WhiCh a program bUildS windowS, whiCh are fundamental to the 
Usa's "overlappIng wln<lOws" user Interface. 
A grafPort \s a dynamic data structure, defined as follows: 

type GrafPtr "'GrafPort; 
GrafPort:: record 

deVice: 
portBlts: 
portRect: 
vIsRg1: 
cl1~: 
OkPat: 
fillPat: 
Jtt.oc: 
fIlSlze: 
prtklde: 
JX'Pat: 
JX)Vls: 
txFmt: 
tXFace: 
txt1Ode: 
tXSIze: 
spExtra: 
fgColor: 
OkColor: 
colrBlt: 
patstretch : 
plc5ave: 

E-15 

integer; 
BItMap; 
Rect; 
Rg'1fcn11e; 
Rg'1fcn11e; 
Pattern; 
Pattern; 
PoInt; 
Point; 
integer: 
Pattern; 
Integer; 
integer; 
style; 
integer; 
Integer; 
longint; 
1 (DJlnt; 
lorgint; 
Integer; 
integer; 
1J)HEn11e; 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual QulckDraw 

l'glSave: QOHcn11e; 
polySave: ~le; 
grafPrOOs: ~sPtr 

end; 

All QulcKDraw operations refer to grafPorts via grafPtrs. You create a 
grafPort with the Pascal procedUre new and use the resulting pointer In calls 
to QulcKDraw. You could, of course, declare a static vartable of type 
GrafPort., and obtain a pointer to that static structure (with the • operator), 
but as most grafPorts will be used dynamically, their data structures SflOUld be 
dynamic also. 

You can access all fields and SUbflelds of a grafPort normally, but you 
shOuld not store new values directly Into them. QulcKDraw has 
procedUres for altering all fields of a grafPort, and using these 
procedures ensures that cnanglng a grafPort produces no unusual Side 
effects. 

me aevlce field Of a grafPort IS me numoer Of me logical outpUt device mat 
the grafPort w111 be using. QulcKDraw uses this information, since tnere are 
physical oifferences in the same logIcal font for oIfferent output devices. The 
default device number Is 0 .. for the Usa screen. 
The portBlu field Is the bitmap tnat points to tne bit image to be useo by the 
grafPort. All drawing that Is clone In thts grafPort wUl taKe place in thts bit 
image. The default bitmap uses the entire Usa screen as Its btt image, with 
l'O\tIBytes of 90 and a boUndary rectangle of (0,o,720,364~ TIle bitmap may be 
changed to Indicate a different structure In memory: all graptl1cs procedures 
wor1< In exactly the same way regardless of whether their effects are visible 
on the screen. A program Carl, for example, prepare an image to be printed 
on a printer withOUt ever displaying the Image on the screen, or develop a 
picture In an off-screen bitmap before transferring It to the screen. By 
altering the coordlnates Of the portBlts.bot.nlS rectangle, you can Change the 
coordinate system of the grafPort; with a QulcKDraw procetlUre call, you can 
set an arbltrary coordInate system for each grafPOrt, even If the different 
grarPort3 all U3e tne 3<111e Olt Image (e.g., tne fUll 3creen). 

me portRect field Is a rectcYlgle that defines a SUbset of the bItmap for use 
by the grafPort. Its coordinates are in the system defined by the 
portBltsJn.n:Js rectangle. AU draWIng oone oy the appllcaUon occurs InSIde 
this rectangle. The portRect usually defines the "wrltatlle" interior area Of a 
window, document, or other object on the screen. The default portRect 1s the 
enUre screen. 
The v1sR~ field indicates the region that Is actually visible on the screen. It 
Is reserved for use by future software, and should be treated as reaa-only. 

E-16 

,.~ 
r , 

I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I I 

I 
I 
I 
I 
I 
I 
I 
I 
I 

Pescel Reference M8I7(J8/ QulckDl'8w 

The default vlsRglls set to the portRecl 

The cllpRglls an arbItrary regIon that the appllcatlon can use to llmlt 
drawIng to any regIon wlU"lln the portRect If., for example, you want to draw 
a half circle on the screen, you can set the cllpRgl to half the square that 
would enclose U"le whole cirCle, and go ahead and draw U"le Whole circle. Olly 
the half within the cUpRgl wlll actually be drawn in the grafPorl The 
default cllpRgn is set arbltrarlly large, and you have full control over its 
setting. Notice that unI1ke the vlsRgl, the cllpRgl affects the image even if 
it is not dIsplayed on the screen. 
FIgure E-9 1llustrates a typical bItmap (as defIned by portBlts)~ portRect~ 
vlsR~ and cllpR~ 

Figure E-9 
GrafPort Reg100s 

The bkPat and f1llPat fields of a grafPort contain patterns used by certain 
QUICkDraw routines. Bl<Pat Is U1e "backgrouno" pattern U1at Is useo wtlen an 
area Is erased or when bits are scrolled out of it When asked to f111 an area 
wlU"l a specifIed pattern, QulckOraw stores the gIven pattern In tne ffilPat 
Helo and then calls a low-level orawlng routIne WhiCh gets the pattern from 
U"lat flelO. The various graphiC operatlons are olscusseo In oatalI later In the 
descriptions of lnaIvlctua1 QuICkOraw routines. 
Of the next ten fields, the first five determine Characteristics Of the grapttlcs 
pen, described in Section E.5.1, and the last five determIne characteristics of 
any text U"lat may be Orawn, describeO in Section E.5.2. 
The fgColor, l*COIOf, and COllBtt flelOs contaIn values related to drawing In 
color, a CapabUlty that w1ll be available in the future when Apple supports 

E-17 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference f\1lYJUa1 ~iCkDraw 

color outpUt devices for the Usa. FgColor Is the grafPort's foregrouno color 
and bkCOlor Is its background color. COlrBlt tells the color Imaging software 
which plane of the color picture to draw Into. For more information, see 
Section E.7.2, Drawing in COlor. 
The patstretdl field Is used during output to a printer to expand patterns if 
necessary. The application should not Change its value. 
The piOSaYe, IglSaVe, and polySave fields reflect the state of picture" region" 
and polygon defInition, respectively. To defIne a regIon, for example, you 
"open" it., call routines that draw It" and then "close" it. If no region is open" 
rglSaVe contains nll; otherwise, It contains a handle to informatlon related to 
the region definItion. The appllcatlon should not Oe concerned aoout exactly 
what Information the handle leadS to; you may, hOwevec save the current 
value of rgnS8ve, set the field to nil to disable the region defInItion, and later 
restore It to the saved value to resume the regIon definition. The plCS8Ve 
and polySave fields work simllarly for pictures and polygons. 
Finally, the grafPrOcS fleld may point to a special data structure that the 
appllcatlon stores into if it wants to customize QulcKDraw drawing procedures 
or use QuickDraw In other advanced" highly speciallzed ways. (For more 
information" see Section E.I0" Customizing QulcKDraw ~rations.) If 
grafProcs Is nU, QuickDraw responds in the standard ways described in this 
appendix. 

ES.! Pen CharacteI1sUcs 
Tne p1..oc" pnSlze" ~, Jl"f'at and Jl'lViS fIeldS Of a grafPort deal wi th the 
graphics pen. Each grafPort has one and only one graphics pen, which is used 
for drawing lInes, shapes, and text As lllustrated In Figure E-IO, the pen haS 
four characteristics: a locallOfl, a size" a drawIng mocIe" and a l1rawlng pattem 

E-18 

o 



I 
• • 
III = iii 

I , 
! 

I 
I 

PascaJ Rere.rence f-1CYK.I8J ~fCkDraw 

Fl{JJI8 E-lO 
A Gr~CS Pen 

The pen location (prt..oc) is a point in the coordInate system Of the grafPort, 
and is Where QUiCl<Draw wm begin drawIng the next llne, Shape, or character. 
It can be anywhere on the coordinate plane: there are no restrictions on the 
movement or placement of the pen. Rememt>er that the pen location is a 
point on the coordinate plane, not a pixel In a bit Imagel 
The pen Is rectangular In shape, and has a user-definable width and height 
(pnStze~ The default size is a I-by-l-bit rectangle; the width and helght can 
range from (o,o) to {32767 ;3276n If eIther the pen width or the pen heIght Is 
less than 1, the pen wlll not draw on the screen. 

• The pen appears as a rectangle with its top left corner at the pen 
location; It hangs below and to the right of the pen location. 

The pr1Vk)Cle ana prPat flelCfS of a grafPort Cfetermlne hOW the bits unaer the 
pen are affected when Jines or Shapes are drawn. The prPat Is a pattern that 
Is used as the "Ink" In the pen. This pattern, IlKe all other patterns drawn In 
the grafPort, is always aUgned with the port's coordinate system: the top left 
corner of the pattern Is allgned With the top left corner Of the portRect, so 
that adjacent areas of the same pattern wm blend into a continuous, 
coordInated pattern. Five patterns are predefined (White, blaCK, and three 
shades of gray); you oan also oreate your own pattern anCf use it as the pnPat. 
(A utlllty procedUre, called StuffHex" allows you to flll patterns easlly.) 

E-19 



I 
, 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual QuickDraw 

TIle JTt"klOe flelO determInes now tne pen pattern IS to affect wnat'S alreaoy 
on the bItmap when l1nes or st'lapes are drawn. When the pen draws, 
QuickDraw fIrst determInes wOOt bIts Of the bitmap wlll oe affected and flnos 
their correSponding bits In the pattern. It then does a blt-by-blt evaluation 
base<:1 on the pen mode, wnlCh speclfles one of elgnt boolean operatlons to 
perform. The resulting bIt Is placeo Into Its proper place in the bitmap. The 
pen mooes are descrIoeo In Section E.7.!.. Transfer MoOes. 
The pnvts field determines the pen's vlslblllty, that Is, whether It draws on the 
screen. For more information, see the descriptions of HldePen and ShowPen 
In Section E.9.3, Pen and Une-Drawing Routines. 

E.5.2 Text Olaracteristics 
The beFonl, txFace, txMOOe, txStze, and $Jfxtra fleWs of a grafPort determIne 
how text wlll be drawn--the font, style, and size Of characters and how they 
wlll be placed on the bItmap. 
QuickDraw can oraw characters as quickly and easily as It draws Unes anC2 
shapes, and In many prepared fonts. Figure E-ll shows two QulckDraw 
ctlaracters and some terms you snoulO become famUlar with. 

...,.---,---,...--- 6scent I inc 

ascent 

-r-+-:--=-"'-:-+t-~- base line 

descent 

~-----'--- descent line 

Fl~re E-ll 
QuicKDraw Olaracters 

QulckDraw can olsplay cnaracters In any size, as well as boldfaced, ItaIlclzed, 
outllneo, or shaooweo, all withOut ChangIng fonts. It can also unoerUne the 
ctlaracters .. or draw them closer together or farther apart. 
The txFont fIeld Is a font number that Identl fles the character font to be used 
in the grafPort. The font number 0 represents the system font ... and Is the 
oefault estabUsnea by (l)enPort. The unit ~rt (llsteo tn section E.lS) 
inclUdes definitions Of other avallable font numbers. 
A character font is defined as a collection of bit images: these images make 
up the individUal characters of the font. The cOOracters can be of unequal 
widths, and they're not restricted to their "cells": the lower curl of a 
lowercase ], for example, can stretch back under the previous character 
(typographers call this kemJng~ A font can consIst of up to 256 distinct 
cnaracters, yet not all characters need tie deflneO In a single font. Eacn font 

E-20 

o 



PBsCB/ Reference Manual QuickDraw 

contaIns a missing s..~l to be drawn In case Of a request to draw a 
character that Is misSing from the fooL 
The txFa::e field controls the appearance of the font wIth values from the set 
defined by the style data type: 

type stylelteRI = (bold" italic, lnErl1M, outline, snam., 
OO'llense, extern); 

Style set Of styleItem; 

You can apply these eIther alone or in Combination (see Figure E-12~ Most 
combinatlons usually loOk good only for large fonts. 

Normal Characters 
Bold Characters 
//':-7//{'! C/7':-7n7c/t:Y~·; 
Underlined Characters XYl 
tlIonllIrD~ 1C~11fI 
IlIuml.,LII1 Da!l1IftlI{t;n 
Condensed Characters 
Extended Characters 
Bold laic CIJanJcIers 
rwoo @JOOtqiJtll\JbxfuJtflbw() 

... and in other fonts, 100! 

Fl~Jle E-12 
Character Styles 

If you specify bOld, each character Is repeatedly drawn one Olt to the right an 
appropriate number of Urnes for extra thICkness. 
Italic adds an Hallc slant to the characters. Character bIts above the base 
line are skewed rIght; bIts below the base line are skewed lefL 
LnJerllne draws a Une belOW the base line Of the Characters. If part of a 
character descends below the base Une (as "y" In Figure E-12)~ the underllne Is 
not drawn through the pixel on either side of the descending part. 
You may specIfy either outline or ShallOW. ruulne makes a hOllOW, outUned 
Character rather than a solid one. With st1ackJW, not only Is the character 
hOllow and outlined, bUt the outline Is thickened below and to the right of the 
character to achieve the effect of a shadow. If you specify bold along with 
outline or stladI:JW, tne hOllow part of the character is wIdened. 

E-21 

---------------~~--------------



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Haf7(jal QuiCkDraw 

COIIdef.se anCl extend affect the hOrizontal Cllstance between all characters, 
IncluCling spaces. COIIdei ase Clecreases the distance between characters and 
extefXJ increases It, oy an amount whIch QuicKDraw determInes Is approprIate. 
me lXJ"kX1e flela controlS me way Characters are placea on a bIt Image. It 
functions much l1Ke a Jfi"'tK:Je: when a character is drawn, QuicK Draw 
determInes whIch bIts Of the Oit Image w1l1 be affected; does a 01t-by-bit 
comparison based on the mOde, and stores the reSUlting bits into the bit 
image. These modes are descrIbed in Section E.7.1; Transfer Modes. ()"lly 
three of them--srCOl .. srcXor, and srcBic--should be used for drawing text. 
The txSlze fielCl specifies the type size for the font, In poInts (where "poInt" 
here Is a typographical term meaning approximately ln2 Inch~ MY size may 
be specIfIed. If QulcKDraw does not have the font In a speclfled sIze, It will 
scale a size it does have as necessary to produce the size desIred. A value of 
o In this field directs QulcKDraw to choose the size from among those It has 
for the font; it wlll choose whichever size Is closest to the system font size. 
Finally, the spExtra field is useful when a line of characters Is to be drawn 
justified suCh that It Is allgned with both a left and a rIght margin (sometimes 
called "full just1flcatlon"~ SJfxtra Is tne number Of pixelS by whICh each 
space character should be widened to fill out the Une. 

E.G COOrolnates In GrafPorts 
Each grafPort has its own local coordInate system. All fIeldS in the grafPort 
are expressed in these coordinates, and all calculations and actions performed 
In QuicK Draw use the local coordinate system of the currently selected port 
Two things are important to remember: 

• Each grafPort maps a portion of the coordinate plane Into a slmllarly
sized porUon of a bIt Image. 

• The portBlts..bolnlS rectangle defines the local coordinates for a grafPort. 
The top left comer of portBlts.bolr'Kls is always al1gned around the first bit in 
the bIt Image; the coordInates Of that corner "anchor" a poInt on the grId to 
that bit in the bit image. This forms a common reference point for mUltiple 
grafPorts uslng the same bIt Image (SUCh as the screen~ Given a 
portBits.bolJ'l(ls rectangle for each port., you Know that their top left comers 
coincide. 
The interrelationship between tne portB1ts..boln:Js and portRect rectangles Is 
very important. As the portBlts.txu'm rectangle establishes a coordinate 
system for the port, the portRect rectangle indicates the section of the 
coordinate plane (and thUs the bit image) that w111 be used for drawlng. The 
portRect usually falls inside the portBits.l:xlt.rU rectangle, bUt it's not required 
to do so. 
When a new grafPort Is created, Its bitmap Is set to point to the entlre Usa 
screen, and bOth the portBits..txx.flds and the portRect rectangles are set to 

E-22 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Rere.rerKJe f\1aI7tJaJ ~lckOlaw 

720-by-3611,-blt rectangles, with the point (0,0) at the top left corner Of the 
screen. 

You can redefine the local coordinates of the top left corner of the grafPort's 
portRect, using the setorlgln procedUre. This changes the local coordinate 
system of the grafPort, recalculating the coordinates of all points in the 
grafPort to be relative to the new corner coordinates. For example, consider 
these procedure calls: 

setflOrt( (JCIEPOrt); 
setorigln(40,80); 

The call to Setport sets the current grafPort to ganePort; the call to 
Setorlgln Changes the local coordinates of the top left corner of that port's 
portRect to (40,80) (see Figure E-13~ 

0 95 300 ~,12 -55 40 245 457 

0-
t t t I I I I I 

-40 

120- 80 

pnLoc 

pertRed 

275- 235 
342- 302 

visRgn (9~" 120)(300,275) visRgn (40,50)(245,23~,) 
(:1 ipRgn (95,120)(3001275) cl ipFign (951120)(300,275) 

Before 3etOrigin After SetOrigin( 40,80) 

FI~ E-13 
OB1glng Local Coordinates 

This recalculates the coordinate components of the following elements: 

gaEPort" . portal ts .lXUlOs ganePort" . portRect 
ganePort~.vlsRgn 

These elements are always Kept "in sync", so that all calculations, compari
sons, or operat1ons that seem right ... work right. 

Notice that when the local coordinates of a grafPort are offset, the vlsR~ of 
that port Is offset also, but the cl1pRgl Is not. A good way to think of it Is 
that if a document is being shown inside a grafPort, the document "sUcks" to 
the coordinate system, and the port's structure "stiCkS" to the screen. 
Suppose, for example, that the vlsR~ and cllpR~ in Figure E-13 before 

E-23 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual Qu/CkDrBW 

SetOrlgln are me same as the portRect, ana a document Is oelng Shown. After 
the Setortgln call, the top left comer of me cllpR~ Is sUll (95..120), bUt thIs 
location nas moved dOwn and to the r1ght, em the location of the pen wIthIn 
the document has similarly moved. The locations of portBlt.s..bOt.r'KJs, portRect" 
and vtsRg-e dId not Change; their coordlnates were Offset AS always, the top 
left comer of portBlts..tx:llnJs remains aUgned arouncJ the first bit In the bit 
Image (the flrst pixel on the screen~ 

If you are moving, comparing, or othel\tllse dealing with mathematical Items In 
different grafPorts (for example, flndlng the Intersection of two regions in two 
different grafPorts), you must adjust to a common coordinate system before 
you perform the operation. A QulckDraw proceaure, LocalToGlobal" lets you 
convert a point's local coordinates to a gJatJaJ system where the top left 
corner of the bit image Is (0))); by converting the various local coordinates to 
global coordinates, you can compare and mix them with confidence. For more 
information, see the descrIption of thIs proceaure In Section E.9.i7, 
calculations with Points. 

E.7 General Dlscussl00 of Drawlrg 
Drawing occurs: 

• Always Inside a grafPort, In the bit Image and coordinate system defined 
by the grafPort's bitmap. 

• Always wltt'lln tt'le 1ntersect1on of the grafPort's portBlts.tnn2S anc.1 
portRect, and cl1ppec1 to Its vlsRgl and cllpRgl. 

• Always at the grafPort's pen location. 
• Usually with the grafPort's pen stze~ pattern ... and made. 

With QulckDraw procedUres, you can draw lines, ShapeS, and text. ShapeS 
Include rectangles" ovals, rounded-corner rectangles, wedge-Shaped secUons of 
ovals, regions, and polygons. 
Lines are defined by two points: the current pen location and a destination 
location. When drawIng a Une, QulCkDraw moves the top left corner Of the 
pen along the mathematical trajectory from the current location to the 
destinatlon. The pen hangs below and to the right of the trajectory (see 
FIgure E -14~ 

E-24 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
, 

I 
I 
I 
I 
I 
I 

Pascal Reference H8I1tI8l 

Flg..rre E-14 
Drawing Lines 

NJTE 

QulckDl8w 

No mathematical element (SUCh as the pen location) Is ever affected by 
cUpping; cllpplng only determInes what appears where In the bit Image. 
If you draw a llne to a location outside your grafPort, the pen location 
wlll move tnere, bUt only the port1on of the Une that Is Inside the port 
wllI actually be drawn. This Is true for all drawIng proceclUres. 

Rectangles. ovals. and rounded-comer rectangles are defined by two comer 
pOints. The shapes always appear Inside the mathematical rectangle defined 
by the two points. A region Is defined 1n a more complex marner, bUt also 
appears only within the rectangle enclosing It. Remember, these enclosing 
rectangles nave 1nflnltely m1n ooraers ana are not vlslOle on me screen. 
~ lllustrated In Figure E-15, Shapes may be drawn either saJ1d (fllled In with 
a pattern) or tnJmed (outIlned and hOllow~ 

E-Z5 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual 

pen height 
+ 

Fl~re E-15 
SOUd ShapeS cnl Frcrra:J ShapeS 

Qu/CkDi8W 

In me case Of framed ShapeS, the outlIne appears completely within the 
enClosing rectangle--wlth one exceptlon--ana the vertical and horizontal 
thicKness of the outline is aetermined by the pen sIze. The exception is 
polygons, as alscussed In section E.8.2, POlygons. 
The pen pattern is used to fill In the bits that are affected by the drawing 
operatlon. The pen mode defines hOw thOse bits are to be affected by 
directing QuickDraw to apply one of elght boolean operations to the bits in 
the shape and the corresponding pixels on the screen. 
Text drawIng does not use the J,XlSlze, Jl"P8t, or JX'MOde, but It does use the 
~oc. Each Character Is placed to tne rIght Of the current pen locatlon, w1th 
the left encI Of 1ts base line at the pen's location. The pen Is moVed to the 
right to the location Where it wlll draw the next character. No wrap or 
carrIage return Is performed automatically. 
The method Quicl<.Draw uses in placing text is controlled by a mode similar to 
the pen mode. This is explained in Section E.7.1, Transfer Modes. ClippIng of 
text Is performed In exactly Ule same manner as all other cUppIng In 
QuicKDraw. 

E.7.! Trcrnfer MXJeS 
wnen llnes or Shapes are drawn, the JX'MOde field Of tne grafPort detennlnes 
now the drawing Is to appear In the port's btt Image; slmllarly, the t.:xr""kXJe 
field determines how text Is to appear. There Is also a QulCI<.Draw procedUre 
that transfers a bit Image from one bitmap to another, and this proceaure has 
a mode parameter that aetermines the appearance of the result. In all these 
cases, the mode, called a transfer mo~ speCifies one of eight boolean 
operations: for each bit in the item to be drawn, QuicKDraw findS the 

E-26 



I 
I 

t 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

l 

I , 
J 

I 
I 
I 
i 
i 

I 
I 
I 

pascal Refemnce MlTIlIaI QulckDraw 

corresponding bit In the destination bit Image, performs the boolean operation 
on the paIr Of bits, and stores the resulting bit into the bIt Image. 
There are two types Of transfer mooe: 

• Patteln lJClflsfer trlCJ(!es, for drawing Ilnes or shapes wIth a pattern. 
• SOlJrce transfer n1Ode.~ for drawing text or transferrIng any bit Image 

between two bitmaps. 
For each type Of mode, mere are four basIc operatIons--~y, or, xor, and 
610. The COpy operation simply replaces the pIxelS In the destination with 
me pIxels In the pattern or source, "paInting" over me destInation wIttJout 
regard for what Is already there. The 01', Xor, and Blc operatlons leave me 
destInatIon pIxels under the whIte part of the pattern or source unchCflged, 
and differ in how they affect the pIxelS under the black part: or replaces 
thOse pixelS wIth blacK pixelS, thus "overlaying" the destination wIth the blacK 
part of the pattern or source; Xor inverts me pixelS under the blac\< part; and 
Blc erases them to Wh! teo 
Eacn Of tne baste operat1ons has a variant in wtdctl every pIxel In the pattern 
or source Is Inverted before the operation Is performed, gIvIng eIght 
operations in all. Each mode Is defined by name as a constant In QulCKDraw 
(see Figure E-16~ 

pattern or source destination 

"Peint" "Overlav" "Invert" "Erase" 

1111 
pat Copy patOr 
srcCopy 3rcOf' 

patXor 
3rcXor 

111111 

It 
patBic 
srcBic 

notf'atCopy not Fat Or notF'atXor notF'atBic 
notSrcCapy notSrcOr notSrcXor notSrcBic 

FI!JJT8 E-16 
TrCIlSfer MJdeS 

E-27 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Rerenmce f\1817t18/ 

Pattern 
transfer 
mode 

patCopy 
patOr 
patXor 
patBle 

notpatcopy 
notpator 
notPatXor 
notPatBle 

E.7.2 DrawlrlJ In COlor 

SOUrce 
transfer 
mo<le 

srCCOpy 
srd:h" 
srcXor 
sreBle 

nots~y 
notSrCOr 
notsreXor 
notsrcBle 

QljICKDraw 

Action on eaCh pIxel In destination: 
If blacK pixel In If whIte pixel In 
pattern or source pattern or source 
Force blacK 
Force blaCk 
Invert 
Force white 
Force whIte 
Leave alone 
Leave alone 
Leave alone 

Force wnlta 
Leave alone 
Leave alone 
Leave alone 
Force blacK 
Force blacK 
Invert 
Force whIte 

Currently you can only 1001< at QulckDraw output on a blacK-an<l-wnlte screen 
or prInter. Eventually, however, Apple wlll support color output devices. If 
you want to set up your appl1catlon now to produce color output In the fuUJre, 
you can ao so Dy using QuICk Draw procedures to set the foregrounCl color and 
the bacKgrounCl color. Eight standard COlors may be specifleCl with the 
following predefIned constants: black Color, whl teColor" redColor, greenColor, 
bltJeColoI, OyanCoIOI, magentacolor, and yellOWCOlor. InItIally, the foreground 
color is tllackCOlor and the bacKground color Is whlteColor. If you specIfy a 
color other than WhltecoloT, It wllI appear as black on a blaCK-and-white 
output devIce. 
To apply the table above (in Section E.7.1) to Clrawlng In color, make tne 
followIng tranSlation: where tne table ShOWS "Force blaCK", read "Force 
foreground color", and where it shows "Force white", read "Force background 
color". When you eventually receive the color output device, yOU'll find out 
the effect of Inverting a color on It. 

I'-IJTE 

QuickDraw can support output devIces that have up to 32 bIts of color 
information per pixel. A color picture may be thought of, then; as 
having up to 32 planes. At anyone t1me, QulckDraw draws Into only 
one of these planes. A QulCkDraw routine called by the COlor-imaging 
software specifies whICh plane. 

E.8 PIotures and Polygons 
QulckDraw lets you save a sequence of drawIng commands and "play them 
bacK" later with a single procedure call. There are two such mechanisms: one 
for draw1ng any plcUJre to scale In a destination reCtangle that you specIfy, 
and another for drawing polygons In all the ways you can draw other shapes in 
QulckDraw. 

E-28 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference HanuaJ QufCkDJ'8W 

E.B.l PlcWles 
A pfctlll7J in QuickDraw is a transcript of calls to routines which draw 
somethIng--anythIng--on a oltmap. PIctures make It easy for one program to 
Oraw something OeflneO in another program, with great flexiblllty ana wIthOUt 
knowing Ule 08talls about wnat's tieing Clrawn. 
For each picture you cteflne, you specify a rectangle that surrounds the 
picture; this rectangle is called the pJctlll7J frame When you later call the 
proceaure tnat araws tne savea picture, you Supply a aestlnatlon rectangle, 
ana QulckDraw scales tne p1cture so Ulat Its frame is completely aIlgned with 
the destination rectangle. Thus, the picture may be expanded or shrunk to f1 t 
its destination rectangle. For example, if the picture is a circle insIde a 
square picture frame, and the ctestinaUon rectangle is not square, the picture 
Is drawn as an oVal. 
SInce a pIcture may InclUde any sequence of drawing commanos, Its data 
structure 1s a varlable-lengUl entity. It consists of two fixed fields followed 
by a variable-length Oata field: 

type Picture = record 
p1CS1ze: 1nteger; 
plcframe: Root; 
{picture definition data} 

enl; 

The plcstze field contains tne size, in bytes, of the picture variable. The 
ptcFrame field is the picture frame which surrounds the plcturp. and gives a 
frame of reference for scallng when the picture Is drawn. The rest of the 
structure contains a compact representation of the drawing commands that 
define the picture. 
All pictures are accessed through handles, which point to one master pointer 
whlcn In tum points to the picture. 

type PlcPtr ; ~Plcture; 
PlcHandle = ~PICPtr; 

To cteflne a picture, you call a QuicKDraw function that returns a picture 
handle and then call the routines that draw the picture. There is a procedure 
to call when yoo've finished ctefining the picture, and another for wnen you're 
done with the picture altogether. 
QulckDraw also allows you to Intersperse plctlllB IXKllfl7el7ts w1Ul the 
oeflnltlon of a picture. These comments; Which do not affect the picture's 
appearance .. may be used to provIde addl tIona} Information about the plcture 
when it's played back. This is especially valuable when pictures are 
transmitted from one appl1catlon to another. There are two standard types of 

E-29 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Refemnce 1'-1a?tIa1 c;tI1CkDraw 

comment Which, l1ke parentheses, serve to group drawing commands together 
(SUCh as all the commands that draw a particular part of a picture): 

OOlst plClParen = 0; 
plcRParen = 1; 

The appUcaUon defining the picture can use these standard comments as well 
as comments of its own aeslgn. 
To Include a comment in the definition Of a picture, the appUcation calls a 
QulckDraw procedure that specifies the comment with three parameters: the 
comment kind, which identifies the type of comment; a handle to additional 
data If desired; and the size of the additional data, If any. When playing baCk 
a picture, QulckDraw passes any comments In the picture's definition to a 
low-level procedure accessed indirectly through the grafProcs field of the 
grafPort (see Section E.lO, CustomIzIng QuickOraw qJerations, for more 
Information~ To process comments, the appllcation must Include a procedure 
to do the processing and store a pointer to It In the data structure pointed to 
by thP. grafProcs field. 

The standard low-level procedure for processIng pIcture comments 
simply Ignores all comments. 

E.B.2 POlygons 
Polygons are similar to pictures In that you define them by a sequence of 
calls to QulckDraw routines. They are also simIlar to other Shapes that 
QulckDraw knows about, sInce there Is a set of procedures for performing 
graphic operatlons and calculations on them. 
A polygon Is simply any sequence of connected llnes (see Figure E-17). You 
aeflne a polygon oy moving to the starting point of the pOlygon ana drawing 
lines from there to the next point, from that point to the next, and so on. 

Fl!J.Ire E-17 
Polygons 

E-30 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

( 

Pescel Refenmce M817t181 QuICkDraw 

rne oata structure fOr a polygon IS a vanaOle-length ent1ty. It conslsts Of 
two fixed fields followed by a variable-length array: 

type PoIY\Pl = record 
poly8ize: integer; 
polyBBox: Rect; 
polyPolnts: array [0 .. 0] Of Point 

en:J; 

The polySlze field contaIns the sIze, In bytes, of the polygon vanable. The 
polyBBoX field Is a rectangle WhiCh just encloses the enUre polygon. The 
polyPolnts array expandS as necessary to contain the points of the polygon-
the starting point followed by each successive point to which a line Is drawn. 
Like pictures and regions, polygons are accessed through handles. 

type PolyPtr = "Pol~; 
PolyHEn11e = "PolyPtr; 

To deflne a polygon, you call a G)UlckDraw function that returns a polygon 
handle and then form the polygon by calling procedUres that draw lines. You 
call a procedure When you've finiShed deflning the pOlygon" and another when 
you're dOne with the polygon altogether. 
Just as for other Shapes that QulckDraw knows about, there is a set of 
graphIc operatIons on polygons to draw them on the screen. QulcKDraw draws 
a polygon by moving to the starting point and then drawing llnes to the 
remaining points In succession, Just as when the routInes were called to define 
the pOlygon. In this sense It "plays back" those routIne calls. fVJ a result" 
polygons are not treated exactly the same as other QulcKDraw ShapeS. For 
example, the procedUre that frames a polygon draws outside the actual 
oounoary of the pOlygon, because QU1cKDraw 11ne-draw1ng routines draw Delow 
and to the right of the pen location. The procedUres that fill a polygon with 
a pattern, hOwever, stay wlthln the bOUndary of the polygon; they alSO add an 
additIonal Une between the ending point and the starting point If thOSe points 
are not the same, to complete the snape. 
There is also a difference In the way QuICkDraw scales a polygon and a 
slmUarly-shaped reglon if It's being drawn as part of a picture: when 
stretched, a slanted line Is drawn more smOOthly if It's part of a polygon 
rather than a region. You may finO It helpful to keep In mlnC1 the conceptual 
dlfference between pOlygons and regions: a polygon Is treatea more as a 
conUnuous shape, a region more as a set of bits. 

E.9 QUlckDraw RruUnes 
Thh secUon describeS all the procedures and functions In QulckDraw, their 
parameters, and their operatlon. They are presented In their Pascal form; for 
lnformation on using them from assembly language, see SecUon E.ll, uslng 
QulckDraw from fVJsembly Language. Note that the actual proceaure and 
functlon declarations are given here. rather than the BNF notation or syntax 
diagrams used elsewhere In this manual. 

E-31 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference I'1aI7tIal QuiCkDnJW 

E.9.1 GrafPort RrutlneS 

ProceOJre In1 tGraf (glooalPtr: (JPtr); 

InitGraf Inlt1allzes QUIC1<Draw. It Is caHea oy the ~n unit's QDInlt 
routIne; you need not caB it again. It InltIal1zes the QUlcKDraw glooal 
variables l1sted below. 

Variable 
tt'lePOrt 
White 
bl~ 
gray 
ItGray 
d<Gray 
arrow 
screet'131 ts 
r~ 

~ 
GrafPtr 
Pattern 
Pattern 
Pattern 
Pattern 
Pattern 
DJrsor 
Bl~ 
longlnt 

Inlt1al setting 
nll 
all-white pattern 
all-OlaCk pattern 
50% gray pattern 
25% gray pattern 
75% gray pattern 
polnt1ng arrow cursor 
Usa screen, (0,0,720,364) 
1 

The glObalPU parameter tells QUlcKDraw where to store Its g1OO81 variables, 
beglmlng wlth thePOrt. From Pascal programs, this parameter should always 
oe set to WlePOrt; assemt:>ly-language programmers may choose any location, 
as long as it can accommodate the number of bytes specified by GRAFSlZE in 
GRAFTYPE8. TEXT (see section E.ll, using QuicKDraw from ASsemt>ly 
Language~ 

To Inlt1al1ze the cursor, call InltCursor (described In section E.9.2, 
Cursor-Handllng Routlnes~ 

PrOceWre ~rt (~: GrafPtr); 

(l)enPort allocates space for the gIven grafPort's vtSRgl and cll~gl, 
tnt tIallzes the fields of the grafPort as Indicated below, and makes the 
grafPort the current port (see SetPort, Oelow~ You must call q:>enPort oefore 
using any grafPort; first create a grafPtr wI th new, then use that gIafPtr in 
the ~nPort call. 

E-32 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual 

~ 
Integer 
Bl~ 
Rect 

InItIal setting 
o (Usa screen) 
screer61ts (see InltGraf) 
screerBlts.boll1ds (0,0,720,364) 

Qulcl<Draw 

FlelCl 
deVice 
JX)rtBlts 
portRect 
vlSRgl 
cl~ 

~le 
~le 

handle to the rectangular regIon (0,0,720,364) 
handle to the rectangular region 

bkPat 
f111Pat 
prLOO 
poStze 
prfilde 
JX1'8t 
pnVls 
txFoot 
txF~ 
txtDle 
tXSize 
SJfxtra 
f~>lor 
bkCOlor 
colrBlt 
patstretdl 
pIcsave 
r{JlS8Ve 
polySave 
grafPrOCS 

Pattern 
Pattern 
Point 
Point 
Integer 
Pattern 
Integer 
1nteger 
style 
1nteger 
integer 
laYJint 
laYJint 
looglnt 
integer 
1nteger 
~le 
tlRnlle 
~le 
(;,U>roCSPtr 

(-30000, -30000, 30000, 30000) 
White 
black 
(0,0) 
(Ll) 
patCopy 
black 
o (viSible) 
o (system font) 
normal 
srear 
o (QulckDraw decIdes) 
o 
blackCOlor 
WhlteColor 
o 
o 
nU 
nll 
nn 
nIl 

Prt:Jce(lJre 1n1 tJlort ({IJ: GrafPtr); 
Given a pointer to a grafPort tnat has been opened wltn (llenPort, InltPort 
relnit1aUzes the fields of the grafPort and maKes it the current port (if It's 
not already~ 

InltPort does everything CllenPort does except allocate space for the 
vlsR(JI and cIlpR(JI. 

Procedure ClosePort (~: GrafPtr); 

ClosePort deallocates the space occupied by the given grafPort's vlsR!Jl and 
cllpRgl. When you are completely through with a grafPort, call this 
procedUre. 

E33 

.. -----------~--~- ~ .... ---



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual 

If you do nol call ClosePort before disposing of the grafPort, the 
memory used by the v1sR~ and cnpR~ wlll be unrecoverable. 

QulckDraw 

After calling Closeport, oe sure not to use any caples of tne VlsR(JI or 
cllpR~ handles that you may have made. 

ProceWre SetPort (~: GrafPtr); 

SetPort sets tne grafPort IndIcated by (Il to be the current port. The glObal 
pointer UlePort always points to the current port. All QuickDraw drawing 
routlnes affect tne bItmap UlePOrt" .portBlts and use the local coordinate 
system of tnePort". Note that ~enPort and InltPort do a SetPort to the 
given port. 

Never do a SetPort to a port that has not been opened wi th ~nPort. 

Each port possesses I ts own pen ana text characteristics which remain 
unChanged When the port is not selected as the current port. 

PIUCeOJre GetPort (var ~: GrafPtr); 

GetPort returns a pointer to the current grafPort. If you have a program that 
draws into more than one grafPort, it's extremely useful to have each 
proceaure save me current grafPort (wlm Getport)., set Its own grafPOll ... 00 
drawing or calculations ... and then restore the previous grafPort (with SetPort~ 
The pointer to the current grafPort is also avallable through the global 
poInter thePort, but you may prefer to use Getporl for better readablllty of 
your program text. For example, a procedure could do a Getf>ort.{savePort) 
before setUng its own grafPort and a setf>ort.{savePort} afterwards to restore 
the previous port. 

ProceWre Grafoevlce (oovloe: integer); 
GrafOevlce sets U1ePort ~ .devtce to the given number ... WhiCh ldentlfles the 
logical output device for this grafPort. QulckDraw uses this information. The 
initial device number is 0, whIch represents the Usa screen. 

ProceWre se'tPOrtBits (tlm: BitMap); 

SetPortBlts sets thePort" .portBlts to any previously defined bitmap. This 
allows you to perform all normal drawing and calculations on a buffer other 
than the Usa screen--for example ... a 640-by-8 output buffer for a dot matrix 
printer, or a small off-screen image for later "stamping" onto the screen. 

E-34 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Mantlal Qu/CkDfBW 

Remember to prepare all fields of the bItmap before you call setportBlts. 

pl'1X'8lJre PortSlze (width, hel~t : integer); 

PortSlze changes the size of the current grafPort's ~rtRecl T/J/s dOes not 
affect tile screen.: it merely changes the size of the "active area" of the 
grafPort. 
The top left comer Of the ~rtRect remains at Its same location; the wiOth 
and height of the portRect are set to the given width and height. In other 
words, PortSlze moves the bottom rIght corner of the portRect to a position 
relatlve to the top left corner. 
PortSlze dOes not Change the Cn~gl or the vlsRgl, nor does I t affect the 
local coordinate system of tile grafPort: It Changes only the portRect's width 
ana height Remember that all drawing occurs only In the Intersectlon of the 
portBlts.bOln1s ana the portRect, cUpped to the vlsRgl and the cll~g1. 

Proceciae ttlVePortTo (leftGlooal, topGlooal: integer); 

MovePortTo Changes the posltlon of the current grafPort's portRect T/J/s roes 
not affect the screen; 1 t merely changes the location at Which subsequent 
drawlng inside the port w111 appear. 
The leftGlobal and tqJGlobaJ. parameters set the distance between the top left 
corner of the portBlts.bot.rlds and the top left corner of the new portRect 
For example, 

MoVePortTO(360,182); 

wtu move the top left corner of the portRect to the center Of me screen (If 
portBlts is the Usa screen) regarOless of the local coordinate system. 
LIke PortSlze, MovePortTO ooes not change the CI~gl or the vlsR(J1, nor 
Ooes It affect the local coordinate system of the grafPort 

Procewre setorigin (h, v: integer); 

Setorlgin Changes the local coorOlnate system of the current grafPort ll1/s 
tk1es not affect tIJe SL."reen:lt does, however, affect where subsequent drawing 
and calculation wUl appear in the grafPort. 5etOrlgln updates the coordinates 
of me portBlts.bot.rlds, the portRect, and the vlsR{Jl. All SUbsequent drawIng 
and calculation routines wlll use the new coordinate system. 
The h and v parameters set the coordinates of the top left corner of the 
portRecl All other coordinates are calculated from this point. All relative 
Olstances among a1y elements In the port will remain the same; only their 
absolute local coordinates wlll ChCJ'lge. 

E-35 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Refe.rence 1'1cnJ81 l;tIlckDraw 

SetOrlgln does not upaate tne coordinates of the cl1pRg'l or tne pen; 
these items sUcK to the coordinate system (unliKe the port's structure .. 
wnicn stickS to the screen~ 

Setortgln Is useful for adjusting the coordinate system after a scrolllng 
operation. (see ScrollRect in section E.9.13, Bit Transfer cperations.) 

ProcetiIre setClip (11Jl: RgtBldle); 

SetCltp changes the cUpping region Of the current grafPort to a region 
equivalent to tne given region. Note tnat thiS does not cnange tne region 
handle, but affects the Clipping region 1tself. Since SetCUp makes a copy Of 
the gIven regIon, any SUbsequent cnanges you maKe to tnat region wUl not 
affect the cUpping region of the port. 
YOU can set the cUpping region to any aroltrary regIon, to aid you In draWIng 
inside the grafPort. The Initial cl1pRgn is an aroltrarlly large rectangle. 

ProcetlJre Getcl1p (l1Jl: RgtBldle); 

GetCl1p cnanges the given regIon to a regIon equIvalent to tne cUpping region 
of the current grafPort. This Is the reverse of what setcUp does. Like 
SetCl1p, it dOes not Change the region handle. 

ProcetiIre Cl1pRect (r: Rect); 

CUpRect cnanges the cUpping region of the current grafPort to a rectangle 
equivalent to given rectangle. Note that tnls C10es not Change the region 
handle, bUt affects the region itself. 

ProcetlJre Bact<Pat (pat: Pattern); 
BackPat sets the background pattern of the current grafPort to the given 
pattern. The bacKground pattern Is used In ScrollRect and in all QuickDraw 
routines that perform an "erase" operation. 

E.9.2 cursor-f-Blnlng Rrut1nes 
Addl tlonal Informatlon on cursor nandllng can tie found In Appendix F, 
Hardware Interface. 
PI'OCeWre In1 trursor; 

InltCUrsor sets the current cursor to the predefined arIO'II cursor, an arrow 
pointing north-northwest, and sets the eunor level to 0, making the cursor 
visible. The cursor level.. WhIch Is Inlt1allzed to 0 wnen the system Is booted .. 
keeps track of too number of times the cursor has been hidden to compensate 
for nested calls to HldeCursor and ShowCursor (below~ 

E-36 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference 1'18nU8/ c;tIlckDraw 

Before you call InltCursor~ ttle cursor Is undeflnea (or~ if set by a previous 
process, it's whatever that process set it to~ 

PrOceOJre setcursor (crsr: cursor); 
SetCursor sets the current cursor to the 16-by-16-blt image in ersT. If the 
cursor IS hlOoen, It remains hlOden and wlll attain me new appearance when 
It's uncovered; If the cursor Is already visible, it changes to the new 
appearance Immeolately. 
The cursor image Is inltiallzed by InttCursor to a north-northwest arrow, 
visible on the screen. There Is no way to retrieve the current cursor Image. 

PrOceOJre HldeOJrsor; 

HideCursor removes the cursor from the screen, restoring the bits under It, 
and decrements the cursor level (WhiCh InltCursor Inltlallzed to o~ Every call 
to HideCursor should be balanced by a subsequent call to ShowCursor. 

PrOceOJre Sho.o.trsor; 

ShowCursor Increments the cursor level, Which may have been oecrementeo by 
HideCursor, and displays the cursor on the screen If the level becomes O. A 
call to ShowCursor should balance each previous call to HiOeCuTSor. The 
level Is not incremented beyond 0, so extra calls to ShowCursor dOn't hUrt. 
If the cursor has been Changed (with setcursor) while hidden, Show Cursor 
presents the new cursor. 
The cursor is Initlallzeo by InltCursor to a north-northwest arrow, not hidden. 

PrOceOJre OOscureOJrsor; 
ctlscureCursor hideS the cursor untll the next tlme the mouse Is moved. UnllKe 
HldeCursor, It has no effect on the cursor level and must not be balanced by 
a call to ShoWCUTSor. 

E.9.3 Pen ald Une-Draw1ng Rrutlnes 
The pen and Une-drawlng routines all depend on the coordinate system of the 
current grafPort. Remember that each grafPort has its own pen; if you draw 
In one grafPort, change to anomer, and return to the ftrst, the pen will have 
remained In the same location. 

PrOceOJre HldePen; 

HidePen decrements the current grafPort's ~Vls field, which Is Initialized to 
o by Q:>enPort; whenever pnVls Is negative, the pen dOes not draw on the 
screen. PnVls Keeps track of the number of Umes the pen has been hidden to 
compensate for nested calls to HldePen and ShOwPen (below~ HldePen Is 

E-·37 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Refenmce I'1antIal QuICl<Draw 

called by q>enRgn, q>enPlcture, and q>enPoly so that you can define regIons, 
pIctures, and polygons without drawing on the screen. 

ProceOJre sno.J>en; 

ShowPen Increments the current grafPort's pnVls fleld, Which may have been 
decremented by HldePen; if pnVls becomes 0, QuicKDraw resumes drawing on 
the screen. Extra calls to ShowPen w111 Increment pnVls beyOnd 0, SO every 
call to snowPen Should be balanced by a sUbsequent call to HldePen. 
SnowPen Is called by closeRgn, ClosePlcture, and ClosePoly. 

ProceOJre GetJ>en (var pt: Point); 
Getpen returns the current pen location, in the local coordinates of the 
current grafPorl 

Pl'OanJre GetPenState (var JIlState: PenState); 

Getpenstate saves the pen location, sl2e, pattern, and mode In a storage 
variable, to be restored later with setpen5tate (beIOW~ This Is useful When 
call1ng snort SUbroutInes that operate In the current port but must cnange the 
grap/1lcs pen: eacn suen procedure can save the pen's state When it's called, do 
whatever It needs to 00, ana restore the prevIous pen state ImmedIately 
before returning. 

The PenState data type Is not useful for anything except saving the pen's 
state. 

ProceOJre setPenState (pnState: PenState); 

SetpenState sets the pen location, size, pattern; and mode in the current 
grafPort to the values stored In ~te. Tnls is usually called at the ena of 
a procedure that has altered the pen parameters and wants to restore them to 
their state at the beginning of the procedure. (see GetPenState. above.) 

ProceOJre PenSize (.idth,hei~t: integer); 
PenSlze sets the dimensions of the graphIcs pen In the current grafPort. All 
sUbsequent calls to Une, UneTo, and the procedures that draw framed shapes 
in the current grafPort wlll use the new pen dimensions. 
The pen dImensIons can be accessed In the varIable thePort ~ UlSlze, wnich Is 
of type Point If either of the pen dimensions Is set to a negative value .. the 
pen assumes the dImensIons (0,0) and no drawing Is performed. For a 
discussion of how the pen draws; see Section E.7; General Discusslon of 
DrawIng. 

E-38 

" . 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual QulckDl8w 

ProceWre Pert10de (1OOde: integer); 

PenMOde sets the transfer mode through which the prf>at is transferred onto 
the bitmap when l1nes or ShapeS are drawn. The mode may be anyone of the 
pattern transfer mocJes: 

pa~y patXor rotPa~y rotPatXor 
pator patBIC rotPator rotPatBic 

If the moC1e Is one of the source transfer modes (or negative), no drawing Is 
performed. The current pen mode can be obtained In the variable 
ttlePOrt" ~ The Initial pen mode Is patCqly, In which the pen pattern 
Is copied directly to the bitmap. 

ProceWre Per1'at (pat: Pattern); 
PenPat sets the pattern that Is used by the pen In the current grafPort. The 
standard patterns WhIte, black, gray, ItGray, and (j(Gray are predefined; the 
Initial pen pattern Is black. The current pen pattern can be Obtained in the 
variable ttlePOrt" .prPat, and this value can be assigned (but not compared!) to 
any other variable of type Pattern. 

PenNormal resets the initial state of the pen In the current grafPort., as 
follows: 

Field 
iilSlze 
JXItbde 
JD'at 

Setting 
(1 .. 1) 
paIDl>y 
black 

The pen location is not changed. 

Procewre ttnleTo (n.. V: integer); 

MoveTo moves the pen to location (n,v) in the local coordinates Of the current 
grafPort. No drawing is performec1. 

ProceWre Hove (c:Il .. dV: integer); 
Move moves the pen a distance of c:Il horizontally and dV vertically from Its 
current location; It calls MlWT«h1-c:Il,V1-dV), where (h,v) is the current location. 
The positive directions are to the right and c1own. No drawing Is performed. 

E-39 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual 

ProCeWre LlneTo (h, V: Integer): 
UneTo draws a Une from the current pen location to the location specified (In 
local coordinates) by h and v. The new pen location is ~v) after the Une Is 
drawn. see section E.7, General Discussion Of Drawing. 
If a region or polygon Is open and being formed, its outline is InfInitely tnin 
and Is not affected by the JI)S1ze, prMxje, or prPat (See (l>enRgn and 
Cl>enPoly,) 

ProceO.ae Line (~dV: integer); 

Une draws a Une to the location that Is a distance of (fl horizontally and dV 
vertically from the current pen location; It calls UneTc:(h+<ft,v+dV), where (h,v) 
is the current location. The positlve directlons are to the right and dOwn. 
The pen location becomes the coorOlnates of the eno Of the Une after tne Hne 
is drawn. See secUon E. 7, General Discussion of Drawing. 
If a regIon or polygon is open and being formed, Its outline Is Infinitely tntn 
and Is not affecteO by the pnSlze, prMxje, or prPat (See (l>enRgn and 
(l>enPoly,) 

E.9.4 Text-DraWIng Rrutlnes 
Each grafPort has its own text characteristics, and all these procedures deal 
with tnose of the current port. 

ProCeWre Textfmt (fmt: integer): 
TextFont sets the current grafPort's font (thePort" .b<Font) to the given font 
number. The IntUal font number Is 0, WhiCh represents the system font. For 
other font numbers, refer to the ~rt unit, listed In Section E.1S. 

ProCeWre TextFooe (fooe: style); 
TextFace sets the current grafPort's cnaracter style (tJlePort" .bCFace~ The 
Style data type allows you to specify a set of one or more of the fOllowing 
precJeflned constants: bold, ltallo, lRlerl1ne, ruUlne, shaOOW, roldense, and 
exterd. For example: 

TextfClJe( [lXJld»; 
TextFace([bold,ital1c]); 
TextFaoe(tnePortA.tXfaoe+[bold); 
Textface(thePort". txf"ace-[bold)); 
Textf~([); 

E-40 

{OOld} 
{bold and italio} 
{lhateVer it was plus bold} 
{w.atever it .as bUt not bold} 
{oomal} 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

---- ------

Pascal Reference Manual QuiCkD.raw 

ProceUJre Texutx1e (nooe: integer); 

TextMo<le sets tne current grafPort's transfer moCle for drawing text 
(UlePOrt" .t.xt-'kx1e~ The mode Should be sroor, srcXor, or S'ld3ic. The Initial 
transfer mode for drawing text is sl'COr. 

ProoeWre TextSlze (s1ze: Integer); 
TextSize sets tne current grafPort's type size (thePort A .t)tSlze) to tne given 
number of paints. My size may be speCified, but tne result wUl look best If 
(JUiCkDraw nas the font in tnat size (otnerwlse It wlll scale a size it does 
have~ The next best result wlll occur if the given size Is an even mUltiple of 
a size avallable for the font. If 0 is specified, QulcKDraw wlll chOOse one of 
tne available slzes--whlchever is closest to the system font size. The inItial 
txSlze setting Is 0. 

ProceUJre ~xtra (extra: integer); 
SpaceExtra sets tne current grafPort's spExtra field, WhiCh specifies tne 
numtJer Of pixels by which to widen each space in a I1ne of text This is 
useful when text is being fully Justified (tnat is, allgned with batn a left and a 
rlght margln~ consider, for example, a Une tnat contains tnree spaces; If 
there would normally be sIx pIxels between tne end of the Une and the right 
margin, you would call SpooeE~2) to print tne Une wIth fUll justificatlon. 
The initial spExtra setting is O. 

SpaceExtra wUl also take a negative arqument, but be careful not to 
narrow spaces so much that tne text Is unreadable. 

ProceWre DraIDlar (en: Char); 

DrawChar places the given character to the right Of the pen locatlon, with 
the left end of its base line at the pen's location, and advances the pen 
accordingly. If the character is not In the font, the font's mIssing symbol is 
drawn. 

ProoeWre Drawstr1ng (s: str255); 

DrawString performs consecutive calls to DrawChar for each character In the 
supplied string; the string Is placed beginning at the current pen location and 
extending right. No formatting (carriage returns, line feeds, etc.) Is performed 
by QulckDraw. The pen location ends up to the rIght of the last character in 
the string. 

E-41 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Refemnce Manual QtliCkOraw 

~ DrawText (textflJf: QFtr; firstByte,byteGcUlt: integer); 

DrawText araws text from an arbitrary structure in memory specified by 
text.Buf, starting ftrstByte bytes Into the structure and continuing for 
byteQult bytes. The string of text Is placea beglmlng at the current pen 
location and extending right. No formatting (carriage returns, l1ne feeas, etc.) 
Is performecJ by QulcKDraw. me pen location enas up to the rtgnt of the last 
character in the string. 

FlrCtion DlarWldth (ch: char) : integer; 

CharWldth returns the value that w1ll be acJded to the pen horizontal 
coordinate If the specified Character is drawn. CharWldth inclUdes the effects 
of the stylistic variations set with TextFace; if you Change these after 
detennlnlng the character width but before actually drawing the Character, 
the predetermined width may not be correct. If the character Is a space, 
CharWldth also inclUdeS the effect of SpaceExtra. 

FlrCtion strl.rgWldth (s: str255) : 1nteger; 
Strlngwldth returns the width of the given text string. WhiCh It calculates by 
aadlng the widths of all the characters In tne string (see CharWldth, abOve~ 
This value wlll be added to the pen horIzontal coordinate If the specifled 
string is drawn. 

Ftrotion TextWidth (te~: QJPtr; firstByte,byteCou1t: integer) : 
1nteger; 

TextWidth returns the width of the text stored in the arbitrary structure In 
memory speCified by textBuf, starting ftrstByte bytes into the structure and 
continuing for byteColflt bytes. It calculates the width by adding the wIdths 
of all the characters in the text. (See Char Width, above.) 

~ GetfontInfo (var info: FontInfO); 

GetFontInfo returns the following information about the current grafPort's 
character font, taking Into consideration the style and sIze In which the 
characters will be drawn: the ascent, descent, maximum oharaoter width (the 
greatest distance the pen wlll move when a character is drawn), anct leading 
(the vertical distance between tne descent Une and the ascent Une below it), 
all in pixels. The FontInfo data structure is defined as: 

type FontInfo "" record 
ascent: 1nteger; 
descent: integer; 
wldMaX: Integer; 
leadirYJ: integer 

end; 

E-42 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Refemnce Manual QUfCkDraw 

E.9.5 Drawing In COlor 
These routines wUl enable applications to do color drawing in the future when 
Apple supports color output devIces for the Usa. All nonwhite colors wlll 
appear as black on black-and-white output devices. 

PrOceWre Forecolor (color: l(XYJint); 

ForeColor sets the foreground color for all drawing in the current grafPort 
(trePort ... fgColor) to the given color. The following standard colors are , 
predefined: blackCOlor, WhiteColoT, Te(JJoIOT" greencolOT" bllleColoT, Cya1COIOT, 
rnagentaCoIOT, and yellOWCOloT. The initial foreground color 1s blackCOlor. 

Procerure BackCOlor (COlor: l(XYJlnt); 

BacK Color sets the bacKgrouno COlOr for all orawtng tn tIle current grafPort 
(thePort" .bkCOlor) to the given colOr. Eight standard colors are predefined 
(see Forecolor, above~ The InlUal background color Is WhlteColor. 

Procewre COlorai t (lhlcrelt: integer); 

ColorBlt Is called by printing software for a color printer, or other color
imaging software, to set the current grafPort's colrSlt field to Whlcte1t; this 
tells QuickOraw whIch plane Of the color pIcture to draw Into. QuicKOraw 
wlll draw into the plane correspondIng to bit number Whlctelt Since 
QulckOraw can support output devices that have up to 32 bits of color 
information per pixel, the possible range of values for WhIGtelt is 0 through 
31. The Inlt1al value of the colrBlt flelCl Is O. 

E.9.6 calculations with Rectangles 
Calculation routines are Independent of the current coordinate system; a 
calculation will operate the same regardless of which grafPort is active. 

Remember that If the parameters to one of the calculation routines 
were defined in different grafPorts, you must fIrst adjust them to be tn 
the same coordinate system. If you do not adjust them, the result 
returned by the routIne may be different from What you see on the 
screen. To adjust to a common coordInate system" see LocalToGIObal 
and GIObalToLocal In Section E.9.17, calculations wIth polms. 

ProcedUre SetReot (var r: Reot; left, top, ri~t, bottom: integer); 

SetRect assigns the four boundary coordinates to the rectangle. The result is 
a rectangle wi th coordinates (lefttq>,rt~t)lOttom~ 
This procedure is supplled as a utllity to help you Shorten your program text. 
If you want a more readable text at the expense of length, you can assign 

E-43 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference /"1anuaJ QulckD.raw 

integers (or points) directly Into the rectangle's fIelds. Tnere 1s no signIf1cant 
code size or execution speed advantage to either method; one's just easier to 
wrIte, and the other's easIer to read. 

Procewre OffsetRect (var r: Rect; l:I1,t1V: integer); 

OffsetRect moves the rectangle by addIng (J) to each horIzontal coordInate 
and t1V to each vertical coordInate. If l:I1 and t1V are positive, the movement 
Is to the rIght and down; If eIther Is negative, the correspondIng movement Is 
In the opposIte direction. The rectangle retains its shape and s1ze; 1t's merely 
moveo on tne coorOlnate plane. Tnts ooes not affect tne screen umess you 
subsequentl y call a routine to draw wI thtn the rectangle. 

Proce<lJre InsetReCt (var r: Rect; l:I1, t1V : integer); 

InsetRect shrinks or expandS the rectangle. The left and right sides are 
moved In by the amount spec I fled by ttl; the top and bottom are moved 
toward the center by the amount specIfied by t1V. If l:I1 or t1V Is negatlve, the 
approprIate pair Of sides Is moved outward Instead Of Inward, The effect Is to 
alter the size by 2*(Jl horIzontally and 2*t1V vertlcally, wIth the rectangle 
remaining centered In the same place on tne coordinate plane. 
If the resulting wIdth or height becomes less than 1, the rectangle is set to 
the empty rectangle (o,o,o,o~ 

FlflCtion SeotRect (srcRectA, srcRectB: Rect; var dstRect: Rect) : 
boolea1; 

SectRect calculates the rectangle that Is the intersection of the two Input 
rectangles, and returns true if they indeed Intersect or falle if they cia not. 
Rectangles that "tOUCh" at a line or a point are not considered Intersecting, 
because thelr intersection rectangle (really, In this case, an intersection line 
or point) does not enclose any bits on the bitmap. 
If the rectangles do not intersect, the destination rectangle is set to (O,O,lO,O~ 
SectRect wor1<s correctly even if one of the source rectangles Is also the 
destination. 

Proce<lJre lklionRect (srcRectA, srcRectB: Rect; var dstRect: Rect); 

UnionRect calculates the smallest rectangle which encloses both input 
rectangles, It worKS correctly even If one Of the source rectangles Is alSO the 
destination. 

E-44 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual QulckDraw 

Ft.rlCtloo PtIrflect (pt: Point; r: Root) : OOOIean; 

PtInRect determines whether the pixel below and to the right of the given 
coordinate point is enclosed In the specified rectangle, and returns true If so 
or falre If not. 

Procewre Pt2Rect (ptA, ptB: Point; var OstRect: Rect); 

Pt2Rect returns the smallest rectangle which encloses the two input points. 

ProcedUre ptToAngle (r: Rent; pt: Point; var angle: integer); 
PtTOAngle calculates an Integer angle between a line from the center of the 
rectangle to the given point and a llne from the center of the rectangle 
pointing straight up (12 o'cloCk hlgh~ The angle is in degrees from 0 to 359, 
measured clockwise from 12 o'clock, with 900 at 3 o'clock, 1800 at 6 o'clock, 
and 2700 at 9 o'clock. other angles are measured relative to the rectangle: If 
the line to the given point goes through the top right comer of the rectangle, 
the angle returned Is 45 degrees, even If the rectangle is not square; If It goes 
through the bottom right corner, the angle is 135 degrees, and so on (see 
Figure E -18~ 

angle= 4~, 

----..--...... pt 
":1\. ...... 

.-------4----;:o-(--~ .. 
~.,." 

Figure E-18 
PtTofVlgle 

/-""'" v"'--

The angle returned might be used as Input to one of the procedures that 
manIpUlate arcs and wedges, as described In sectlon E.9.l0, GraphiC QJeratlons 
on Arcs and Wedges. 

Ft.rlCtioo EQJCllRect (rectA, rectB: Rect) : txxlleCl1; 

EqualRect compares the two rectangles and returns true if they are equal or 
false If not. The two rectangles must have Identical boundary coordinates to 
be considered equal. 

E-45 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual Qu!ckDraw 

FtrlCtlm EOlltyRect (r: Rect) : boolea'l; 

EmptyRect returns true if the given rectangle is an empty rectangle or false 
if not. A rectangle is considered empty if the bottom coordinate is equal to 
or less than the top or the rIght coordinate Is equal to or less than the left. 

E.9.7 GTaJ1llc C,l)eratlons m Rectalgles 
These procedures perform graphic operatlons on rectangles. See also 
ScrollRect in Section E.9.13, Bit Transfer q.>erations. 

Proce<lJre FrcneRect (r: Rect); 

FrameRect draws an outline just inside the speclfied rectangle .. using the 
current grafPort's pen pattern, mOde, and size. The outl1ne Is as wide as the 
pen width and as tall as the pen he1ght. It Is drawn with the pnPat ... according 
to the pattern transfer mode speCified by pnMode. The pen location Is not 
changed by this procedUre. 
If a region is open and being formed, the outside outllne of the new rectangle 
is mathematically added to the region's bOundary. 

Procewre PalntRect (r: Rect); 

PalntRect paints the spec1fied rectangle with the current grafPort's pen 
pattern and mode. The rectangle on the bitmap is fllied with the (X'Pat, 
according to the pattern transfer mOde speCified by prMode. The pen location 
is not changed by this proceoure. 

Proce<lJre EraseReot (r: Rect); 

EraseRect paints the specified rectangle with the current grafPort's back
ground pattern tlkPat (1n patcopy mOde~ The grafPort's J)"Pat and ~ are 
ignored; the pen location is not changed. 

Proce<lJre InvertRect (r: Rect); 

InvertRect inverts the pixels enclosed by Ule specified rectangle: every white 
pixel becomes black and every blacK pixel becomes white. The grafPort's 
pnPat ... pnMade, and bkPat are all ignored; the pen location Is not Changed. 

ProceO.Ire FillRect (r: Rect; pat: Pattern); 

F1llRect fllls the specified rectangle with the given pattern (in patCqJy mOde~ 
The grafPort's J)"Pat ~ ... and tlkPat are all ignored; the pen location Is 
not changed. 

E-46 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual QuICkDICJW 

E.9.8 Gr~C llleraUons 00 CNals 
OVals are drawn InsIde rectangles that you specIfy. If the rectangle you 
specIfy Is square, QulcKDraw draws a cIrcle. 

Procerure FrmflOVal (r: Reet); 

FrameOVal draws an outllne Just InsIde the oval that fits Inside the speclfled 
rectangle, usIng the current grafPort's pen pattern, mode, and sIze. The 
outlIne Is as wide as the pen width and as tall as the pen heIght It IS drawn 
with the fl"Pat, according to the pattern transfer mode specIfied by pr1'1ode. 
The pen location Is not changed by thIs procedure. 
If a regIon Is open and beIng formed, the outsIde outline of the new oval is 
mathematically added to the region's boundary. 

Procerure Palnt0V81 (r: Reet); 

PalntOVal paints an oval just inside the specified rectangle with the current 
grafPort's pen pattern and mode. The oval on the bitmap Is f11led with the 
~t; according to the pattern transfer mode specIf1ed by~. The pen 
location Is not Changed by this procedure. 

ProcedIre Eraseoval (r: Reet); 

EraseOVal paints an oval just inside the Specified rectangle with the current 
grafPort's background pattern bkPat (in patCqJy mOde~ The grafPort's fl"Pat 
and pnMode are ignored; the pen location Is not Changed. 

Procerure InvertOVal (r: Reet); 

Invertoval inverts the pIxels enclosed by an oval just inside the specified 
rectangle: every White pIxel becomes blacK and every blacK pIxel becomes 
whl teo The grafPorl's fl"Pat, ~, and bKPat are all Ignored; the pen 
location Is not changed. 

Procerure FIU0V81 (r: Reet; pat: pattern); 
F1IlOVal fllls an oval just inside the specifled rectangle with the given pattern 
(in patcopy mOde~ The grafPorl's JX'1'at, ~, and bkPat are all Ignored; 
the pen location Is not Changed. 

E.9.9 ~c llleraU(llS 00 ROlIl(Je(1-COmer RecUflgles 

Procerure Fr~t (r: Reet; ovalW1dth,ovalHei~t: integer); 

FrameRoundRect draws an outllne just Inside the specified rounded-corner 
rectangle" using the current grafPort's pen pattern" mode" and size. OIIalWldth 
and ovalHel~t specify the diameters of curvature for the corners (see Figure 
E -19~ The outllne is as wide as the pen wIdth and as tall as the pen heIght 

E-47 





I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual QuickDraw 

Procewre F111~t (r: Rect; oval'iutn"ovalHei~t: integer; pat: 
Pattern); 

FlllRoundRect f11ls the specified rounded-corner rectangle with the given 
pattern (In pa~y mode~ CJvalW1mt1 and ovalHelglt specify the diameters of 
curvature for the comers. The grafPort's p-pat, Jl1"1OCle, and lj(Pat are all 
Ignored; the pen location Is not changed. 

E.9.10 Graphic (l)eraUons on Arcs <n:1 WedgeS 
These proceaures perform graphIc operatIons on arcs ana weage-shaped 
sections of ovals, See also PtToAngle in Section E.9.6, Calculations with 
Rectangles. 

ProoeclJre FrcI'OOArc (r: Rect; startAngle" arcAngle: integer); 

FrameArc draws an arc of the oval that flts InsIde the specIfied rectangle, 
usIng the current grafPort's pen pattern, made, and size. start..A.ngle Indicates 
where the arc begIns ana Is treated mod 360. ArcAngle defines the extent of 
the arc. The angles are given In posItlve or negative degrees; a positive angle 
goes cloCKwIse, whUe a negative angle goes counterclOCKwise. Zero degrees is 
at 12 o'ClocK hIgh, 90° (or -270°) is at 3 o'clocK, 180° (or -180°) is at 6 
o'clock, and 2700 (or -900

) Is at 9 o·cIOCK. other angles are measured relative 
to the enclosing rectangle: a line from the center of the rectangle through Its 
top r1ght comer Is at 45 degrees, even If the rectangle Is not square; a Une 
through the bottom rIght comer Is at 135 oegrees, anO so on (see FIgure E-20). 

start.A.ngle .. 0 

: erc:Angle = 45 
1 ", 

st8l'tAngie = 0 

'tRr;::~::: = 451 I-r ___ ;'_"'_' 5_ .. _' ...... 1 
8rc,.!I,ngl~ = - 4~11 

[J
: . .' 
\ ....... 

r 

Frame,A,rc 

FrameArc 

Paint,A,rc 

Flgure E-20 
(l)eraUons CIl Arcs cn1 WedgeS 

E-49 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual QI.I1CkOraw 

The arc Is as wlae as the pen wlC1th and as tall as the pen heIght It Is drawn 
wi th the pnPat, accordlng to the pattern transfer mode spec I fled by p-Mode. 
The pen locaUon Is not Changed by this prOCedure. 

WARNIN3 

FrameArc differs from other QulCkDraw procedures that frame shapes 
In that the arc Is not mathematically added to the boundary of a 
region that Is open and being formed. 

ProceWre PaintArc (r: Rect; startAngle,arcAngle: integer); 

PaintArC paints a wedge of the oval just inside the specified rectangle with 
the current grafPort's pen pattern and mode. startAngle and arcAngle defIne 
the arc of the wedge as in FrameArc. The wedge on the bitmap is f1lled with 
tne prPat, accordIng to tne pattern transfer mode specifIed by ~ The 
pen location is not Changed by this procedUre. 

Procec:1Jre EraseArc (r: Rect; startAngle, arcAngle: integer); 

EraseArc paints a wedge Of the oval just inside the specified rectangle with 
the current grafPort's bacKground pattern ~Pat (In patcwy mOde~ 
startAngle and arcfVlgle define the arc of the wedge as In FrameArc. The 
grafPort's JrPat and ~ are Ignored; the pen location Is not Changed. 

ProceWre InvertArc (r: Rect; startArgle, arcAngle: integer); 
InvertArc Inverts the pIxels enClosed by a wedge of the oval Just InsIde the 
specified rectangle: every white pixel becomes black and every black pixel 
becomes White. startAngle and arcAngle define the arc of the wedge as In 
FrameArc. The grafPort's JrPat, JX'f'1Ode, and ~Pat are all ignored; the pen 
location is not changed. 

ProceWre FillArc (r: Rect; startAngle,arcAngle: integer; pat: 
Pattern); 

FlllArc fills a wedge of the oval just inside the specified rectangle with the 
gIven pattern (In patCopy mOde~ startAngle and arcAngJe defIne the arc Of 
the wedge as In FrameArc. The grafPort's pnPat, prt-1ode, and bkPat are all 
Ignored; the pen location Is not Changed. 

E-50 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Refemnce Manual QulCkDraw 

E.9.11 GalculaUons with Regions 
NOTE 

Remember that if the parameters to one of the calculation routines 
were defInea In dIfferent grafPorts, you must first adjust tnem to be In 
the same coordinate system. If you do not adjust them~ the result 
returned by the routine may be dIfferent from what you see on the 
screen. To adjust to a common coordinate system, see LocalToGlobal 
and GlobalToLocal In Section E.9.17, Calculations wIth PoInts. 

ft.f'Ction Ne~ : ~le; 

NewRgn allocates space for a new, dynamic, variable-size region, initializes it 
to the empty region (O~O,O ... O), and returns a handle to the new regIon. Olly 
this function creates new regions; all other procedures just alter the sIze and 
shape of regions you create. cpenPort calls NewRgn to allocate space for the 
port's vlsRgl and cllpRgt 

WAANINGS 

Except when using visR~ or cll~~', you must call NewRgn before 
specIfyIng a region's handle In any drawIng or calculation procedure. 
Never refer to a region without using its handle. 

Procewre DlsposeRgl (rgl: ~le); 

DlsposeRgn de allocates space for the region whose handle is suppUed, and 
returns the memory used by the regIon to the free memory pool. Use thiS 
only after you are completely through with a temporary regIon. 

WARNING 

Never use a region once you have deallocated it, or you w111 risk beIng 
hung by dangling pointers! 

Procerure Cqlyfql (srcRg1, dstRg"\: ~le); 

copyRgn copies the mathematical structure Of srcRgl Into dstRgl; that Is, It 
makes a dupllcate copy of srcRg1. ()1ce this Is done, srcRgl may be al tered 
(or even disposed of) without affecting dstRg1. copyR[17 does not create the 
(feslJnalJon J"Bglon: you must use NewRgn to create the dstRgl before you 
call CopyRgn. 

E-Sl 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Hanual QulCkDRlW 

Procedure setEnptyfVl (l1Jl: ~le); 

SetEmptyRgn destroys the prevIous structure of the gIven regIon, then sets the 
new structure to the empty region (o,o,o,o~ 

Procedure 8etRectRgl (l1Jl: ~le; left .. top .. ri~t, bOttoot: integer); 

setRectRgn destroys the prevIous structure of the gIven regIon, then sets the 
new structure to the rectangle specIfIed by left, top, rl~t, and bOttom 
If the specifIed rectangle Is empty (1.e., left>-rtg-.t or top>-bottcrn), the regIon 
Is set to the empty regIon (0,0,0,0). 

Procedure RectRg'l (rgl: ~le; r: Rect); 

ReCtRgn destroys the prevIous structure of the gIven regIon, then sets the new 
structure to the rectangle specified by r. This Is operationally synonymous 
wlUl SEtReCtRgn, except Ule Input rectangle Is defIned by a rectangle raUler 
than by four boundary coordinates. 

ProceWre ~; 

~enRgn tells QulckDraw to allocate temporary space and start saving l1nes 
and framed Shapes for later processing as a regIon deflnltlon. Whlle a regIon 
is open, all calls to Une, UneTo, and the procedures that draw framed shapes 
(except arcs) affect the outlIne Of the regIon. (),)ly the llne endpoInts and 
shape boundaries affect the regIon definition; the pen mode ... pattern .. and size 
dO not affect It. In fact, ~enRgn calls HldePen., so no drawIng occurs on the 
screen While the regIon is open (unless you called ShowPen just after ~enRgn, 
or you called ShowPen previously without balancing It by a call to Hldepen~ 
Since the pen hangs below and to the right of the pen location, drawing lines 
wIth even the smallest pen wllI Change bIts that lle outsIde the region you 
define. 
The outline of a region is mathematically defined and infinitely thin, and 
separates the bitmap into two groups of bits: those within the region and 
those outside it. A region should consist of one or more closed loops. Each 
framed Shape itself constitutes a lOOp. Any lines drawn with LIne or LlneTo 
should connect wIth each other or with a framed shape. Even though the 
on-screen presentation of a region Is clipped, the deftnl tlon of a region Is not; 
you can defIne a regIon anywhere on the coordinate plane wIth complete 
dIsregard for the locatlon of various grafPort entities on that plane. 
When a regIon Is open, the current grafPort's rglSave field conta1ns a handle 
to information related to the regIon definItion. If you want to temporarlly 
disable the collection of lines and shapes, you can save the current value of 

E-52 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual QuickDraw 

tillS flela, set tile flela to nll .. ana later restore tile saved value to resume the 
regIon definItion. 

WAANI~ 

Do not call qJenRgn while another regIon Is already open. All open 
regIons but the most recent wlll behave strangely. 

Procet1Jre CloseRgl (dstRgl: ~le); 

CloseRgn stops tile cOllection of lines and framed shapes, organizes them into 
a regIon defInition, and saves tile resulting region Into the region Indicated by 
dstRgl. You should perform one and only one CloseRgn for every qJenRgn. 
CloseRgn calls ShowPen, balancing the HldePen call made by qJenRgn. 
Here's an example of how to create and open a regIon, define a barbell Shape, 
close the region, and draw it: 

oartJell := Ne~; {ae a new region} 
0penRgn; {begin COllecting stUff} 

setRect(tempRect,20,20,30,50); {form the left weight} 
Frameoval(tempRect); 
setReot(tempReot, 30, 30, 80,40); {form the bar} 
FrameRect(tempRect); 
setRect(tempRect,80,20,90,50); {form the r1ght we1ght} 
Frameoval(tempRect); 

CIOseRgn(barbell); 
rillRgn(barbell,blacK); 
01 sposeR{Jl ( oartJell); 

{we're delle: save in barbell} 
{dra" it on the screen} 
{we em' t need yw CTI.YfOOre. .. } 

Pr~re OffsetRgl (T!Jl: ~le; cI1,l1V: integer); 

OffsetRgn moves the region on the coordinate plane, a distance of ell 
horizontally and dV vertically. This does not affect the screen unless you 
SUbsequently call a routlne to draw the region. If ell and dV are pOSItive, the 
movement is to the right and down; if either Is negative, the corresponding 
movement Is in the oppOSite dIrection. The region retains its size and Shape. 

1'll1E 

OffsetRgn Is an especially efficient operation, because most of the data 
defining a region is stored relative to TglBBox and so isn't actually 
changed by OffsetRgn. 

E-53 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference 1'-1anlIal r;;vlckDraw 

Procewre InsetRg1 (I1Jl: ~le; c:Il,d\!: integer); 

InsetRgn shrinks or expands the region. All points on the region boundary are 
moved Inwards a distance of dv vertically and cJl horIzontally; If cJl or dv is 
negative, the points are moved outwards in that direction. InsetRgn leaves 
the regIon "centered" at the same pOSition, but moves the outline in (for 
posItive values of cJl and dv) or out (for negatlve values of (J) and dv~ 
InsetRgn of a rectangular region works just like InsetRecL 

Procelilre SectRgl (s~, srcRgi3" dstRgl: ~le); 

SectRgn calculates the Intersection Of two regions and places the intersection 
In a third reg10n. TlJis does not Cl"8ate tlJe destination J-eglon: you must use 
NewRgn to create dstR~ before you call SectRgn. The dstRgn can be one of 
the source reg10ns, If desired. 
If the regIons do not Intersect, or one of the regions Is empty .. the destination 
Is set to the empty regIon (O,O,O,O~ 

ProcedIre Lniaflg1 (srcR1}1A, s~, dstRgl: ~le); 

unlonRgn calculates the unIon Of two regIons and places the unIon In a third 
regIon. T/)is does not create t/'Je f/estination region: you must use NewRgn to 
create (jStR~ before you call UnIonRgn. The (jStR~ can be one Of the 
source regions, if desired. 
If both regIons are empty, the destination Is set to the empty regIon (O,O,o .. O~ 

Pr()(JeOJre D1ff~ (SrcRglA,s~,dStRgl: ~le); 

OiffRgn subtracts ~~ from srcR91A and places the difference In a third 
regIon. Tnls dOeS not ClPate tile destInatIon lPg/Oil: you must use NewRgn to 
create dstR~ before you call 01 ffRgn. The dstRg1 can be one of the source 
regIons .. if desired. 
If the first source region is empty, the destination Is set to the empty regIon 
(O .. O,O,O~ 

ProcetlJre Xo~ (s~ .. SrcR9'13, (JS~: ~le); 

XOrRgn calculates the difference between the union and the IntersecUon of 
two regions and places the resul t in a thIrd regIon. TtI/s does not Cl'lJate t/'Je 
destil78tion region: you must use NewRgn to create (jStR~ before you call 
XorRgn. The dstRgl can be one of the source regIons, if desired. 
If the regIons are coincident, the destination Is set to the empty regIon 
(O,o,o,o~ 

E-54 



I 

I 
I 

--• 
• • 
I 
I 

Pascal Reference Manual Qu!ckDraw 

FlIlCtloo ptlrfltJ) (pt: P01nt; l1J1: Rg'tian(]le) : OOOlecJl; 

PtInRgn checks whether the pIxel belOw and to the right of the given 
coordinate point is within the specified region~ and returns true if so or false 
if not. 

flllCtloo RectI~ (r: Rect; rg1: Rg'tian(]le) : bexllecJl; 

ReCtlnRgn checks whether the given rectangle intersects the specified region~ 
and returns true if the intersection encloses at least one bit or false if not. 

flflCtion Equal~ (r~r~: ~le) : bOOlean; 

EqualRgn compares the two regions and returns true if they are equal or false 
if not. The two regions must tlave identical sizes, Shapes, and locatlons to be 
considered equal. My two empty regions are always equal. 

FlIlCtioo El1lltyRgl (lVl: Rg'tian(]le) : tXXHecJl; 

EmptyRgn returns true if the region is an empty region or false if not. Some 
of the circumstances In which an empty region can be created are: a NewRgn 
call; a copyRgn of an empty region; a SetRectRgn or ReCtRgn with an empty 
rectangle as an argument; CloseRgn without a previous ~enRgn or with no 
drawing after an (l>enRgn; OffsetRgn of an empty region; InsetRgn with an 
empty region or too large an inset; SectRgn of nonintersectlng regions; 
LJnlonRgn of two empty regions; and DiffRgn or xorRgn of two Identical or 
nonlntersectlng regions. 

E.9.12 Graphic (l)eraUons on Regions 
Tnese routInes all depend on tne coorolnate system Of the current grafPort. If 
a region is drawn In a different grafPort than the one in which it was defined .. 
it may not appear In the proper posltlon Inside tne port. 

ProceWre f~ (lVl: Rg'tian(]le); 

FrameRgn oraws a nOllow outllne Just InslOe me speclf1eO reglon~ using me 
current grafPort's pen pattern, made" and size. The outline Is as wide as the 
pen width and as tall as the pen height; under no circumstances wm the 
frame go outside the region boundary. The pen location is not changed by 
this prOCedure. 
If a region Is open and being formed, tne outSide outline of the region being 
framed is mathematically added to that region's boundary. 

Procedure Palntfql (l1Jl: Rg'tian(]le); 

PalntRgn paints the specified region with the current grafPort's pen pattern 
and pen made. The region on the bitmap is filled with the JXP8t~ according 

E-55 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Hanual QulckDraw 

to the pattern transfer mode specIfied by prtvtxte. The pen location Is not 
changed by this procedure. 

Proce<1Jre EraseRgl (r~: Rgttcnlle); 

EraseRgn paints the specified region with the current grafPort's background 
pattern ~Pat (In patCopy mOde~ The grafPort's pnPat and prtvIode are 
ignored; the pen locatIon Is not changed. 

ProcedUre InvertRg'l (l1J"I: ~le); 

InvertRgn Inverts the pIxels enclosed by the specified regIon: every whIte 
pixel becomes black and every black pixel becomes white. The grafPort's 
prPat~ pnI"kXle~ ana lJI<Pat are all 19norea; the pen locatlon is not changea. 

ProceclJre Fl1lRgl (r~: Rgttcnlle; pat: Pattern); 

FlllRgn fllls the specifled region with the given pattern (In patcopy mOde). 
The grafPort's ~t prtvtxte~ and ~Pat are all Ignored; the pen location Is 
not changed. 

E.9.13 Bit TrCllSfer qJeraUfJlS 

Proced!re SCrollRect (r: Root; (fl,C1V: integer; ~teRgl: Rg1B'l(lle); 

ScrollRect shifts r'scrolls") tnose bits Inside the intersection of the specified 
rectangle, visRgl, cll~gl, portRect, and portBits.boln1s. The bIts are shifted 
a distance of (fl horizontally and C1V vertically. The positive directions are to 
the rIght and down. No other bUs are affected. Bits that are sh1fted out of 
the scroll area are lost; they are neither placed outside the area nor saved. 
The grafPort's background pattern lJI<Pat fllls the space created by the scroll. 
In addition, ~teRgn is changed to the area fllled with bl<.Pat (see Figure 
E-21~ 

E-56 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Hant,/al QlIICkDraw 

BeforeScroliRect After ScroIlRect(dstRect,-1 0,5 ... ) 
s~ 

QuickDraw 

updeteAgn 

Fl~re E-21 
scrolllng 

Figure E-21 shows tnat the pen lOcation after a ScrollRect Is In a different 
position relative to what was scrolled in tne rectangle. The entire scrolled 
Item has been moved to different coordinates. To restore it to Its coordInates 
before the ScrollRect, you can use the SetDrlgln procedure. For example, 
suppose the dStRect here Is the portRect of the grafPort and Its top left 
corner is at (95,120~ setorlglr(lOS,115) wllI offset the coordinate system to 
compensate for the scroll. Since the cUpR!Jl and pen location are not offset 
they move down and to the left. 

ProcedUre COpyBlts (srcBlts,dstBits: BitMap; srcRect,dstRect: Rect; 
1ID1e: integer; maskRg1: R~le); 

CopyBlts transfers a bit Image between any two bItmaps and clips the result 
to the area specIfied by tne rnaskR!Jl parameter. The transfer may be 
performed in any Of the eight source transfer modes. The result Is always 
cUpped to the maskR!Jl and the boundary rectangle of the destination bitmap; 
If ttle destination bitmap Is the current grafPort's portBlts, 1t is also cl1pped 
to the Intersection of the grafPort's oUpRgn and vlsRgn. If you do not want ' 
to cllp to a rnasI<R!Jl, Just pass nll for the maSl<R!Jl parameter. 
The dstRect and maskR!Jl coordinates are in terms of the dstBlt.s..tx:ln:is 
coordinate system, and the ncReet coordinates are In terms of the 
srcBltslxlLrlds coordinates. 
The bits enclosed by tne source rectangle are transferred Into the destination 
rectangle according to tne rules of the chosen mode. 

E-57 



I 
I 
I 
I 
I -
I 
I 

Pascal Reference Manual QujckDraw 

The source transfer modes are as follows: 
Srccopy srcXor mtsrcCopy mtsrcXor 
srcor srcBlc mtsrcOr notSrcBlc 

The source rectangle Is completely allgned wlth the destinatlon rectangle; If 
tne rectangles are of different sizes, the bIt image 1s expanded or shrunK as 
necessary to fit the destination rectangle. For example~ If the bIt Image 1s a 
circle In a square source rectangle, and the destination rectangle Is not 
square, the bIt Image appears as an oval In the destination (see FIgure E-22~ 

E.9.14 PlCtul'e3 

Source Bitmap 

Source Bitmap 

Source 
Transfer 

Mode 

Source 
Transfer 

Mode 

Destination Bitmap 

Destination Bitmap 

Fl~re E-22 
(llelaUon of COpyBlts 

FlI1Ct1oo ~lcture (plCfrClOO: Rect) : PICHaX11e; 

m83kPrgn 
= nil 

[penPlcture returns a handle to a new picture whIch has the given rectangle 
as its picture frame, and tells QulckDraw to start saving as the picture 
definition all calls to drawing routines and all picture comments (if any~ 
q>enPicture callS HldePen, so no drawlng occurs on the screen whtIe the 
picture Is open (unless you call ShowPen just after [penplcture, or you called 
ShowPen previously without balancing it by a call to HidePen~ 
When a picture is open, the current grafPort's plcSave field contains a handle 
to information related to the picture definition. If you want to temporarlly 

E-58 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual QulckDraw 

eHsatlle tne collecUon of rouUne calls anll pIcture comments, you can save tne 
current value of this field, set the fieW to nU, and later restore the saved 
value to resume the picture definition. 

WAANl~ 

Do not call qlenPicture whUe another picture Is already open. 

Procewre GlosePicture; 

CloseP\cture tells QuickDraw to stop saving routine calls and picture 
comments as the defInition of the currently open picture. YOU shoulCl perform 
one and only one ClosePicture for every cpenPicture. ClosePicture calls 
StlowPen" balancing the Hidepen call made by cpenPIcture. 

ProceWre PiCCOOllelt (Idoo, dataSize : integer; (lataB"l11e: (J)Handle); 

PIcComment Inserts the specIfied comment Into ttle definItion of the currently 
open picture. Kind identifies the type of comment. Dat.aHcYldle Is a handle 
to addItIonal data if desIred, and dataSlze is the size of that data in bytes. If 
there Is no addItional data for the comment dat.af-tclldle should be nlI and 
dataSlze St'lOuld be O. Ttle appl1catlon that processes ttle comment must 
include a procedure to do the processIng and store a poInter to the procedure 
In the data structure poInted to by the grafPrOCS field of ttle grafPort (see 
Section E.I0, CustomIzIng QuickDraw qlerations~ 

Procewre Dra4llPlcture (myPicture: PlcHcnjle; dstRect: Rect); 

DrawPicture draws the gIven picture to scale In dstRect, expandIng or 
stlrinking It as necessary to align the borders of the pIcture frame wIth 
dstRect. DrawPIcture passes any picture comments to ttle procedure accessed 
IndIrectly througtl the grafProcs fleld of the grafPort (see PlcComment aoove~ 

Procet1U'e KillPicture (myPicture: PicHa1dle); 

KlllPlcture deallocates space for the pIcture whose handle Is supplled, and 
returns the memory used by the picture to the free memory pool. Use this 
only wnen you are completely ttlrougtl with a picture. 

E.9.IS caIculatioos with Polygcrn 

FlIlCtton ~ly : PolyHcJlt11e; 

qlenPoly returns a handle to a new polygon and tells QulckDraw to start 
saving the polygon definition as specifIed by calls to llne-drawing routines. 
While a polygon is open, all calls to Line and LineTo affect ttle outline of the 
pOlygon. Cilly tne line endpoints affect the polygon definition; ttle pen mode, 
pattern, and size do not affect it. In fact, qlenPoly calls HldePen, so no 

E-59 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual QuickDraw 

drawing occurs on the screen whUe the pOlygon Is open (unless you call 
ShowPen just after qJenPoly, or you called ShowPen previously without 
oalanclng It oy a call to HldePen~ 
A polygon Should consist of a sequence of connected lines. Even though the 
on-screen presentation of a pOlygon Is cUpped, the definition Of a polygon Is 
not; you can define a pOlygon anywhere on the coordinate plane with complete 
disregard for the location of various grafPort entities on that plane. 
When a pOlygon Is open, tne current grafPort's polySave fleld contalns a 
handle to information related to the polygon definition. If you want to 
temporarily disable the polygon deflnitlon, you can save the current value of 
this field, set the field to nil, and later restore the saved value to resume the 
polygon deflnltlon. 

WAANIr--G 

Do not call QJenPoly While another polygon is already open. 

Prooeoure CIOsePoly; 
ClosePoly tells QuiCkDraw to stop saving the definition of the currently open 
polygon and computes the polyBBox rectangle. YOU Should perform one and 
only one ClosePoly for every CllenPoly. ClosePoly calls ShowPen, Oalancing 
the HidePen call made oy CllenPoly. 
Here's an example of how to open a polygon, define It as a triangle, close it, 
and draw it: 

trlPoly := OpenPoly; {save handle and begIn collectIng stUff} 
HoveTo(300,lOO); { move to first point and } 
llneTo(400,200); { form } 
llneTo(200,200); { the } 
LlneTo(3001100); {trIangle } 

CIOsePoly; { stop collecting stuff } 
FlllPoly(trlPoly,gray); { draw 1t on the screen } 
Kl11Poly(trlPoly); { we're all done } 

Procedure KlllPoly (poly: PolyHandle); 
KillPoly deallocates space for the polygon whose handle Is supplied, and 
returns the memory used oy the pOlygon to the free memory pOOl. Use thIs 
only after you are completely through with a pOlygon. 

ProceOJre Offset.Poly (poly: PolyHanlle; <Il, eN: integer); 
Offsetpoly moves the speCified polygon on the coordinate plane, a distance Of 
lJ1 horIzontally and av vertically. This aoes not affect the screen umess you 

E-60 

!~ 



Pascal Reference Manual Qu!ckDraw 

subsequently call a routine to draw the pOlygon. If (J) and cJv are positIve, 
the movement is to the right and down; if either is negative, the correspond
ing movement Is In the opposite dIrection. The pOlygon retains its shape and 
sIze. 

OffsetPoly Is an especIally effIcient operation, because the data 
defining a polygon is stored relative to pOlyStart and so isn't actually 
changed by OffsetPoly. 

E.9.16 Gr~c ~raUcrn on Poly~ 

Procewre FramePoly (~ly: Pol~le); 

FramePoly plays back the l1ne-drawlng routine calls that define the glven 
polygon, usIng the current grafPort's pen pattern, mOde, and sIze. The pen 
w111 hang below and to the right of each poInt on the boundary of the 
polygon; thus, the polygon drawn will extend beyond the right and bottom 
edges of poly A A .polyBBox by the pen width and pen helght, respectively. All 
other graphiC operations occur strictly within the boundary of the pOlygon, as 
for other shapes. You can see this difference in Figure E-23, where each of 
the polygons is Shown with its polyBBox. 

FremePoly PaintPoly 

Figure E-23 
Drawing Polygons 

If a polygon h open and being formed, FramePoly affects the outline of the 
polygon just as if the line-drawIng routines themselves had been called. If a 
region is open and being formed, the outside outline of the polygon being 
framed is mathematically added to the regIon's boundary. 

E-61 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



Pascal Reference Hanual QuJckDraw 

ProcetlJre Palntf'Oly (poly: PolyHcn1le); 

palntpoly paints the specified polygon with the current grafPort's pen pattern 
and pen mOde. The polygon on the bItmap Is fllled wlth the ~t accordIng 
to the pattern transfer mode speCified by ~ The pen location is not 
changed by this procedUre. 

Procewre ErasePoly (poly: PolyHcl1dle); 

ErasePoly paInts the specified polygon with the current grafPort's bacKgrOUnd 
pattern bkPat (in patcopy mode~ The pnPat and pnrvtode are ignored; the pen 
location Is not changed. 

Procedure InvertPoly (poly: PolyHaldle); 

Invertpoly Inverts the pIxelS enclosed by the specIfIed pOlygon: every white 
pixel becomes blacK and every blacK pIxel becomes whi teo The grafPort's 
JI9at, ~, ana ~t are all Ignored; the pen location Is not changed. 

ProceOJre FillPoly (poly: PolyHcn11e; pat: Pattern); 

FUJPoly fills the speCified polygon wlth the gIven pattern (In patCqJy mode~ 
The grafPort's Jl1>clt, Jlf"I"'kXle, and tlI<Pat are all Ignored; the pen location Is 
not changed. 

E.9.!7 calculaUons WlUl POints 

Procedure AdePt (srcPt: Point; var dstPt: Point); 

AddPt adds the coordinates Of srePt to the coordinates of dslPt, and returns 
the resu] t In dst.Pt. 

ProceWre Slt9t (srcPt: Point; var dstPt: Point); 

SubPt subtracts the coordInates Of srePt from the coordinates of dst.Pt, and 
reWrns the resul t In (lStpt. 

Procec1Ure setPt (var pt: Point; h, v : integer); 
Setpt assIgns two integer coordinates to a varIable of type Point 

Function EqualPt (ptA,ptB: Point) : boolean; 

EqualPt compares the two points and returns true If they are eqUal or false If 
not 

E-62 

I 
I 
I 
I 
I 
I 

'/-"'1 

I 
I 
I 
I 
I 
I 
,I 
I 
I 



Pascal Reference Manual Qu!ckDraw 

Procewre LocalTcGlobal (var pt: POint); 

LocalToGlobal converts the given point from the current grafPort's local 
coordInate system into a glObal coordInate system with the orIgin (0,0) at the 
top left comer of the port's Olt image (SUCh as the screen~ Th1s glObal po1nt 
can then be compared to other global poInts~ or be changed into the local 
coorcUnates of another grafPort 
Since a rectangle Is defined by two points~ you can convert a rectangle into 
gloOal coordinates oy performing two LocalToGloOal calls. YOU can also 
convert a rectangle" region" or pOlygon Into glObal coordinates by call1ng 
OffsetRect" OffsetRgn" or Offsetpoly. For examples, see GloOalToLocal below. 

Procewre Glenn Tl1.ocal (var pt: Point); 

GIObalToLocal takes a point expressed In glObal coordinates (with the top left 
corner of the bitmap as coordinate (0 .. 0)) and converts It Into the local 
coordinates of the current grafPort. The glObal point can be Obtained with 
the LocalToGloOal call (see aoove~ For example, suppose a game draws a 
"oall" Within a rectangle named ballRect., defined In the grafPort named 
gcmePort (as lllustrated below in Figure E-24~ If you want to draw that ball 
In the grafPort named selectPort, you can calculate the Oall's selectPort 
coordinates l1ke this: 

5etPort( ganEPort); 
selecteell :~ ballRect; 
LocalTOGlobal(selectBall.topLeft); 
LocalTOGlobal(selectBall.botRight); 

{ start in origin port } 
{ make a copy to be moved } 
{ J:l.I't both corners into } 
{ global COOrdinates } 

5etPort( selectPort); { swi tctl to destinatim port} 
GlobalTl1.ocal(selectBall. tq:(.eft); { J:l.I't both corners into } 
GlobalTl1.ocal(selectBall.botRight); { these local COOrdinates } 
filloval(selectBall"ballOOlor); { no. you nave toe ball! } 

E-63 

1 
I, 

I 
: 

1 
I 
I 
1 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



Pascal Reference Manual QuJckDraw 

20 SO 90 15 45 85 
40 _I 1 1 -30-;.....,1 ,.....,.....;.......,....,......,-;.......,....-:--:,..... 

o 30 70 
O-I;......,...,--:--,........,....,.....;-...,.....~ 

50 -1··.;.··;·· .......... ··;···,··.;.··1 

gemePort selectPort 

Loc:alT oGlobel GlobalToLocal 

Figure E-24 
CmvertlrYJ between coordinate Systems 

You can see from Figure E-24 that LocalToGlobal and GlobalToLocal simply 
offset the coordInates Of the rectangle Oy the coordinates of the top left 
corner of the local grafPort's boundary rectangle. You could also do this with 
OffsetRect. In fact, the way to convert regIons and pOlygons from one 
coordInate system to another is with OffsetRgn or OffsetPoly rather than 
LocalToGlOOal and GloOalToLocal. For example .. if myR{Jl were a regIon 
enclosed by a rectangle having the same coordinates as ballRect in gamePort .. 
you could convert the regIon to glooal coordinates with 

OffsetRg(myRg1.. -20, -40); 
and then convert it to the coordinates of the seleotPort grafPort with 

OffsetRg(myRgl, 15, -30); 
E.9.I8 MlscellClleOUS Utilities 

F~t1m Rcn:Dn : integer; 

Random returns an integer, uniformly distributed pseUdo-random, in the range 
from -32768 tnrougn 32767. The value retumeo oepenos on the glooal 
variable randSeed, which InitGraf inltlallzes to 1; you can start the sequence 
over agaIn from where It oegan oy resettIng ICI1OSeeO to 1. 

E-64 

I 
I 

r~ 
x'~t 

I 
I 
I 
I 
I 
I 

'/~1 

I 
I 
I 
I 
I 
I 
,I 
I 
I 



Pascal Reference Manual QulckDJ7iW 

FlXlCtion Getp1xel (h, V: 1nteger) : bOOle(Jl; 

GetPixel looks at the pIxel assocIated with the given coordinate point and 
returns true if it Is black or false If It Is whIte. The selected pIxel Is 
Immediately below and to the right of the poInt whose coordinates ale given 
in h and V, in the local coordinates of the current grafPort. There is no 
guarantee that the specified pixel actually belongs to the port, however; It 
may have been drawn by a port overlapping the current one. To see if the 
point Indeed belongs to the current port, call PU~~t,thePort ft .vlsRgl~ 

P~re stuff Hex (thingPtr: (llPtr; s: Str2S5); 
Stuff Hex pokes bits (expressed as a string of hexadecimal digits) Into any data 
structure. This is a gOOd way to create cursors, patterns, or bit Images to be 
"stamped" onto the screen with Copy61ts. For example, 

StUffHex{~strlpes, '0102040810204080') 

places a striped pattern Into the pattern varIable stripes. 

There Is no range cheCKing on the sIze of the destination variable, It's 
easy to overrun the variable and destroy something if you don't Know 
what you're doing. 

Procewre 5calePt (var pt: PoInt; srcRect,(1StRect: Root); 
A wIdth and heIght are passed In pl; It)e horizontal component of pt Is me 
width, and the vertical component of pt is the height. ScalePt scales these 
measurements as fOllows and returns the result In pt: it mUIUplles the given 
width by the raUo of dStRect's width to srcRect's wIdth, and mUIUplles the 
gIven height by the raUo of dStRect's heIght to srcRect's height. In Figure 
E-25, where dStRect's wIdth is twice srcRect's width and its height Is three 
Umes srcRect's helght, the pen width is scaled from 3 to 6 and the pen height 
Is scaled from 2 to 6. 

E-6S 

I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



Pascal Reference Manual 

o 3 
o I I 

I I 

1618 
I I 

2 -

4 -

7 

tI 

Sc:elePt scales pen size (3,2) tel (6,6) 
MapF't maps point (3,2) to (18,7) 

FlgJre E-2S 
8calePt am ~ 

I-

PI'OCeOJre MapPt (var pt: POint; srcRect, (lStRect: Rect); 

C)ulckDraw 

Given a point within STeRec!., MapPt maps it to a similarly located point 
withIn dstRect (that Is, to where It would fall if it were part Of a drawing 
being expanded or shrunK to fit dstRect~ The result Is returned in pt A 
corner point Of sroRect would be mapped to the corresponding comer point Of 
dstRect, and the center Of sTeRect to the center of dstRect In Figure E -25 
above, the point (32) In slCRect Is mapped to (18,7) In dstRect F~ect and 
dstRect may overlap, and pt need not actually be within srcRect 

E-66 

I 

I 
I 
I 
I 
I 
I 

"'-"1 

I 
I 
I 
I 
I 
I 

/-::.\1 
I 
I 



Pascal Reference Manual Qu!ckDraw 

Remember, If you are going to draw InsIde the rectangle In dstRect, 
you w\ll probably also want to scale the pen size accordingly with 
ScalePt. 

ProcedUre NapRect (var r: Rect; srcRect,tlstRect: Rect); 
GIven a rectangle wIthIn srcRect, MapRect maps it to a simllarly located 
rectangle withIn mtRect by call1ng MapPt to map the top left and bottom 
rIght corners of the rectangle. The result Is returned in r. 

ProcedUre t1apRgl (rg1: ~le; srcRect, dstRect: Rect); 

Given a region wIthin srcRect, MapRgn maps it to a simllarly located regIon 
wi thin mtRect by call1ng MapPt to map all the poInts in the regIon. 

ProcedUre MapPoly (poly: PolyHandle; srcRect,dstRect: Rect); 
Given a polygon within srcRect MapPoly maps It to a slmllarly located 
polygon within ClstRect by calling MapPt to map all the points that define the 
polygon. 

E.10 CUStomizing QuickDraw ~rat1ons 
For each Shape that QuickDraw knows how to draw, there are procedures that 
perform these basic graphic operatlons on the shape: frame, paint, erase, 
Invert, and flll. Those procedures in turn call a low-level drawing routlne for 
the shape. For example, the FrameOVal, PaintOVal, EraseOVal, InvertOVal, and 
F 111 OVal procedures all call a low-level routlne that draws the oval. For each 
type of Object QuickDraw can draw, inCluding text and lines, there Is a 
pointer to suoh a routine. By ohanging these pointers, you can install your 
o'-lln routines, and either oompletely override the standard ones or call them 
after your routines have mOdified parameters as necessary. 
Other low-level routlnes that you can Install In this way are: 

• The proCedure that does bit transfer and Is called by copyBlts. 
• The function that measures the width of text and Is called by CharWldth~ 
StrlngWldth~ and Textwldth. 

• The procedure that processes picture comments and Is called by 
Dra'-llPicture. The standt=lrd sur;h rrnr;RduTR Ignores picture comments. 

• The procedure that saves drawIng commands as the definitIon of a pIcture, 
and the one that retrieves them. This enables the application to draw on 
remote devIces, print to the dIsk, get pIcture Input from the dISk, and 
support large pictures. 

E-67 

I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



Pascal Reference Hanual QujckDraw 

The grafProcs fleld of a grafPort determines whiCh lOw-level rout1nes are 
called; if it contains nlI.. the standard routines are called~ so that all 
operatIons in that grafPort are done in the standard ways descrIbed In this 
appendix. You can set the grafProos field to point to a record of pointers to . 
routInes. The data type Of grafPrOCS Is ~ocsPtr: 

type C;U>rocsPtr = "c;u>rocs; 
QOProcs = record 

textProc: 
lineProc: 
rect:Proc: 
rRectProc: 
ovalProc: 
arcP:roc: 
polyProc: 
rgrProo: 
bitsProc: 
Cc:xtl'OOfltProc : 

tXMeaSProc : 
getpicProc : 
putPicProc : 

encJ; 

~r; 
'l)Ptr; 
QOPtr; 
QOPtr; 
'l)Ptr; 
(;X)Ptr; 
QOPtr; 
'l)Ptr; 
QOPtr; 
QOPtr; 

'l)Ptr; 
QOPtr; 
QOPtr 

Procewre setst<:Procs (var procs: lX)Procs ); 

{text dra.ing} 
{line drawing} 
{rectangle drawing} 
{I1JI..Il:flect dra.ing} 
{oval dra.ing} 
{arc/.ooge dra.ing} 
{polygon dra.ing} 
{region dra.ing} 
{bit tranSfer} 
{picture COITIlmt 
processing} 
{text .ioth llEaSUfement} 
{picture retrieval} 
{picture saving} 

SetStdProcs Is provided to assist you in sett1ng up a QDProcs record. It sets 
all ttle flelCls Of ttle gIven QIJPTOCS to poInt to ttle stanaaro lOW-level 
routines. You can then change the ones you wish to point to your own 
routines. For example, if your procedure that processes picture comments Is 
named Mycomments, you wIll store i1Mycomments In ttle commentProc fIeld 
of the Q[)PIocs record. 
The routInes you Install must Of course have the same call1ng sequences as 
the standard routines, wtlictl are aescribea below. Ttle stanaara arawlng 
routines tell whICh graphIc operation to perform from a parameter of type 
GrafYertl. 

type GrafVertl = (frCl'J'e, paint, erase, invert, fill); 

When the grafYem Is flIt the pattern to use when fllllng Is passea In the 
flllPat field of the grafPort. 

Procewre StdText (byteColl1t: integer; textBuf: QOPtr; runer, cJenom: 
Point); 

StdText Is the standard low-level routine for drawIng text. It draws text from 
the arbitrary structure In memory specIfied by textBuf .. starting from the first 
byte and continuIng for byt.eColl1t bytes. r-uner and denom specify the 

E-68 

I 
I q 
I 
I 
I 
I 
I 
I 

. -'I 

I 
I 
I 
I 
I 
I 
~I 

\ 

i 

I 
I 



P8s'f..ial Nele18/lCe /'/anllal 47UfckD18W 

scal1n~ If any: rumer.v over l1enom.v gives ttle vertIcal scallng, and runer.h 
over denom.h gives the horizontal scaling. 

PrOCeOJre StCl..ine (neWPt: POint); 

StdUne is the standard low-level routine for drawing a line. It draws a line 
from the current pen location to the location specIfIed (1n lOcal coordinates) 
by newPt 

Procewre S~t (verb: GrafVerb; r: Rect); 

StdRect Is the standard low-level routine for drawing a rectangle. It draws 
the gIven rectangle aCCOrding to the specified graMm. 

ProceW're SttflRect (verb: GrafVerb; r: Rect; oval.ll1th,ovantel~t: 
integer); 

StdRRect Is the standard lOW-level routine for drawing a rounded-corner 
rectangle. It draws the gIven rounded-corner rectangle according to the 
specified grafVerb. DvalWIl1th and ovaU-tel~t specify the diameters of 
curvature for the corners. 

P'roce(lJre St(J)val (verb: GrafVerb; r: Rect); 

StdOVal Is the standard low-level routine for drawing an oval. It draws an 
oval Inside the given rectangle according to the speoified grafVem. 

ProceckJre StcJArc (verb: GrafVerb; r: Rect; startAngle, arcAngle: 
integer); 

StdArc Is the standard low-level routine for drawing an arc or a wedge. It 
draws an arc or wedge of the oval that fits inside the given rectangle. The 
grafVem specifies the graphic operation; if it'S the frame operation., an arc is 
d!'awn; otherwIse, a wedge is drawn. 

ProceO.Ire st<Poly (verb: GrafVerb; poly: PolyHcn11e); 

StdPoly is the standard low-level routine for drawing a polygon. It draws the 
given pOlygon according to the specified grafVerb. 

Procedure Stc::Jql (verb: GrafVerb; rg1: ~le); 

StdRgn Is the standard low-level routine for drawing a region. It draws the 
gIven regIon accordIng to the speCified grafVerb. 

E-69 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



PascaJ Reference fvIa7Ual QulckDraw 

procerure StCllits (var srcBlts: 61~; var srcRect, dstRect: Rect; 
1OOde: integer; maSkRgl: ~le); 

StdBlts Is the standard low-level routine for doln,g bIt transfer. It transfers a 
bit image between the gIven bitmap and tIlePOrt .portBits, just as if CopyBits 
were called with the same parameters and with a destination bItmap equal to 
tIlePOrt A .portBits. 

Procerure stt:n:melt (1<lrxt dataSlze : Integer; data-Bldle: (;.l)Har'Kjle); 

StdComment Is the standard low-level rout1ne for processing a picture 
comment. Kim identifies the type Of comment. Data-ta1dle is a handle to 
additional data, and llataS1ze Is the size Of that data in bytes. If there is no 
additional data for the commanct data-alOle will be nil and dataS1ze wlll be 
O. StdComment simply ignores ttle comment. 

FlI1Ction StdTxt1eas (byteGru1t: integer; textBuf: I;.UPtr; var ruoor, 
denom: Point; var info: FontInfo) : integer; 

StdTxMeas Is the standard low-level routine for measuring text width. It 
returns the width of the text stored In the arbl trary structure In memory 
specified by textBuf, starting with the first byte and continuing for byt.ee;ol.nt 
bytes. N.rner and dencm specify the scaling as in the StdText procedure; note 
that StdTxMeas may change them. 

ProceWre st«lJetPic «lataPtr: ~r; byteCo.rlt: integer); 

StdGetPlc Is the standard low-level routine for retrieving Information from 
the definition of a picture. It retrieves the next byteCOll1t bytes from the 
definition of the currently open picture and stores them in the data structure 
pointed to by (lataPtr. 

Procerure st(JlUtplc (daUPtr: I;.UPtr; byteCOl.llt: Integer); 

StdPutPic is the standard low-level routine for saving information as the 
definition of a picture. It saves as the defin1tion of the currently open 
picture the drawIng commands stored In tne data structure pointed to by 
datcPtr, starting wi th the first byte and cont1nuing for the next byt.ee;ol.nt 
bytes. 

E-70 

I 

--,I 
! • :. \ 

I 
I 
I 
I 
I 
I 
I 

:/"-1 

I 
I 
I 
I 
I 
I 

/-.,,1 
I 
I 



Pascal Reference Manual Qu/ckDraw 

E.11 Using QulckOnrw from AsserOOly LalgUage 
All QuickDraw routines can be called from assembly-language programs as 
well as from Pascal. When you write an assembly-language program to use 
these rout1nes~ though~ you must emUlate Pascal's parameter passing and 
varIable transfer protOCOlS. 
This section discusses how to use the QuickDraw constants, global variables, 
data types, procedures, and functions from assembly language. 
The prImary aId to assembly language programmers Is a fIle named 
QO/GRAFTYPES.TEXT. If you use .INCU . .x:::E to include this file when you 
assemble your program, all the QuickDraw constants, offsets to locations of 
global variables, and offsets into the flelds of structured types w111 be 
avallable In symbollc form. 

E.11.t Gonsta'lts 
QulckDraw constants are stored in the QD/GRAfTYPES. TEXT file, and you 
can use the constant values symbo!lcally. For example, if you've loaded the 
effective address of the thePort ~ .txf"'kxje field into address register fl2., you 
can set that field to the srcXor mode with this statement: 

tmE • " ISRCX~ (trl.) 
To refer to the number of bytes occupIed by the QulckDraw global varIables, 
you can use the constant GRAFSIZE. When you call the Ini tGraf procedure, 
you must pass a pointer to an area at least that large. 

E.11.2 oata Types 
Pascal's strong typIng ab1l1ty lets you write Pascal programs without really 
considering the sIze of a variable. But In assembly language, you must keep 
track of the size of every variable. The sizes of the standard Pascal data 
types are as follows: 

~ 
integer 
longlnt 
lJooleCll 
char 
real 

Size 
Word (2 bytes) 
Long (4 bytes) 
Word (2 bytes) 
Word (2 bytes) 
Long (4 bytes) 

Integers and longints are In two's complement form; booleans have theIr 
boolean value in bit 8 of the 'Word (the lo'W-order bit of the byte at the same 
location); chars are stored In the high-order byte of the word; and reals are in 
the Kes standard format. 

E-71 

I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



Pascal Reference Manual QufckDraw 

The QulckOraw simple data types llsted belOw are constructed out of these 
fundamental types. 

~ 
~ 
QO-tcn:Jle 
Word 
Str255 
Pattern 
Bits16 

s1ze 
Long (4 byteS) 
Long (4 byteS) 
Long (4 byteS) 
Page (256 byteS) 
8 bytes 
32 bytes 

Other data types are constructed as recordS of varlaOles of the above types. 
The size of such a type is the sum of the sizes of all the fields in the record; 
the flelds appear In the variable with the first fleld in the lOwest address. 
For example, consider the data type B1tMap, which is defined as follows: 

type B1 t~ = record 
baseAcldr : ~tr; 
rowBytes: integer; 
lJoI..n1s: Rect 

end; 

ThiS data type WOUld be arranged In memory as seven wordS: a lOng for the 
t>aseAddr, a word for the rowBytes, and four words for the top, left, right, and 
bottom parts of the lJoI..n1s rectangle. To assIst you In referrIng to the fields 
inside a variable that has a structure like this, the QDIGRAFTYPES.TEXT file 
defInes constants that you can use as offsets Into the flelds of a structured 
variable. For example, to move a bitmap's rowBytes value into 03" you would 
execute the followIng instrUction: 

HOVE.. NVBITNAP~ROWBVTES,03 

Displacements are given In the QDIGRAFTYPEs. TEXT file for all fields of all 
data types defined oy QulckOraw. 
To do double indirection, you perform an LEA indIrectly to oOtaln the 
effective address from the handle. For example .. to get at the top coordinate 
of a region's enClosing rectangle: 

HOVE.L NVHANOLE,Al 
MOVE.L (AltAl 
HOVE.. RGNBBOX+TOP(Al),03 

E-72 

; Load handle into At 
; Use handle to get pointer 
; Load value using pointer 

I 

.~ 
~* 
I 
I 
I 
I 
I 
I 

«~'I 

I 
I 
I 
I 
I 
I 

--,I 
I 
I 



Pascal Reference Mawal QulckDraw 

WPRNIN3 

For regions (and all other variable-length structures with handles), you 
must not move the po1nter into a register once and just continue to use 
that polnter; you must do the double IndirectIon each Ume. Every 
QulckOraw call you make can possibly trigger a heap compaction that 
renders all poInters to movable heap Items (Ilke regions) Invalid. The 
handles w1ll remaIn valId, but pointers you've obtained through handles 
can be rendered Invalld at any subroutine call or trap In your program. 

E.ll.3 Global Var1~les 
Register AS always pOints to the section of memory where glObal varIables 
are stored. The OO/GRAFTYPES.TEXT file defines a constant GRAFGll'n 
that points to the beginnIng of the QulckDraw varIables In this space, and 
other constants that point to the Individual variables. To access one of the 
variables, put GRAFGUI3 In an address register, sum the constants, and Index 
off of that register. For example, if you want to know the hor1zontal 
coordinate of the pen location for the current grafPort whiCh the glObal 
variable thePort po1nts to, you can give the fOllowing Instructions: 

tm'E.L GRAfGLOO(A5), AO ; Po1nt to Qu1ckDraw g1OO81s 
NOVE.L THEPORT(AO),Al ; Get current grafPort 
HOVE .• PNLOC~H(Al),DO ; Get thePortA.pnloc.h 

E.ll.4 Procerures cn1 Ftretloos 
To call a QulckDraYi procedure or function, you must PUSh all parameters to it 
on the stack, then JSR to the function or procedure. When you link your 
program with QulckOraYi, these JSRs are adjusted to refer to QulckOraYi's 
jump table, so that a JSR Into the table redirects you to the actual location 
of the procedure or function. 
The only difficult part about call1ng QulckOraw procedures and functions Is 
staCking the parameters. You must folloYi some strict rules: 

• Save all registers you wish to preserve befoJ"8 you begin pUShing 
parameters. my QuickOraw procedure or function can destroy the 
contents of the registers AD, Al, ~O, 01, and 02, but the others are never 
altered. 

• Push the parameters In the order that they appear In the Pascal procedural 
interface. 

• For booleans, push a byte; for Integers and characters, PUSh a word; for 
pointers, handles, long Integers, and reals, push a long. 

• For any structured variable longer than 4 bytes/ push a painter to the 
variable. 

[-73 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I' 
I 
I 
I 
I 
I 
I 



Pascal Reference Manual QufckDraw 

• For all var parameters, regardless Of sIze, pUSh a poInter to the varlable. 
• When call1ng a function, fint pUSh a null entry equal to the size of the 

function resul C t!len push all other parameters. The result w111 be left on 
the stacK after the function returns to you. 

ThIs maKes for a lengthy interface, but it also guarantees that you can mocK 
up a Pascal versIon Of your program, and later translate 1t Into assembly code 
that works the same. For example, the Pascal statement 

blackness := GetPixel(50,mousePos.v); 
would be wrItten In assembly language IlKe thIs: 

CLR.. -(SP) ; save space for boolean result 
tflVE.. ISO, -(SP) ; Push cmstc:l'lt 50 (deniml) 
tllVE.. tDJSEPOS~V, -(SP) ; PUsh the value of mousePos.v 
JSR GETPlXEl ; Gall routine 
tllVE.. (SP)~,BlACKNESS ; fetCh result from stack 

This is a Simple example, pushing and pulling 'Word-long constants. Normally .. 
you'll be pushIng more poInters, usIng the PEA (PUSh Effective Address) 
instruction: 

fl11RoundRect(myRect,1,thePort~.pnSize.v,wnlte); 

PEA 
tIlVE •• 
tIlVE.l 
tflVE.l 
tlJVE •• 
PEA 
JSR 

MVRECT ; PUsh JX)lnter to myRect 
'1 .. -(SP) ; Push GlK1StCllt 1 
GRAF~(J3(A5), AO ; Po1nt to &;.\I1c1<Draw glOO8IS 
ll£POU( AO), Al ; Get current grafPort 
PNSIZE~V(Al),-(SP); Push value of thePort~.pnS1ze.v 
WHITE (AO) ; PUsh pointer to glOO8l variable White 
FILLRflHH:CT ; call the SlJ>rrut1ne 

To call the TextFace procedure, PUSh a word in which each of seven bIts 
represents a styl1stic variation: set bit 0 for oold, bit 1 for italic, bit 2 for 
lflderllne, bit 3 for ouUlne, bIt if for sta1OW, bit 5 for coodense, and bIt 6 for 
exterl1. 

E-74 

I 
I 
I 
I 
I 
I 

;'--'"1 

I 
I 
I 
I 
I 
I 

~-~,I . \ 

"I 
I 



Pascal Reference Manual qufckDraw 

E.12 Graf3D: Tllree-D1menslmal Gr~lcs 
Graf30 helps you map three-dimensional images onto the two-dimensional 
space used by QulckDraw. If this Is your first exposure to three-dimensional 
graphIcs, you wlll find Graf30's standard procedures and functions a great help 
In proauclng vIsuallY excltlng grapns, cnarts, ana drawings. If you are fam1l1ar 
wi th Applegraphlcs for the Apple It you w1l1 feel right at home with Graf30's 
use Of real varIables and world coordInates. 
WIth three-dimensional graphIcs you can present objects In true perspective, 
which w111 evoke for users their everyday environmenL Graf30 helps you 
represent complex business information pictorially; for example, a manager can 
see important relationships among sales, profits, and advertising dollars in a 
three-dimensional graph. 
You may be interested in a more theoretical discussion of three-dimensional 
graphics, InclUding an explanation of some of the baSic concepts of Graf3D, 
such as the viewing pyramid. A good, lllustrated discussion appears In the 
sectIon on three-dimensional computer graphIcs In Prfl7c/ples of Interact/ve 
computer Grapnics by William M. Newman and Robert F. SproUll (New York: 
MCGraw-HtlI, 1973~ 

E.12.1 HoW Graf3D Is Related to QUIC1<DraW 
Graf30 is a Pascal unit that makes the QulckOraw calls necessary to produce 
three-dimensional graphiCS. It provides you with an easy-to-use real number 
interface to QuickDraw's integer coordinates. You could, of course, write 
your own QulckDraw calls to perform the same functions Graf3D provides for 
you, but that would be a little Ilke going to the trouble of writing your own 
compiler. 

E.12.2 Features of Graf3D 
• A C8fl7eI8-eye view. ThiS allows you to set the point of view from Which 

the observer sees the Object independently from the coordinates Of the 
Object Itself. The camera Is set up with the ViewPort, LOOkAt, and 
YlewAngle procedures. You can set the focal length of the camera as If 
you had a choice of telephOto, wide angle, or normal lenses. 

• T/)1p.e-l1imem1onal ClippilJ!..7 t.o a tlue PYl-amkt The apex of the pyramid is 
at the point of ttle Gamera eye, and the base of the pyramid Is equivalent 
to the vieWPort. When you use the Cllp3D function, only Objects forward 
of the camera eye and within the pyramid are displayed on the screen. 

• Two-olmenslonal point ano line capalJlllty u..rlng real coorolnates. Graf3D 
provides commands correspondIng to the QulckDraw commands but using 
real coordinates Instead of Integers. With real coordinates you have a 
larger dynamic range for grapllics calculations; with integer coordinates 
you get faster drawing time. For reals, the range Is 

1.4 x 10-45 to 3.4 x 1038 

E-75 

I 
I: 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



Pascal Reference Manual QulckDraw 

• Two-lllmen.>1onaloJ" tIJree-lllmellslonaJ rotatJon. You can rotate an otlject 
along any or all axes sImultaneously, usIng the PItch, Yaw, and Roll 
procedures. 

• Translation and scalil7g Of olJjects 117 one or more axes sImultaneously. 
Translation means movement anywhere in three-dimensional space. Scallng 
means shrinking or expanding. 

E.12.3 Graf3D oata Types 
Graf3D declares and uses the following data types: 
Polnt3D: A Polnt3D conta1ns three real numtJer coordInates: x, y, anC1 z. 

Graf3D uses x, y, and Z for real numtler coordinates to dIstinguish 
tletween the h and v 1nteger screen coordinates in QulckDraw. 

Polnt20: A Polnt2D Is just Ilke a Polnt3D but contains only x and y 
coordinates. 

XfMatrlx: The XfMatrlx Is a 4x4 matrIx of real values, used to hold a 
transformation equation. Each tranSforming routine alters this 
matrIx so that It contains the concatenated effects Of all 
transformations applied. 

Port3DPtr: A Port3OPtr is a pointer to a Port3O. 
Port3D: A Port3D contains all the state variatlles needed to map real 

number coordinates into integer screen coordinates. They are as 
follows: 
GPort: a pointer to the grafPort associated with thIs Port3O. 
vie'NRect: the viewing rectangle witt,in the grafPort; the base of the 

viewIng pyramiC1. 
xLeft, yTop, :x'Rlght, yBottom: world coordinates corresponding to 

the vlewRect 
pen: three-dimensional pen location. 
penPrime: the pen location transformed by the xFonn matrix. 

eye: three-dimensional viewpoint location established by ViewAngle. 
hSlze, vSlze: tlalf-whJttl am.! tlalf-tlelgnt of We vlewRect 1n screen 

coordinates. 
hCenter, vcenter: center of the vlewRect in screen coordinates. 
XCOtal, ycotan: viewing cotangents set up by ViewAngle, used by 

Cllp3D. 

ident: <l boole<ln that allows the transformation to be skipped when 
when xFonn Is an identIty matr1x. 

xFonn: a 4x4 matrix that holds the net result of all transformations. 

E-76 

I 
I q '\. \' ," ' .~' 

I 
I 
I 
I 
I 
I 

..... , I .... 

I 
I 
I 
I 
I 
I 

,-~"I 
1') 

'I 
I 



( Pascal Reference Manual QuickDraw 

E.12.4 Graf30 Procewres and FlJlCtions 
The fOllowing procedures and functions are provided In Graf3D. 
Procedure ~3OPort(port: Port3Wtr); 

~en3DPort initializes all the fields of a Port30 to their defaults~ and makes 
that Port30 the current one. Gport Is set to the currently open grafPort. 
The defaults establiShed are: 

thePort30: =port; 
portA.GPort:=thePort; 
ViewPort(thePortA.portRect); 
WITH thePortA.portRect DO LOOkAt(left;top~right,bottom); 
VlewAngle(O); 
I oentlty; 
HoveTo30(O, 0, 0); 

Procedure SetPort30(port: Port3OPtr); 

SetPort3D makeS port the current Port3D and calls SetPort for that Port30's 
associated grafPort. SetPort3D allows an application to use more than one 
Port30 and swItoh between them. 

ProcedUre GetPort3D(var port: Port3DPtr); 

GetPort3D returns a pointer to the current Port30. This procedure is useful 
when you are using several Port30s and want to save and restore the current 
one. 

Procedure ttoveTo20(x.. y: real); ProcedUre ttoveT03D(x.. y, Z: real); 
Procerure l1ove2O(dx., dy: real); ProcedUre t1ove30(dx., dy, dz: real); 

These procedures move the pen In two or three dImensIons without drawIng 
lines. The real number coordinates are transformed by the xForm matrix and 
projected onto flat screen coordInates; then Graf3D calls QulckDraw's MoveTo 
procedure with the result. 

ProcedUre LlneTo20(x..y: real); Procedure L1neTo30(x..y,Z: real); 
Procewre Llne20(dX"dy: real); Procewre Llne30(dX"dy,dz: real); 

These procedures draw tIHo- and three-dimensional l1nes from the current pen 
location. LineTo2D and Line2D stay on the same z-plane. The real number 
coordinates are first transformed by the xForm matrix, then clipped to the 
viewing pyramid~ then projected onto the flat screen coordinates and drawn by 
calJlng QulCkOraIH's LineTo procedure. 

E-71 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



Pascal Reference Manual QufCkDraw 

Function Clip30(srcl,Src2: POint30; var Qstll Qst2: point): boolean; 
Cllp30 cUps a three-dimensional Une segment to the v1ewing pyramid and 
returns the cUpped line projected onto screen coordinates. Cl1p30 returns 
true if any part of the line Is visible. If no part of the line Is within the 
viewing pyramid, Clip30 returns false. 

Procewre 5e1Pt30{var pt30: POlnt30; x.,y,z: real); 
SetPt3D assIgns three real numbers to a Polnt30. 

Proce<lJre 5etPt20(var pt2D: POlnt20; x., y: real); 
SetPt20 assigns two real numbers to a Polnt20. 

E.12.ll1 setting Up the C<J'nera (ViewPort, LookAt, cnl Vlew.t\ngle) 
Procedures ViewPort, LookAt and ViewAngle position the image in the 
grafPort, aim the camera, and choose the lens focal length in order to map 
three-dimensional coordInates onto the flat screen space. These procedures 
may be called in any order. 

Procedure Vle~rt(r: Rect); 

ViewPort specifIes where to put the image In the grafPort. The Viewport 
rectangle Is In Integer QulckDraw coordInates, and tells where to map the 
LooKAt coordinates. 

Proce<lJre LOOkAt(left,top,right,bottom: real); 
LookAt specifies the real number x and y coordInates correspondIng to the 
vlewRect 

Procedure ViewAngle(angle: real); 
View Angle controls the amount of perspective by specifyIng the horIzontal 
angle On degrees) subtended by the viewing pyramiO. TypIcal vIewing angles 
are 0° (no perspective), 10° (telephoto lens), 25° (normal perspective of the 
human eye), and 80° (wide angle lens~ 

E.13.4.2 The Transformation Matrix 
The transformation matrix allows you to impose a coordinate transformation 
between the coordinates you plot and the viewing coordinates. Each of the 
transformation procedures concatenates a cumulative transformation onto the 
xFonn matrix. Subsequent lines drawn are first transformed by the xForm 
matrix, then projected onto the screen as specified by ViewPort, LookAt, and 
ViewAngle. 

Procewre Identity; 
Identity resets the transformation matrix to an identity matrix. 

E-78 

I 
I n 

<"~";~I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

".~,I 

I 
I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual QufckDraw 

PfOce(lJre scale(xF~tor,yF~tor,Zf~tor: real); 

Scale modifies the transformation matrix so as to shrink or expand by xFactoT, 
yFactor, and zfactor. For example, SCale(2.0..2.0..2.0) wlll make everything 
come out twice as big when you draw. 

ProceOJre TrCl1slate(ClX" dy, dZ: real); 

Translate modifies the transformation matr1x so as to displace by dXAy,dZ. 

Procedure Pitch(xArgle: real); 

Pitch modifies the transformation matrix so as to rotate xPIlgle degrees 
around the x axis. A positive angle rotates clockwise when lOOking at the 
origin from positive x. 

ProcedUre Va.(yl'l"gle: real); 

Yaw mOdifIes the tranSformation matrix so as to rotate y.Allgle degrees around 
me y axis. A positive angle rotates clockwise when looking at the origin 
from positive y. 

Procewre Roll(zAngle: real); 

Roll modlfles the tranSformation matrix so as to rotate zAngle degrees around 
the z axis. A positive angle rotates clockwise when looking at the origin 
from positive z. 

ProcedUre SKew(ZAngle: real); 

Skew modifles the transformation matrix so as to skew zl'rgle degrees 
around the z axis. Skew only changes the x coordinate; the result Is much 
like the slant QulckDraw gives to italic characters. (Skew(lS.O) makes a 
reasonable Italic.) A positive angle rotates clOckwise when lOOking at the 
origin from positive z. 

ProcedUre TfCI1sf'orm(src: Point30; var dst: Point30); 

Transform applies the xForm matrix to src and returns the result as dsl If 
the tranSformation matrix Is identity, dst will be the same as SIC. 

E-79 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference /'1anUa1 

f.B QUickDraw InterfOOe 

UNIT QuiCl<Oraw; 

{ Copyright 1983 Apple COfTl)Uter Inc. } 

INTERFACE 

CONST srcCOpy 
sreDr 
srcXor 
sreBic 
notsrCCOpy 
notSrCO! 
notSrcxor 
notSrcBIc 
patCopy 
patOr 
patXor 
patBic 
notPatcopy 
notPatOr 
notpatXor 
notPatBic 

= 0; {the 16 transfer modes } 
= 1; 
= 2; 
= 3; 
= 4; 
= 5; 
= 6; 
= 7; 
= 8; 
= 9; 
;;; 10; 
= 11; 
= 12; 
= 13; 
= 14; 
= 15; 

{ QulckOraw color separation constants } 

normalBlt 
inverseBit 
redBit 
green8it 
blueBit 
eyanBit 
magentaBit 
yellowBlt 
blackBit 

= 0; 
= 1; 
= 4; 
= 3; 
= 2; 
= 8; 
= 7; 
= 6; 
= 5; 

{ normal screen mappIng } 
{ inverse screen mapping } 
{ RGB additive mapping } 

{ CHYBK sUbtractive mapping } 

QulckDraw 

blacKColor = 33; 
whiteCOlor = 30; 
redColor = 205; 
greenColor = 341; 

{ colors expressed in these mappings } 

blueColor = 409; 
eyancolor = 273; 
magentaCOlor = 137; 
yelloWColor = 69; 

piclParen = 0; 
pIcRParen = 1; 

{ standard picture comments } 

E-80 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual 

TYPE QOByte = -128 .. 127; 
QOPtr = "QOByte; { blind pointer } 
QDHandle = "QDPtr; { blind nand1e } 
Str255 Strlng(2S5); 
Pattern = PACKED ARRAY[0 .. 7) OF 0 .. 255; 
8its16 s ARRAY[0 .. 15) OF INTEGER; 
VHSelect = (v, n); 

QulckDraw 

GrafVerb = (frame,palntJeraseJinvert,fil1); 
Styleltem = (bOld, Ita11c,under11ne,out11neJ snadowJcondense, 

extend); 
Style = SET OF StyleIte~ 

FontInfo = RECORD 
ascent: INTEGER; 
descent: INTEGER; 
widHax: INTEGER; 
leading: INTEGER; 

END; 

Point = RECORD CASE INTEGER OF 

0: (v: INTEGER; 
n: INTEGER); 

1: (vn: ARRAY[VH5elect] OF INTEGER); 

END; 

Reot = RECORD CASE INTEGER Of 

0: (top: 
left: 
bottom: 
rigt"lt: 

INTEGER; 
INTEGER; 
INTEGER; 
INTEGER); 

1: (topLeft: Point; 
botRight: Point); 

END; 

E-61 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual 

B1 tHap = RECORD 
baseAddr: QDPtr; 
rowBytes: INTEGER; 
OOunds : Rect; 

END; 

Cursor = RECrnD 
C1ata: 8itS16; 
mask: Bits16; 
hOtSpot: POint; 

END; 

PenState = RECORD 
pnLoc: 
pnSize: 
pnI1OCIe: 
pnPat: 

END; 

Point; 
Point; 
INTEGER; 
Pattern; 

polyHandle = APolyPtr; 
PolyPtr = Apolygon; 
Polygon = RECORD 

polySize: INTEGER; 
polyBBox: Rect; 
polyPoints: ARRAV[O .. O] OF Point; 

END; 

RgnHanClle = ~RgnPtr; 
RgnPtr = "RegIon; 

C)UfckDmw 

Region = RECORD 
rgnSize: INTEGER; { rgnSlze = 10 for rectangular } 
rgnBBox: Rect; 
{ plus more data if not rectanoular } 

END; 

P1cHanCIle = ~P1cPtr; 
P1cPtr = "Picture; 
P1cture = RECORD 

plcSlze: INTEGER; 
p1cFralre: Rect; 
{ plUS oyte cOCles for picture content } 

END; 

E-82 



Pascal Reference tvtanual 

QDProcsptr = "QDProcs; 
QOProcs = RECORD 

textProc: QDPtr; 
lineProc : QDPtr; 
rectProc: QDPtr; 
rRectProc: QOPtr; 
ovalProc: QOPtr; 
arcProc: QOPtr; 
pOlyProc: QOPtr; 
rgnProc: QOPtr; 
bltsProc: QDPtr; 
commentProc: QDPtr; 
txMeasProc: QDPtr; 
getPicProc: QOPtr; 
putPIcproc: QOPtr; 

END; 

GrafPtr = AGrafPort; 
GrafPort = RECORD 

devIce: 
portBits: 
portRect: 
visRgn: 
cl1pRgn: 
bkPat: 
fI11Pat: 
pnLoc: 
pnSlze: 
pnt1OOe: 
pnPat: 
pnVis: 
txfont: 
txFace: 
txMoC1e: 
txSize: 
spExtra: 
fgColor: 
OKColor: 
colrBlt: 
patStretch: 
plcSave: 
rgnsave: 

INTEGER; 
BitMap; 
Rect; 
RgnHandle; 
RgnHandle; 
Pattern; 
Pattern; 
Point; 
PoInt; 
INTEGER; 
Pattern; 
INTEGER; 
INTEGER; 
Style; 
INTEGER; 
INTEGER; 
Longlnt; 
LongInt;" 
LongInt; 
INTEGER; 
INTEGER; 
QOHandle; 
QOHandle; 

E-83 

QulckDraw 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual 

polysave: QOHancHe; 
grafProcs: QOProcsPtr; 

END; 

VAR thePort: GrafPtr; 
white: Pattern; 
blacK: Pattern; 
gray: Pattern; 
1 tGray: Pattern; 
dkGray: Pattern; 
arrow : Cursor; 
screenBits: BitMap; 
randSeed: Longlnt; 

{ GrafPort Routines } 

PROCEDURE InitGraf (globalPtr: QOPtr); 
PROCEDURE OpenPort (port: GrafPtr); 
PROCEDURE InltPort (port: GrafPtr); 
PROCEDURE ClosePort (port: GrafPtr); 
PROCEDURE SetPort (port: GrafPtr); 
PROCEDURE Getport (VAR port: GrafPtr); 
PROCEDURE GrafDevice (device: INTEGER); 
PROCEDURE SetportB1ts(bm: B1tMap); 
PROCEDURE PortSlze (wldth,helght: INTEGER); 
PROCEDURE MovePortTo (leftGlOOal,topGlOOal: INTEGER); 
PROCEDURE setOrlgln (h, v: INTEGER); 
PROCEDURE setCllp (rgn: RgnHandle); 
PROCEDURE GetClip (rgn: RgnHandle); 
PROCEDURE Cl1pRect (r: Rect); 
PROCEDURE BacKPat (pat: pattern); 

{ CUrsor Routines } 

PROCEDURE InltCUrsor; 
PROCEDURE Setcursor(crsr: cursor); 
PROCEDURE HldeCUrsor; 
PROCEDURE ShoWCUrsor; 
PROCEDURE ObscureOUrsor; 

E-84 

Qulcl<D18W 

/ 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manl.Jal 

{ L 1ne Routines } 

PROCEDURE HlcJepen; 
PROCEDURE ShowPen; 
PROCEDURE GetPen (VAR pt: Po1nt); 
PROCEDURE GetPenState(VAR pnState: PenState); 
PROCEDURE setPenState(pnState: penState); 
PROCEDURE PenSize (width, height: INTEGER); 
PROCEDURE PenMOde (mode: INTEGER); 
PROCEDURE PenPat (pat: pattern); 
PROCEDURE PenNormal; 
PROCEDURE MoveTo 
PROCEDURE Move 
PROCEDURE LineTo 
PROCEDURE Line 

(h,V: INTEGER); 
(dh,dV: INTEGER); 
(h, V: INTEGER); 
(dh,dV: INTEGER); 

(font: INTEGER); 
(face: Style); 
(1OOde: INTEGER); 
(s1ze: INTEGER); 
(extra: LongInt); 
(Ch: char); 
(5: Str255); 

QUickDraw 

{ Text Routines } 

PROCEDURE TextFont 
PROCEDURE TextFace 
PROCEDURE Textt10de 
PROCEDURE TextS1ze 
PROCEDURE SpaceExtra 
PROCEDURE DraWChar 
PROCEDURE DrawString 
PROCEDURE DrawText 
FUNCTION Char Width 
FUNCTION Strlngwldth 
FUNCTION TextW1dth 

(textBuf: QDPtr; flrstByte,byteCount: INTEGER); 
(Ch: CHAR): INTEGER; 
(s: Str255): INTEGER; 
(textBuf: QDPtr; flrstByte,bytecount: INTEGER): 

INTEGER; 
PROCEDURE GetFontInfo (VAR info: FontInfO); 

{ Point Calculations } 

PROCEDURE AddPt (src: Point; VAR dst: Point); 
PROCEDURE SUbPt (src: Point; VAR dst: Point); 
PROCEDURE SetPt (VAR pt: Point; h,v: INTEGER); 
FUNCTION EqualPt (ptl,pt2: Point): BOOLEAN; 
PROCEDURE SCalePt (VAR pt: Point; fromRect,toRect: Reet); 
PROCEDURE MapPt (VAR pt: Point; fromRect,toRect: Reet); 
PROCEDURE LocalToGlobal (VAR pt: Point); 
PROCEDURE GloballOLocal (VAR pt: Point); 

E-85 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal RefeJrJf1Ce Manual QulckDraw 

{ Rectangle Calculations } 

PROCEDURE SetRect (VAR r: Rect; left .. top, r1gtlt .. OOttom: INTEGER); 
Flt(.:TION EqualRect (rectl .. rect2: Rect): BOOlEAN; 
FUNCTI(J.I EfIllt yRect (r: Rect): BOO..EAN; 
PROCEOI.H: OffsetRect (VAR r: Rect; dh,dV: INTEGER); 
PROCEDURE MapRect (VAR r: Rect; fronAect, toRect: Rect); 
PROCE~E InsetRect (VAR r: Rect; (11, dV: INTEGER); 
FUNCTION SectRect (srCl,src2: Rect; VAR dstRect: Rect): BOOLEAN; 
PROCE~ unlonRect (srcl,src2: Rect; VAR dstRect: Rect); 
FUNCTION PtlnRect (pt: Po1nt; r: Rect): BOOLEAN; 
PROCEDURE Pt2Rect (ptl,pt2: Point; VAR dstRect: Rect); 

{ Graph1cal Operat1ons on Rectangles } 

PROCEDURE FrameRect (r: Rect); 
PROCE~ PaintRect (r: Root); 
PROCEDURE EraseRect (r: Rect); 
PROCEDURE InvertRect (r: Rect); 
PROCEDURE FillRect (r: Rect; pat: Pattern); 

{ RoundRect Routines } 

PROCEDURE FrameRounclRect (r: Rect; ovWd,ovHt: INTEGER); 
PROCEDURE Pa1ntRoundRect (r: Rect; ovWd"ovHt: INTEGER); 
PROCEDURE EraseRoundRect (r: Rect; ovWd,oVHt: INTEGER); 
PROCEDURE InvertRounaRect (r: Rect; OVWO,OvHt: INTEGER); 
PROCEDURE FillRoundRoot (r: Rect; ovWd,ovHt: INTEGER; pat: pattern); 

{ OVal Rout ines } 

PROCEDURE FrameQval (r: Rect): 
PROCEOURE PaintOVal (r: Rect ); 
PROCEDURE Eraseoval (r: Rect); 
PROCEDURE InvertOVal (r: Rect); 
PROCEDURE F1110val (r: Rect; pat: pattern); 

{ Arc Routines } 

PROCEDURE FrameArc (r: Rect; startAngle,arCAngle: INTEGER); 
PROCEDURE PaintArc (r: Rect; startAngle,arcAngle: INTEGER); 
PROCEDURE EraseArc (r: Rect; startAngle,arcAngle: INTEGER); 
PROCEDURE InvertArc (r: Rect; startAngle,arcAngle: INTEGER); 

E-86 

----.... <' : "". 
;" ':"'j 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual t;t;lckD18W 

PROCEDURE F1llAre (r: Rect; startAngle,areAngle: INTEGER; pat: 
Pattern); 

PROCEDURE PtToAngle (r: Rect; pt: Point; VAR angle: INTEGER); 

{ Polygon Routines } 

fUNCTION OpenPoly: 
PROCEDURE ClOsePoly; 
PROCEDURE KillPOly 
PROCEDURE OffsetPoly 
PROCEDURE NapPoly 
PROCEDURE FrarnePol y 
PROCEDURE PaintPoly 
PROCEDURE ErasePoly 
PROCEDURE Invertpoly 
PROCEDURE FillPOly 

PolyHandle; 

(poly: PolyHandle); 
(poly: PolyHandle; dh,dV: INTEGER); 
(poly: PolyHandle; frorrRect, toRect: Rect); 
(poly: PolyHandle); 
(poly: PolyHandle); 
(poly: POlyHanOle); 
(poly: PolyHanOle); 
(poly: PolyHandle; pat: pattern); 

{ Region calculations } 

Fl.N";TI ON NewRgn: R1;1tianOle; 
PROCEDURE DisposeRgn(rgn: Rgr1ianClle); 
PROCEDURE COpyRgn (srcRgn,dstRgn: RgnHandle); 
PROCEDrnE S8tEfTl)tyRgn(rgn: RgnHandle); 
PROCEDURE SetRectRgn(rgn: ~~le; left, top, right, bottom: INTEGER); 
PROCEDURE RectRgn (rgn: RgnHandle; r: Rect); 
PROCEDURE 0penRgn; 
PROCEDURE CloseRgn (dstRgn: RgnHandle); 
PROCEDURE OffsetR!1l (r!1l: RgnHa1dle; dh,dV: INTEGER); 
PROCEDURE MapRgn (rgn: Rgri-tandle; fr~ect, toRect: Rect); 
PROCEOURE InsetRgl (rgn: RgnHanole; ttl, dv: INTEGER); 
PROCEDURE S8ctRgn (srcRgnA, srcRgnB, dstRgn: RgnHandle); 
PROCEDURE lXllonRgn (sreRgnA, srcRgnB, dstRgn: RgnHandle); 
PROCEDURE DiffRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle); 
PROC1::Dlff xorRgn (srcRgnA, srcRgnB, dstRg1: RgnHandle); 
FUNCTION EqualRgn (rgnA, rgn8: RgnHandle): BOOLEAN; 
FLtlCTION ErrptyRgn (rgn: RgnHandle): BOOLEAN; 
FUNCTION PtInRgn (pt: Point; rgn: RgnHandle): BOOLEAN; 
fUNCTION RectInR(}l (r: Rect; rgn: R(}lHanOle): 600LEAN; 

{ Graphical Operations on Regions } 

PROCEDURE FrameRgn (rgn: Rgrtiandle); 
PROCEDURE paintRgn (rgn: RgnHandle); 
PROCEDURE EraseRgn (rgn: Rgr1-Iandle); 

E-87 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Hanual Qt,IiCkDl8Jt1 

PROCEDURE InvertRgn (rgn: RgnHancne); 
PROCEDURE FillRgn (rgn: RgnHandle; pat: pattern); 

{ Grapn1cal Operat1ons on B1tMaps } 

PROCEDURE ScrollRect(dstRect: Rect; Oh,dv: INTEGER; updateRgn: 
rgnHandle); 

PROCEDURE COpyBits (srcBits,dstBits: BitMap; 
srcRect,dstRect: Rect; 
lOOde : INTEGER; 
masKRgn: RgnHandle); 

{ Picture Routines } 

FUNCTION OpenPicture(picFrame: Rect): PicHandle; 
PROCEDURE ClosePicture; 
PROCEDURE DrawPicture(myPicture: PicHandle; dstRect: Rect); 
PROCEDURE Plccooment(Klnd,dataSlze: INTEGER; dataHandle: QDHandle); 
PROCEDURE Kl11Picture(myPlcture: PlcHandle); 

{ The BottlenecK Interface: } 

PROCEDURE SetStcProcs(VAR procs: QOProcs); 
PROCEDURE StdText (count: INTEGER; textAddr: QDPtr; numer,denom: 

PROCEDURE Still ine 
P~OURE St~t 
PROCEDrnE StdRRect 
PROOEDURE StdOVal 
PROCEDURE StdArc 

PROCEDURE StdPoly 
PROCEDURE StORgn 
PROCEDURE StdBits 

Point); 
(neIJlPt: Point); 
(verb: GrafVerb; 
(verb: GrafVerb; 
(verb: GrafVerb; 
(verb: GrafVerb; 

INTEGER); 

r: Rect); 
r: Rect; ovWd,ovHt: INTEGER); 
r: Rect); 
r: Rect; startAngle,arcAngle: 

(verb: GrafVerb; poly: PolyHandle); 
(verb: GrafVerO; rgn: RgnHanOle); 
(VAR srcBits: BitMap; VAR srcRect,dstRect: Rect; 

mode: INTEGER; masKRgn: RgnHandle); 
PROCEDURE StdCooment (kind,dataSize: INTEGER; dataHandle: QOHandle); 
FUNCTION StdTxHeas (count: INTEGER; textAddr: QDPtr; 

VAR numer,denom: Point; 
VAR info: FontInfo): INTEGER; 

PROCEDURE StdGetPic (dataPtr: QOPtr; bytecount: INTEGER); 
PROCEDURE StdPutPic (dataPtr: QDPtr; byteCount: INTEGER); 

E-88 

.-". 



ii 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference HantJal 

{ Hisc Utility Routines } 

FUNCTION GetPixel (h~v: INTEGER): BOOlEAN; 
FUNCTION RandOm: INTEGER; 
PROCEDURE Stuff Hex (thingptr: QOPtr; s:Str255); 
PROCEDURE ForeColor (color: Longlnt); 
PROCEDURE BacKCOlor (color: Longlnt); 
PROCEDURE COlorBlt (WhlchBit: INTEGER); 

E.B.1 Graf3() interfaCe 

{$S Graf } 

UNIT Graf30; 

QulCl<Oraw 

{ three-dimensional graphics routines layered on top of QuickOraw } 

INTERFACE 

USES {$U QO/QuicKDraw.OBJ} QuicKOraw; 

CONST radConst=57.29578; 

TYPE Point3D=RECORO 
X: REAL; 
y: REAL; 
Z: REAL; 

ENO; 

Point2D=RECORD 
x: REAL; 
y: REAL; 

END; 

XfHatrlx = ARRAY[O .. 3~O .. 3] OF REAL; 
Port3OPtr • ~Port30: 
Port3D = RECORD 

GPort : GrafPtr; 
vlewRect: Rect; 
xLeft~yTOP~xRlght,y8ottom: REAL; 
pen~penPrlme~eye: Polnt3D; 
hSize~ vSlze: REAL; 
hCenter,vcenter: REAL; 
xCotan,yCotan: REAL; 
Went: BOOLEAN; 
><Form: XfHatrix; 

END; 

E-89 



; 
L 

Pascal Reference Manuel QufckDrew 

VAR ttlePort30: Port3OPtr; 

PROCEDURE ~3OPort (port: Port3OPtr); 
PROCEDURE SetPort30 (port: Port3DPtr); 
PROCEDURE GetPort30 (VAR port: Port3DPtr); 

PROCEDURE HoveT02O(x,y: REAL); PROCEDURE HoveTo30{x,y,z: REAL); 
PROCE~ LlneTo20(x,y: REAL); PROCEDURE L1neTo30(x,y .. Z: REAL); 
PROCEDURE Hove20(ttx, tty: REAL); PROCEDrnE Hove30(ttx, dy" dz: REAL); 
PROCEDURE L1ne20{dx, dy: REAL); PROCEIXJRE L1ne30{dx, dy, dz: REAL); 

PROCEDURE Viewport 
PROCEDURE lOOKAt 
~0tH: VleWAngle 
PROCEDURE laenti t y; 
PROCEDlH: Scale 
PROCEDURE Translate 
PROCEI:)lft: P1 ten 
PROOE~ Yaw 
PROCE(')tft: Roll 
PROCEDURE Skew 
PROCEDURE TransForm 
FUNCTION Cllp30 

PROCEDURE SetPt30 
PROCEDURE Setpt20 

(r: Reot); 
(left, top, rlght,OOttom: REAL); 
(angle: REAL); 

(xFactor,yFactor,zFactor: REAL); 
(dx, tty, dZ: REAL); 
(xAngle: REAL); 
(yAngle: REAL); 
(zAngle: REAl); 
(ZAngle: REAL); 
(src: Polnt30; VAR ttst: Polnt30); 
(srCl,srC2: POlnt30; VAR Ostl,Ost2: POINT): 

aoo..EAN; 

(VAR pt30: Point30; x.,y,z: REAL); 
(VAR pt20: Point20; x.,y: REAL); 

E-90 



= II 

• -
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference fvfanUaJ c;tIlckDraw 

E.14 QUtCl<Oraw 3arf1>le PrognIns 
This section provides listings of two sample programs that are inclUded with 
the WOrkshop software. 

E.14.1 ~le 
The program ~le (In the me QD/Q()Sa'~le. TEXl) demOnstrates 
different things that QulCkDraw can do. Its output Is shown In Figure E -26. 

Text 

Bold 
Itolic 
Underline 

[Qdllm 

mmm 

RoundRects 

Polygons 

took what you can draw with QuickOraw 

Rectangles 
...------, 

Bit Images Wedges 

~ ~#f. 

(WEfj 
c '" val§ 

~ m @] L;j 

Regions Ovals 

FlgJTe E-26 
Q[)SCIlllle 

The fIle OO~le. TEXT ls an exec fIle mat can be used to rebulld 
thIs sample program. Disregard any warning messages from the llnker about 
name conflicts. 

E-91 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Refe.rence MBntJaJ 

PROGRAM QOSarrple; 

{ Sample program illlustrat1ng the use of QulckOraw. } 

USES {SU QO/QuiCkDraw.OBJ} QuickDraw, 
{SU QO/QDSUpport.OOJ} QOSupport; 

TYPE lconData = ARRAY[O •• 95 J OF INTEGER; 

VAR heapBuf; 
myPort: 
icons: 

ARRAV [0 •• 10000) Of INTEGER; 
GrafPort; 
ARRAV[0 •• 5] OF IconData; 

QulCkDraw 

FUNCTION HeapFUII(hZ: QDPtr; bytesNeeded: INTEGER): INTEGER; 
{ this f~t1on w111 be called if the heapZone runs out Of space} 
BEGIN 

WRlTELN(' me neap is full. The program IIJJst now terminate! '); 
Halt; 

END; 

PROCEDURE Initlcons; 
{ Manually stuff some icons. Normally we would read them from a file } 
BEGIN 

{ L1sa } 
StUffHex(micons[O, 0], 'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOlFFFFFFFFC'); 
StuffHex(wlcons[0,12], '0060000000060180000000OB060000000013OFFFFFFFFFA3'); 
StuffHex(&lcons[O,24J, '18000000004311fffff0002312000008Of231200000Bf923'); 
StUffHex(~lcons[O,36J, '120000080F23120000080023120000OB0023120000OBOF23'); 
StUffHex(&lcons[0,48), '120000OBF92312000008OF2312000008002311FFFFF00023'); 
StUffHex(miconS[O,60), '08000000004307FFFFFFFFA3010000000026OFFFFFFFFE2C'); 
StUffHex(&lcons[0,72), '18000000013832AAAAA8A9f065555551538OC2AAAA82A580'); 
StUffHex(mlconS[0,84], '80000000098OFFFFFFFFF30080000000160OFFFFFFFFFCOO'); 

{ Printer } 
StUffHeX(&iconS[l, OJ, '000000000000000000000000000000000000000000000000'); 
StuffHex(~lcons[1,12J, '00000000000000007FFFFF00000080000280000111514440'); 
StUffHeX(&lconsf1,24J, '0002000008400004454510400004000017COOOO4A5151000'); 
StUffHex(~lcons 1,36J, '0004000010000004A54510000004000017FEOOF4A5151003'); 
StUffHex(~lconS[l,48J, '0184000013870327fFFFFIOF06400000021BOCFFfFFFFC37'); 
StuffHex(micons[1,60), '18000000006B300000000OD77FFFFFFFFFABC00000000356'); 
StUffHex(~lcons(1,72], '8000000001AC87F00000015884100OCCCIB087fOOOCCC160'); 
StUffHex(miconS[l,84], '8000000001COC000000003807FFFFFFFfF0007800001EOOO'); 

E-92 

,o,',·,·",,~ 
", 

, i:.",--~ 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual ~JckDraw 

{ Trash Can } 
StuffHex(~iconS[2~ 0], 'OOOOOlFCOOOOOOOOOE060000000030030000000OC0918000'); 
StuffHex(miconS[2,12], '00013849800000026C4980000004C0930000000861260000'); 
StuffHex(~lconS[2,24J, '0010064FE0000031199830000020E6301800002418E00800'); 
StUffHex(mlconS[2,36], '0033E3801C0000180E002COOOOOFF801CC0000047FFEOCOO'); 
StuffHex(wiconS[2,48), 'OOOSOOOO4COOOOOS2S9A4COOOOOS2S0A4C00000S2SFA4COO'); 
StUffHex(miconS[2,60), 'OOOS24024C00000524924C00600524924C0090E524924C7C'); 
StuffHeX(wlconS[2,72), '932524924C82A44S24924001C88S24924CFIOC4524924C09'); 
StUffHex(mlcons[2,84], '0784249258E70003049233100000EOOOE40800001FFFC3FO'); 

{ tray } 
StuffHex(wlcons[3, OJ, '000000000000000000000000000000000000000000000000'); 
StuffHeX(wlconS[3,12J, '0000000000000000000000000000000000000007FFFFFFFO'); 
StUffHeX(wicons(3~24J~ 'OOOE00000018001A00000038003600000078006A000000D8'); 
StuffHex(mlconS[3,36J, 'OOO7FFFFFFB801AC000003580358000006B807FCOOOFFD58'); 
StuffHex(~lconS[3,48J, '040600180AB80403FFF00D58040000000AB8040000000058'); 
StuffHex(mlconS[3,60], '040000000AB807FFFFFFF05806ACOOOOOAB8055800000058'); 
StUffHex(wiconS{3,72), '06B000000AB807FCOOOFFD70040600180AE00403FFFOOOCO'); 
StUffHex(mlconS[3,84], '04000000OB8004000000OF00040000000E0007FFFFFFFCOO'); 

{ F11e Cabinet } 
StUffHex(~lconS[4, OJ, '0007FFFFFC0000080000OCOOOOIOOOOOIC00002000003400'); 
StuffHex(wlconS[4,12), '004000006COOOOfFFFFF040000800000ACOOOOBFFFFED400'); 
StuffHex(wlconS[4,24J, 'OOA00002ACOOOOA07F02D40000A04102ACOOOOA07F020400'); 
StuffHex(mlCOnS[4,36J, 'OOA00002ACOOOOA08082D40000AOFF82ACOOOOA00002D400'); 
StuffHex(wlconS[4,48], 'OOA00002ACOOOOBFFFFED40000800000ACOOOOBfFFFED400'); 
StuffHex(wlconS[4,60), 'OOA00002ACOOOOA07F02D40000A04102ACOOOOA07F02D400'); 
StuffHex(wicons[4,72), 'OOA00002ACOOOOAOB08?040000AOFF82ACOOOOA00002D800'); 
StuffHex(miconS[4,84), 'OOA00002BOOOOOBFFFFEE0000080000OCOOOOOFFFFFF8000'); 

{ drawer } 
StUffHex(mlconS[5, 0], '000000000000000000000000000000000000000000000000'); 
StUffHex(micons[5,12], '000000000000000000000000000000000000000000000000'); 
StUffHex(mlcons[5,24], '000000000000000000000000000000000000000000000000'); 
StUffHex(m1cons(5,36], 'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOlFFFFFFO'); 
StuffHex(mlconS[5,48], '000038000030000068000070000008000000003FFFFFFIBO'); 
StuffHex(micons[5,60]J '0020000013500020000016B000201FEOID50002010201ABO'); 
StuffHex(mlcons[5,72], '00201FEOl560002000001AC0002000001580002020101BOO'); 
StuffHex(mlconS[5,84), '00203FF01600002000001C00002000001800003FFFFFFOOO'); 

END; 

E-93 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference MantIaJ 

PROCEDURE Drawlcon(Whlcnlcon~n~v: INTEGER); 
VAA srC6its: BitMap; 

srcRect, OstRect : Rect; 
BEGIN 
srC61ts.DaseAC1C1r:=wlcons[whlchIcon]; 
srC6its.rowBytes:-6; 
setRect(srC61ts.oounas~O~O~48~32); 
srcRect:-srcBits.boUnds; 
OstRect:=srcRect; 

QulckDraw 

OffsetRect(dstRect,h,V); 
COpyBlts(srcBlts~tneport~.portBlts,srCRect~OstRect,srCOr,NI1); 

END; 

PROCEDrnE DrawStUff; 

VAR 1: INTEGER; 
teqlRoot: Root; 
myPoly: Po lyHanClle; 
myRgn: RgnHaldle; 
~pattern: pattern; 

BEGIN 
StUffHex(iilfnyPattern, • 8040200002040800'); 

tenpRect :. thePort .... portRect; 
CllPRect(t~t); 
EraseRoUndRect(tempRect,30,20); 
FrameRoundRect(t~t,30,20); 

{ draw two norlzontal llnes across the top } 
tIoveTO(0,18); 
L1neTo(719~ 18); 
HoveTo(O .. 20); 
L1neTo(719,20); 

{ Oraw 01vIoer lInes } 
tIoveTO(0,134); 
llneTO(719,134); 
tIoveTo(0,248); 
l1neTo(719,248); 
tIoveTo(240,21); 
llneTo(240,363); 
HoveTo(480,21); 
llneTo(480,363); 

E-94 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference l'18nual 

{ draw title } 
TextFont(O); 
MoveTo(21 0, 14); 
DrawString('Look what you can draw with QuickOraw'); 

draw text sarrples --------

MoveTo( 80,34); DraWString ( 'Text' ); 

TextFace([bold]); 
HoveTo(70,55); DrawStr1ng('Bold'); 

TextFace([italic]); 
MoveTo(70,70); DrawString('Italic'); 

TextFace([underline]); 
HoveTo(70,85); DrawStrlng('underline'); 

TextFace«(outline]); 
HoveTo(70,100); OrawString('OUtline'); 

TextFace«(shadow); 
HoveTo(70,115); DrawStringC'Shadow'); 

TextFace([]); {restore to normal} 

} 

{ --------- draw line samples --------- } 

HoveTo(330,34); DrawString('Lines'); 

MoVeTo(280, 25); L1ne(160,40); 

PenS1ze(3,2); 
HoveTo(280,3S); Line(160,40); 

PenSize(6,4); 
HoveTo(280,46); Llne(160,40); 

PenSlze(12,8); 
PenPat(gray); 
HoveTo(280,61); Line(160,40); 

E-9S 

c.;tIickDmw 



PlJscBi Reference Hl1f7lJlJi 

PenSize(15,10); 
PenPat(myPattern); 
HoveTo(280,80); Llne(160,40); 
PenNormal; 

{ --------- draw rectangle samples --------- } 

HoveTo(S60,34); DrawString('Rectangles'); 

SetRect(tempRect,510,40,570,70); 
FrameRect(tempRect); 

OffsetRect(tempRect,25,15); 
PenSize(3,2); 
EraseRect(tempRect); 
FrameRect(tempRect); 

OffsetRect(tempRect,2S,lS); 
PalntRect(tempRect); 

OffsetRect(tempRect,25,15); 
PenNormal; 
FillRect(tempRect,gray); 
FrameRect(tempRect); 

OffsetRect(tempRect,25,15); 
Fl11Rect(tempRect,myPattern); 
FrameRect(tempRect); 

{ --------- draw roundRect samples --------- } 

HoveTo(70,148); OrawString('ROUndRects'); 

SetRect(tempRect,30, 150,90, 180); 
FromoRoundRoot(tompRoot, JO, 20); 

OffsetRect(tempRect,25,15); 
PenSlze(3,2); 
EraseRoundRect(tempRect,30,20); 
FrameRoundRect(tempRect,30,20); 

OffsetRect(tempRect,25,15); 
PaintRoundRect(tempRect,30,20); 

E-96 

QuickDrow 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference H8nu8l 

Off setRect (tempRect, 25, 15); 
PenNormal; 
FlllRoundRect(tempRect,30,2o,gray); 
FrameRoundRect(tempRect,30,20); 

Off setRect (tempRect, 25, 15); 
FillRoundRect(tempRect,30,20,myPattern); 
FrameRoundRect(tempRect,30,20); 

{ --------- draw bit image samples --------- } 

HoveTo(320,148); OrawString('Sit Images'); 

Drawlcon(O,266,156); 
Drawlcon(1,336,1S6); 
Drawlcon(2, 406, 156); 
Drawlcon(3,266,196); 
DrawIcon(4,336,196); 
Drawlcon(5,406,196); 

{ --------- draw Wedge samples --------- } 

HoveTo(570,148); Ora~String('Wedges'); 

SetRect(tempRect,520,153,655,243); 
Fillt'\rc(terrpRect, 135,65, dkGray); 
Fl1lArc(tempRect,200,13o,myPattern); 
FillArc(tempRect,330,75,gray); 
FrameArc(tempRect,135,270); 
OffsetRect(tempRect,20,O); 
PalntArc(tempRect,45,90); 

{ --------- draw polygon samples --------- } 

Hove To (80, 262); DrawString('Polygons'); 
myPoly:~OpenPoly; 

HoveTo(30,290); 
LineTo(30,280); 
LineTo(50, 265); 
LineTo(90, 265); 
LineTo(80,280); 
LineTo(95,290); 
LineTo(30,290); 

ClosePoly; { end of definition } 

E-97 

QuickDIBW 



I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference I'18nuaI 

FramePoly(myPoly); 

Off setpoly (myPoly, 25, 15); 
PenS1ze(3,2); 
ErasePoly(myPoly); 
framePoly(myPoly); 

Off setPo ly (myPoly, 25, 15); 
PaintPoly(myPoly); 

OffsetPoly(myPoly,25,15); 
PenNormal; 
FillPoly(myPoly,gray); 
FramePoly(myPoly); 

OffsetPoly(myPoly,25,15); 
FillPoly(myPoly,myPattern); 
FramePoly(myPoly); 

Kl11Poly(myPoly); 

{ --------- demonstrate region clipping --------- } 

HoveTo(320,262); oraWString('Regions'); 

myRgn: =NewRgn; 
OpenRgn; 

ShowPen; 

SetRect(teJ1llRect, 260, 270, 460, 350); 
FrameRoundRect(tempRect,24,16); 

HoveTo(275,335); {def1ne triangular hole} 
LineTo(325,285); 
LlneTo(375~335); 
LineTo(27S,33S); 

SetRect(ternpRect, 36S,277, 44S, 325); {oval hole} 
FrameOval(tempRect); 

HidePen; 
closeRgn(myRgn); 

SetClip(myRgn); 

{ end Of definition } 

E-98 

QuickDrsw 



I 
I 
I 

PBSC81 Reference Manual 

FOR i:=O TO 6 DO {dra~ stuff inside the clip region } 
BEGIN 
HoveTo(260,280+12*1); 
DrawString('Arbitrary Clipping Regi~lS'); 

END; 

Cl1pRect(thePort A .portRect); 
DlsposeRgn(myRgn); 

{ --------- draw oval samples --------- } 

MoveTo(SBO,262); DrawString('Ovals'); 

SetRect(tempRect, 510, 264, 570, 294); 
FrarneOval(tempRect); 

OffsetRect(tempRect,25,15); 
PenSize(3,2); 
EraseOval(tempRect); 
FrameOval(tempRect); 

OffsetRect(tempRect,25,15); 
PaintOval(tempRect); 

OffsetRect(tempRect,25,15); 
PenNormal; 
Fl110val(tempRect,gray); 
Frameaval(tempRect); 

Off setRect (tempRect, 25, 15); 
Fl110val(tempRect,myPattern); 
FrameOval(tempRect); 

END; {DrawStuff} 

E-99 

QufckDmw 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference f18nu8J QuickDraw 

BEGIN {main program } 
{ Initialization - Generic to all applications using QuickDraw } 
QOInit(iheapBuf, GheapBuf[lOOOO], &HeapFull); { Hust do this once at 

beglming } 
OpenPort(~yPort); 
PaintRect(thePortA.portRect); 

InitIcons; 
DrawStuff; 

{ Paint grey background } 

Tone(2000, 500); { Beep tone of (1/2000)*10 A 6 == 500 cycles/sec for 
500 milliseconds } 

Readln; {Wait until RETURN entered before terminating program } 
ENO_ 

E-100 

I ' 



• --
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference M8/7lJal QuickDmw 

E.l42 Boxes 
The program Boxes (in the file QOIBoxes. TEXT) uses the Graf30 routines to 
draw random three-dimensional boxes on a grid, as shown in Figure E-27 . 

Fi~ E-27 
Boxel 

The file QDIMIBoxes. TEXT is an exec file that can be used to rebuild this 
sample program. Dlsregard any warning messages from the lInker about name 
confllcts. 

E-lOl 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

P8S'Ca/ Refemnce fvI8nt.Ja/ c;tIickDmw 

PROGRAM Boxes; 

{ Sample program illustrating use of the Graf3D unit by drawing random 
3D boxes on a gr1d. } 

USES 
{$U QO/QulckDraw.OBJ} QulCkDraw, 
{$1.J QD/Graf30.OBJ } Graf30, 
{$1.J OO/OOSUpport. OBJ} QDsupport, 

CONST boXCOLnt = 15; 

TYPE Box3D=RECORD 
ptl: Polnt30; 
pt2: Point3D; 
dist: REAL; 

END; 

VAR 
heapBuf: 
GPort1: 
GPort2: 
myPort: 
myPort3D: 
boxArray: 
nBoxes: 
1: 

ARRAV[O .. 8192] OF INTEGER; 
GrafPort; 
Port3d; 
GrafPtr; 
Port3DPtr; 
ARRAV [ O •• boxCount] OF Box3D; 
INTEGER; 
INTEGER; 

{16k bytes} 

FUNCTION HeapError(hz: QOPtr; bytesNeeded: INTEGER): INTEGER; 
{ this prOCedure gets called when the heap zone Is full } 
BEGIN 

WRITELN( • The heap is full. The program RUst now terminate! .); 
HALT; 

END; 

FlNJTION oletenoe(ptl, pt2: POINTJO): REAl; 
VAR dx, dy, dz: REAL; 
BEGIN 

dx:=pt2.X - ptl.X; 
dy:-pt2.V - ptl.V; 
dz:=pt2.Z - ptl.Z; 
Distance:=SQRT(dx*dx + dy*dy + dz*dz); 

END; 

E-I02 



PBSCB/ Reference M8f7U8i 

PROCEDtH: HakeBox; 

VAR myBox: 
i, j, h, v: 
pl, p2: 
myRect: 
testRect: 

BEGIN 

Box30; 
INTEGER; 
Polnt30; 
Rect; 
Rect; 

p1.x:-Random mod 70-15; 
p1.y:=Random mod 70 -10; 
p1.z: =0. 0; 
p2.x:=p1.x .. 10 .. ABS(Random) HOD 30; 
p2.y:=p1.y + 10 + A8S(Random) HOD 45; 
p2.z:=pl.z .. 10 .. ABS(Random) HOD 35; 

QuickDIBW 

{ reject box if it intersects one already in list } 
SetRect(myRect,ROUNO(pl.x),ROUND(pl.y),ROUND(p2.X),ROUND(p2.y»; 
FOR i: =0 TO nBoxes-l 00 

BEGIN 
WITH boxArray( i] 00 

SetRect(testRect,ROUNO(ptl.x),ROUNO(ptl.y), 
ROUNO(pt2.x),ROUNO(pt2.y»; 

IF SectRect(myRect,testRect,testRect) THEN EXIT(HakeBox); 
END; 

myBox. ptl : =pl; 
myBox. pt2: .. p2; 

{ calc midpoint of box and its distance from the eye } 
pl.x:={pl.x + p2.x)/2.0; 
p1.y:=(p1.y + p2.y)/2.0; 
pl.z:=(pl.z + p2.Z)/2.0; 
Transform{p1,p2); 
myBox.dist:=Distance(p2,myPort3D A .eye); {distance to eye} 

1:=0; 
boxArray[nBoxes).dlst:-myBox.dist; { sentinel} 
WHILE myBox.dist > boxArray[i].d1st DO 1:=i+1; {insert in order of dlst} 
FOR j:-nBoxes OO.mTO i+1 00 boxArray[j):-boxArray(j-l]; 
boxArray[i]:=myBoX; 
n80xes: =nBoxes+l; 

END; 

E-I03 



i -
I 
alii -
I 
I 
I 
I 

pl!JSCsJ Refemnt::e f.1BrH.J8J 

PROCEDURE DrawBox(pt 1, pt2: Polnt30); 
{ draws a 30 box with shaded faces. } 
{ only shades correctly in one direction } 
VAR tefll)RC}'l: RgnHandle; 

BEGIN 
terJl)Rgn : =NeIllRgn; 
OpenRgn; 

HoveTo30(pt1.x,pt1.y,pt1.z); { front face, y=y1 } 
LineTo30{pt1. X, pt1.y, pt2 .z); 
L1neTo30(pt2.x, ptl.y, pt2 .z); 
LineTo30(pt2. X, ptl.y, ptl.z); 
L1neTo30(ptl.x~ptl_y~ptl.z); 

CloseRC}'l(tempRC}'l); 
FillRgn(tempRgn,~hite); 

OpenRgn; 
HoveTo30(pt1.x,ptl.y,pt2.z); { top face, zez2 } 
llneTo30(ptl.x,pt2.y,pt2.z); 
LineTo30{pt2.x, pt2 .y, pt2 .z); 
llneTo30(pt2.x, ptl.y, pt2 .z); 
LineTo30(ptl.x, ptl.y, pt2.z); 

CloseRgn(tempRgn); 
FillRgn(tempRgn,gray); 

OpenRgn; 
MOveTo30(pt2.x,ptl.y,ptl.Z); { right face, x=X2 } 

LineTo30(pt2.x, ptl.y, pt2.z); 
lineTo3D(pt2.x,pt2.y,pt2.z); 
LineTo30{pt2.x, pt2 .y, ptl.z); 
llneTo30(pt2.x,ptl.y,ptl.z); 

CloseRgn(tempRgn); 
Fi 1 1 Rgn(tempRgn, black); 

PenPat( lAII'li te); 
HoveTo30(pt2.x,pt2.y,pt2.z); {outline right} 
L1neTo30(pt2.x, pt2 .y, ptl.z); 
LineTo30{pt2.x, ptl.y, ptl.z); 
PenNormal; 

DlsposeRgn(tempRgn); 
EMl; 

E-I04 

(.)uickDmw i~ 
" 

,"~~".\ 
".;,' 



-
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference 1'18nu81 

BEGIN {main program } 
{ Initialization - Generic to all applications using QuickDraw } 
QDInit(wheapBUf, iheapBuf(8192), iheapError); { Must do this once at 

beginning ) 

myPort := &GPortl; 
OpenPort(myPort); 
myPort3D := mGPort2; 
Open3OPort(myPort30); 

ViewPort(myPort~.portRect); 
LookAt(-100, 75,100, -75); 
VieIJlAngle(30); 

{ put the image in this reet } 
{ aim the camera into 30 space } 
{ choose lens focal length } 

Identity; Roll(20); Pitch(70); { roll and pitch the plane } 

PenPat(white); 
BackPat(black); 
EraseRect(myPortA.portRect); 

FOR i:=-10 TO 10 DO 
BEGIN 

MoveTo30(i*10, -100, 0); 
LineTo3D(i*10, +100, 0); 

END; 

FOR i:=-10 TO 10 DO 
BEGIN 

MoveTo3D(-100, i*10, 0); 
L1neTo3D( +100, i*10, 0); 

END; 

nBoxes:=O; 
REPEAT HakeBoX; UNTIL nBoxes=boXCount; 
FOR i: =nBoxes-l OOWNTO 0 DO 

OrawBox( boxArray [ i ] . pt 1, boxArray [ i ] . pt2); 

Tone(2000, 500); {Beep tone of (1/2000)*10 A 6 == 500 cycles/sec for 
500 milliseconds } 

ReadLn; {lJIai t until RETURN entered before terminating program } 

END. 

E-I05 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference H8I7tJal QuickDl8w 

E.15 ~rt 
The ~rt unit (In the fHe QDIQDSl4lJ)()lt.1EXl) provideS the 
lnlttallzatlon tJ1at you neeet to use QulCKDraw In tJ1e QDlnlt prOCedUre, as well 
as proceetures for slmpl1f1eet access to mouse traCKing, the mouse button, and 
souna generation, and useful etefinltIons of font numbers. For more etetaUect 
information on mouse-handling routines and sounet .. refer to ~ndlx F .. 
Haretware Interface. 

UNIT QDSupport; 

INTERfACE 

USES 
{$U QO/unitStet.OBJ } unitStet .. 
{$U QO/uni tHz . 06J } Uni tHz .. 
{$U QO/Hardware.OBJ } Hardware, 
{$U QD/Fontngr .06J } Fontngr .. 
{$U t;V/QuickOraw. 08J} QulcKOraw; 

CONST 
{---------- Font Numbers ----------} 

FTile12 ;;; 4; {proportional} 
FTile18 = 5; {proportional} 
FTlle24 = 6; {proportional} 
FP15T1le = 7; {Honospaced - 8 lines/inch & 15 Chars/inch} 
FP12T1le = 8; {Nonospaceet - 6 lines/inch a 12 chars/inch} 
FP10Tlle = 9; {Honospacect - 6 lines/inch a 10 Chars/inch} 
FCent12 = 10; {proportional} 
FCent18 = 11; {proportional} 
FCent24 = 12; {proportional} 
FP12Gent = 13; {HOnoSpaoect - 6 lines/inch a 12 chars/inch} 
FPI0Cent ;:;: 14; {Honospaced - 6 lines/inch a 10 Chars/inch} 
FP20Tlle = 19; {Honospaceet} 

E-I06 



• 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual QuickDraw 

PROCEDURE QOlnit(startPtr, limltPtr: QOPtr; ErrorProc: QOPtr); 
{ QDlnit: Initializes QuickOraw unit by setting up its heap 

zone, global vars, cursor, and the Font Manager it 
calls on. } 

PROCEDURE GetHouse(VAR pt: Point); 
{ GetHouse: Returns the current roouse location in the local 

coordinates of the current grafPort. } 

FUNCTION HouseButton: BOOLEAN; 
{HouseButton: Returns TRUE if the rouse button 1s currently held 

down, otherwise FALSE. } 

PROCEDURE Tone(waveLength, duration: Longlnt); 
{ Tone: ProdUces a square wave tone of the specified 

wavelength (microseconds) for the specified duration 
(milliseconds). } 

E-107 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

PsscaJ Refemnce MBntIBl QtJickD1'8W 

E.16 Glossary 
bit image: A collection of bits in memory that have a rectilinear represen
tation. The Usa screen is a visible bit Image. 
bitmap: A poInter to a bIt image, the row width of that image, and its 
boundary rectangle. 

bou1dary rectangle: A rectangle defined as part of a bItmap, whIch encloses 
the active area of the bit image a1d Imposes a coordinate system on it Its 
top left comer is always allgned around the first bit in the bit image. 

C8TleIB eye: A ro ICept in three-dimenslonal graphics: the polnt of vIew and 
the viewing CIlQle in which CI'I object appears, Independent of the objeCt's 
coordinates. 

character style: A set of stylistic variations, such as bold, italic, and 
underline. The empty set indicates normal text (no stylistic varlaUons~ 

cliRlirYJ: Limiting drawing to within the bounds of a particular area 

cllAJing region Same as cllpR4}1. 

cllJ:'A~ The region to which an application limits drawing in a grafPort. 

coordinate plB'le: A two-dimensional grId. In QuickDraw, the grid coordinates 
are integers ranging frern -32768 to +32767, and all grid lines are infinltely 
thin. 

cursor: A 16-by-16-bl t image that appears on the screen and is controlled by 
the mouse. 
cursur level: A value, inltialized to 0 when the system Is booted, that Keeps 
track. of the number of times the cursor has been hIdden. 

ef'IlJly: Containing no bits, as a shape defined by only one point. 

font: The complete set of characters of one typeface, such as Century. 

frane: To draw a shape by drawIng an outline of It 
global coordinate system: The coordinate system based on the top left corner 
of the bl t image beIng at (0,0). 

Graf3O: A three-dimensional graphics unit that calls QuickOraw routines. 

grafPort: A complete drawing envirorrnent, including such elements as a 
bitmap, a subset of it in which to draw, a character font, patterns for drawIng 
and erasing, and other pen characteristics. 

grafPtr: A pointer to a grafPort. 

taxne: A pointer to one master pointer to a dynamIc, relocatable data 
structure (such as a reglon~ 
hoUpot; The point in a cursor that is aUgned with the mouse poSition. 

kern: To stretch part of a character back under the prevIous character. 

E-I08 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

PBSCBl Reference fvIEn.JBJ 

local coordlnate system: The coordinate system local to a grafPort, Imposed 
by the boundary rectangle defined in its bitmap. 

missing syntJol: A character to be drawn in case of a request to draw a 
character that is missing frem a particular font. 

pattem M 8-by-8-bit image, used to define a repeating design (such as 
stripes) or tone (Such as gray~ 
pattern transfer mode: 01e of eight transfer modes for drawing lines or 
shapes with a pattern. 
pIcture: A saved sequence of QulcKDraw drawing cornmancJs (and, optionally, 
picture comments) that you can play back later wlth a single procedure call; 
also, the image resulting from these commands. 
picture con nlenu: Data stored in the definl tion of a picture which does not 
affect the picture's appearance but may be used to provide additional 
information about the picture when it's played back. 
piCture frt'l'l'le: A rectangle, defined as part of a picture, which surrounds the 
picture and gives a frame of reference for scaling when the picture is drawn. 
pixel: The visual representation of a bit on the screen (white if the bit is 0, 
black if it's 1~ 

point: The intersection of a horizontal grid line and a vertical grid line on 
the coordinate plane, defined by a horizontal and a vertical coordinate. 
polygcn A sequence of connected lines, defined by QuickDraw line-drawing 
Commands. 

port: GrafPorl or Port3D. 

Port3D: A data structure in Graf3D that maps three-dimensional coordinates 
into a two-dimensional QuiCkDraw grafPort. 
Port.3CPtr.: A pointer to a Port3o. 
portelts: The bitmap of a grafPorl 
portBlt.s..lXX.R1S: The IJoI.Jndary rectangle Of a grafPort's bitmap. 
portRect: A rectangle, defined as part of a grafPort, which encloses a subset 
of the oi tmap for use by the grafPorl 

reg1m An arbi trary area or set of areas on the coordinate plane. The 
outline of a region should be one or more closed loops. 
row width: The number of bytes in each row of a bit Image. 
scale: To shrink or expand by a specified factor. 

solId: Filled in with any pattern. 
source tn:I1sfer rmde:: 01e of eight transfer modes for drawing text or 
transferring any bIt Image between two bltmaps. 

E-109 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

style: see character style. 
thePort: A global variable that points to the current grafPart 
thePart3D: A glObal variable that paints to the current Part3D. 
u8IlSfer rn:xJe: A specification of which boolean operation QuickDraw should 
perform when drawing or when transferring a bIt Image from one bitmap to 
another. 
tl'lIlslate: To move in three-dImensional space by a specIfied arTlOlK"It 

UBlsfonnatlan matrix: SClTle as :xF arm matrix. 
vi~ pynmid: The portion of three-dimensional space that a ccmera eye 
can see. The pyramid's apex Is the point Of the camera eye; Its base is the 
viewRect in a Port30. 
visRgt The region of a grafPort which is actually visIble on the screen. 
xFann matrtx: A 4x4 matrix that holds an equation to transfann paInts 
platted in three-dimensional coordinates into twa-dimensional screen 
coordInates. 

E-110 

~., I,) 
, " 

,~,' .. ,~iIY 



• • 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Appendix F 
Hardware Interface 

F.1 TIle I'1ouse ••••••••••••....•.••••••••.•••••.••••.•••••••••••••••••••••••••.•••••••••••••••••••••• F-1 

F .1.1 rv'Iouse Location ..................................................................... F-1 
F .1.2 fV10use LJpdate Frequency ........................................................ F-l 
F.l.3 l'1ouseScaling ....................................................................... F-1 
F .1.4 fYIouse Il::forneter .................................................................... F - 2 

F 2. TIle a..trsoI ...........................................................•.•.......•...•.....•.••... F - 2 

F .2.1 CUrsor Jtv10use Tracking........................................................... F - 3 
F.2.2 The Busy CUrsor ..................................................................... F-3 

F.3 TIle Display SCreen ........................................................................... F-4 

F .3.1 SCreen Contrast .............. , . .. ..... .. . ... ..... .... .... . ...... .. ...... ......... ... F-4 
F .3.2 ,A,utornatlc SCreen Fading ........................................................ F-4 

F .4 TIle speaker .................................................................................... F-5 

F.5 The Keyt:JoaId ...•.•.••••.•.....•...••......................•........•...•..........•...••••.••. F-5 

F.S.l Keyboard Identlfication .......................................................... F-7 
F .5.2 Keyt:x:)ard State ...................................................................... F-8 
F .5.3 Keyboard Events ..................... , .............................................. F-8 
F.S.4 CIead Key Diacriticals ........................................................... F-10 
F .5.5 Repeats ............................................................................... F -11 

F.6 ThetvllClcJSeCClId Tlmer .................................................................... F-ll 

F.7 TIle tvIllllsecond TImer ...•.•...........•....••••........••••...••••••••••••••••.•...•....•. F -12 

F .8 [)ate and TIme ................................................................................ F-12 

F.9 Tilne st.a"fll .................... , ...................................................•.......... F-12 
F .10 Interface of U1e l-BrdwaIe U1l t ......................................................... F -13 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference }.I.,") Notes 

Link to New File 

Appendix F 
Hardware Interface 

Hardware Interface 

Programs using the Hardware unit should still be compiled against the file 
QD/Hardware.OBJ, but should now be linked to the file SyslUb.OBJ (not 
QD/HWlntL.OBJ). 

Notes F-l 



-,.. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Hardware Interface 

The hardware interface software provides an interface for accessing and 
controlling several parts of the Usa hardware. The hardware/software 
capabilities addressed include the rrotJSe, the cursor, the display, the contrast 
control, the speaker, both u !decoded and decoded keyboard access, the micro
second and mUlisecord timers and the hardware clock/calendar. 

This appendix contains Pascal procedure and function declarations interleaved 
wIth text describing them. Pascal type declarations fnj a sl.ITIm8ry of the 
function and procedure declarations CcIl be found in Section F .10, Interface of 
the Hardware Unll 

Programs using this LIlit should be Cf:JfTl)iled against the file QOll--fardwareJ13J 
and linked to the file QDIHWlntLOOJ. 

F.1 The ~ 
F.1.1 ~ location 

Pn::JceWre MI1m:!Locatlm (var x:: Pb:els; var y: Pixels); 

The fT1Of.JSe is a pointing device used to Indicate screen locations. 
MouseLocation returns the location of the mouse. The X-coordinate CCf'l range 
from 0 to 719" and the Y-coordlnate from 0 to 363. The initial ITICIC.JSe 
location is 0,0. 

F.l.2 MI::Jt.E 4JdBt.e F~y 
Prl:Jcet:lJre M:Me4Jdates (delay: MllllSeca Ids); 

Software knowledge of the mouse location is updated periooically, rather tha1 
conUl1tIOUSly. The frequency of these updates can be set by calling 
MJISei p.1Btes.. The time between updates can range from 0 milliseconds 
(continuous updating) to 28 milliseconds, in intervals of 4 millisecocids. The 
initial setting is 16 millisecorm. 

F.l.3 MJuse Scaling 

Pn::JceWre MouseScallrg (3C8le:6001em}; 

Pn::JceWre MouseThresh (thresOOld: PIxels); 

The relationshIp between physIcal mouse movements and logical ITICIC.JSe move
ments is not necessarily a fixed linear ~lng. Three alternatives are 
available: 1) lIlscaled, 2) scaled for fine movement and 3) scaled fOf coarse 
movement In! tiall Y mouse movements are lIlSCaled. 

When mouse movement is lH7scolea a horizootal mouse movement of x lI1its 
yields a change in the mouse X-coordinate of x pixels. Similiarly, a vertical 
movement of y units yields a change is the mouse Y-coordinate of y pixels. 
These rules apply iroependent of the speed of the mouse movement. 

F-l 



~ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pssca/ Reference M8nu81 I-18n:1wSTe Interfsce 

When mouse movement Is sr:aJer:t hOrizontal movements are magll fled by 312 
relative to vertical movements. This is to ~te for the 213 aspect 
ratio of pixels on the screen. When scallng Is In effect, a distinction Is made 
between nne (small) movements {fij et:Jl1ISC (large) movements. FIne move
ments are sllg,Uy reduced, whIle coarse movements are magnIfIed. For scaled 
fine movements, a hOrizontal mouse movement of x lXllts yields a cher'lge in 
the X -coordinate of x pixels, but a vertical movement of y uni ts yields a 
chcnge of (213)*y pIxels. For scaled coarse movements, a hOrizontal movement 
a x lJ'lits yIelds a chcnJe of (312)*x pIxels, While a vertical movements of y 
lXlits yields 8 change of Y pixels. 

The distinction between fine movements a1d coarse movements is determined 
by the $lITl of the x an:j y movements each time the fTOJSe location is 
updated. If this SlIll is at or below the t/Jresholct the movement is considered 
to be a fine movement Values of the threshold range from 0 (which yields all 
coarse movements) to 2S6 (which yields all fine lTIOVements~ Given the 
default m::JUse l.4Jdatirg fr~y, a threshold of about 8 (threstllld's initial 
setting) gives a ccrnfortable trcrnition between fine a1d coarse movements. 

M1tseSca11fYJ enables and dIsables mouse scallng. Mue1llresh sets the 
threshold between flne and coarse movements. 

F .1.4 t-'bJSe Qbret.er 

FlJ'lCtim ~r: MEI1yPlxels; 

In order to properly specify, desl~ and test mice, it's iflllOrtant to estimate 
how far a mouse moves wring Its lifetime. ~ returm the un 
of the X 81d Y I'T'KJVeI'11eflts of the m::JUse since boot time. The value returned 
is In (LI1SC81ed) pixels. There are 180 pixels per inch of mouse movement 

F 2. The CUrsor 

Pnx;eWre CUnorlmage (h:rt.X: Pbels; hotY: Pixels; heicjlt.: CUnorHeicjlt; data: 
CUrsmPtr; mask: CUrsmPtr); 

The ausor is a sma111rnage that is displayed on the screen. Its shape is 
speclfled by two bitmaps, called t18t11 ano fTI8Sk These bitmaps are 16 bits 
wide and from 0 to 32 bits hlt'tl- The rule used to combine the bIts already 
on the screen with the data Er'K1 mask Is 

screen <- (screen n:I (rot mBSk» :xm dBt8. 

The effect is that white areas of the screen are replaced with the cursor 
data Black areas of the screen are replaced with (not mask) xm data. If the 
data and mask bitmaps are Identical, the effect is to or the data onto the 
screen. 

The cursor has both a locstion and a hotspot The locatioo is a position on 
the screen, with X-coordinates of 0 to 719 and V-coordinates of 0 to 363. 
The hotspot is a position within the cursor bitmaps, with X- and Y-coordi
nates ranging from 0 to 16. The cursor is displayed on the screen with its 

F-2 



-
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pesc81 Reference I'18nu8l HerdW8I8 Interface 

hotspot at Its location. If the cursor's location Is near an edge of the screen, 
the cursor image may be partially or completely off the screen. 
Most cursor operations ccn be performed by calling the SetCunor, HideCursor, 
ShoWCursor, <rid CbscureCunor procedures defined by QulckDraw (see Section 
E.9.2, CUrsor-HandllrYJ Routines~ Additional capablllties are provIded by the 
HardWare Interface routines described below. 
The CUrsorlmage procedure is used to specIfy the data bitmap, mask bItmap, 
heIght and hotspot of the cursor. InItially the cursor data and mask bitmaps 
contain all zeros, whIch yIelds a blCl1k (invlsible) cursor. The Inltial hotspot is 
OJ]. 

F.2.1 CUrsorJtobJse Trac:IdrwJ 

ProceciJre CUrsorTrackir¥J (track: Boolean); 

ProceciJre CunmU:x::atlm (x: Pixels; 1= Pixels); 

CI..InorTIDlng enables and dlSables cursor /.racking of the mouse. When 
trackirYJ is enabled, the cursor location Is changed to the mouse location each 
time the mouse moves. Setting the cursor location by calling CI..InorLocatlm 
will have no effect; the cursor sticks with the fTlOl.ISe. 

When tracking Is disabled, the IT'IO.Jse location CI1d cursor location are indepen
dent Calling CUrsorLocatim wUl move the cursor; movlrYJ the mouse will not 

When trackIng Is first enabled (Le., on each transition from disabled to 
enabled) the mouse location Is modified to equal the cursor location. There
fore, enabling tracklrYJ does not move the cursor; it does modify the mouse 
location. InItially tracking is enabled. 

F .2.2 The Busy OJrsor 

ProceWre BusyImage (OOtX: Pixels; mtY: Pixels; heicjlt: CunOIHeicjlt; data: 
CUrsoIPtr; mask: CUnoIPtr); 

ProceclJre BusyDelay (delay: M111lsecor Ids); 

AppllcatIoos may desire to display a blIsy cu.rsor (e.g., an hourglass) when an 
operation in progress requires more than a few seconds to complete. The 
BusyImage procedure is used to specify the data bitmap, mask bitmap, height 
and hotspot of the busy cursor. 
A call to BusyDelay speci fies that the normal cursor should current! y be 
displayed, and that display of the busy cursor should be delayed for the 
specified IUTlber of milliseconds. Subsequent calls to BusyDelayoverride 
previous Galls, post.J:xxllng dIsplay of U1e bUSy cursor. If no calls to BusyDelay 
occur for the specified rumber of milliseconds, the busy cursor will be 
displayed until the next call to BusyDelay. 
InItially the bUSy cursor data and maSk bitmaps contain all zeros, whIch yields 
a blCllk (invisible) cursor. The Initial hotspot is 0,0. The initial busy delay is 

F-3 



• • 
I -
I 
I 
I 
I 
I 
I 
I 
I 

PBSCBl Reference H8nua/ J-Iarr:JwBrt! Interl8ce 

infinite, that is, the busy cursor wm not be dIsplayed until BusyOelay is 
called. 

F.3 The Display Screen 

Procec1Jre ScreenSlze (var x: Pixels; var y: Pixels); 

The display screen is a bit mapped display,: that is, each plxel on the screen 
is controlled by a bit in main memory. The display has 720 pixels horizontally 
and 364 lines vertically, and therefore requires 32,760 bytes of main memory. 
The screen size may be determined by calling ScreenSlze. 

FU'Etim FllJTIeCoJlter: FrBTlBS; 

The screen is redisplayed about 60 Umes per second. A f'.r8me counter is 
incremented between screen ~tes, at the vertical retrace interrupt. The 
frame COlI1ter is an lI1Sigled 32-bit integer which is reset to 0 each time the 
machine is booted. FllJTIeCoJlter returns this value. An application can 
synchronize with the vertical retraces by watching for changes in the value of 
this eotrlter. The frame counter should not be used as a timer; use the 
mlllisecond and mircosecond timers instead. 

F 3.1 Screen Co1trast 

F.3.2 

FU'Etion Co1trast: ScreerO:Jntrast; 

Procec1Jre 5et.CmtIBst (cc:ntrast: Scretn:;mtIBst); 

The display's contrast level is under program control. Contrast values range 
from 0 to 255 ($FF), with 0 as maxinun contrast and 255 as mlnim.m. 
Contrast returns the contrast setting; setCl:J1t.Iast sets the screen contrast. 
The low order two bits of the contrast value are ignored. The initial contrast 
value is 128 ($80~ 

Procec1Jre R~trast (contrast: Screencmtmst); 

A sudden challge in the contrast level can be jarring to the user. 
RCIllJC.o.'trast gradually changes the contrast to the new setting over a period 
of about a Second. ~ returns ilTlTlediately, then TaI'11JS the 
contrast using interrupt dri van processing. 

Autanatlc Screen FadiIYd 
Ftn:tlm DlnOntIast.: ScreerCtJrt.ras; 

Procec1Jre SetDtmCmtrast (contrast: ScreerO:l1trast); 

The screen contrast level is automatically dirrvned if no user activity is noted 
over a specified period (usually several minutes~ This is done in order to 
preserve the screen pho'spher. Dln'1C:altrast returns the contrast value to which 
the screen is dirrmed; SetDirrCtx1t.ra sets this value. The initial dim 
contrast setting is 176 ($BO~ 

F-4 



-• 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Hanll8l Hardware Interface 

Ftn;tim FOOeOelay: MllllSeca Ids; 

ProceWre SetFadeDelay (delay: MllUSecoi m); 

The delay between the last user activity and dImming of the screen Is under 
software controL FadeOelay returns the fade delay; SetFadeOelay sets it 
The actual delay wlll range from the specIfied delay to twice the specIfied 
delay. The Initial delay period Is five minutes. 

When the screen is dim, user interaction will ~ the screen contrast to 
return to its normal bril1lt level (determined by the COntrast cr.d SetCOntrast 
routines defined above} MovlrYJ the J'Tl()JS8 or presslrYJ a key on the keyboard 
(e.g., SHIFT) is enough to trigger the screen brl~tening. Calling 
CUrsolLoc::::atlm or SetFadeOelBy also indicates user activity. 

F.4 The SpfB<er 

Ftn;tloo VoIU'Tle: speakeTVoIlJ11e; 

Procerure SetVolune (volt.me: SpeakerVolune); 

ProceWre ~se (waveLength: MlcroSectros); 

ProceclJre SllerEe; 

ProceWre Beep (waveLength MlcroSecollds; wration: MllllSec:xnJs); 

The routines in this section provide square wave output from the Lisa speaker. 
The speaker volLme can be set to values In the range 0 (SOft) to 7 (I0Ud~ 
Volune reads the volLrne setting; SetVolune sets it. The initial volume 
setting is 4. 

I'blse produces a square wave of approximately the specified wavelength. 
Silence sruts off the square wave. The minim..m wavelength is about 8 
miCroseconds, which corresponds to a frequency of 125,000 cycles per second, 
well above the audible range. The maxirrun wavelength is 8,191 micro
sea::n:ts, which corresporKjs to about 122 cycles per second. 
Noise and Silence are called in pairs to start and stop square wave output In 
contrast, Beep starts square wave output whIch will automatically stop after 
the specified period of time. The effects of Noise, Sllence and Beep are 
overrIdden by subsequent calls. 

F.5 The Keyboard 
The routines in this section provide an interface to the keyboard, the keypad, 
the mouse button and plug, the diskette buttons and insertion switches, and 
the power switch. Two interfaces are provided .. a pollable keyboard state and 
a queue of keyooard events. 

Three physical keyooard layouts are defined, the MOld US Layout" (with 73 
keys on the main keyboard and runeric keypad), the "Final US Layout" (76 
keys) and the MEuropean Layout" (77 keys~ Each key has been assigned a 
keycode, which uniquely identifies the key. Keycode values range from 0 to 

F-S 



-
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference I'18ntI8l I-I81r:Iw8re Interface 

127. Table F-1 defines the keycodes for the "FInal US Layour', using U1e 
legends from the US Keyboard. The "Old US Layout" has three less keys; I\, 
Alpha Enter, EW1d Rl~t q:,Uon are not on the old keyboard. The "EuropeCll 
Layout- has one additional key, ><, wIth a keyCOde of $43. 
Two keys 00 the "Old US Layout" generate keycodes different from the 
corresp:xldlng keys on the "Final US Layout". To aid In compatlb1l1ty, 
software chcrlges the keycode for - - from $7C to $68, and the keycode for 
Rl~t QlUoo from $68 to ~. 

Tctlle F-1 
Keyc0de3 for ""Fintll US Laywt-

HIGH" 000 001 010 011 100 101 110 111 l. 0 1 2 3 4 5 6 7 

0000 :-::}(»)) :;:::;:;:;:: -:::::: 

~ :::::::::-:-:-:.:-:-: CLEAR ~ E A 
0 -

0001 DISK 1 :-: + ) " CD - ~ k);.:-:<): 1 INSERTED = a 6 2 
0010 DISK 1 .. 

" 
, & It 

2 BUTTC»f ;.}} ~ ::-':}<\>: \ U 7 3 
0011 DISK 2 :;:}<:;:::::;: * V:;:;::::::::::': ':::-:-::-:';;}:;: ... $ 

~* 
:::: :::-:::: I 3 INSERTED .:: -:.: .:: 8 II 

0100 DISK 2 ::-::::::::::::::::;:::; V: 
J % ! 

4 BUTTC»f :;:;:;:;:;;:;:;:;:;:;:; 7 
"* 

::::::;:::::::::;:;:;::: p 5 1 
0101 PMAllEL ;;:;:;:;:;'::;:;:;:::::: 

8 ~ 
::«::::::::::::; 

K R Q 5 PORT :-: BACKSPACE 

0110 nOOSE 9 t. :::::::::::::::::::::::: PLPHA { 
T S 6 BUTTC»f ::::::::::::::::.:: :-:. ENTER [ 

0111 nOOSE I «>::: :::: I::::::{/:::\:: } 

7 PLUG [!J j. ) 
y W 

1000 POUER ;:;::)::-:-: t ;<::;:;:::;:;::>:<:: 
M - TAB 8 BUTTC»f 4 .::.:;.::-:-:-:.:: RETURN , 

1001 -:-: .;.;-:<. -:-:< 

9 :-::: .:-: 5 * 0 ~ L F Z :-:-:-: :::::-:: :: :-::::: i···················· .. 

1010 ~ll: l~:~ '~l: l:j: j~j~l:j ~ j:! l!: l:: l i: j ~ j: l: j: j' 6 f. ll:l:lilili::ll:[ji:i: 
:-: ::::: : 

G A ::::::::};:;:;:;:;\ ; x 
1011 .-

~ ~(? :-: ::::::::::::? .. 
B i.;· .... :. [f] • H 0 :.:.:.;.:.:.:.:. 

1100 
::: ~::: \:;:: ~:::: ~::::: ~:::; ~ \:::::;:::;:::::: />;.;.::;.::.;.; ? SPACE V 

LEFT 
C I IJ>UC»f 

1101 ~~:: :~:::~: ~ :~:~ !~!~:~! [:li:::!l:li[:i:[:l:l:: :~ :::::::~:::::::::::::: : < CAPS 
0 2 1 ~ " C LOCK 

1110 :: :-:::<:: 
~ 

<:: :: ::: RIGHT :>- B E :::: 3 IJ>TlC»f SHIFT 
:::: :::> :::::.: . 

1111 . -:':-:':-:-:-:«':-:' 
:;:; 

:t::t:??:~: NlI'IERIC ;.;.;.: 
0 N ., 

F 1::;::::\::::) £NT£R 

F-6 



-

• • -
I 
I 

P8SC8l Reference H8nt181 

F 5.1 KeytlOanl I<JenUflcaUm 

FlIlCtim KeytJoarO: KeytldJd; 

FlI'lCUm legendS: KeytldJd; 

ProoeWre setLegends (let: KeybdId); 

Usa software supports a host of different keyboards. Each keyboard has three 
major attributes: manufacturer, physical layout, and legendS. The chart 
below descrIbes hOw these three attrIbutes are combIned to form a Keyboard 
Identi- flcaUon number. The keyboards self Identify when the machine is 
turned on and when a new keyboard Is attached. Keyt:xJan1 returns the 
Identification number of the keyboard currently attached. legendS and 
setLegerm provIde a means of pretendIng to have dIfferent legendS, wIthOUt 
physically replacing the keyboard. 

Keyboard ldentl flcation numbers: 

7 6 5 4 
Layrut 

MCnlfacturer: 

00 APD (I.e., TKC) 
01 --
10 -- KeytronIcs 

layrut: 
00 Old US (73 keys) 
01 
10 European (77 keys) 
11 Flnal US (76 keys) 

LayoutlLeget Ids: 

$OF Old US 

$26 
$27 
$29 
$29 
$2A -
$2B -
$2C -
$20 -
$2E 
$2F --

SwIss-German 
Swiss-French 
Portuguese 
spaniSh-Latin American 
Danish 
Swedish 
Italian 
French 
German 
UK 

F-7 

3 2 1 o 
Legengs 

(allocated for proposed SOftware) 
(allocated for proposed SOftware) 
(allocated for proposed software) 
(allocated for proposed software) 
(allocated for proposed software) 
(hardware not yet available) 
(hardware not yet available) 



I 

I 
I 
I 
) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual Hardware Interface 

$3C -- APL 
$30 -- French-Canadian 
$3E -- US-Dvorak 

(allocated for proposed sOftware) 
(allocated for proposed software) 
(allocated for proposed sOftware) 

$3f -- Final US 

F .5.2 Keyooanl State 
FlI1Ctlon KeylsDown (key: KeyCap): Boole~ 

PJ:oce(lJre Ke~ (var keys: KeyCapSet); 

Low level access to the keyboard is provided through a pollable keyboard 
state. This state Informatlon Is based on the physical keycOdes deflned above. 
KeylslJoWn returns the position of a single specified key. Keytv'lap returns a 
128-blt map .. one bit for each key. A zero Indicates the key Is UP .. a one 
indicates down. For the mouse plu~ a zero indicates unplugged .. a one indi
cates plugged In. Certain keys are not poll able; the corresponding bits wlll 
always be zero. These keys are the diskette insertion switches and buttons .. 
parallel port, and power switch. (The parallel port and mouse plug Keys are 
unrel1able across reboots on older hardware.) 

F.5.3 Keyboard Events 
The hardware interface provides a queue of Keyboard events. The events in 
the input queue are generally key down transitions. Each event contains the 
following information: 

Keyoode physical Key 
ascII ASCII Interpretation of thIs key 
state caps-lock .. shift .. option ....... mouse button and repeat 
rTO.JSeX x -coordinate of the mouse when the Key was pressed 
llQ.JSey Y -coordinate of the mouse when the key was pressed 
time value of the mllllsecond timer when the key was pressed 

Keycode -- Keycodes are defined in Table F-l, above. 

Ascll -- The AScn Interpretation Of keys depends on the state of the caps
lOCk, shl ft ana option keys. SIx Interpretatlons are assocIated wt th each 
dIfferent keyboard layout: 

normal 
capS-lOCk 
shift or OOth snlft and capS-lOck 
option 
option with caps-loCk 
option wIth Shift or both shift and caps-loCk 

F-8 



-
I 

• 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pescel Reference tvf8nua/ Hardware Interface 

In roost cases me ASCII value retuJTl8(l Is ObvIous. The table below lists the 
cases that aren't so obvious. 

$OO(NLL 
$00 (NUL 
$00 (N....l. 
$00 (I\U... 
$Oo(NLL 
$00 (NUL 
$00 
$01 
$01 
$03 
$08 ) 
$09 1) 
$00 (CR) 
$18 (ESC) 

:~~ ~~l $lF 
$20 SP 

Disk 1 Inserted 
DIsk 1 Button 
Disk 2 Inserted 
DIsk 1 Button 
Power Button 
fvtwse Button (doWn) 
Mouse Plug (in) 
Mouse Button (up) 
I'bJse Plug (out) 
Enter 
BackSpace 
Tab 
Return 
Clear 

Left 
Right 
Up 
Down 
Space 

state -- A 16-bit word is used to return the state of several keys with each 
evenl Each bit represents ooe or more keys; a zero indicates that all of the 
keys are 1.4>, a one indicates that at least one of the keys is down An 
additional bit indicates, if it is a one, that the event was generated by 
repeating the previOlfS evenL The following bits of state are currently 
assigned: 

bit 0: caps-lock 
bit 1: left or right shift 
bit 2: left or right option 
bit 3: • key 
bi t 4: mouse button 
bit 5: this event is a repeat 

Gertaln keys never generate events. These keys are caps-locI<, both shift 
keys, option keys, and the • key. The mouse button generates events on both 
the down and L4l transltioos. [)()wn transItions have €fl ascll value of 0, up 
transitions 1. The mouse plug also generates two different events. When the 
mouse Is plugged In €fl event wI th an ascII value of 0 Is returned, wnen I t Is 
unplugged a value of 1 is returned. 

F-9 



]I 

-
I 
I 
I 
I 
I 
I 
I 
I 

I-IBrdwBre Interl8t:::e 

Ft6lCUon KeytxPeek (repeats: Boolean; looex: Ke~IooeX; var event:; 
KeyEvent~ Boolem; 

KeytxPeek Is used to exanine events in the keyboard queue, without removing 
them from the queue. The first Input parameter IncUcates Whether repeats are 
desIred. The second para-neter Is the queue index. The first output para
meter irKUcates whether the specified queue entry contains an evenL To 
examine CJl enUre ~, first call KeytxPeek wIth a queue Index Of 1. If (Il 

event is returned, call It again with a queue Index of 2, etc. 

Ft6lCtlon Keytd:::vent (repeats: Boolem; watt:; Boolem; var event:; KeyEvent~ 
Boole£ll; 

Keytxfvent is used both to determine if a keyboard event is availctJle l CI1d to 
return the event if one is available. The event is removed from the queue. 
KeytxEvent returns a boolean result which is true if an event is returned. 
The first parameter to KeytxEvent is used to indicate if the caller will 
accept repeated events on this call. The second parameter indicates if the 
functions should wait for an event if one is not immediately availctJle. 

F 5.4 Dead Key Diacriticals 

------

Many languages erJ1)Joy dIacritical marks on certain letters. several of the 
required diacritical mark-letter combinations appear on European keyboards, 
but others do not. The combInations shown in the tctJle below may be typed as 
a tWO-key sequence, by fint typing the dead key diacritical (which has no 
immediate effect), CI1d then typing the letter. Dead key dtacritlcals appear on 
keyboard lege! Ids !IS the diacritical mark over a dotted square or hollow box. 

circumflex -- a e i 13 Q 
grave accent' -- a e i 0 U 
tilde - -- a i'if\J 0 
acute accent • -- it et 6 0 
umlaut .. -- SA e i t.Jlj 00 

A dead key dIacritical followed by a letter which appears In the table above 
yields the corresponding character. The event that is generated contains the 
keycode, state, mouse location and time that correspond to the letter, but the 
ASCII value of the letter-dIacritical combination. A dead key diacritical 
followed by a space yields just the diacrI tical mark. The event contaIns the 
keycode, state, mouse location and time corresponding to the space, but the 
ASCII value of the dIacrItical mark. FInally, a dead key dIacritical followed 
by any other character (l.e., not a space or defined letter) yields the diacrit
ical mark followed by the other character. 

diacritical, defined letter --> foreign character 
diacritical, space --:> diacritical 
diacritical, other character --> diacritical, other character 

F-10 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Ma7tJaJ l-18J7:1waTe Interface 

F55 Repeats 
fv10st keys; if held down for CJ1 extended period of time, may generate 
multiple events (repeats~ The keys that are not repeatable are caps-Iock~ 
both shifts~ both optiom~ the ti key~ the diskette insertion switches end 
diskette buttons, parallel port, the rrouse button and plug, and the power 
button. Several conditions must be satisfied before a repeat is generated. 
These conditions are as follows: 

1. KeytxPeek. or Keytx£vent is called with repeatsOesired true. 
2. The keyboard event queue is empty. 
3. The key returned in the last event is sUll doWn. 
4. No down transitions have occurred since the last evenL 
S. The key is repeatable. 
6. Enough time has elapsed. 
Repeats generate events wIth the following attributes: 

keycode original keycode 
ascll original ASCII interpretation 
state original position of the caps-lock, shift, etc. 
rnouseX revised X -coordinate of the mouse 
lTKJI.JSey revised Y -coordinate of the mouse 
tirre revised value of the millisecond timer 

ProceWre RepeatRate (var initial: MilliSeconds; var ~t: MllllSeconds); 

ProceciJre setRepeatRate (initial: MllllSer:o"m; ~ MllliSeccn1s); 

The repeat rates can be read and set by calls to RepeatRate and 
SetRepeatRate. The rates inch.,Kje an initial delay, which occurs prior to the 
first repetition, and a subsequent delay, prIor to additional repetitions. They 
are both in units of milliseconds. The default repeat rates are 400 
milliseconds initially and 100 mllliseconds subsequently. 

F.6 The Microsecor Id Timer 

FlI"£tion Micro Timer: MicJUSeC(l"lds; 

The MicroTlmer fll'lCtion sirrulates a contlrMJUSly JUTl1rYJ 32-bit COUlter 
which is incremented every microsecond. The timer Is reset to 0 each time 
the machine Is booted. The timer chcJ1ges slgl about once every 35 mlootes, 
and rolls over about every 70 minutes. 

The microsecond timer Is designed for performance measurements. It has a 
resolution of 2 microseconds. Call1ng MtcroTlmer from Pascal takes about 135 
microseconds. Note that interrupt processlrJiJ will have a major effect on 
microsecond timIngs. 

F-ll 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference fvfant.JsJ 

F.7 Tne Mllllseconl TImer 
FlD:tlm TImer: Mllllsecol Ids; 

Hardwsre Interface 

The Timer fU'lCtion slrrulates a continuously running 32-bit counter whIch is 
locrementecJ every mllllsecooo. The timer Is reset to 0 each time the 
machine is booted. The timer changes sign about once every 2S days, ~ 
rolls over about every 7 weeks. 

The millisecond timer is designed for timing user interactions such as IllOlJS8 
clicks end repeat keys. It can also be used for performance measurements, 
assuming that millisecond resolution is sufficient. 

F.8 Date ln1 TIme 

ProceWre Datel1.rT'l3 (var date: DateA:rray); 

ProcedJre SetDatellme (date: DateArray); 

ProcedJre DateToTIme (date: DateArray; var time: SecoIIds); 

T11e current date and time are available as a set of 16-bit integers which 
represent the year, day, hour, minute and second, by calling DateTIme and 
SetDateTlme. The date and time are based on the hardware clock.lcalendar. 
Tnls restricts dates to the years 1980-1995. Ttle clock/calendar continues to 
operate durIng soft power off, and for brief periods on battery backup if the 
machine is unplugged. If the clock/calendar hasn't been set since the last loss 
of battery power, the date and time will be midnight prior to January 1, 1980. 
Setting the date and tlme also sets the time stClTlp described below. 
DateToTlme converts a date and time to a time stamp; defined in the next 
section. 

F.9 Time sta"lll 
FlEICtion "TlrneStII1lt Seca Ids; 

ProcedJre Set Til11eSt.aT1J (time: Seal Ids); 
ProceWre TImeTfilate (time: Seal Ids; var date: DateArray); 

The current date and time are also available as a 32-bi t l.I1Signed integer 
which represents the runber of seconds sioce the midnight prior to 1 January 
1901, by calling TII11eSt.aT1J and SetTiJTIeStanll. The time stamp will roll over 
once every 135 years. 8eware--for dates beyond the mid 1960's, the sign bit 
is set. The time starlll is based on the hardware clock/calendar. This clock 
continues to operate during soft power off, and for brief pertods on battery 
backl4l if the machine is LII"'lplugge(t If the clock/calendar hasn't been set 
since the last loss of battery power, the date and time will be midnight prior 
to Jaruary 1, 1980. Setting the time st~ also sets the date and time 
described above. Since the date and time is restricted to 1980-1995, the time 
stamp is also restricted to this range. TlmeToOate converts a time starlll to 
the date and time format defined above. 

F-12 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Menl.l8l 

F.lD Interface of the ~ Ullt 

Un! t Hardware; 

Interface 

type 

Pixels 
HanyPixels 
CUrsorHeiytlt 
CursorPtr 
DateArray 

Fr8lOOs 
Seconds 
Mill1Seconds 
MicroSeconds 
SpeakerVolure 
ScreenContrast 
KeybdQlndex 
KeybdId 
Ke~ 
KeyCapSet 
KeyEvent 

{ MoUse } 

= Integer; 
= LongInt; 
= Integer; 
== ~Integer; 

= Record 
year : Integer; 
day: Integer; 
hour: Integer; 
minute: Integer; 
second : Integer; 
end; 

• Longlnt; 
= LongInt; 
:: Longlnt; 
= LongInt; 
• Integer; 
'" Integer; 
= 1. .1000; 
= Integer; 
= O .. 127; 
= Set of KeyCap; 
== Packed Record 

key: KeyCap; 
ascii: Char; 
state: Integer; 
IOOUseX: Pixels; 
lmuseV: Pixels; 
time: MilliSeconds; 
end; 

Hardware Interface 

ProcedUre HouseLocatlon (var x: Pixels; var y: Pixels); 
Procedure HouseUpdates (delay: HilliSeconds); 
ProcedUre HouseScallng (scale: Boolean); 
Procedure HouseThresh (threshold: Pixels); 
Function HouseOdometer: HanyPixels; 

F-13 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Posc81 Reference I'18t7tI8l 

{ CUrsor } 

Procedure CursorLocation (x: Pixels; y: Pixels); 
Procedure OUrsorTracking (track: Boolean); 

HoJriW8ll! Interfoce 

Procerure CUrsorImage (hotX: Pixels; hot V : Pixels; height: 
CUrsorHeight; data: CUrsorPtr; mask: CursorPtr); 

Procedure Busylmage (hotX: Pixels; hot v: Pixels; height: 
CUrsorHeight; data: CUrsorPtr; mask: CursorPtr); 

Procedure BusyDelay (delay: HilliSeconds); 

{ SCreen } 

Function frareCounter: Frarres; 
Procedure ScreenSize (var x: Pixels; var y: Pixels); 

Function Contrast: ScreenContrast; 
Procedure SetDontrast (contrast: ScreenContrast); 
Procedure R8I1lJCOntrast (contrast: SCreenContrast); 
function DimGontrast: SCreencontrast; 
Procedure SetDimDontrast (contrast: ScreenContrast); 

Function FadeOelay: HilliSeconds; 
Procedure setFadeOelay (delay: MilliSeconds); 

{ Speaker} 

function Volume: SpeakerVolume; 
Procedure SetVolume (volume: Speakervolume); 
Procedure Noise (wavelength: HicroSeconds); 
Procedure Silence; 
Procedure Beep (wavelength: HicroSeconds; duration: HilliSeconds); 

F-14 



-I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference HlJnu81 

{ Keyboard } 

Function Keyboard: Keybdld; 
Function Legends: Keybdld; 
Procedure setLegends (1d: Keybdld); 
Function KeylsOown (key: KeyCap): Boolean; 
Procedure KeyMap (var keys: KeyCapset); 

H8rctware InterfBCe 

Function KeybdPeek (repeats: Boolean; index: KeybdQlndex; var 
event: KeyEvent): Boolean; 

Function KeybdEvent (repeats: Boolean; wait: Boolean; var event: 
KeyEvent): Boolean; 

Procedure RepeatRate (var initial: HilliSeconds; var subsequent: 
HilliSeconds); 

ProcedUre setRepeatRate (InItIal: Milliseconds; sub~lt: 
HilliSeconds ); 

{ Timers} 

Function HicroTimer: HicroSeconds; 
Function Timer: Hilliseconds; 

{ Date and Time } 

Procedure DateTime (var date: DateArray); 
Procedure setDateTine (date: DateArray); 
Procedure DateToTime (date: DateArray; var time: Seconds); 

( TillE StJ:Jf1) } 

Function TineStClrp: SeclJt'"Kjs; 
Procedure SetTimeSt~ (time: Seconds); 
Procedure TireToOate (tire: Seconds; var date: DateArray); 

F-15 



I 
I 
I 
I 
I 
I 0 

I 2 

I 3 

4 

I 5 

I 6 

7 

I 8 

I 
9 

A 

I B 

I 
c 

D 

I E 

F 

I 
I 
I 
I 

Appendix G 
Lisa Extended Character Set 

o 2 3 4 5 6 7 8 gAB C 0 E F 

0 @ p .. .. 
ft t IWL OLE SP P A e 00 t, 

I 1 A Q q A e 0 ± 
. 

SOH Del a I 

STX OC2 .. 2 B R b r 9 r ¢ .{ ...., 

Ell DC3 # 3 C s E: .. 
£ 2- J c s I 

EDT OC4 $ 4 D T d t t\J .. § ¥ f I 

nQ "AI( % 5 E U e u d "i • Il =::: 

ACI( $Y" & 6 F V f 0 - 1f a ll. V n 
nrl un • 7 G W 9 W a 6 B .~ « 

us CAli ( 8 H X h X a 6 ® IT » 

HT E" ) 9 I Y A A 

© I y a 0 7T ... 
LF SUD * J Z J 

00 

0 TM I 0 z a . '--' 

K [ k { a 0 
,. 

i1 A VT ESC + . , 
.. 

ff fS < L \ I I 0 , 
0 A , a u 

Cft QS - - M ] m } Q U :;C Q 0 
> N - - , 

'" If:. so RS n e u ce CE . 
SI us I ? 0 0 DEL e u (2) " cs 

The first 32 characters and DEL are nonprinting control codes. 

The shaded area is reserved for future use. 

G-1 

- ~fnf~ IIIr 
- tl~Yl~~~l~~ ~~I::~~~~~ 
" [~~~~ ~}~ [~~~:~~~l~~ 
" [[j~~::: k[:[~(l: 
, 

[{{:; [{{{ 
, h):) tHU~l~l ~:::::::::::: 

• 
t:::::::::::: (:;:::::::;:: ..,.. .:-:-

(> 
:-:-:-::. ~ .:.;.;.:: ::: 

y .:-:-;.;.; .. :;.:.:-:.; 

~n~j\Uj; [;:::::::: 
~::;::::::::: 

.: ..... :.:, :.: .......... 

·:~:l:j:%~l :::):):~i~j: ~:://\:. 
?:::::;:::;: :::::::::::::: t:::::;:::::: 

:''':':-''.' ... :-:-:<.;.; :::::;::}: 

:.;.:.;.:.;. . ;.;.;.;.:.;.; ;.;.;.;.; . 

%@{ /?:{) HC:: 
:-:-;. 

t:}}> t\}): n~U~{ ::::: 
~: :: I·:·: ... :.;.; :::::::::::: 
1:::::::::: ::::< 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Appendix H 
Error Messages 

H.I Error Reporting .... _ ... _ . ____ ........ _ ... _ ..... __________ . _ ......... __ ... _. H-l 
H.2 Lexical Err~ . _ ...... _ .... _________ ... ___ .. ____________________ . ___ . ___ . _. __ H-l 

H.3 syntactic Errms ____________________________________________________________ . H-2 

HA Semantic ErrtrS _________ ...... _ ....... _ ... _ ...... _ ............... _ .....•. _ .. H-2 

H.5 Conditional Compilation ..... _ ... __ . _. ___ ._._._._ ... _._ ... _ ......... _._ ... H-5 

H.6 Compiler Specific Limitations .. _ ... , _ .......... ___ . __ . _ _... .. H-5 

H.7 YO Errors _.,. __ .. _. _ ..... _ .. __ ..... _._._ .. _ . H-5 

H.B Clascal Errors ___ .. _ ....... _ ....... _ ............... _ ... _ ... __ .. _ ......... __ .. H-5 
H.9 Code Generation Errors . __________________ ...... ___ .. _. _____ . ____________ ._ H-6 

H.I0 Verification Errors . _. _____ . _____ . ___ . __ . __ . __ .. _. _ .. ____ .. _ ....... _. _. _ . _" _ H-6 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Error Messages 

H.l Error Reporting 
Error reports show the entire line containing an error. Error lines displayed 
on the screen and written to t.he error listing file ($E Compiler command) 
uSIJally show the line preceding the error for context, too, alt.hough there are 
some circumstances in which that line is not shown. 

12 Read(Argument) 
13 IF (IOResut<=O) AND (Arg>=O) THEN 

? 
"'** Error 36 u'" ';' expected. 

? 
? 

*"'* Error 102 *** Identifier not declared. 
*'" '" F i 1 e ex ampl e/errors . TEXT '" U 

Errors for anyone line are accumulated (up to a maximum of 10) and 
reported aft.er the line is fully scanned. Both the error number and its 
associated text are shown along with a "?" pointer to the error's approximate 
locat.ion. The pOint.er lIsuall~1 pOint.s to the last character of the token that 
W8S being processed when the error occurred. The pOinter for an error 
mess:a.ge is shown on the line before the message. There may be multiple 
pointers associated wit.h a single message, or multiple messages associated 
with a single pointer. The source line is shown only once. The line number 
preceding it. is the line position wit.hin t.he file whose name is shown as the 
last line in the error report. That line number may be lIsed in conjunct.ion 
with the Editor's "Goto line IJ" feature to quickly find the errors in t.he 
specified file. 

H_2 Lexical Errrrs 
10 Too many digits 
11 Digit expected after I.' in real 
12 Integer overflow 
13 Digit expected in exponent 
14 End of line encountered in string constant 
15 Illegal character in input 
16 Premature end of file in source program 
17 Extra characters encountered after end of program 
18 End of file encountered in a comment 

H-l 



!!!! 
!!! -
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference ft.1anu81. 

H.3 Syn;actic Errors 
20 Illegal symbol 
21 Error in simple type 
22 Error in declaration part 
23 Error in parameter list 
24 Error in constant 
25 Error in type 
26 Error in field list 
27 Error in factor 
28 Error in variable 
29 Identifier expected 
30 Integer expected 
31 '(' expected 
32 ')' expected 
33 '[' expected 
34 ')' expected 
35 ':' expected 
36 ',' expected 
37 '=' expected 
38 ',' expected 
39 '.' expected 
40 ':=' expected 
41 'program' expected 
42 'of' expected 
43 'begin' expected 
44 'end' expected 
45 'then' expected 
46 'until' expected 
47 'do' expected 
48 'to' or 'downto' expected 
49 'file' expected 
50 'if' expected 
51 I. I expected 
52 'impl~nentation' expected 
53 'interface' expected 
54 'intrinsic' expected 
55 'shared' expected 
56 A'.' or '(' is expected following a type-id 

H.4 Semantic Errors 
100 Identi fier declared twice 
101 Identifier not of the appropriate class 
102 Identifier not declared 
103 Sign not allry~ed 
104 Number expected 
105 Lower bound exceeds: upper bound 
106 Incompatible subrange types 

H-2 

Error ft.1essages 



• • 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascsl Reference Msnusl Error Messages 

107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 

118 
119 
120 
121 
122 
123 
124 
125 
126 

127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
130 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 

Type of constant must be integer 
Type must not be real 
Tagfield must be scalar or subrange 
Type incompatible with with tagfield type 
Index type must not be real 
Index type must be scalar or subrange 
Index type must not be integer or longint 
Unsatisfied forward reference for type identifier: 
Illegal use of forward reference type identifier 
Parameter list is inconsistent with original specification 
function result type is inconsistent with original 
specification 
function result type must be scalar, subrange, or painter 
file value parameter not allowed 
Missing result type in function declaration 
f-format for real only 
Error in type of standard function parameter 
Error in type of standard procedure parameter 
Number of parameters does not agree ~'Ji tl1 declaration 
Illegal parameter substitution 
Result type of parameteric function does not agree ~lJith 
declaration 
Expression is not of set type 
Only tests on equality allowed 
Strict inclusion not al10trlJed 
File comparison not allowed 
Illegal type of operand(s) 
Type of operand must be boolean 
Set element type must be scalar or subrange 
Set element types not compatible 
Type of variable is not array or string 
Index type is not compatible with declaration 
Type of variable is not record 
Type of variable must be file or pointer 
Illegal type of loop control variable 
Illegal type of expression 
Assignment of files not al1Otr'led 
Label type incompatible It'lith selecting expression 
Subrange bounds must be scalar 
Type conflict of operands 
Assignment to standard function is not allowed 
Assignment to formel function is not all~Ned 
No such field in this record 
Type error in read 
Actual parameter must be a variable 
Hultidefined case lebel 
Missing corresponding variant declara.tion 

H-3 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascs} Reference "-1snus} Error "-1esssges 

152 Real or string tagfields not allowed 
153 Previous declaration was not forward 
154 Substitution of standard procedure or function is not 

allowed 
155 Multidefined label 
156 Multideclared label 
157 Undefined label: 
158 Undeclared label 
159 Value parameter expected 
160 Multidefined record variant 
161 File not allowed here 
162 Unknown compiler directive (not 'external'; 'forward'; 

, i nIi ne '; or 'c') 
163 Variable cannot be packed field 
164 Set of real is not allowed 
165 Fields of packed records cannot be var parameters 
166 Case selector expression must be scalar or subrange 
167 String sizes must be equal 
168 String too long 
169 Value out of range 
170 Address of standard procedure cannot be taken 
171 Assignment to function result must be done inside function 
172 Loop control variable must be lucal 
173 Label value must be in 0 .. 9999 
174 Must exit to an enclosing procedure 
17~ Procedure or function has already been declared once 
176 Unsatisfied forward declaration for Procedure 
177 Unsatisfied forward declaration for Function 
178 Type conversion to a different size type is not allowed 
179 Illegal type of operands in constant expression 
180 Division by 0 
181 NIL is not allowed in a constant expression 
182 ~ is not allowed in a constant expression 
183 Only certain pre-defined functions are allowed here 
184 Dereferencing is not allowed here 
185 INLINE code constants must be single word integers 
186 INLlNE not allowed because procedure/function is already 

declared 
190 No such unit in this file 

I" C. ",,,,,t ~t {"U.we"- '" t:~EKNA \... 

H-4 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

-,---~----

Pasco.} Reference ,\18nu81 Error Mess8ges 

H.5 Conditional Compilation 
260 New compile-time variable must be declared at global level 
261 Undefined compile-time variable 
262 Error in compile-time expression 
263 Condit i onal campi} at i all opt ions Ilest ed too deeply 
264 Unmatched ELSEC 
265 Unmatched ENDC 
266 Error in SETC 
267 Unterminated conditional compilation option 

H.G Compiler Specific Umitations 
300 Too many nested record scopes 
301 Set limits out of range 
302 String limits aLIt of range 
303 Too ma.ny nested procedures/functions 
304 Too many nested include/uses files 
305 Includes not allowed in interface section 
306 Pack and unpack are not implemented 
307 Too many uni ts 
308 Set constant out of range 
309 Structure too large ( ) 32K ) 
310 Parameter list too large ( )= 32K ) 
312 Size of local data is too large ( ) 32K ) 
313 Size of global data is too large ( ) 32K ) 
350 Procedure too large 
351 File name in option too long 
352 Too many errors on t hi s 1i ne 

H.7 I/O Errors 
400 Not enough room for code file 
401 Error in rereadinQ code file 
402 Error in reopening text file 
403 Unable to open uses file 
404 Error in reading uses file 
405 Error in opening include file - compilation terminated 
406 Error in rereading previously read text block 
407 Not enough room for I-code file 
408 Error in writing code file 
409 Error in reading I-code file All tJ ... r.' l. l ... 0fe~ ev"'o" f",\(" 
410 Unable to open listing file -r .• ~~~~~ ,~ ,\~, 
420 I/O error on debug file 

H.B Clasca.l Erren 
000 OF missing 
801 Superclass identifier missing 
802 Method NEW is not declared 
803 Subclass declaration not allowed here 
804 t1ethod is not a procedure 



-• 
I 
I 
I 
I 
I 
I 
I 
I 
I 

P8scal h'ef'erence ",tSl/US} 

805 Unimplemented method: 
806 Unimplemented class: 
807 Superclass identifier is not a class 
808 Identifier is not a class 
809 'NEW not allowed here 
810 'NEW' was expected here 
811 Illegal 'NEW' method 
812 Illegal use of class identifier 
813 Unsafe use of a handle in an assiQnrnent statement 
814 Unsafe use of a handle in a WITH statement 
815 Unsafe use of a handle as a var parameter 
817 Compiler error!!! 
818 Override of non-existent procedure or function 
819 ThisClass function is only legal in methods 

H.9 Code Generation Errors: 
1000-1999 Internal code generation errors 
2000 End of I-code file not found 

Error I\tessages 

2001 Expression too complicated, code generator ran out of 
registers 

2002 Code generator tried to free a register that was already 
free 

2003-2005 Error in generating address 
2006-2010 Error in expressions 
2011 Too many globals 
2012 Too many locals 

H.l0 Verification Errors 
4000 Bad verification block format 
4001 Source code version conflict 
4002 Compiler version conflict 
4003 Linker version conflict 
4100 Version in file less than minimum version supported by 

program 
4101 Version in file greater than maximum version supported by 

program 

H-6 

~ 
j 

,.f' 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Appendix I 
Pascal Workshop Files 

This a.ppendix lists the files provided on the Pascal 3.0 micro diskettes, first 
alphabetically, then by diskette. 

Pascal 
File NOOle Diskette Notes Description 
Alert 9 E QuickPort support file 
apin/syslib.obj 1 A Intrinsic unit-misc. 
Archiver .Obj 7 Utility program 
Assembler.Obj 5 C Worl<.shop progrern-68000 Assembler 
8yteDiff.Obj 7 Utili ty program 
ChangeSeg .Obj 7 Utility program 
CharCount .Obj 7 Utili ty program 
Code .Obj 5 C IAlorkshop program-Pascal Code 

Generator 
CodeSize.Obj 7 Utility program 
Comp .Text 7 Utility program 
Compare .Help. Text 7 Support fi Ie-Compare 
Compare .Obj 7 Utility program 
Concat.Obj 7 Utility program 
Cop·y.Obj 7 Utili ty program 
Diff.Obj 7 Utility program 
DurnpObj .Obj 7 Utility PIogr6fll 
DumpPatch .Obj 7 Utility program 
Edit .Menus. Text 5 C Support file-Editor menus file 
Edi tor .Obj 5 C l~orkshop prograrn-Edi tor 
ErrTool.Obj 7 Utility program 
FileDiv.Obj 7 Utili ty prograrn 
FileJoin.Obj 7 Utili ty program 
Find.Obj 7 Utility program 
FindID.Obj 7 Ut il ity program 

Note A: These files are used for the installation procedure but are not installed. 
Note B: These files are tile minimum necessary to run a user program in t.he 

If)orkshop environment.. A user program may require other files as well. 
Note C: Tl1e$e files are necessaf\1 for running t.he minimulTI Pascal Workshop 

(Editor, Assembler, Pescal Compiler and Code Generator, linker, and 
Debugger). 

Note 0: These files are needed only for developing 1"'1acintosh software. 
Note E: These files are needed only for developing Lisa QuickPort software. 
Note F: These files are needed only by the Lisa Office Syst.em. 
Note G: These files are needed only for developing Lisa QuickDraw software. 

1-1 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference fo.:'snaal Pascal i.vorkshop Files 

Pascal 
file Htne Diskette Notes Description 
FindWord.Obj 7 Utility program 
font.heur 1 A Support file 
font.heur 2 C Support file 
font .lib 1 A Support file-tiny font library 
font .lib 2 C Support file-font library 
gxref.Obj 7 Utility progrem 
InstallTool.Obj 8 E Utility program 
installwsphrase 1 A Support file 
Intrinsic. Lib 1 A Library directory-intrinsic units 
Intrinsic .lib 2 Be Library directory-intrinsic units 
IOSFPLlB .Obj 6 C Intrinsic unit-floating point 
iospaslib.obj 1 A 1 nhinsi c uni t-Pascal support 
iospaslib.obj 2 Be Intrinsic unit-Pascal support 
1I.11anager .Obj 3 Ut il ity prograrn 
LIBTKJPABC . TEXT 9 E OuickPort support file 
LineCount .Obj 7 Utility program 
Linker .Obj 6 C Workshop progrern-Li nker 
L\.\ICcount .Obj 7 Ut il lty program 
NAClMac .Boot 9 0 Support file-Mac boot code 
t1AC/t1acCorn .Obj 9 D Utility program 
MOC/RMaker.Obj 9 D Utility program 
N68K.ERR 5 C Support fi 1 e-Assembl er 
N68K.OPCODES :, C Support fi I e-Assernbl er 
ObjIOLib .Obj 4 C Intrinsic unit-object files 
OEMsyscall .Obj 6 Reoular uni t-privileoed system calls 
OSErrs .Err j C Support file-error message text 
paper. text :, C Support file-Editor stationery 
Pascal.Obj 5 C Workshop program-Pascal Compiler 
PasErrs .Err :5 C Support file-error message text 
PaslibCall .Obj 6 Intrinsic unit-Pascal support 
Past1at .Help.Text 7 Support fi 1 e-Pasmat 
PasMat .Obj 7 Utility program 
PortConfig.Obj 4 Utili ty program 
PRLib.Obj 6 F Intrinsic unit-Printing 

Note A: These files ere used for the installation procedure but ere not installed. 
Note B: Tt",ese files are the minimum necess:ary to run a user program in the 

Workshop environment. A user program may require other files as well. 
Note C: Thes:e files ere necessary for running the minimum Pascal y.,'orkshop 

(Editor, Assembler, Pascal Compiler and Code GeneratOl', Linker, and 
Debugger). 

Note D: These files ere needed only for developing ~'1acintosh software, 
Note E: Tt'",ese files are needed only for cfevelclping Lisa G;luic:kPort softt,-lare. 
Note F, These files are needed only by the Usa Office Sys:tern. 
Note G: These files are needed only for developing Lisa QuickDraw soft ",,.are. 

1-2 

l~ 
j-

." 

~-~"' ..... 
< " 

.I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pas·.csl Reterence M8.i?u8.l 

File Ntne 
ProcNernes .Help. Text 
ProcNames .Obj 
(l)!boxes .Obj 
OO/box es. t ex t 
OO/graf3d .Obj 
I))/graftypes t ex t 
'))lHerdware .Obj 
I))/m/boxes. t ex t 
OD/m/sample.text 
(jD/sample .Obj 
CO/sampl e . t ex t 
CO/support .Obj 
OPIBOXES.LLIST.TEXT 
qp/boxes.text 
OP/Gra.f3D .Obj 
I)=lIHerdwBre .Obj 
qp/rne.inbaud. text 
QPlt1ake Text 
qplt18ALO . ClJNFIG . TEXT 
qp/MB~JD.VT100.TEXT 
qp/rnousei nput . t ex t 
qp/molJseinput2.TEXT 
QP/PHRASE 
qp/phuser . text 
qp/OOSAMPLE . CONfIG . TE;:<1 
qp/qdsemple.pic.TEXT 
qp/qdsemple. text 
qp/ubaudrate. text 
QP/UQPortCall .Obj 
IJ'/UQPortGraph .Obj 
QP/UQPortSoroc.Obj 
qp/uqportuser.TEXT 
QP/UQPortYT100.0bj 
qp/uqpsupport.TEXT 

PfsScel {,vorkshop Files 

Pascal 
Diskette Notes Description 

7 
7 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 

G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
E 
E 
E 
E 
E 
E 
E 
E 
E 
E 
E 
E 
E 
E 
E 
E 
E 
E 
E 
E 
E 
E 

Support file-ProcNames 
Utili ty program 
QuickDraw example program 
QuickDraw example source 
Regular unit-3D graphics 
QuickDraw assembly interfaces 
Regular unit-hardware interfaces 
QuickDraw example exec file 
QuickDra.w example exec file 
QuickDr6!~ example program 
QuickDraw example source 
Regular unit-QuickDraw support 
Quicl~Port semple program 
QuickPort sample program 
Regular unit-3D graphics 
Regular unit-hardware interface 
QuickPort sernple program 
QuickPort exec file 
Qui ckPort sarnpl e program 
QuickPort sample program 
Qui ckPort sampl e progrern 
QuickPort sample program 
Support file-QuickPort 
QuickPort sample program 
QuickPort semple progrern 
QuickPort semple program 
QuickPort sernple progrern 
QuickPort sample program 
Regular unit-QuickPort interfe.ces 
Regular uni t-QuickPort interfaces 
Regular unit-Qui cl<Port i nt erfaces 
QuickPort sample program 
Regular unit-QuickPort interfa.ces 
QuickPort support file 

Note A: These files are usee! for t.he installat.ion procedure but are not insta.lled. 
Note B: These files are the minimum necessary to run a user program in t.he 

Workshop environment. A user progra.m may require ot.her file:5: as well. 
Note C: Tllese files are necessary for running t.he minimum PelScal y,r'orkshop 

(Editor, Assembler, Pascal Compiler and Code Generator .. Linker, ami 
Debugger). 

Note 0: These files ore needed only for developing rv1acintosh software. 
Note E: These files are needed only for developing Lisa Quic:kPort software. 
Note F: These files are needecl only by tile Lisa Office Syst.em. 
Note G: These files: are needed onlv for developing Lis:a QuickDraw soft.y,Oars. 

1-3 



I; 
I 
I' 
I. 
I· 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pss-csJ Reference ft,'!snuaJ Pascal I,Yorkshop FJ1es 

Pascal 
File Ntne Diskette Notes Description 
OPlUOuickPort.Obj 9 E Regular unit-OuickPort interfaces 
qp/usertab.TEXT 9 E Qui ckPort sernpl e program 
qp/uuserterm.text 9 E Qui ckPort sempl e program 
4Plib.Obj 9 E Intrinsic unit-QuickPort 
qpsernpl e . not e . t ex t 9 E QuickPort sample program notes 
Seerch.Obj 7 Utility program 
SegMap.Obj 7 Utility program 
shell.Workshop 5 8C Workshop shell 
ShowInterface.Help.Text 7 Support file-ShowInterface 
Showlnterface.Obj 7 Utility program 
SUlib.Obj 4 BC Intrinsic unit-standard units 
SXref.Assembly·Text 7 Support file 
S;:<ref .Be.si c. Text 7 Support file 
SXref.Obj 7 Utility program 
&~ef.Pascal.Text 7 Support file 
SyslLib .Obj 4 Be Intrinsic unit-misc. 
Sys2Li b .Obj 6 EF Intrinsic unit-misc. 
SysCall.Obj 6 Intrinsic unit-OS interfaces 
system. bt_Priern Disk 1 C System support-Priam boot tracks 
system. bt_Profile 1 C System support-ProFile boot tracks 
S~/st ern. bt .-sony 2 C Syst~n support-Sony boot tracks 
systern.cdd 1 Be System support-conf1gurable driver 

directory 
system.cd_2 Port Card 1 C System support-2-port card driver 
syst ern. cd_Archi ve Tape 1 C System support-Archive tape driver 
system.ed_Console 1 Be Syst~n support-console driver 
syst ~n . cdj'1odem A "') C System support-Europe-modem A driver L 

systern.ed_Parallel Cable 2 C System support-para.llel ca.b1e driver 
syst ern. cd_Pri am Card 1 C Systern support-Priern card driver 
syst~n. cd_Priam Disk 1 C System support-PriNn disk driver 
systero. ed_Profi 1 e 1 Be Syst~n support-ProFile or internal 

herd disk driver 
syst ern. ed_Seri EI.l Cab1 e 2 C System support-USA-serial cable 

driver 

Note A: These files are used for the installation procedure but are not installed. 
Note B: These files ere the minimum nec:ess:ery to run a user program in t.he 

Workshop environment. A user program may require other files as welL 
Note C: These files are necessary for running t.t"le minimum Pascal Workshop 

(Editor., Assembler, Pascal Compiler and Code Generator, Linker, and 
Debugger). 

Note D: These files are needed only for developing IViacintosh software. 
Note E: Tt"lese files are needecl only for developing Lisa QuickPort soft \;,'ar e. 
Note E These files are needed only by the Lisa Office System. 
Note G: These files are needed only for developing Lisa QuickDraw software. 

1-4 

n l't'A,,,,,,,:' 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal ,Reference MS17usl PascBI {+trk.shop Files 

Pascal 
file HIRe 
systern. cd_Sony 
syst ern. debug 
systern.debug2 
system .lld 
syst ern. 11 d 
system .os 
systern. os 
SYSTEt1 . PRD 

Diskette Notes Description 
1 Be Systero support-micro diskette driver 
3 [" System program-debugger 
3 C System program-debugger 
1 Ii System progrero-Iow-Ievel drivers 
2 Be Systern progrsrn-Iow-level drivers 
1 A System progrem-OS 
3 Be System progrsrn-OS 
3 C System support-print code 

System . PR_De.isy Wheel Printer 3 
system .PR_Irnagewriter / II m1P 3 
System .PR_Ink Jet Printer 1 
S'y'stern.shell 1 
systern. shell 2 
SYSTEt1 .I.Jt.p ACK 1 
TK2LIB.Obj 0 
TKLIB.Obj 8 
Tools.Help.Text 7 
Transfer.Menus.Text 6 
Tre,nsfer .Obj 6 
Translit.Obj 7 
lJ:<ref .Obj 7 
WordCount.Obj 7 
Workshop.Step.Help.Text 5 
~oJORKSHOPERRS . ERR 5 
xref.help.text 7 
xref.Obj 7 
{T1l } BUTTONS 3 
{Tll}obj 3 
{Tll}PHRASE 3 

confi gur at i or. 
F System support-da.isy wheel printer 
F System support-IrnagewriterlDt1P 
F System support-ink jet printer 
A I nst all at i on shell 
BC Environrnent s wi ndow 
BC System support-unpack table 
E Intrinsic unit-TuolKit 
E Intrinsic unit-ToolKit 

Support file-various utilities 
Support file-Transfer menus file 
l;lorkshop program-Transfer program 
Utility progrsrn 
Ut il ity progrsro 
Utility program 
Support file-Workshop shell 
Support file-error message text 
Support file-XRef 
Uti 1 itoy program 

C Support file-Preferences 
C Workshop progrsrn-Preferences 
C Support file-Preferences 

Note A: These files are used for tl1e installation procedure but are not installed. 
Note B: These files are the minimum necessary to run a user program in t.he 

Workshop environment.. A user program may require other files as well. 
Nate C: These files are necessary for running the minimum Pascal y.,'orkshop 

(Editor, Assembler, Pascal Compiler and Code Generator, Linker, and 
Debugger). 

Note 0: These files are needed only for de'v'eloping f"'1acintosh software. 
Note E: These files are needed only for developing Lisa <\ILlic:kPort software. 
Note F; These files are needed only by the Lisa Office System. 
Note G: Thes:e files are needed onl\1 for developing Lisa QuickDraw software. 

J-' 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

P8scal Reference /\1anul1l 

PESCal Diskette 1 

Filename 

apinlsyslib .obj 
font.heur 
font .lib 
i nst all wsphr B.se 
Intrinsic. Lib 
iospaslib.obj 
system.bt_Priem Disk 
system.bt_Profile 
system. cdd 
svstern. cd 2 Port Card 
sYstern. cd:Archive Tape 
system.cd Console 
sYstern. c(~Priarn Card 
svstern.cd Priem Disk 
sYstern.cd:Profile 
syst em . cd_Sony 
system.lld 
system .os 
syst ern. shell 
SYSTEM.I.J'IPACK 

Size Psize 

89600 175 
1536 3 
5746 12 

17422 35 
1536 3 

24576 48 
11264 22 
11776 23 
1536 3 
1024 2 
4096 8 
5120 10 
2048 4 
3584 7 
5632 11 
3584 7 

10240 20 
142848 279 
16896 33 

1024 2 

707 total blocks for files listed 
31 blocks of OS overhead for catalog and files listed 
34 blocks free out of 772 

Pascal Diskette 2 

Filename 

font.heur 
font .lib 
Intrinsic.Lib 
i ospasli b . ob j 
system. bt_Sony 
syst em . cd_t10dem A 
system. cdyarallel Cable 
systern. cd_Serial Cable 
system .lld 
syst ern. shell 

Size Psize 

1536 3 
264070 516 

5120 10 
47616 93 
11776 23 
8192 16 
2560 5 
7168 14 

10240 20 
7680 15 

715 total blocks for files listed 
21 blocks of OS overhead for catalog and files listed 
36 blocks free out of 772 

1-6 

Pascal l'';orkshop Files 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

,{::'BS"C:si Reference fo.:'8.nu8.J 

P~cal Diskette 3 

Filename 

IUManager .Obj 
system.debug 
systern.debug2 
system.os 
SYSTEM.PRO 
Systern.PR_Daisy Wheel P ... 
system .PR_Irne.gewri ter I. .. 
{T 11 } BUTTONS 
{Tll}obj 
{T 11 } PHRASE 

Size Psize 

14336 28 
32768 64 
16384 32 

161792 316 
402 1 

15872 31 
17408 34 
43520 85 
31232 61 
11215 22 

674 total blocks for files listed 
32 blocks of as overhead for catalog and files listed 
78 blocks free out of 772 

P~cal Diskette 4 

Filename 

ObjIOLib.Obj 
PortConfig.Obj 
SUlib .Obj 
Sysllib.Obj 
Systern.PR_Ink Jet Print ... 

Size Psize 

59392 116 
6144 12 

27648 54 
275968 539 

14336 28 

749 total blocks for files listed 
27 blocks of OS overhead for cats.log and files listed 
8 blocks free out of 772 

1-7 

Psscai (.Y'orkshop Files 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference f>.1anual 

Pascal Diskette 5 

Filename 

Assembler.Obj 
Code.Obj 
Edit .Menus.Text 
Editor.Obj 
N68K.ERR 
N68K.CPCODES 
OSErrs .Err 
paper. text 
Pascal.Obj 
PasErrs .Err 
shell.Workshop 
Workshop.Step.Help.Text 
WJRKSHOPERRS . ERR 

Size Psize 

42496 83 
51712 101 

3072 6 
40960 80 

3072 6 
4096 8 

22528 44 
2048 4 

116736 228 
7680 15 

76800 150 
2048 4 
2048 4 

733 total blocks for files listed 
35 blocks of OS overhead for catalog and files listed 
16 blocks free out of 772 

Pasco! Diskette 6 

Filename 

lOSFPLIB .Obj 
Linker .Obj 
CEMsyscall.Obj 
PasLibCall.Obj 
PRLib.Obj 
Sys2Ub .Obj 
SysCall.Obj 
Transfer.Menus.Text 
Transfer .Obj 

Size Psize 

66048 129 
37888 74 
4608 9 
2560 5 

43520 85 
134656 263 
22016 43 

2048 4 
14336 28 

640 total blocks for flIes l1sted 
30 blocks of OS overhead for catalog and files listed 
114 blocks free out of 772 

1-8 

P8SCl1i ?vl'Irkshop Files 

/" 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

PssceJ Reference MemleJ 

Pascal Diskette 7 

Filename 

Archiver .Obj 
Byte01 ff .Obj 
ChangeSeg.Obj 
CherCount .Obj 
CodeSize.Obj 
Comp. Text 
Compare.Help.Text 
Compere .Obj 
Concat .Obj 
Copy.Obj 
Diff.Obj 
DumpObj .Obj 
DurnpPatch .Obj 
ErrTool.Obj 
FileOiv.Obj 
FileJoin.Obj 
Find.Obj 
findID.ObJ 
FindWord.Obj 
gxref .Obj 
LineCount .Obj 
LWCcount.Obj 
PasMat.Help.Text 
PasMat .Obj 
ProcNarnes .Help. Text 
ProcN8ITles .Obj 
Search .Obj 
SegMap.Obj 
Showlnterface.Help.Text 
Showlnterface.Obj 
SXref.Assembly.Text 
SXref .Basic. Text 
S<ref .Obj 
SXref .Pe,seal. Text 
Tools .Help .Text 
Transli t .Obj 
UXref .Obj 
WordCount .Obj 
xref.help.text 
xref .Obj 

Size Psize 

12288 24 
2560 5 
2560 5 
5120 10 
8704 17 
2048 4 
7168 14 

12800 25 
5120 10 
6144 12 
9216 18 

22016 43 
8192 16 
3072 6 
4608 9 
3584 7 
8192 16 
2560 5 
1536 3 

14848 29 
5120 10 
5120 10 

11264 22 
37376 73 

5120 10 
19968 39 
8192 16 
2560 5 
4096 8 

29696 58 
3072 6 
3072 6 

15360 30 
2048 4 
8192 16 
7168 14 

14336 28 
5120 10 
5120 10 

25600 50 

703 tote,l blocKs for files listed 
70 blocks of OS overhead for catalog and files listed 
11 blocks free out of 772 

}-9 

Pescel l.vorksllOp FJ1es 



I 
I 

:1 Pascal Reference fo.1afliJal Pascal ~vorkshop Flles 

I 
PI!Bcal Diskette 8 

I Filenerne Size Psize 
----- ---- -----
InstallTool.Obj 14336 28 

I 
TK2LIB.Obj 15~H36 303 
TKUB.Obj 174592 341 

672 total blocks for files listed 

I 25 blocks of OS overhead for catalog and files listed 
87 blocks free out of 772 

I Pascal Diskette 9 

Filename Size Psize 

I ------- ------
ALERT 18432 36 
LIBTKJPABC . TEXT 11264 22 

I MAC/Hac . Boot 2560 5 
MAC/HacCom .Obj 20992 41 
MAClRMaker .Obj 24576 48 

I 
OD/boxes.Obj 7680 15 _r~"" 

OD/boxes.text 6144 12 
OD/graf3d .Obj 10752 21 
OD/graftypes.text 14336 28 

I OD/Hardware .Obj 4608 9 
ODlrn/boxes. text 2048 4 
OO/rnlsernple. text 2048 4 

I 
OD/semple .Obj 7680 15 
QD/semple. text 12288 24 
OD/support.Obj 3072 6 
OPIBOXES. LUST. TEXT 2048 4 

I qp/boxes.text 6144 12 
QPlGraf3D .Obj 10752 21 
OP/Hardware .Obj 3584 7 

I qp/roainbaud. text 2048 4 
OP/Hake. Text 5120 10 
qp/MBAUD.DDNFIG.TEXT 3072 6 

I 
qp/MBAUD.VT100.TEXT 2048 4 
qpAnouseinput.text 7168 14 
qp/roouseinput2.TEXT 8192 16 
OPIPHRASE 7288 15 

I qp/phuser.text 4096 8 
qpIODSAt1PLE .CONFIG. TEXT 14336 28 
qp/qdsemple.pic.TEXT 13312 26 

I 
qp/qdsarnpl e . t ex t 13312 26 
qp/ubaudrate.text 3072 6 

I 1-10 

I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pas"cal Reference Manllal 

OPl1JQPortCall.Obj 
OP/UOPortGraph.Obj 
OP/UOPortSoroc.Obj 
qp/uqportuser.TEAI 
OP/UOPortVT100.0bj 
qp/uqpsupport.TEXT 
OP/UOuickPort.Obj 
qp/usertab.TEXT 
qp/ullserterm.text 
OPlib.Obj 
qpsocnple.note.text 

66'6 13 
1536 3 
1536 3 
2048 4 
1536 3 
3072 6 
1536 3 
2048 4 
3072 6 

60416 118 
3072 6 

666 total blocl<.s for files listed 
72 blocks of OS overhead for catalog and files listed 
46 blocks free out of 772 

1-11 

Pasce.i ~vorkshop Files 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Appendix J 
Listing Formats 

Six different listing formats can be generated by tile Compiler and Code Generator, 
allowing yClu to show different. amounts of generatecl assembly code and other 
information int.ermixed witf1 your Pascal source. All the listings show the total line 
number cOllnt and the line number 'Nithin each include file .. plus lexical information. 
An example of each of the listing formats is: shown at. t.he end of this appendix. 
The Compiler commands and Compiler end Code Generat.or options that control the 
listing are described in t.he Release 3.0 Notes to Chapter 12. 

The six different listing formats are: 

1. A bBSic listing as produced by the Compiler. The other five listing formats 
are modifications of tllis basic format. Unless you specify $L- as: an opt.ton 
to the Code Generator, you won't see this listing .. because its presence is a 
signal to t.he Code Generat.or that it should mCldify t.he list.ing t.o one of the 
other five formats (its name is passed in the I-code). 

In the basic listing, each line of the source is preceded by five fields of 
information: 

Field 1: The total line count. 

Field 2: The current include and uses nest.ing dept.h. If the input is not 
from either a uses or include, this field will be blank. 

Field 3: The line number of each line with respect to the include file 
containing t.hat line. All error references are reported in t.erms of 
this line number. YOll may use it in conjunction with t.he Editor's 
"Goto line $" feat.ure to easily locate t.he lines: that cont.ain t.he 
reported errors. 

Field 4: This field consists of two indicators (left and ri~ht) that reflect the 
static block nesting level. The left indicator is incremented (mod 
10) and displayed whenever a begin, repeat, or cese is encountered. 
On termination of these structures with an end or until .. the right 
indicator is displayed and then decremented. It is thus easy to 
match begin, repeat, and case statements ... "ith their ma.tching 
terminations. 

J-1 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pss'C'1l1 Reference f..18t1iJsl Listing Formats 

Field 5: A letter in the this field reflects the static level of procedures and 
functions. The character is updated for each procedure or function 
nest level (nAil for level lJ "8" for level 2, and so on), and 
displayed on the line containing the heading, and on the begin and 
end associated with the procedure or function body. Using this 
field you can easily find the procedure or function body for its 
corresponding heading when there are nested procedures declared 
between the heading and its body. 

Note that if t.he source being shown in the listing is being skipped due to a 
SlFe Compiler commandJ the lexical information (fields 4 and 5) is not 
shown. You can then tell from the listing what is being skipped. 

2. A minimum listing containing all the basic listing information plus the 
LisaBug procedure-relative addresss corresponding to the statements. 
Generally, the addresses reflect the start of the associated statements. This 
is the form of listing produced by the Code Generator when $ASM- is in 
effect (either by option or Compiler commands). 

3. A full listing containing the basic listing plus the generat.ed assembly code 
interleaved with the Pascal source. In general, the code generated for a 
statement follows that statement, but the.re are some conditions which cause 
the code to precede its assOCiated statement. The full listing is produced 
when $ASM+ is in effect (either by option or Compiler commands). 

4. A full listing by procedure containing the basic listing pIllS t.he generated 
assembly code on a procedure basis, that is, all the source for a procedure is 
shown before its generat.ed code. This listing is produced when $ASM+ is in 
effect and you specify the $ASM moe option. 

5. An A.~embler input source containing the original Pascal source as 
comments int.erleaved with the corresponding B.....~embly code This listing is 
produced when SASM+ is in effect and you specify the $ASM ONLY option. 
There is no guarantee t.hat the source produced is completely valid 
Assembler input (although what is generated will be synt.actically correct.). 
The Code Generator generates appropriate .DEF and .REF statements and 
labels for branches and data Procedure references whose names conflict 
with Assembler opcodes and direct.ives are renamed by padding the original 
name with percent characters (e.g., "MOVE" would become "MOVE%%%%''). A 
conflicting name Is defined as one that occurs in the Assembler's opcode file 
N68K.OPCOOES. (This file is now also used by the Code Generator when t.he 
$ASM 0 ....... Y option is used.) 

J-2 

I~ 
, 

, ,~ 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascs} Reference "'fsnus} Listing Formsts 

6. An A..~embler input source by procedure containing the original Pascal 
source for an entire procedure as comments followed by the corresponding 
assembly code. This listing is produced when $ASM+ is in effect and you 
specify both the Code Generator options $ASM ONLY and $ASM PROC. 

Note thBt the only wflY to see the generated code is to use $ASM+, either as an 
option to the Compiler or Code Generator or as Compiler directives. SASM PROC 
causes the display of t.he code on a procedure basis, and $ASM ONLY causes the 
listing to be produced in Assembler input format. 

J-3 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

PBs-cal Reference ,..1anuai Listing FormBts 

LISTING FORMAT 11 - BEBic listing fermat IS produced by the Compiler 

ust\ Pascal ~iler V3.22 (14-Ju'l-84) 13:31:43 15-Jun-S4 

1 
2' 
3 
4 
5 
6 
7 1 
e 1 
9 1 

10 1 
11 1 
12 1 
13 1 
1& 1 
15 
16 
17 
18 
19 
20 
21 
2Z 
23 
2& 
25 

1-
2' --
3 --
4 --
5 --
6 --
1 -- A 
2' -
la-A 
4 --
5 --
6 --
7 --
8 -0 A 
7 --
8 0-
9 1-

10 --
11 --
12 --
13 --
14 --
15 --
16 -1 
17 -0 

PROGRAM EXel'lple; 

VAR 
Argll'len t : Long J n t; 

($I Fsctorie.l} 
FUNCTION Factorial(Arg: LongInt): LOng Int; 

BEGIN (Factorial) 
IF Arg<=l THEI'f 

Factorial := 1 
ELSf 

factorial := Arg*Factorial(Arg-1); 
END; (Factorial) 

BEGItI (EX~le) 
REPEAT 

'rIri teLn; 
'rIri te(' Enter STglI'IE!nt: .); 
Re81:1 (Ar9lJ'lel'l t) ; 
If (IOResult<=O) AND (Ar~t>=O) THEN 

WritelJ'l('Fsctorial(', ArglJ'lent: 1, ') .. ', 
Factorial (Argl.l"lent): 1); 

UHTlL Ar9Ul'lent<0; 
EI'fD. {Exsrll)}e} 

Elepsed tiMe: 1.483 seconds.. 

COP1pilation COP1plete - no errors found. 25 lines. 

J-4 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pat;'C'o:J Reference fo.:Ie.nae.J Listing Formats 

LISTING FORMAT 12 - Minimum listing format showing LisaBug addresses 

LiS$. Pascal COI1piler V3.22 (14-Jl.rJ-84) 13:31:43 1S-Jun-84 
13:36:41 1S-Jun-8Q Lis~ P9sC9l HC~ COde Generator Y3.14 (14-Jun-64) 

1 
2 
:3 
Q 

5 
6 
7 1 
a 1 
9 1 

10 1 
11 1 
12 1 
1.3 1 
111 1 
15 
16 
17 
18 
19 
20 
Z1 
:zz 
23 
2'1 
25 

1 --
2 --
:3 --
4 --
5 --
6 --
1 -- A 
2 --
:3 0- A 
1I -- 000008 
5 -- 000012 
6 -- 00001A 
7 OOOOlA 
8 -0 A 
7 --
8 0-
9 1-

10 --
11 --
12 --
13 --
14 --
15 --
16 -1 
17 -0 

000016 
00001E 
00002C 
000038 
0OOO4A 
00004A 
00009C 

PROOAAM EX:!'¥'IPle; 

'JAR 
ArguMent: LOnglnt; 

($1 fe.otorie.l) 
fUNCTION fe.otorial(Arg: Longlnt): Longlnt; 

BEGIN (Footorial) 
If Arg<=1 THEN 

FMtorial := 1 
ELSt: 

factorial := Alg*f~todal(Arg-1); 
END; {FMtorial} 

BEGIN {Ex8I'Iple) 
REPI'AT 

'iri teLn; 
'1ri te( 'Enter srglJMent: '); 
Read (ArguME!!) t) ; 
If (IOResIJH(:O) ~D (Argu'lent>::O) THEN 

WriteLfl1"f~torial(', ArglJMent: 1, ') =', 
f$C;torial (Ar9l.l'1ent): 1); 

LtlTI L ArgtJMent<o; 
END. (EX9I'1ple} 

Elapsed ':»Plpilation tiPle: 1.483 secOfY.ls. 

conpilation conplete - no en-ors four.j. 25 lines. 

El8p~d cod/! generator tiMe: 1.226 ~. 

Total code size", Z8iI 

J-5 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascsl Reterence Manl.ial Listing Formats 

LISTING FORMAT 13 - Full listing format with generated code intecleaved 

Lisa Pascal COPlpiler V3.22 (l!1-JU'H34) 
Lisa Pascal t1C6a/X'IO COd/! Generator V3.14 (14-Jun-84) 

13:31:43 15-Jun-8!1 
13 : 37 : 09 15-.Jun-84 

1 1 -- PROGRAM EXSMple; 
2 2 --
3 :3 -- VAR 
4 4 -- ArgUMent: ~Ir.t; 
5 5 --
6 6 -- ($1 Fectorial) 
7 1 1 -- A FUttCTlOH F8Ctorie.l(Arg; L.ongInt): Looglnt; 
8 1 2 --
9 1 30- A BEGIN {Factorial} 

OOCIOOO !lA6f' fOOO fACTORIA TST.W fFOOO(A7) 
()())()()4 !lE56 0000 LII1\ A6, 8$0000 

10 1 4 -- IF Arg<=l THEN 
000008 OCAE OOC)() 0001 CHPI. L II$OOOOOOO1,$0006(A6) 
()I)'J()()E 0008 
000010 6E08 WT .S l.OOOl ; OOOOOO1A 

11 1 5 -- Factor i9.l := 1 

12 1 
1:3 1 

14 1 
15 
16 
17 

18 

19 

20 

6 --
7 --

8 -0 A 
7 --
8 0-
9 1-

10 --

11 --

12 --

000012 7001 HOYEQ 8$01, DO 
0C0014 2040 OOOC MOVE. L 00, $OOCC(A6) 
OIXI018 601A BRA.S LOOO2 00000034 

ElSE 
Fectorial 

LOOO1 0000lA 42A7 
OOOO1C 202E 0006 
000020 5380 
000022 2FOO 
000024 /lEBA 0000 
OCOO28 2f2E 0f.Xl8 
00002C /lEBA 0000 
000030 2DSF OOOC 
OOOOJ4 4ESE 
000036 2E9F 
000038 !lEi'S 

LDOO'l 

:= Al'9*Fectorial(AJ'g-l); 
CLR.L -(A7) 
HOVE.L $OOO6(A6),DO 
SUBQ.L 8$1,00 
HOVE.L OO,-(A7) 
J~ FACTORIA 
MOVE.L $OOO8(A6).-(A7) 
JSR ,.;J HUUl 
~\O'JE.L (A7)+,$OOOC(A6) 
lINLK A6 
HOYE.L (A7)+, (A7) 
RTS 

00003A C641 4354 1tF52 
0000404941 

.YORO $C641,$43S4,$4F52;" .ACTOO" 

.VORD $4941 "IA" 

000042 0000 
000044 

CstSize 
L.a.s t 

EHO; {fsctori8.1} 

BEGIN (EXSl'lple) 
REPEAT 

00000o /lEBA 0000 
000004 OE56 0000 
0000082CSF 
OOOOOA IIESS fffC 
f)'XIOOE 9fEO 0010 
000012 /lEBA 0000 

EXAtPLf 

Vri teLn; 

• WORD 

JSR 
LII« 
MOYE.L 
LIlt(. 
SUBA.L 
JSR 

Last-CstSize-2 

" BEGIN 
A6,1I$0000 
(A7)+,A6 
A5 t #$FFFC 
$0010(AS) .A7 
'UNIT 

000016 2f2O OOOC l.OOO2 tIOVE.L $OOOC(AS).-(A7) 
OIXI01A 4EBA 0000 J...<:R 'JtU LH 

VTite('Enter argUMent: '); 
0000lE 2F'2O OOOC HO'JE.L $OOOC(AS)'-(A7) 
000022 1187A 0002 PEA Cs t0003 
000026 11267 CUR.W -(A7) 
000028 IlfBA 0000 JSR 'W STR 

Read(ArguMent); -

J-6 

OOOOOOC6 

I~ 
f 



Pat;'ca1 Reference Menus1 Listing Formets 

00'J02C 2F20 0008 MOVE.L $1)f))8(AS) ,-(A7) 
Ol"10030 UEBA 0000 JSR ~I 
000034 2BSF fFFC HOVE. L (A7)+,$FffC(A5) 

21 13 -- IF (IOResult<=O) AND (Ar~JMent>~o) THEN 
000038 IIEBA 0000 JSR " 10RES 
00003C UASF TST .W (A7)'" 
OOOOJE 5FCO SLE DO 
()()(l()40 UAAD FFFC TST .L fFFfC(AS) 
000044 5CC1 roE 01 
OCOO46 COO1 ANO.6 Ol,DO 
0000.:l8674A BEQ5 LOOOl ; 00000094 

22 14 -- IrIriteLn('Factorial(', ArguMent: 1, ') ~', 
23 15 -- F9Ctorial(Argul');!nt): 1); 

00004A 2F2D OOOC HOVE. L $OOOC(A5), --(Ai') 
00004E IIS7A 006A PEA Cst.OOO2 ; OOOOOOOA 
00Cl0'52 11267 CLR.W -(A7) 
000054 IIEBA 0000 JSR 'IN STR 
000056 2F20 OOOC 11O\IE. L foOOc(AS),-(A7) 
OOOOSC 2F20 FFFC tl0VE. L $FFFC(AS) ,-um 
000060 3F3C 0001 MOVE.W IIlO)()1, -(A7) 
000064 IIEBA 0000 JSR WI 
000068 2F20 OOOC MOVE.L $oOOc(AS).-(A7) 
()(X)()6C 1187A OQ/t8 PEA CstooOl 000()0)B6 
000070 11267 CLR.W -(A7) 
iYX1072 /lEBA 0000 JSR ~ STR 
000076 2F20 OOOC t1O\IE. L foOoc(AS),-(A7) 
oooo7A 112A7 CLR.L -(A7) 
00007C 2f20 FffC MOVE_L $fffC(AS),-(A7) 
~O UEBA 0000 JSR fACTOl<lA 
00008/1 3F3C 0001 MI)~IE .w 8$0001,-(A7) 
000066 4EM 0000 JSR 

"" I 00008C 2f20 oooc t1O\IE. L $00Jc(ASL-(A7) 
000090 /lEBA 0000 JSR 'JfIJ LN 
000094 liMO fFFC WOOl TST .L fFFFC(AS) 
()0){)98 6CI)) fF7C BGE L0002 00000016 

211 16 -1 UHIL Argul'lent<O; 
()(Y.)()'9C IIEBA 00')0 JSR " TERM 
OOOOAO UE50 UN\J<; AS 
00()()A2 4EM 0000 JSR 'Uti) 
0Q()()A6 IIE75 RTS 
OOJOA811ESE utiLK A6 
OO()()AA 4E75 RTS 

OOOOAC C558 4140 504C .liOOD $C558,$4140,$504C ; ... XAMPL" 
000062 4520 .\lORO $11520 HE H 

000064 0022 CstSize .YORO Ulst-cstsize-2 
000066 CstOOOl 
00'.)()6f) 03 _BYTE 3 
ooooe7 2920 3D .ASCI I ') ~' 
OOOOBA CstOOO2 
00006A OA .BVTE 10 
OOOOBB 11661 6371l 6f72 .ASCI I 'Fs::tor' 
OOOOC1 6961 6C28 • A&:: I I 'iE'll( , 
0000(;5 00 . BYTE $00 
()()()()C6 CstOOO3 
0000C6 10 • BYTE 16 
OOOOC7 1l56E 7465 7220 .ASCI I 'Enter ' 
OCIOOCD 6172 6775 6065 .ASCII ' aTgtJI'Ie , 
000003 6E7U 3A2O .AXII 'nt: ' 
000007 00 _BYTE $00 
OOOOOS Last 

J-7 



Pascal Reference /V'enll8} 

25 17 -0 END. (EXSl'lple} 

Elapsed ~pilation tiMe: 1.463 seconds. 

COl"4>ilation COf1Plete - no errors found. 25 lines. 

Elspsecl code generator tiME!: 3.106 seconds. 

Total cooe size = 264 

J-8 

Listing Formats 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference f>.:18nlJ81 LJsting FOrn78ts 

LISTING FORMAT 14 - Full listing format with the $ASM PROC in effect 

Lisa Pascal c.ol'lpiler V3.22 (14-Jln-84) 
Lisa Pascal I'r.;G8oo0 Code Gene18.tor '0'3.14 (14-.Jun-84) 

13 :31 :43 15-Jun-s4 
13 : 38 : JIl 1S-Jun-8I1 

1 
:2 
3 
.:I 
5 
6 
7 1 
;3 1 
9 1 

10 1 
11 1 
12 1 
13 1 
11l 1 

15 
16 
17 
18 
19 
10 
21 
22 
23 
2t1 
15 

1 -- PROORAM EX:9Mple; 
2 --
3 -
.:I --
5 --
6 --
1 -- A 
Z --

'JAR 
ArgUMent: Longlnt; 

($1 Fectorial) 
FUHCTIOH F9Ctorial(Arg; Longlnt): Longlnt; 

:3 0- A BfGltl (Factorial} 
/l -- IF Arg<=l THEN 
5 -- F9CtoriSl := 1 
6 -- ELSE 
7 -- F9Ctorial := Arg*FQ:)to1"ie.l (A1"g-1); 
8 -0 A END; (Fectorial) 

00000o 4A6f fOOO FACTORIA TST .W $FOOO(A7) 
OOJOOlI IIE56 0000 LlH< 1\6,11$0000 
000008 OCAE 0000 0001 CMPI.L 11$00000001,$0008(1\5) 

"7 --
a 0-
9 1-

10 --
11 --
17 --
13 --
11l --
15 --
16 -1 
17 -0 

OOOOOE 0006 
000010 6EOS 
000012 7001 
0000111 ZOllO OOOC 
000018 601A 
0000lA "2A7 
()((l()lC 202E 0008 
roJOZO 5360 
000022 2Ft)) 
ooo02Q 1I~5A 0000 
000028 2F2E 0008 
00002C IIEBA 0000 
000030 ZOSF OOOC 
000034 !lESE 
000036 2E9f 
000038 IlE75 

LDOOi 

LOOO2 

Bt:lT .S 
HO\.\:Q 
tlO'JE. L 
BRA.S 
CLR.L 
MOVE. L 
SJJ8Q.L 
MOVE. L 
J~ 
HO\.\:.L 
JSf< 
HO\.\:.L 
Util..K 
MOVE. L 
RTS 

LOool 
U$01, 00 
DO,$OOOC(A6) 
LOOO2 
-(A7) 
$0008(A6) ,00 
11$1,00 
00,-(A7) 
fACTORIA 
$OOO8(A6),-(A7) 
"I ~lUlJl 
(A7)+,$OOOC(A6) 
AS 
(A7)+,(A7) 

0000001A 

00000034 

oooo3A C6111 4351l 4F52 
000040 (1941 

.YORD $C641,$43511,$4F52; ".ACTOR" 

.'I1:RO $4941 , "IA" 

000042 0000 
0000411 

CstSize .~ORD Last-CstSize-l 
Last 

BEGIN {Ex9l'lPle) 
REPEAT 

'il·i tel.n; 
lirite('Enter al"gt.If'II!H)t: '); 
R.a>ld(Al"glJM02nt); 
If (IOOesul t<=O) ;:tiD (A1"gY'IeI"lh=O) THEN 

~IT i teLn(, fsctOT ial ( " ArglJl'lent: 1, .) =', 
f9Ctorial(Arg1Jf'!ent): 1); 

lJ'lTI L ATt;JIJl'1en t < I); 
END. (fX8I'Iple} 

000000 /lEBA 0000 EXAtlPLE 
()OOOOli !lE56 0000 
0Ct0008 2CSF 
OOOOOA !lESS FFFC 
OOOOOE 9FED 0010 
000012 /lEBA 0000 
000015 ZF2D OOOC LOOOZ 

JSf< 
L1tt: 
~10'JE. L 
LUI< 
SlJOO. L 
J;m 
tlO'JE .L 

J-9 

" BEGIN 
A6,1I$0000 
(A7)+,A6 
AS.lI$fFFC 
$0010(AS) .. A7 
,.; HilT 
$lOO.(AS) , -(A7) 



I 
Pascsl Reference fo.1anuaJ Listing Formats 

I 
0 ".' .:, 

I 
'~(', 

"'.."'¥' 

OOOO1A IlEBA 0000 JSR ""'~ 

I 
OOOO1E 2f20 00ClC MO\.£.L $oOOc(AS),-(A7) 
000022 487A 00A2 PEA CstOOO3 000000C6 
()()()OZ6 4267 CUUI -(A7) 
000028 4EBA 0000 JSR '" s.'f~ 
00002C 2F20 0008 HOVE.L $oOos(AS),-(A7) 

I 000030 !lEBA 0000 JSR ~l 
0000:34 285F FFFC HOVE.L (A7)+.$FFFC(AS) 
000036 4EBA 0000 JSR " IOOES 
00J03C 4A5f TST.W (A7)+ 

I 
00003E SFCO S1.f 00 
()()()()40 4AAIJ FFFC TST.L $FFFC(AS) 
OOJ044 5CC! Sf'L 01 
000046 COO1 AHD.B 01,00 
0000/I8 674A BEQ.S LOOOl 00000094 

I 00004A 2f20 ()(X)C MOVE.L $()(X)C(AS)' -(A7) 
00004E 4S7A 006A PEA CstOOO2 OOOOOOBA 
0CiJ052 4267 CLR.W -(A7) 
000054 /lEBA 0000 JSR "'" ST~ 

I 
0CiJ056 2f20 OOOC MOVE.L $oOOc(AS). -(A7) 
OOOOSC 2F20 FFFC MOVE.L $FFFC(AS),-(A7) 
000060 3F3C 0001 HOVE.V 1$0001,-(A7) 
()()()()64 !lEBA 0000 JSR ",,1 
000068 2F20 OOOC t1OVE. L $oOOc(AS) , -(A7) 

I 
00006C 467A 00:16 PEA CStoOOi ()()()(lOOBf) 

000070 4267 CLR.W -(A7) 
oooon !lEBA 0000 JSR "'" STR 000076 2F20 OOOC t1OVE.L $oOoc(AS),-(A7) 
00007A 42A7 CLR.L -(A7) 

I 00007C 2F20 FFFC HOVE. L $FFFC(AS),-(A1) 
ooooeo !lEBA 0000 JSR FACTORlA 
000084 JF3C 0001 MOVE.V 8f()OO1,-(A7) 
OOJOS8 4EBA 0000 JSR !WI 

I 
COOO8C 2F20 OOOC HOVE. L $oOOc(AS) , -(A7) 
000090 /lEBA 0000 JSR ~~ 
000094 !lAM FFFC LOOO1 TST.l $FFFC(AS) 
000096 6COO FF7C BGE LOOJ2 00000016 
00009C /lEBA 0000 JSR " TERM 

I OO'JOAO liES[) UliLK AS 
0000A2 4EBA 0000 JSR 'UNO 
0000A6 IlE?5 RTS 
0000A8 !lESE UliLK A6 

I 
OCOOAA IlE?5 RTS 

OOOOAC C558 4140 SOIlC .V~O $C558,$4140,$S04C ; ... XAI1PL" 
0CI00B2 4520 .\#CfID $4520 "E " 

I 00IJ0f.'4 0022 CstSize .11000 Last-CstSize-2 
ocnoB6 CstO'J01 
OC)()()66 03 . BYTE 3 
(X)()()87 2920 3D .AXII ') :' 
00008A CstOOO2 

I 00008A OA . BYTE 10 
OOOOBB 4661 637!1 6F72 • AOC II 'Factor' 
COOOC1 6961 6C26 .ASCII . ial(' 
0C00C5 00 . BYTE $00 

I 
I)J()()C6 CstOOO3 
OJOOC6 10 . BYTE 16 
OOOOC7 Q56E 7Q65 7220 .A9:I] 'Enter ' 
OOOOCD 6172 6775 6065 • As::: I ] , argUl'le' 
000003 6E7/l 3A20 .A9:11 'nt: ' 

I 000007 00 . BYTE $00 

I J-lO 

I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

()(X)()I)8 Las t 

Elapsed COflpilation til'le: U!83 secOMS. 

COplpilation COI'lplete - no errors fOUM. 25 lines. 

El~d code generator tiMe: 2.646 secono:lS. 

Total code size; zPJ4 

J-ll 

Listing Formats 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

PasCo:i Fi'ef'erence ,"1enue} Listing Formets 

LISTING FORMAT 15 - Assembler input interleaved with Pascal source as 
comments 

PROORAM EXSl'lP 1 e; 

1.0001 

LDOO2 

'.1M 
ArgurlE!O t: lDngJ n t; 

($1 Fsctoria.l} 
FUNCTION Factoria1(ATg: LOnglnt): longlnt; 

BEGIN (factorial) 

. FUMG FACTORIA 

.REF !IQ: 1'l.IL4 

.~F FACTORIA 

TST.W -ij095(A7) 
LINK A6,UO 

If Arg<=l THEN 
CHPI.L #1,8(A6) 
BGT.S LOOO1 

factorial ;:: 1 
HOYEQ 11,00 
MOVE.l OO,12(A6) 
BRA.S LOOO2 

ELSE 
Factoria.l := Arg*Factoris.l (Arg-l); 

CLR.1. -(A7) 
HOVE.L 6(A6),DO 
stmQ.L "1,00 
MOVE.L DO,-(A7) 
JSR FACTORJA 
HOVE.L 8(A6),-(A7) 
JSR !IQ: 1'lJL4 
H~JE.L (A7).,12(AO) 
utlLK A6 
ttO'.'E. L (A7)., (A7) 
RTS: 

.WORD $C641,$4354,$4F52,$4941 

CstSize .WORD lBSt-Cstslze-2 
Last 

EHO; (factorial) 

BEGIN {Exel'lple} 
REPEAT 

.HAIN EXAl'Plf 

.REF "EIt) 

. REF "-TERtI 

.REF »il 

. REF " rOOfS: 
• REF !llRI 
. REF MI-STR 
. REF !\I(!)l 
. REf FACTORIA 
. REf " HilT 
. REf ,.CBEGIH 

J-12 

,~ 
I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

( 
I 

Pas'C'ed Reference Manae! Listing Formats 

JSR " SEcm 
WIK M,IIO 
MM.L (A7).,A6 
LINK AS,lI-1l 
SOOA.L 16(AS),A7 
J~-.R " nllT 

Yri telJl; 
l.OOO2 MO'JE.L 12(ASL-(A7) 

JSR , !IIilU .. H 
'in te ( . En ter aTguMeI1 t : . ); 

NO'JE. L 12(AS) ,-(A7) 
PEA CstOOO3 
CLR .... -(A7) 
JSR ~ STR 

Read (ArgiJMen t) : 
HOYE.L 8(A5),-(A7) 
JSR !llRI 
HO'.'E.L (A7).,-4(A5) 

IF (IOResult<=O) AND (ArgUAent>=O) THEN 
JSR " IORES 
TS,. .W (A7). 
S1..E 00 
TST . L -1l(AS) 
!-GE 01 
A~.B 01,00 
BEQ.S lDOO1 

writelJl('fsctorial(', ArguMent: 1, ') :', 
factorieJ.(ArguMent): 1); 

MO'JE.L 12(AS), -(A7) 
PEA CstOOO2 
CULW -(A7) 
JSR ,.. STR 
HM.L 12(AS).-(A7) 
HO'oIE.L -4(AS),-(A7) 
HM.W 11,-(A7) 
JSR 'JIitI I 
MOYE.L 12(AS),-(A7) 
PEA CstOOO1 
CLR.W -(A7) 
JSR »J STR 
MM.L 12(AS),-(A7) 
CLR.L -(A7) 
MO'JE.L -4(AS),-(A7) 
JSR FACTORlA 
NO'.'f.W Sl,-(A7) 
JSR ,..,1 
MM.L 12(AS),-(A7) 
JSR IItILH 

l.Oool TST.L -!l(AS) 
BGE LOOO2 

IJ'ITI L Argl..ll'M'mt<O; 
JSR " TERti 
UHLK A5 
JSR "_EI'O 
RTS 
UHLK A6 
RTS 

• WORD $CSSS,$414D,$S04C, $4520 

CstSize • \rIOR[) Las t-Cs tSize-2 

J-13 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pas-em Refl11'ence ft.1anu81 

CstOOO2 

CStOOO:3 

t..ast 

.ME :3 

.ASCII '):' 

.ME 10 

. ASCI I 'FeotorieJ(' 

.6't'TE $00 

.ME 16 

.ASCII 'Enter ar~t: ' 

.ME $00 

EtI). (Exerlp iii! ) 

.EIt) 

Listing Formats 

J-14 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Manual Listing Formats 

LISTING fORMAT 16 - Assembler input with the $ASM PROC in effect 

; PROORNI EXWlple; 

VAR 

1.0001 

1.0002 

Argvl'lE!O t: LOng I n t.; 

{$I fet::torisl} 
FUNCTION Fectoritll (Arg: Lunglnt): LutgInt; 

BEGIN (fectorial) 
If Ar9<=1 THEN 

Fectorial := 1 
E L.s:: 

Fectorial := Arg*Factorial(Arg-l); 
END; (Fsctorial} 

."utK:; FACTORJA 

. REf !IO ItJUI 

. REF FACTORIA 

TST.'" 
LINK 
CHPl.l 
BOT .S 
I10VEQ 
HOYE.l 
f:lRA.S 
CULL 
HOYE.L 
SUBQ.L 
HOYE.L 
JSR 
MOYE.l 
J5R 
HOYE.l 
IJHU<. 
MDYE.L 
RTS 

-4096(A7) 
A6,1O 
1Il,8(AS) 
LOOO1 
.11,00 
OO,1Z(A6) 
L.OOO2 
-(A7) 
8(A6),00 
111.00 
OO.-(A7) 
FACTORIA 
6(A6), -(A7) 
~ I'UUI 
(A7)+,12(A6) 
A6 
(A7;,+, (A7) 

.WORD $C641,$4354,$4F52,$4941 

Cs tSize .WORD Las t-cs tsize-2 
I.8St 

BEGIN (Ex8l'lple) 
REPEAT 

'hi teLn; 
~rite('Enter sr~t: '); 
Reed(ArguMent) ; 
If (IOResult<=O) AND (ArguMent>=o) THEN 

WriteLn('Fectorial(', ArguMent: 1. ') =', 
Fsctoria1(Arg\.ll'lenO: 1): 

LtfTIL ArC}Jl'1ent<O; 
ENO. {Exartp Ie} 

.tIAIN EXAI'PLE 

. REF " EI't) 

.REF "-TERM 

. REF ,w_1 

J-15 



I 
Pas-csl Reference "'''snus! Listing Formsts 

I 
0 I :",:!~tt! 

• REf " ItRS 

I 
. REF ~I 
. REF ",nrrR 
. REF »I-LN 
. REF FACTORIA 
. REF " IHIT 

I . REf ":BEGItt 

JSR " BEGIN 
LIHI< A6,80 

I 
t1t'M:. L (A7)+.A6 
LINK AS ,I-II 
SlJ6A.L 16(AS),A? 
JSR " IHIT 

1.0002 t'KM:.L 12(AS),-(A7) 

I JSR »lUi 
I1M.L l2(AS),-(A7) 
PEA Csto:x>3 
CLR.Y -(A7) 
JSR »I STR 

I I1OYE.L 8(AS),-(A7) 
JSR !llAI 
MM.L (A7)+,-4(AS) 
JSR "I<.lIES 

I 
TST.W (A7)+ 
ill DO 
TSl .L -11 (AS) 
SGE 01 
AtI).B 01,00 

I SEQ.S LOOO1 
ttOYf.L 1Z(AS),-(A7) 
PEA CstOOO2 
CLR .... -(A7) 

I 
JSR "'_STR 
HM.L 12(AS) , -(A7) 
MDVE.L -1I(AS),-(A7) 
MOVE.III a1,-(A7) 
JSR !JIloII 

I HM.L l2(AS),-(A7) 
PfA CstOQ01 
CLR.\\I -(A7) 
JSR »I STR 

I 
HO'oIE .L l2(AS),-(A7) 
C~_L -(A7) 
HOYE.L -1I(AS),-(A7) 
JSR FACTORIA 
t1OYE.W '1,-(A7) 

I JSR ",.,1 
"OVE.L li(AS). -(A7) 
JSR ""'_ll'I 

LDool TSl .L -11 (AS) 
8GE LDOO2 

I JSR " lERH 
UHLK AS 
JSR "_EHD 
RTS 

I 
IJHLK A6 
RTS 

. WORD $CSSS,$41110,$S04C,$4S2Q . 
I CstSize • WORD L9.s t-cs tSl2e-2 

I J-16 

I 



I 
Pas:c8:1 Reference fo.:'BnI..lBl Listing FormBts-

I 
I CStOOO1 

.B'rrE 3 

I 
. ASCII ') =' 

CstOOO2 
• BYTE 10 
• ASCII 'FactorieJ( , 
.B'rrE $00 

I CstOOO3 
.8YTE 16 
. ASCII 'Enter argtnent: ' 
• BYTE $00 

I 
l.8.s t 

• END 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

J-17 

I 
.. __ .-. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

P8S(l8i Referem;e tfflf1u81 Index 

Index 
Please note that the topic references in this index 
are by section number. 

II 
Abs Function 11.4.2 
Abs2X D.4.S, D.4.12 
Absolute value D.9.2 
AbsX D.3.9.2, D.3.12 
Accuracy in Real Arithmetic D 
ACosX D.4.3, D.4.12 
Actual-Parameter 5.2, 7. I, 7.S 

syntax 5.2 
Actual-Parameter-List 5.2 

syntax 5.2 
Actual-Parameters in Procedure Call 6.1.2 
Add, D.3.3.1 
AddPtd Procedure E.9.17 
AddC, D.3.S.l, D.3.12 
AddD D.3.3.1, 0.3.12 
AddS D.S.S.l, D.S.12 
AddX D. 3. 3. 1, 0.3.12 
Anomalies in Lisa Pascal B 
Annuity D.S. 10.3, 0.3.12 
Apple II Pascal A 
Apple III Pascal A 
Apple II and Apple III Pascal: Other Differences 

A.3 
Apple Numerics Manual D.l 
Applestuff Unit A 
Arc, Graphic Operations E.9. 10 
Arctan Function 11.4.9 
Arctangent 0.3.10.4 
Arithmetic Functions 11.4 
Arithmetic Operations D.3.3 
Arithmetic Operators 5.1.2, D 
Array 3.2.1, 4.S.1 

component 3.2.1, 4.3.1 
reference 4.3. 1 

Arrays and Matrices 0.4.10.3 
Array-type 3.2.1 

syntax 3.2.1 
Ascent Line E.5.2 
ASCII 3. 1. 1. 5 
ASinX D.4.S, D.4.3, D.4.12 

Index-l 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Ifanual 

Assembler Input Source J-2 
Assembler Input by Source J-3 
Assemably Language D.5. 1 
Assembly Lan~ua~e, Quickdrav E.11 
6502 Assembly-Language SANE Engine D.1 
68000 Assembly-Language SANE Engine D. 1 
Assignment-Compatibility 3.4.3 
Assignment-Statement 6.1.1 

syntax 6.1.1 
ATanX D.3. 10.4, D. 3. 12 
ATan2X 0.4.3, 0.4.12 
Auxiliary Procedures 0.3.9 

B 
BackColor Procedure E.9.5 
BackPat Procedure E.9.1 
Base-2 logarithm 0.3.10.1 
Base Line E.5.2 
Base-Type 3.2.3, 3.3, 6.3 

of pointer-type 3.3 
syntax 3.3 
scope anomaly B 
of set-type 3.2.3, 5.3 

Basic Listing Formats J-1 
Beep Procedure F.4 
Binary Log D.3.9. 4 
Binary Scale 0.3.9.4 
B1 t Image E. 4. 1 
Bit Transfer Operations E.9.13 
BitMap Data Type E.4.2 
Bitmaps E.4.2 
Bitvise Boolean Operations A 
Blank Character 1.1 
Blank Seiment 8.3, 9.1 
Block 2 

syntax 2.1 
Block-Structured I/O 3.2.4, 

10. 1. 1-2, 10. 4 
Blockread Function 3.2.4,10.4.1 
Blockvrite function 3.2.4,10.4.2 
Boolean 3.1.1.4, 5.1.3, 5.1.5.2, 

10.3.3.7, 12.3-12.4 
comparisons 5.1.5.2 
constants as control values 12.3.-4 

Index-2 

Index 

" 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference lfanlJal 

operands, evaluation of 5.1.3 
operators 5. 1. 3 
data type 3.1.1.4 
values in text-oriented output 

10.3.3.7 
Boundary Rectangle E.4.2 
Boxes Program E.14.2 
Buffer Variable 10.1.3, 10.1.7 
Built-In Procedures and Functions 10, 

11 
Busy Cursor F.2.2 
BusyDelay Procedures F.2.2 
Busylmage Procedures F.2.2 
Byte Array 11. 7 
Byte-Oriented Procedures and Functions 

11. 7 
Byte-Size Files 3.2.4 
Bytestream Type A 

C 
C2Dec D.3.4.2, D.3.12 
C2Str D.3.4.2, D.3.12 
C2X D.3.4.1, D.3.12 
Camera Eye E.12 
Case 6.2.2.2 

syntax 6.2.2.2 
Case-Constant in Case Statement 

6.2.2.2 
Case-Sensitivity 1.1, 1.2, 1.4 
Case-Statement 6.2.2.2, Notes 6-1 

efficiency 12.5 
syntax 6.2.2.2 

Char 1.6.1, 3.1.1.5, 10.3.1.1, 
10. 3. 3. 2, 11. 5 

constant 1. 6. 1 
type 3.1.15 
values in text-oriented I/O 

10.3.1.1, 10.3.3.2 
Character 1.1. 3.2.4, 4.3.1 

device 3.2.4, 10.1.1-2 
files 3.2.4 
font E.5.2 
in string 4.3.1 

Index-3 

---------

Index 

---------



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

P8sc81 Ref'erence 1'18nu81 

set 1. 1 
Character Style E.5.2 
CharWidth Function E.9.4 
Chr Function 11.5.2 
Class Functions 0.3.7.1 
ClassC 0.3.7.1, 0.3.12 
ClassD D.3. 7.1. D.3.12 
ClassS 0.3.7.1, 0.3.12 
ClassX 0.3.7.1, 0.3.12 
ClearHlts 0.4.2, 0.4.12 
ClearXcps 0.4.2, 0.4.12 
Clip30 Function E.12.4 
ClipRect Procedure E.9. 1 
ClipRgn E.5 
Clock/Calendar F.8, F.9 
Close Procedure 10. 1. 5 
ClosePicture Procedure E.9. 14 
ClosePoly Procedure E.9. 15 
ClosePort Procedure E.9. 1 
CloseRgn Procedure E. 9. 11 
Closing a File 10.1.5 
CmpX 0.3.6, 0.3.12 
Code Generation 12. 1 
Code Generator Invocation Options Notes 12-4 
Code Generator Invocation Options (Table) 

Notes 12-7 
Color Orawing E. 7. 2 

routines E.9.5 
ColorBit Procedure E.9.5 
Column Pivoting 0.4.10.9 
Comment 1.8 
Comp 0.3.2, 0.3.12 
Comparison to Apple II and Apple III Pascal 
Comparison Functions 0.3.6 
Comparisons 6.1.6 
Comparisons Involving NaNs D. 2. 4 
Compatibility of Parameter Lists 

7.3.5 
Compatible Types 3.4 
Compile-Time Expressions and Variables 

12.2.1-3 
Compiler 1.8, 12, A 

commands 1.B, 12.1-2, A, Notes 12-1 
Compiler Commands (Table) Notes 12-7 
Compiler Invocation Options Notes 12-2 

Index-4 

Index 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Itan£lal 

Compiler Invocation Options (Table) Notes 12-7 
Component of Array 3.2.1. 4.3.1 
Component of File 3.2.4. 4.3.3 
Component-Type of Array 3.2.1 
Component-Type of File 3.2.4 
Composing Transformations D.4.10.3 
Compound D.3.10.3, D.3.12 
Compound Interest D.3.10.3 
Compound-Statement 6.2.1 

syntax 6.2.1 
Concat Function 11.6.3 
COND D.4.10. 4 
Conditional Compilation 12.2 
Conditional-Statement 6.2.2 

syntax 6.2.2 
Conditioned Problems D.4.10.4 
Condition number D.4.10.4, D.4.10.10 
Constant 1. 4-7 

syntax 1. 7 
Constant-Declaration 1.7, 2.1, B 

scope anomaly B 
syntax 1. 7 

Constant-Declaration-Part 2.1 
syntax 2.1 

Constant Expressions Notes 1-1 
Constants, Assembly Language E.l1.1 
Contrast Control F.3.1 
Contrast Function F.3.1 
Control-Variable 6.2.3.3 

syntax 6.2.3.3 
Conversion, Type Notes 3-1 
Conversions D.3.4 
Conversions To and From Extended D.3.4. 1 
Conversions Between Binary and Decimal D.3.4.2 
Converting Decimal Strings into SANE Types 

D.3.4.2 
Converting SANE Types into Decimal Strings 

D.3.4.2 
Coordinate Conversion D.4.3 
Coordinate Plane E.3.1 
Coordinates, GrafPort E.3.1, E.6 
Copy Function 11.6.4 
CopyBits Procedure E.9. 13 
CopyRgn Procedure E.9.11 
Correctly Rounded Conversion D.4. 7 

Index-5 

Index 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Ref'erence Ifanual 

Correlation Matrix 0.4.10.7 
Cos Function 11.4.5 
CoshX D.4.3, D.4.3, 0.4.12 
CosX 0.3.10.4. 0.3.12 
Cosine 0.3.10.4 
CpySgnX D.3.9.2, 0.3.12 
CR Character 1. I, 1.6, 10.3 

in text-oriented I/O 10.3 
Crunch 10. 1. 5 
Current Block Number 10.4 
Current File Position 4.3.3 
Cursor Control 10.3.7, F.2 
Cursor Oata Type E.4.4 
Cursor-Handling Routines E.9.2 
CursorHeight Data Type F. 10 
Cursorlmage Procedure F.2 
CursorLocation Procedure F.2. 1 
CursorPtr Oata Type F. 10 
Cursor, QuickOrav E.4.4 
CursorTracking Procedure F.2. 1 
Customizing QuickOraw Operations 

E. 10 

o 
D2Dec D.3.4.2, D. 3. 12 
D2Str 0.3.4.2, 0.3.12 
02X 0.3.4.1, 0.3.12 
Oata Bitmap F.2 
Data Types D.3.2 
Data Types 3 

assembly language E.11.2 
Graf30 E. 12. 3, E.13.5 
QuickDrav E.2.2, E.13.2 

OataFile 10.1.2 
Date F.8, F.9 
DateArray Data Type F.10 
DateTime Procedure F.8 
OateToTime Procedure F.8 
DblPrecision D.4.12 
Dead Key Diacriticals F. 5. 4 
Debugging 12. 1 
Oec2C 0.3.4.2, 0.3.12 
Dec2D D.3.4. 2. 0.3.12 
Dec2S D.3.4.2, D.3.12 

Index-6 

Index 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I ( 

I 
I 

Pasca1 Ref'erence lfanlla1 

Oec2X 0.3.4.2, 0.3.12 
Dec Form 0.3.4.2, D.3.12 
Oecimal 0.3.4.2, 0.3.12 
Decimal Record Conversions 0.3.4.2 
Decimal Record Type 0.3.4.2 
DecStr 0.3.4.2, 0.3.12 
OECSTRLEN 0.3.12 
Definin2 Declaration 7.1 
Delete Procedure 11.6.5 
Deletions A.2 
DENORMAL 0.3.7.1, D.3.12 
Denormalized number 0.3.7.1 
Denormalized Numbers 0.3.7 
Descent Line E.5.2 
Determinant D.4. 10. 10 
Determinants 0.4.10.6 
Device 10. 1. 1-2 

character 10.1.1, 10.1.2 
file-structured 101.1, 10.1.2 
types 10.1.1, 10.1.2 

Diacritical Harks F.5.4 
DiffRgn Procedure E.9. 11 
Digi t 1. 1 
Digits 0.3.4.2, 0.3.12 
Digit-Sequence 1.4 

syntax 1. 4 
DimContrast Function F.3.2 
Dimensions of Lisa Screen E.4. 1 
Directi ve 1. 3 
Diskette Insertion S~itches F.5 
Display Screen F.3 
DisposeRgn Procedure E.9.11 
DIVBYZERO D.3.8.2, 0.3.12 
Div Operator A 
DivC 0.3.3.1, 0.3.12 
DivO D.3.3.1, D.3.12 
OivS 0.3.3.1, 0.3.12 
DivX 0.3.3.1, 0.3.12 
Divide D.3.3.1 
Division by Zero (Real Arithmetic) 

3.1.1. 3, D 
OLE Character 10.3 
Double D.3.2, D.3.12 
DblPrecision D.4.2 
DOWNWARD D.3.B.1, 0.3.12 

Index-7 

Index 



• iiii 

• --!!!!! 
• • 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal ReFerence Ifanllal 

DravChar Procedure E.9.4 
Draving E.7 

color E.7.2 
DravPicture Procedure E.9.14 
DravString Procedure E.9.4 
DravText Procedure E.9.4 
Dynamic Allocation Procedures 11.2 
Dynamic storage 0.4.4 

E 
Efficiency, Case-Statements 12.5 
E format D.4.S 
ELEHS 0.3.12 
Elementary Functions D. 3. 10, D.4.3 
Empty Set 5.3 
EmptyRect Function E.9.6 
EmptyRgn Function E.9.11 
Enumerated-Type 3.1.2 

syntax 3. 1. 2 
Environ 0.3.8.2, 0.3.12 
Environmental Control D.3.8 
Eof Function 10. 1. 7 

and various procedures 10.1.3-4, 
10.1.7, 10.2.1-2, 10.2.4. 
10.3.1-2, 10.4.1 

Eoin Function 10.3.5 
and read and readln procedures 
10.3.1, 10.3.2 

EQ D.3.S, D.3.12 
Equal D.3.S 
EqualPt Function E.9. 17 
EqualRect Function E.9.6 
EqualRgn Function E.9.11 
EraseArc Procedure E.9.10 
EraseOval Procedure E.9. 8 
ErasePoly Procedure E.9.1S 
EraseRect Procedure E.9.17 
EraseRgn Procedure E. 9. 12 
EraseRoundRect Procedure E.9.9 
Error Hessages H 
Error Reporting H. 1 
ETX Character A 
Euclidean Length D.4.10.3 
EX - 1 D. 3. 10.2 

Index-8 

Index 



• 

--
I 
I 

Pescel Reference lfenlJel 

Exception D.3.B.2. D.3.12 
Exception Flags D.3.B.2 
Existence D.4.10.3 
Exit Procedure 11.1.1, A 
Exp 0.3.4.2, 0.3.12, 0.4.7, 0.4.12 
Exp Function 11.4.S 
Exponential format 0.4.6 
Exponentials 0.3.10.2 
Exp1X D.3. 10.2. 0.3.12 
Exp2X 0.3.10.2, 0.3.12 
ExpX 0.3.10.2, D.3.12 
Expression Evaluation D.3.5 
Expressions 5 

syntax 5 
Extended 0.3.2, 0.3.12 
Extended Comparisons A 
Extended Temporaries D.3.5 
Extended-Based Expression Evaluation 0.3.5 
Extensions A. 1 
External File 10.1 
External Function 7. 2 
External Procedure 7. 1-2 
External Rate of Return 0.4.9 
ExtPrecision D.4. 12 

F 
Factor 5 

syntax 5 
FadeDelay Function F.3.2 
F format D.4.6 
Field of Record 3.2.2, 4.3.2, 6.2.4 
Field-Declaration 3.2.2 

syntax 3_22 
Field-Designator 4.3.2 

syntax 4.3.2 
Field-List 3.2.2 

syntax 3.2.2 
File 3.2.4. 4.3.3. 10 

buffer 4.3.3 
Buffer and Eof Function 10.1.7 
Buffer and Reset Procedure 10.1.3 
Component 3.2.4, 4.3.3 
Identifier As Parameter Type 7.3 
Of Char 3.2.4 
Position and Reset Procedure 

Index-g 

Index 



Poscol ReFerence l1onuol 

10.1.3 
Record 10.2 
Reference 4.3.3 
Species 10.1.2 
Standard File-Type Identifier 

3.2.4, 10.1, 10.4 
Types and Reset Procedure 10.1.3 
Variable 3.2.4, 4.3.3, 10 
File-Buffer-Symbol4.3.3 

syntax 4.3.3 
File-Structured Device 3.2.4, 

10. 1. 1-2, 10. 4 
File-Type 3.2.4 

syntax 3.2.4 
FillArc Procedure E.9. 10 
FillChar Procedure 11.8.3 
FillOval Procedure E.9.8 
FillPoly Procedure E.9. 16 
FillRect Procedure E.9. 7 
FillRgn Procedure E.9. 12 
FillRoundRect Procedure E.9.9 
Final-Value 6.2.3.3 

syntax 6.2.3.3 
Financial Analysis 0.4.8 
Financial Functions 0.3.10 
Finite Real Values 3.1.1.3 
Fin-Npv 0.4.8; 0.4.12 
Fin-Return D.4.8, D.4.12 
FIXEOOEClHAL 0.3.4.2, 0.3.12 
Fixed Decimal Point Format 0.4.6 
Fixed-Part 3.2.2 

syntax 3.2.2 
Fixed-Point Output of Real Value 

10.3.3.4 
FLOATOEClHAL 0.3.4.2, 0.3.12 
Floating-Point Arithmetic 0 
Floating-Point Output of Real Value 

10.3.3.4, A 
Font Numbers E. 15 
Fonts E.5.2 
For-Statement 6.2.3.3 

syntax 6.2.3.3 
ForeColor Procedure E.9.5 
Foreign Characters F.5.4 
Formal-Parameter-List 7.3 

Index-I0 

Index 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Hanu8l 

syntax 7.3 
Formal-Parameters and Procedure Call 

6.1. 2 
Forvard Declaration 7.1-2, Notes 7-1 
FP68K 0.4.5 
FP-Free-ASCII 0.4.6, 0.4.12. 
FPLib 0.1, 0.3, 0.3.12, 0.5.3 
FP-New 0.4.4, 0.4.12 
FP-Size 0.4.4, 0.4.12 
FP-Type D.4. 4 D.4. 12 
FPUnit 0.5.3 
FrameArc Procedure E.9.10 
FrameCounter Function F.3 
FrameOval Procedure E.9.8 
FramePoly Procedure E.9.16 
FrameRect Procedure E.9.7 
FrameRgn Procedure E.9.12 
FrameRoundRect Procedure E.9.9 
Frames Oata Type F.10 
Free Fomat 0.4.6, 0.4.12 
Free Format Conversion D.4.6 
Full Listing J-2 
Full Listing By Procedure J-2 
Full Rank 0.4.10.2 
Function 7.2-3 
Function-Body 7.2 

syntax 7.2 
Function-Call 5, 5.2, 7.2, 7.3 

syntax: 5.2 
Function-Declaration 7.2 

syntax 7.2 
Function-Heading 7.2 

syntax 7.2 
Functional Parameter 7.3.4 
Functions, Assembly Language E.ll.4 
Future Value 0.3.10.3 

G 
GE 0.3.6, 0.3.12 
GEL D.3.6, D.3.12 
Get Procedure 10.2.1, 10.2.3 
GetClip Procedure E.9. 1 
GetEnv D.3.B.2, D.3.12 

Index-ll 

Index 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

P8sc81 Reference 1f8nu81 

GetFontlnfo Procedure E.9.4 
GetHltAddress 0.3.11, 0.3.12 
GetPen Procedure E.9.3 
GetPenState Procedure E.9.3 
GetPixel Function E.9. 18 
GetPort Procedure E.9.1 
GetPort30 Procedure E.12.4 
GetPrecision 0.4.2, 0.4.12 
GetRnd 0.3.8.1, 0.3.12 
GL 0.3.6, 0.3.12 
Global Coordinated E.6, E.9.17 
Global Constants 0.3.5.1 
Global Variables, Assembly Language 

E. 11. 3 
GlobalToLocal Procedure E.9.17 
Goto-Statement 6.2, A 

syntax 6. 1. 3 
Gotoxy Procedures 10.3.7.2 
Graf30 E.12 

data types E.12.3, E.13.5 
sample program E.14.2 

GrafDevice Procedure E.9.1 
GrafPort Coordinates E.3.1, E.6 
GrafPort Data Type E.5 
GrafPort Routines E.9.1 
GrafPorts E.5 
GrafPtr Data Type E.5 
GrafVerb Data Type E. 10 
Graphic Pen E.5.1 
Greater than 0.3.6 
Greater than or equal D.3.6 
Greater than or less than 0.3.6 
Greater than. equal. or less than 0.3.6 
OT 0.3.6, 0.3.12 

H 
Halt Address 0.3.11 
Halt Procedure 11.1.2, A 
Halts 0.3.8.2 
Halt Vector 0.3.8.2 
Handles E.3.4 

picture E.8. 1 
polY2on E.8.2 
region E.3.4 

Index-12 

Index 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Ifanual 

Hardware Interface F 
Hardware Interface, Linking To Notes F-1 
Heap 11. 2, D. 4. 4 
Heapresult Function 11.2.2 
Hex-Digi t 1. 1 
Hex-Digit-Sequence 1.4 

syntax 1. 4 
Hexadecimal Constants 1.4 
HideCursor Procedure E.9.2 
HidePen Procedure E.9.3 
Horner's Method 0.4.9 
Horner's Rule 0.3.5 
Host Program or Unit 9 
Host-Type of Subrange 3.1.3 
Hotspot E.4.4, F.2 
Hourglass Cursor F.2.2 
Hyperbolic Cosine 0.4.3 
Hyperbolic Sine 0.4.3 
Hyperbolic Tangent 0.4.3 

I 
12X 0.3.4.1, 0.3.12 
Identical Types 3.4 
Identifier 1. 2 

of program 8.1 
syntax 1. 2 

Identifier-List 3.1.2 
syntax 3. 1. 2 

Identity Procedure E.12.4.2 
IEEE Arithmetic 0.2.1 
IEEE Standard 0.3.1 
IEEE Standard 0.3.1 
If-Statement 6.2.2.1 

optimization 12.3 
syntax 6.2.2 

Implementation-Part 9.1.1 
syntax 9. 1. 1 

In Operator 5.1.5.5 
Index 4.3.1 

in variable-reference 4.3.1 
syntax 4.3.1 

Index-Type 3.2.1 
syntax 3.2.1 

INEXACT 0.3.8.2, 0.3.12 

Index-13 

Index 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Ref'erence /1anllal 

INF D.Z.1 
IFINITE 0.3.7.1, 0.3.12 
Infinities 3.1.1.3, D.3.7 
Infinities D.3. 7 
Infinity 0.2.1 0.3.7.1 
InitCursor Procedure E.9.2 
InitFPLib D. 3. 11, D.3.12 
InitGraf Procedure E.9.1 
Initial-Value 6.2.3.3 

syntax 6.2.3.3 
Initialization-Part A 
InitPort Procedure E.9.1 
Inline Declaration Notes 7-1 
Input (Standard File) 10.1.7, 10.3 
Input File Control (In Compilation) 

12.1 
Input Variables in Read Procedure 

10. 3. 1 
Input/Output 10, Notes 10-1 
Inquiries D.3. 7.1 
Insert Procedure 11.6.6 
InsetRect Procedure E.9.6 
InsetRgn Procedure E.9.11 
Int-EForm 0.4.6, 0.4.12 
Integer 1.4, 3.1.1.1-2, 10.3.1.2, 

10.3.3.3, 11.3-5, D 
arithmetic 3.1.1.1, 3.1.1.2 
constant 1.4 
conversion overflo~ D 
data type 3.1.1.1, 3.1.1.2 
data type conversions 3. 1, 

3. 1. 1. 5, 3. 1. 2, 11. 5. 1 
values in text-oriented 1/0 

10.3.1.2, 10.3.3.3 
Interactive File-Type A 
Integral format D.4.6 
Interface D.3. 12 
INTERFACE D. 4. 12 
Interface-Part 9. 1. 1 

syntax 9. 1. 1 
IRR D.4.8 
Internal Rate of Return D.4.8 
Intrinsic Libraries Notes 9-3 
Intrinsic-Unit Syntax Notes 9-2 
INTRINSIC. LIB 9.2, 12.1 

Index-14 

Index 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference flanual 

INVALIO 0.3.8.2. 0.3.12 
Invalid Operations in Real Arithmetic 
Inverse D.4.10.1 
Inverse cosine D.4.3 
Inverses 0.4.10.3 
Inverse sine D.4.3 
InvertArc Procedure E.9.10 
InvertOval Procedure E.9.8 
InvertPoly Procedure E.9.16 
InvertRect Procedure E.9. 7 
InvertRgn Procedure E.9.12 
InvertRoundRect Procedure E.9. 9 
Ioresult Function 10.1.2. 10.1.6 
IOSFPLib D.1, D.4 
IOSPasLib D. 1 
Iteritive Improvement D.4. 10.6 

K 
Key State F.5.3 
KeyboEvent Function F.5.3 
KeyboId Data Type F.10 
KeyboPeek Function F.5.3 
KeyboQIndex Data Type F.10 
Keyboard 3.2.4, 10.1.1, 10.3, 

10.3.7.1, F.5 
attributes F.b.l 
echoing on input 10. 3 
events F.5, F.5.3 
identification F.5.1 
layouts F.5.1 
legends F.5.1 
physical 3.2.4, 10.1.1, 10.3, 

10.3.7.1 
queue F.5.3 
repeats F.5. 5 
state F.5.1 
testing 10.3.7.1 

Keyboard Function F.5.1 
KeyCap Data Type F. 10 
KeyCapSet Data Type F.I0 
Keycodes F.5 
KeyEvent Data Type F. 10 
KeylsDo~n Function F.5.2 
KeyMap Procedure F.5.2 

Index-IS 

Index 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

P8sc81 Reference 1f8nu81 

Keypress Function 10.3.7.1 
Keystate F.5.3 
KillPicture Procedure E.9.14 
KillPoly Procedure E.9.15 

l 
L2X D.3.4.1, D.3.12 
Label 1.6, 2.1, 6 

on statement 6 
syntax 2.1, 6 

Label-Declaration-Part 2.1 
syntax 2.1 

LOec2X 0.4.7, 0.4.12 
LE 0.3.6, 0.3.12 
Legends Function F.5.1 
Length Attribute 3.1.1.S 
Length Function 11.6.1 
Less than 0.3.6 
Less than or equal 0.3.6 
Letter 1.1 
Libraries, Intrinsic Notes 9-3 
Linear Algebra 0.4.10 
Linear Aleebra Procedures 0.4.10.8 
Linear Equations 0.4.10.3 
Linear Least Squares 0.4.10.3 
Lineat Least Squares Problems D.4.10.9 
Line-Draving Routines E.9.3 
Line Procedure E.9.3 
Line2D Procedure E.12.4 
Line30 Procedure E.12.4 
LineTo Procedure E.9.3 
LineTo20 Procedure E.12.4 
LineTo3D Procedure E.12.4 
Linker 7.1 
Linking 0.1 
Lisa Extended Caracter Set G 
Listing Control 12.1 
Listing Formats J 
Ln Function 11.4.7 
Local Coordinates E.6, E.9.17 
LocalToGlobal Procedure E.9.17 
Lock 10.1.5 
Logarithms 0.3.10.1 
LoebX D.3.9.4. D.3.12 
Loge (1 + x) 0.3.10.1 

Index-16 

Index 

.. -'----.., 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Referencelfanual 

Log2X D.3.10.1, D.3.12 
LnX D.3.10.1, D.3.12 
Ln1X D.3.10.1, D.3.12 
LongDecimal D .. 4.7. D.4.12 
Long Integer Data type A 
Longint 1.4, 3.1.1.2, 10.3.1.2, 

10.3.3.3, 11.3-5, D 
arithmetic 3.1.1.2 
constant 1.4, 1.6, 1.7 

11. 3. 4 
data type 3.1.1.2 
data type conversions 11.3.3, 
values in text-oriented I/O 

10.3.3.3 
LoneSieDie D.4. 7, D.4.12 
LookAt Procedure E.12.4.1 
LSigOigLen 0.4,7, D.4.12 
Lt D.3.6, D.3.12 

If 
Macintosh O. 1 
Macintosh Code Generation Notes 12-6 
Macintosh Floating-Point Programming D.4.5 
Macwkorks 0.5 
Managing Environmental Settings D.3.8.3 
ManyPixels Data Type F.I0 
MapPoly Procedures E.9.18 
MapPt Procedure E.9.18 
MapRect Procedure E.9.18 
MapRgn Procedure E.9.18 
Mark D.4.4 
Mark Procedure 11.2.3, A 
Mask Bitmap F.2 
MathLib 0.1, 0.4, 0.4.12, 0.5.3 
Math-Solve D.4.9, 0.4.12 
Math Sort 0.4.5 
Math-Sort 0.4.5. 0.4.12 
MathUnit D.5.3 
Mat-Mult 0.4.10.8, D.4.12 
Matrix 0.4.10.3 
Matrix Multipication D.4. 10.3, D.4.10.8 
Maxi nt 3. 1. 1. 1 
MaxSig 0.4.5, 0.4.12 
Memavail Function 11.2.5 

Index-17 

Index 

.~ .. ~~-~.--~ .. --- .. ~~---------------



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal ReFerence /1onllol 

Member-Group 5.3 
syntax 5.3 

Memory Allocation Procedures 11.2 
Merge sorting 0.4.5 
Microsecond Timer F.6 
MicroSeconds Data Type F.10 
HicroTimer Function F.S 
Millisecond Timer F.7 
MilliSeconds Data Type F.10 
Minimum Listing J-2 
Missing Symbol E.5.2 
Mod Operator A 
Mouse F. 1 

button F.5 
plug F.5 

MouseLocation Procedures F. 1. 1 
MouseOdometer Procedure F.1.4 
MouseScaling Procedure F.1.3 
MouseThresh Procedure F.1.3 
MouseUpdates Procedure F.1.2 
Move Procedure E.9.3 
Move2D Procedure E.12.4 
Move3D Procedure E.12.4 
Moveleft Procedure 11. 7. 1 
MovePortTo Procedure E.9. 1 
Moveright Procedure 11.7.2 
MoveTo Procedure E.9.3 
MoveTo2D Procedure E.12.4 
MoveTo30 Procedure 
Mule 0.3.3.1, 0.3.12 
Mule 0.3.3.1, 0.3.12 
HulS 0.3.3.1, 0.3.12 
MulX 0.3.3. I, 0.3.12 
Multiply 0.3.3.1 

N 
NaN 0.2.1 
NaN Arithmetic D.2.4 
NaN Code D. 2. 1 
NaNCond D.4. 11 
NaNDet 0.4.11 
NaNIRR 0.4.8, D.4.11 
NaNs 3.1.1.3, D.3.7 
Natural (base-e) logarithm 0.3.10.1 

Index-18 

Index 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

P8SC8i Reference 1t8nl.l81 

Negation D.3.9.2 
Negative Zeros D.2.1 
NegX 0.3.9.2, D.3.12 
Ney Prodedure 3.3. 11.2.1. A 
NevRgn Function E.9.11 
Next-After D.3.9.3 
NextO 0.3.9.3, D.3.12 
NextS D.3.9.3. D.3.12 
NextX D.3.9.3, D. 3. 12 
NextRandom D.4.3, D.4.12 
Nil 3.3, 4.3.4, 11.2.1 
Noise Procedure F.4 
Nonsingular-transfomations D.4.10.1 
Normal 10. L 5 
NORMAL D.3.7.1. D.3.12 
Normalized Number D.3. 7.1 
Not-a-Number D.2.1 
Number 1. 4 
NumClass 0.3.7.1, D.3.12 
Numerical Comparisons 5.1.5.1 

o 
Object File 9 
Object of Pointer 4.3.4 
ObscureCursor Procedure E.9.2 
Odd Function 11.4.1 
OffsetPoly Procedure E.9.15 
OffsetRect Procedure E.9.S 
OffsetRgn Procedure E.g. 11 
Open3DPort Procedure E.12.4 
Opening a File 10.1, 10.1.2-4 
OpenPicture Function E.9.14 
OpenPoly Function E.9.15 
OpenPort Procedure E.9.1 
OpenRgn Procedure E.9.11 
Operands 5 

compile-time 12.2.3 
in expressions 5 

Operators 5 
compile-time 12.2.3 
in expressions 5 

Options, Code Generator Notes 12-4 
Options, Code Generator (Table) Notes 12-7 
Options. Compiler Notes 12-2 

Index-19 

Index 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

P4sc41 ReFerence 1f4nu41 

Options. Compiler (Table) Notes 12-7 
Optimization Of If, Repeat, and While 

statements 12.3, 12.4 
Ord Function 3.1. 3.1.1.5, 3.1.2. 

11. 5. 1 
Ord4 Function 3.1.1.2, 11.3.3 
Order of Evaluation of Operands 

5.1. 1 
Ordinal Functions 11.5 
Ordinal-Type 3.1 

and ord function 11.5.1 
and ord4 function 11.3.3 
and pred function 11.5.4 
and succ function 11.5.3 
syntax 3.1 

Ordinal-Type-Identifier 3 
Ordinality 3.1 
Othervise-Clause 6.2.2.2 

syntax 6.2.2.2 
Output (Standard File) 10.3 
Output Expression in Write Procedure 

10.3.3 
Output File in Write Procedure 

10.3.3 
Output-Specs in Write Procedure 

10.3.3 
Ovals, Graphic Operations E.9.8 
OVERFLOW D.3.8.2, D.3.12 
Overflow (Real Arithmetic) 

3. 1. 1. 3, D 

P 
P754 D.3.1 
Packed Array of Char 5.1.5.6, 

10.3.1.5, 10.3.3.6, 11.8 
comparisons 5.1.5.6 
fillchar procedure 11.8.3 
scanning functions 11.8.1. 11.8.2 
text-oriented I/O 10.3.1.5, 

10.3.3.6 
Packed Data Types 3.1.1.6. 3.2 
Page Procedure 10.3.6 
PaintArc Procedure E.9.10 
PaintOval Procedure E.9. 8 
PaintPoly Procedure E.9. 16 

Index-20 

Index 



Pascal ReFerence tlanual Index 

PaintRect Procedure E.9. 7 
PaintRgn Procedure E.9.12 
PaintRoundRect Procedure E.9.9 
Parameter 7.1, 7.3 
Parameter-Declaration Syntax Notes 7-2 
Parameter List Compatibility 7.3.5 
Parameter-Declaration 7.3 

syntax 7.3 
Parameters in Procedure Call 6.1.2 
Pascal Compiler 12 
Pascal Diskette Description 1-6 
Pascal Real Arithmetic 0.5.2 
Pascal Workshop Files I 
Pattern Data Type E.4.3 
Pattern Transfer Mode E. 7. 1 
Patterns E.4.3 
Pen E.5. 1 
Pen Routines E.9.3 
PenMode Procedure E.9.3 
PenNormal Procedure E.9.3 
PenPat Procedure E.9.3 
PenSize Procedure E.9.3 
Performance Penalty for Longint 

val ues 3. 1. 1. 2 
PicComment Procedure E.9. 14 
PicHandle Data Type E.8. 1 
PicPtr Data Type E.8. 1 
Picture Comments E.8. 1 
Picture Data Type E.8. 1 
Picture Frame E.8. 1 
Picture Routines E.9. 14 
Pictures E.8. 1 
Pitch Procedure E.12.4.2 
Pixtel E. 4. 1 
Pixtels Data Type F.I0 
Plus-EForm 0.4.6, 0.4.12 
Point Data Type E.3.2 
Pointer 4.3.4, 11.2 
Pointer Function 3.3, 11.3.4 
POinter-Object-Symbo14.3.4 

syntax 4.3.4 
Pointer-Reference 4.3.4 
Pointer-Type 3.3 

conversions 11.3.3, 11.3.4 
syntax 3.3 

Index-21 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

P4SC4} Ref'erence /f4nU4} 

POinter-Type-Identifier 3 
Points E.3.2 
Points, Calculations E.9. 17 
Polar Coordinates D.4.3 
Polygon Data Type E.8.2 
Polygons E.8.2 

calculations E;9. 15 
graphic operations E.9. IS 

PolyHandle Data Type E.8.2 
Polynomial D.3.5 
PolyPtr Data Type E.8.2 
PorBits E.5 
PortRect E.5 
PortSize Procedure E.9. 1 
Pos Function 11.6.2 
Pover Svitch F.5 
P-QR-Record D.4.12 
Precedence of Operators 5 
Pred Function 3.1, 11.5.4 
Predecessor 3. 1 
Predefined Identifiers A.4 
Present Value D.3.10.3 
Procedural Parameter 7.3.3 
Procedure 7.1, 7.3 
Procedure-and-Functlon-Declaration-

Part 2.1 
syntax 2.1 

Procedure-Body Syntax Notes 7-1 
Procedure-Declaration 7.1 

syntax 7.1 
Procedure-Entry D.3.B.3 
Procedure-Exit D.3.B.3 
Procedure-Heading 7.1 

syntax 7. 1 
Procedure-Statement 6.1.2, 7.1 

syntax 6. 1. 2 
Procedures, Assembly Language E.11.4 
ProcEntry D.3.B.3, 0.3.12 
ProcExit 0.3.8.3, 0.3.12 
Program 8 

identifier 8. 1 
segments 8.3 
syntax 8. 1 

Program-Heading 8. 1 
syntax 8. 1 

Index-22 

Index 
,~ 

J 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Ref'erence Ifanual 

Program-Parameters 8.1, 8.2 
syntax 8.1 

Pseudo-inverse P 0.4.10.3 
Pseudo-inverses 0.4.10.1 
Pt2Rect Procedure E.9.6 
PtlnRect Function E.9.S 
PtlnRgn Function E.9. 11 
PtToAngle Procedure E.9.S 
Purge 10. L 5 
Put Procedure 10.2.2-3 
P~roften Function 11.4.10 
Pyramid E.12 

(I 
QDProcs Data Type E.I0 
QDProcsPtr Data Type E.10 
QDSample Program E.2.1. E.14.1 
QDSupport Unit E.15 
QNAN 0.3.7.1, D.3.12 
QR-Condition D.4.10, 0.4.10.10, 0.4.12 
QR-Oeterminant 0.4.10.8, 0.4.10.10, 0.4.12 
QR-Factor D.4.10.8, D.4. 10. 10, D.4.12 
QR Factorization D.4. 10.9 
QR-Improve 0.4.10.8, 0.4.10. la, 0.4.12 
QR-Residual 0.4.10.8, 0.4.10.10, 0.4.12 
QR-Solve 0.4.10.8, 0.4.12 
QR-Solve finds D.4.10.10 
QR-TransOeterminant D.4. 10.8, 0.4.10.10, D.4.12 
QR-Transolve D.4.10.8, D. 4. 10. 10, D.4.12 
Quadratic Equation 0.3.5 
Qualifier 4.3 

syntax 4.3 
QuickDrav E 
QuickDrav Data Types E.2.Z, E. 13. 2 
QuickDrav Glossary E. 16 
QuickOrav, Linking To Notes E-l 
QUickDrav Routines E.9 

arcs E.9. 10 
bit transfer E.9. 13 
color draving E.9. 5 
cursor handling E.9.2 
customizing E. 10 
grafPorts E.9. 1 

Index· 23 

Index 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

P6sc61 Ref'erence /f6n1l61 

line drawing E.9.3 
miscellaneous utilities E.9.18 
ovals E.9.8 
pen E.9.3 
pictures E.g. 14 
points E.9. 17 
polygons E. 9.15, E.9.16 
rectangles E.9.S, E.9.7 
regions E.9.l1, E.9.12 
rounded-corner rectangles E.9.9 
text drawing E.9.4 
wedges E.9. 10 

QuickOraw Sample Programs E.2. 1, 
E. 14 

QuickDraw Summary E.13 
QuickOraw, Text Notes E-l 
QuickDraw. Using From Assembly 

language E.ll 
Quiet NaN 0.3.7.1 
Quo D.S.S.2. D.S.12 
Quoted-Character-Constant 1.6.1 

syntax 1. 6. 1 
Quoted-String-Constant 1.6 

syntax 1. 6 

R 
RampContrast Procedure F.3.1 
RandModulus D.4.3, 0.4.12 
Random Function E.9.18 
Random Number Generator D.3.10.5 
RandomX 0.3.10.5, 0.3.12 
Ranee-Checkine 3.1.3. 12.1 
Rank-Deficient 0.4.10.2 
Read Procedure 10.3.1 
Readln Procedure 10.3.2 
Real 1.4. 3.1.1.3, 10.3.1.3, 

10.3.3.4, 11.3-4, 0 
arithmetic 0 
constant 1. 4 
data type 3.1.1.3 
data type and round function 11.3.2 
val ues 3. 1. 1. 3 
values and write procedure D 
values in text-oriented I/O 

10.3.1.3, 10.3.3.4, D 

Index-24 

Index 



I 
I 
• II -
• • 

I 
• II -
= 

I 

I 
I 
I 
I 
I 

!!! --

• • 

I 

PIJSClJl Ref'erence tllJnlJlJl 

RealPrecision 0.4.2. 0.4.12 
Real-Type 3.1 

syntax 3. 1 
Real-Type-Identifier 3 
Record 3.2.2, 4.3.2 

field 3.2.2, 4.3.2 
number and seek procedure 10.2.4 
or file 10.2 
reference 4.3.2 
reference in yith statement 6.2.4 

Record-Oriented 1/0 10.2 
Record-Type 3.2.2 

ney procedure 11.2.1 
syntax 3.2.2 

Rectangle Calculation Routines E.9.6 
Rectangle Data Type E.3.3 
Rectangles E.9.9 
Rectangles E.3. 3 

graphic operations E.9. 7 
RectlnRgn Function E.9. 11 
RectRgn Procedure E.9. 11 
Recursion 7.1-2 
Redeclaration of Identifier 2.2.2, 

2.2.4 
Region Data Type E.3. 4 

calculations E.9. 11 
graphic operations E.9. 12 

Regression 0.4.10.7 
Regular-Unit Syntax Notes 9-2 
Relational Operators 5.1.5 
Relaxed Order of Declarations Notes 2-1 
Release 0.4.4 
Release Procedure 11.2.4, A 
RelX D.3.B, 0.3.12 
RelOp D.3.B, 0.3.12 
Remainder D.3.3. 2 
RemX D.3.3. 2, 0.3.12 
Repeat-Statement 6.2.3.1 

optimization 12.4 
syntax 6.2.3.1 

Repeating Keys F.5.5 
RepeatRate Procedure F.5.5 
Repetitive-Statement 6.2.3 

syntax 6.2.3 
Reserved Words 1.1 

Index-25 

Index 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

P4sc41 Reference H4nu41 

Reset Procedure 10.1, 10.1.5, A 
Residual 0.4.10.6, 0.4.10.10 
Result-Type 7.2 

syntax 7.2 
Re~rite Procedure 10.1.4 
RgnHandle Data Type E.3.4 
RgnPtr Data Type E.3.4 
RintX 0.3.9.1, 0.3.12 
Roll Procedure E.12.4.2 
Rotation E.12 
Round D.2.4 
Round Function 11.3.2, D 
Rounding D.2.2 
RoundDir D.3.12 
Rounding Direction D.3.8.l 
Rounding Error D.4.9 
Rounding Function D.3.8.1 
Rounding in Real Arithmetic D 
Rounding precision D.3. 8 
Rounding Direction D.3.8.1. 
RoundDir D.3.8.1 
Roundoff Errors D.4.l0.4 
RoundPrecision D.4.2. 0.4.12 
Round to Integral Value D.3. 9. 1 
Ro~ Width E.4.1 

S 
S2Dec D.3.4.2. D.3.12 
S2Str 0.3.4.2, D.3.12 
S2X D.3.4.1, D.3.12 
Sane D.l 
SANE Environ 0.3.11, 0.3.12 
ScalbX D.3.9.4, D.3.12 
Scale Procedure E.12. 4.2 
Scale-Factor 1.4 

syntax 1. 4 
ScalePt Procedure 
Scan Function A 
Scaneq Function 11.8.1 
SCanne Function 11.8.2 
Scope 2.2 

of standard objects 2.2.5 
Screen 10.3, 10.3.7.2, F.3 

contrast F.3. 1 
cursor control 10.3.7.2, F.2 

Index-26 

Inde,~ 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

-------

Pescel ReFerence Ifenuel 

fading F.3.2 
physical 10.3 

ScreenContrast Oata Type F.10 
ScreenSize Procedure F.3 
ScrollRect Procedure E.9. 13 
Seconds Oata Type F. 10 
SectRect Function E.9.6 
SectRgn Procedure E.9. 11 
Seed 0.3.10.5 
Seek Procedure 10.2.3 
Segment Keyvord A 
Segmentation 8.3, Notes 9-1 
Segments 8.3, 9.1, 9.2.1 
Selector in Case Statement 6.2.2.2 
Series of payments 0.4.8 
Set 3.2.3, 5.1.4, 5.1.5.4, 5.3 

comparisons 5.1.5.4 
membership testing 5.1.5.5 
operators 5. 1. 4 
values 5.3 

Set-Constructor 5, 5.3 
syntax 5.3 

Set-Type 3.2.3 
syntax 3.2.3 

SetClip Procedure E.9. 1 
SetContrast Procedure F.3. 1 
SetCursor Procedure E.9.2 
SetOateTime Procedure F.8 
SetOimContrast Procedure F.3.2 
SetEmptyRgn Procedure E.9. 11 
SetEnv 0.3.8.1, 0.3.8.2 0.3.12 
SetFadeOelay Procedure F.3.2 
SetHlt 0.3.8.2. 0.3.12 
SetHlt Address 0.3.8.2, 0.3.11, 0.3.12 
Set Legends Procedure F.5. 1 
SetOrigin Procedure E. 9. 1 
SetPenState Procedure E.9.3 
SetPort Procedure E.9. 1 
SetPort30 Procedure E. 12. 4 
SetPortBits Procedure E.9.1 
SetPrecision 0.4.2. 0.4.12 
SetPt Procedure E.9. 17 
SetPt2D Procedure E.12.4 
SetPt30 Procedure E.12.4 
SetRect Procedure E.9.6 

Index-27 

Index 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

P6sc61 Reference 1f6nt.l61 

SetRectRgn Procedure E.9.11 
SetRnd D.3.8.1, D.3.12 
SetRepeatRate Procedure F.5.5 
SetStdProcs Procedure E.10 
SetTimeStamp Procedure F.$ 
SetVolume Procedure F.4 
SetXcp D.3.8.2. D.3.12 
Sgn D.3.4.2, D.3.12, D.4.7, D.4.12 
Shared Intrinsic-Unit Notes 9-1 
Sho~Cursor Procedure E.9.2 
ShowPen Procedure E.9.3 
Sig D.3.4.2, D.3.12, D.4.7, D.4.12 
SigDig D.3.12 
SIGDIGLEN D.3.12 
Sig-FFarm D.4.6 
Sig-FForm D.4. 12 
Sign 1. 4 

syntax 1. 4 
Sign D.3. 7.1 
SignDfX D.4.4 
SignOfX D.4.12 
Sign Manipulation D.3.9.2 
SignalIng NaN D. 3. 7. 1 
Signed Zero 3.1.1.3 
Signed-Number 1.4 

syntax 1. 4 
Silence Procedure F. 4 
Simple-Expression 5 

syntax 5 
Simple-Statement 6.1 

syntax 6.1 
Simple-Type 3.1 

syntax 3. 1 
Simple-type-Identifier 3 
Sin Function 11.4.4 
Sine D.3.10.4 
Single D.3.12 
Single, Double, Comp Extended D.S.2 
Singular D.4.10.1 
SinhX D.4.3, D.4.12 
SinX D. 3. 10. 4, D.3.12 
Size-Attribute 3.1.1.6 

syntax 3. 1. 1. 6 
Sizeof Function 11.7.3 
Ske~ Procedure E.12.4.2 

Index-28 

'o~· \ '" 

.. ~~ .... Index 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
{ Pascal Reference l'Ianual 

SNAN 0.3.7.1, 0.3.12 
Solving a system of linear equations 0.4.10.3 
Sorted 0.4.5 
Source Transfer Mode E. 7. 1 
SpaceExtra Procedure E.9.4 
Speaker F.4 
SpeakerVolume Data Type F.I0 
Special Symbols 1.1 
Sqr Function 11.4.3 
Sqrt Function 11.4.8, D 
SqrtX D.3.3.3, D.3.12 
Square Root D.3.3.3 
Stable D.4.5 
Stack Space and Memavail Function 

11. 2.5 
Standard Apple Numeric Environment D-1 
Standard errors D.4.10. 7 
Standard Procedures and Functions 

for I/O 10 
10, 11 

Standard Simple-Types 3.1 
Statement 6 

syntax 6.1 
Statement-Part 2.1 

syntax 2.1 
Statistical Computatins D.4.10. 7 
StdArc Procedure E.I0 
StdBits Procedure E.I0 
StdComment Procedure E.I0 
StdGetPic Procedure E.I0 
StdLine Procedure E. 10 
StdOval Procedure E.10 
StdPoly Procedure E.10 
StdPutPic Procedure E.I0 
StdRect Procedure E.I0 
StdRgn Procedure E.I0 
StdText Procedure E.I0 
StdTxMeas Function E.I0 
Str2C D.3.4.2, D.3.12 
Str2D D.3.4.2, D.3.12 
Str2S D.3.4.2, 0.3.12 
Str2X D.3.4.2, 0.3.12 
Str20ec D.3.12 
String 1.6, 3.1.1.6, 4.3.1. 5.1.5.3, 

10.3.1.4, 10.3.3.5, 11.6, A 

Index-29 

Index 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference lfamJal 

character 4.3.1 
comparisons 5.1.5.3 
concatenation 11.6.3 
constant 1.6. 3.1.1.6 
constant comparisons 5.1.5.3 
length function 11.6.1 
procedures and functions 11.6 
reference 4.3.1 
substring copying 11.6.4 
substring deletion 11.6.5 
substring insertion 11.6.6 
substring search 11.6.2 
values in text-oriented 1/0 

10.3.1.4, 10.3.3.5 
String-Character 1.6 

syntax 1.6 
String-Type 3.1.1.6 

syntax 3. 1. 1. 6 
String-type-Identifier 3 
StringWidth Function E.9.4 
Structured-Statement 6.2 

syntax 6.2 
Structured-Type 3. 2 

syntax 3.2 
Structured-type-Identifier 3 
Stuff Hex Procedure E.9.18 
Systems of linear equations 0.4.10.9 
Style 0.3.4.2, 0.3.12 
SubPt Procedure E. 9. 17 
Subrange-Type 3.1.3 

syntax 3. 1. 3 
Subtract 0.3.3.1 
SubC 0.3.3.1, 0.3.12 
SubO 0.3.3.1, 0.3.12 
SubSx 0.3.3.1, 0.3.12 
SubX 0.3.3.1, 0.3.12 
Succ Function 3.1, 11.5.3 
Successor 3. 1 
S\fap 0.4.5 
Syntax Diagrams, Complete Collection 

C 
Syntax Diagrams, Explanation Preface 
System Intrinsic Library 9.2.2, 12.1 

Index-3D 

Index 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Posco1 Rl!'l!rl!ncl! t'lonuo1 

T 
Tae Constants In Nev And Dispose 

procedures 11.2.1-2 
Tag-Field 3.2.2 
Tag-Field-Type 3.2.2 

syntax 3.2.2 
Tangent D.3.10.4 
TanhX D.4. 3, D.4.12 
TanX D.3.10.4. D.3.12 
Term 5 

syntax 5 
TestHlt D.3.8.2, D.3.13 
TestXcp D. 3.8. 2, D.3.12 
Testing Set Membership 5.1.5.5 
Text E.5.2 
Text Type 3.2.4, 10.1.2, 10.3 
Text-Draving Routines E.9.4 
Text-Oriented I/O 10. 3 
TextFace Procedure E.9.4 
Textfile 10.1.2, 10.3, Ar 
TextFont Procedure E.9.4 
TextMode Procedure E.9.4 
TextSize Procedure E.9.4 
TextWidth Function E.9.4 
Three-Dimensional Graphics. See 
TFP-byte D.4.4, D.4.12 
TFP-Comp 0.4.4, 0.4.12 
TFP-Double D.4. 4, D.4.12 
TFP-Extended D.4.4, 0.4.12 
TFP-integer D.4.4, D.4.12 
TFP-longint 0.4.4, 0.4.12 
TFP-real D.4.4. D.4.12 

Graf30 
Time F.8, F.9 
Time Stamp F.9 
Timer Function (Millisecond Timer) 

F. 7 
Timers F.6, F.7 
TimeStamp Function F.9 
TimeToOate Procedure F.9 
TONEAREST O. 3. 8. 1, O. 3. 12 
TOWARDZERO 0.3.7.1, 0.3.12 

Index-31 

Indl!x 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

PllsClll Reference HlJnulJl 

Trail-Point D.4.6. D.4.12 
Transfer Functions 11.3 
Transfer modes E.7.1 
TransForm Procedure E.12.4.2 
Transformation 0.4.10.1 
Transformation Matrix E.12 
Translate Procedure E.12.4.2 
Transpose 0.4.10.3 
Treesearch Procedure A 
Tri2onometric Functions 0.3.10.4 
Trunc D.2.4 
Trunc Function 11.3.1, A, D 
Turtleeraphics Unit A 
Type 3 

compatibility and identity 3.4 
syntax 3 

Type-Conversion Notes 3-1 
Type-Declaration 3 

syntax 3 
Type-Declaration-Part 2.1, 3.5 

syntax 2. 1 

u 
UCSD Pascal A 
Unary Arithmetic Operators 5.1.2 
UNDERFLOW 0,3.8.2, 0.3.12 
Underscore Character 
UnionRect Procedure E.9.S 
UnionRgn Procedure E.9. 11 
Uniqueness 0.4.10.3 
Unit 9 

intrinsic 9.2 
regular 9.1 

Unit-Heading Syntax Notes 9-2 
Unit, Intrinsic Notes 9-1 
Univtype Notes 7-2 
UNORD D.3.S. D. 3.12 
Unordered 0.3.6 
Unsigned-Constant 5 

syntax 5 
Unsigned-Integer 1.4 

syntax 1. 4 
Unsigned-Number 1.4 

syntax 1. 4 

Index-32 

Index 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pascal Reference Ifanual 

Unsigned-Real 1.4 
syntax 1.4 

Untyped File 3.2.4, 10.1.1-2, 10.4 
I/O 10.4 

UPWARD 0.3.8.1, 0.3.12 
Uses 0.3.1, 0.4.1 
Uses-Clause 8.1, 9.1.1-2, 9.2, 9.3 

syntax 8. 1 
Utility Procedures 0.4.4 

v 
Value Parameter 7.3.1 
ValidPrefix 0.3.12 
Variable 4 
Variable Parameter 7.3.2, A 
Variable-Declaration 4.1 

syntax 4.1 
Variable-Declaration-Part 2.1 

syntax 2.1 
Variable-Identifier 4.1 

syntax 4.1 
Variable-Reference 4.2 

syntax 4.1 
Variant 3.2.2 

records, ney procedure 11.2.1 
syntax 3.2.2 

Variant-Part 3.2.2 
syntax 3.2.2 

Vectors and Linear Transformations D.4.10.1 
Vector space 0.4.10.1 
Vertical Retrace F.3 
VHSelect Data Type E.3.2 
VieyAngle Procedure E.12.4. 1 
Vieying Pyramid E. 12 
VievPort Procedure E. 12.4. 1 
VisRgn E.5 
Volume Function F.4 

~ 

Wedges, Graphic Operations E.9.10 
While-Statement 6.2.3.2 

optimization 12.4 
syntax 6.2.3.2 

Index-33 

Index 



I 
i 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Poscol Reference lfonlJol 

With-Statement 6.2.4 
syntax 6.2.4 

Wordstream Type A 
Write Procedure 10.3.3. A 

vith real values D 
Write-Protection of File 10.1.5 
Writeln Procedure 10.3.4, A 

X 
X2C 0.3.4.1, D.3.12 
X20 0.3.4.1, 0.3.12 
X2I D.3.4.1, D.3.12 
X2L 0.3.4.1. 0.3.12 
X2LDec 0.4.7. D.4.12 
X2S D.3.4.1, 0.3.12 
X2X 0.3.4.1. D.3.12 
X20ec D.3.4.2, 0.3.12 
X2Str 0.3.4.2, D. 3. 12 
XForm Matrix E.12 
XpvrI 0.3.10.2, 0.3.12 
XpyrY D.3.10.2, D.3.12 
XorRen Procedure E.9.11 

y 

Yay Procedure E.12.4.2 

z 

ZERO 0.3.7.1, 0.3.12 
Zero 0.2.1. 0.3.7.1 
Zero of a Nonlinear Function 0.4.9 
Zero of polynonial function 0.4.9 
Zero Siened 3.1.1.3 

CHARACTERS 
$C Compiler Commands 12.1 
$0 Compiler Commands 12. 1 
$DECL Compiler Command 12.2.1 
$E Compiler Command 12.1 
$ELSEC Compiler Command 12.2.4 
$ENOC Compiler Command 12.2.4 
$1 Compiler Command 12.1 

Index-34 

Index 



I 
I 
I 
I 
I 
I 
I 
I 

( 

('-~ • 1 

I 
(~ .. ~:",>, . 
. " ) 

I 
I 

Pesce1 Reference l'Ienue1 

$IFC Compiler Command 12.2.4 
$L Compiler Commands 12.1 
$R Compiler Commands 3.1.3, 12.1 
$S Compiler Command 8.3. 9.1. 9.2. 

12.1 
$SETC Compiler Command 12.2.1 
$U Compiler Commands 9.1.2, 9.2.2, 

12. 1 
$X Compiler Commands 12.1 
0, Signed 3.1.1.3 
lS-Bit Integer Arithmetic 3.1.1.1-2, 

11. 3. 3 
32-Bit Integer Arithmetic 3.1.1.2, 

11. 3. 3 
3D Graphics. See Graf3D. 
@ Operator 3.3, 5.1.6 

Index-35 

Index 


